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I. Introduction

There are three well—knbwp database mgdels today, namely
the relatidnal model, the hierarchical model and the network
model, Tﬁe relational model hagd earned much attentions these
years for its simplicity and c}arity.

Nevertheless, how to implement a relational database
efficienély is stili a challenging problem uplto date. In
programming languages, the compilef has to perfofm thé optimi-
zation prqcedure-before code generation. Similarly, in database
gquery languages, optimization oquuery is still necessary.
Because the user is deliberateiy made unaware of the actual data
storage mechanism, he may write’queries which, though consistent
‘with his relational view and acqurate, have a very low efficiency
factor. The DBMS must optimize user’'s query before execute it,
in order to achieve a better performance.

Most researches of query optimization concern with DBMS on
conventional computers."When applied on a special database
machine, some changes have to be made. The principles of optimi-
zation rules may be different depending on the hardware structure
and algorithms used by the database machine.

This paper describes some.conpepts of guery optimization and
how to implement it on a database machine proﬁosed by our earlier

works,

I1. General Schemes
The basic organization of a query optimization system is

shown in Fig. 1, which is proposed by Smith and Chang [1 ].



The query is first processed to produce a "tree" represen-
tation, which is then passed tb the tree transformer. The tree
transformeer has access to a sét of correctness-preserving
algebraic‘tranéformations; and to a set of rules determine when
the application of these transformations will increase efficiency.
The transformer optimizes the tree and passes it along to a
mechanisﬁ which constructs an implementations of each operator
as a task. The operator constructor has access to a set of basic
implement;tion procedures. Thé constructor creates'tasks from
these procedures, in.such a waf that the performance of the whole

tree of cooperating tasks is oﬁtimized. Finally, the set of

cocoperating tasks is executed on a database'macpine.

ITI. Prosposed Architectures and Algorithms
The description of the proposed hardware architecture is
" omitted here. | 7
The relational ope}étors which had been investigated in our
system is as follows |
(1) SELECT
(2) implicit JOIN
(3) explicit JOIN 1 -- which sgtis;ies the referential integrity-
constraint . ‘
(4) explicit Jofﬁ 2 ~- other explicit joins
(5) PROJECT 1 - the PROJECT columns contain the ‘candidate key
(6) PROJECT 2 -~ the PROJECT columns do not contain the candidate
key, but the length of it is shorter than the address lines
of RAM -

{7) PROJECT 3 -~ other PROJECTs



These algorithms are the basic procedures accessed by the

coordinating operator constructor in Fig. 1.

IV. The Optimizer in Our System

In our system, the query language is supposed to be Relational
Algebra. The optimizer model ﬁiil follow the general scheme
described in section II. |

In this section, we will discuss the tree transformer and
the coordinating operator conétructors in more detail. The
difference of them on our system with that on conventional computers
will be described. | |

To make the examples below easier to understand, we follow

‘the notations used by 1], as follows

/ \ “—w——  PROJECT
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decrease, as low on the tree as possible, the net area of relations

<1> Tree Transformer

There are two types of tree transformation proposed by [ 1],

The frist_one moves unary operators down trees, The other type
involves replacing a subtree o; set operations on the relations
andfor restrietions of the same relation by 2 compound boolean
operatiop.

The second type may be represented by an example shown in
Fig. 2. The purpose of this t¥ansformation is to speed up the
SELECT operator, as that the cémmon relafion is never read more
than once. |

‘The SELECT operation in our system.is performed by the

Cellular Logic. The application of this transformation is then

" determined by the characteristics of the Cellulax Logic. For

example, if the Cellular Logic used is CASSM, the transformation -

is no good because CASSM can process only one boolean operation
at a time, thus the performance of Fig. 2(a) and Fig. 2(b) will
be the same effectively. As another example, if RAP is used as

the Cellular Logic, the performance of Fig. 2(b) will be much

better than Fig. 2(a) then. The transformation should be applied

whenever is possible.

Transformation -of the other type, which move uhary operators

down operator trees, is shown in Fig. 3 by some examples. Similar

rules may be‘found in [ 2].
. [ 4

The objectives of these tree transformations are (1) to

passed to higher operators; (2) to group all RESTRICT and SELECT

—



orarators ¢on a common relation together; and (3) fb allow maxinus

advantages to be taken of exisping directories for stored relations.
While in our system, direétories is not used, so the rules

of applying transformations 'should be modified. In addition,

moving unary operators down trees is not always desired in our

sysfém. -As stated in section.iII, there are three PROJECT

algorithms in our system, tpe iast one is the slowest. It's

clear that if the PROJECT in Fig. 3(c).is type 3, then the trans-

formation'should not be applied.

<2> Coordinating Operator Conséructor

The basic procedures in oﬁr system are’ listed in section III.
"The cocordinating operator consyrugtor takes a two-pass method.
The :irst pass is a down-up pass, each node in the operator tree
reports to its upper node all ihe alternatives it can éupport.
And in the second pass, the up-down pass, the upper node chooses
_one of the alternative procedures supported by the lower node on
a way that the overall performance will be optimized.

To achieve the optimized overall performance, we could apply
some kind of performance-measurement formulas. For example, we
can specify the time needed agd space occupied by temporary

+

results for each basic procedures. To choose best assignment of

coordinating operators construétor, we can simply calculate the
. . .

perofrmance measurement of each assignment, and then choose the

best one.

V. Other Approaches

In addition to the basic organizations of optimizer described



above, some possible approaches are worth mentioning here.

<1> Currently, our optimizer concerns only three Relational

Algebra operators, i.e. SELECT, PROJECT and JOIN.- It can not
support the full Relational Algebra operators, 1In [ 3], it is
shown that projection, join, union, differerce is a functionally
compiete'subset of the Relational Algebra operators. if we can
suppert these four operators in our system, and optimize the
guery which contains these operators only, we can then optimize

a full Relational Algebra query language.

<2> In [4], a relational expression which contains only SELECT,
PROJECT and JOIN (called SPJ e?pression);is.tfﬁnsformed into a
'talbe representatioﬁ. Some transformation rules are derived upon
the table, and the corresponding expression of the result table
céﬁ be proved to be optimized. This approach seems attractive

since it is supported by mathematical theories.

<3> Semantics model
Suppose we have a relation EMP{E#,SAL,MGR). We want to find
out all the employees who earn more than his manager. A possible

‘solution will be

Empa.sal
grprriag] S| erpz.
Empl. EMPZ

6




In our system, this query can be solved by a much better
method by using of the pointer/counter field in RAM, The optimzed
tree will be di{ferent with the original tree in a way that no’
simple tf;nsformation can be applied as described on previous
sections. The optimizer have to understand the semantic of the
query ang appiy some complicated transformations. _This approach
is not easy for the semantics model is difficuit to be made. But
this.approach is surely important in order tq achieve'a promising

query optimizer.
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Figure 2.
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