|

TR-83-007

EFF1cIENT CoMPuTING OF RELATIONAL JoIN CPERATIONS
BY MeANS OF SPECIALIZED HARDWARE

BY

YaNG-CHANG HONG
INSTITUTE oF INFORMATION SCIENCE
AcADEMIA SINICA -
Tatper, Tamwan, ROC

FEBRUARY 14, 1983

nmnmumummunnmmnwf||rrmmm»||mmnmnmum

0040

"THIS WORK WAS SUPPORTED BY THE NATIONAL Sclence CouncIL OF
THE REPUBLIC OF CHINA, TAIPEI. THE AUTHOR IS CURRENTLY
VISITING. THE DEPARTMENT oF ELECTRICAL ENGINEERING AND CoMPu-
TER SCIENCE, UNIVERSITY OF SANTA CLaArA, Santa CuLara, CA 95053

TELEPHONE: (408) 084-9017

FOR REFVERENCE

f B RAFIL v iai i‘..k_. Sl

" NOT TO B2 THEEN FROM THIS ROGM

ABSTRACT

The paper describes a hardware architecture which
can provide powerful join capabiiities to associétive
processing (AP} systems. The main feature of the hard-
ware is a bit- and word-addressable store, RAM, which
can rapidly remember o récall data. The data might be
the values/tuples selected frpm one relation in which
case the RAM helps on performing the joining of these
values/tuples with the tuples in the second reiation.
For the general case of the join, the RAM caﬁ help'oﬁ
dividing the tuples of the reiafisns'being joined into
buckets acéording to different value-intervals of their
join columns. An array of servers is intfoduced for
producing the concatenated tuples of this join. This

hardware design emphasizes on much parallelism in the

cross referencing involved in the join operation, giving

considerable performance improvement over existing AP

systems. The paper finally gives the analysis result of

the hardware performance under different applications.

L]

|

Key Words and Phrases: implicit join,. explicit join, associative hardware,

associstive processing systems, join columns, referential integrity.

‘1. INTRODUCTION

The relatioﬁal model [5] has, more than other models during the past
decade, attracted and held great interest of the database reéearchers and
data processing community. But efficiently implémenting the model on main
frame computer (MFC) is rather a challenging problem up to date.

Several hardware appréaches to igplementing the relational database
have been reported in the literature [1-19]. Previ;usly, the design of
associative hardware for the joining of relations has been to concentrate
on a form so called the "implicit" joins [1, .3, 11, 12, 16]. This join
does not create a derived.relation; instead the values $e1ected from cne
relation are transferred to seléct the fuples in thq,sécond {or the same)
relation that have the same values in their join columns (i.e., the columns
on which their joining is based). The earlf designers of associative pro-
cessing (AP) systems did not‘provide powerful facilities for thé explicit
(as opposed to the implicit) join oﬁeration‘ The explicit‘join algorithms
they provided are mainly carried out by the MFC to which the AP ;ystem is
a backend. The LEECH [9] and CAFS [1] machines use a filter for selecting
tuples needed for the join. The selected tuples are sent to the MFC to.
form the concatenated tuples of the join. The only difference of these
two'machines is the design of the filter. RARES [11] provide a hardware-
support aiéorithm for diﬁiding the tuples of the relations being joined

into buckets according to different value-intervals of their join columns.

The tuples within each bucket are sorted in the main memory, and the sorted

—-—

buckets are used for computing the join by MFC. These algorithms will not

be very effective, especially when the large number of tuples being joined
is involved.

Since AP systems are based on the parallel processing of the segmented

|

f——

sequential search, while the explicit join operation Trequires involving a
great amount of_crogs checking which breaks this parallelism, they are not
alone suffiéient to make a high-performance database machine. New hardware
which can perform a large amount of cross checking in pafallel nust be
sought to cope with a join-dominating database applica£ion.

There have been at least three hardware architectures proposed for the
explicit join operation [10, 12, 18]. They provide thg implemen;ation of
the general form of explicit joins. Our study, however, shows that the
explicit joins which perform the joining of the tuples via the keys - can-
didate and foreign -~ can be implemented in a more efficient way than the

general form. Also, from the viewpoint of data semahtips, one can say that

a majority of explicit joins are performed via the keys. It is, therefore,

advantageous to refine this iype of operation further for implementation.

This paper describes a hardware architecture which can provide power-
ful join capabilities to AP systems. ‘Thé architecture_implements three
types of join: the implicit join, type I and II explicit joins. _The type I
explicit jbin is the join defined above and type II is the explicit join in
ﬁhich the joining of the tuples is not via the keys. The main feature of
fhe hardware is a bit- and word-addressable store, RAM, which can rapidly
remember or recall data for the implicit join and the type I explicit join.
In the type II expiicit join, the RAM can help on diviéing the tuples of the
relations being joiﬁed into buckets according to different value-intervals
of their join columns. An array of servers is @ntr;duced to ﬁroduce the
concatenated tuples of this join. This hardware design emphasizes on much
parallelism in the cross referencing, giving considerable performance improve-
meﬁt over cxisting AP syséems. A hardware”simulator is developed on PDP-11/70

for determining the major design parameters, such as the number of-servers,

the length of queues associated with servers, etc. It is also used to {given

a fixed number of servers) determine how good the hardware performance
will be under different applications.

The body of the paper is divided into three parts. In the first part
the hardware architecture is described. The second part is concerned with
the algorithms for three types of joins. The third part is concerned with
the énalfsis results of fhe pr0poséd ﬁardware, which is followed.by a sum-

mary and conclusion.

T ———————
i
\

2. BARDWARE

The hardware (see Figure 1) described here provides join capabilities
to an AP system. It accepts a sequence of column values/tuples from the
AP system where data are searched in parallel by the search logic. The
command and control piocessof {Ccp) receives data requests from the MEC,
t:anslétes . them into commands fbr both the AP system and the hardware,

'distributes commands for execution, receives tﬁe'data transferred out of
+ the AP system, and outputs the data t§ the MFC. In the discussion which
follows, data stored in an AP system are in coded form and the encoding

and decoding process are done by CCP. ,
~The hardware consists of five major components - IP, MB, RAM, S, and
CP - as shown in Figure 1 where

{1) 1IP is an input—processor which accepts column values/tuples from
the AP system and stores them in queue Q. The queue Q actsras a buffer be-
tween the AP system and the hardware. Associited with Q are two registers,
T and H,and one flag FQ' The T~ and H-registers are used to hold the loca-
tions of the last and first entries of the queue. The setting of the flag
FQ indicates the queue Q is full. This will also notify the AP system to
stop outputting data to the hardware. The IP will start its processing
once the flag FQ is clear. . ' | .

(2) MB is a memory bank for holding the tuples of relations being
joined; It consists of p memory modules M(l) 0 <12 <P-1, and each module
has q words, where p and q are design parameters.

| (3) The RAM is composed of one or several single-bit, directly ad-
dressed stores rA, rB,..., (note: Twolstoreg are sufficient for joins.
Others are provided for projections) and an array r of words. It is used

to hold intermediate results. The single bit array store is addressed by

encoded values and can hold encoded values, counters, and pointers {(to be

detailed later).. If a pointer word is concerned, it can point to a specific
wor& of a sgégific memory module. Such a word can be regarded as consisting
of two parts; one storing a value pointihg to a particular memory module and
the other storing a value pointing to a particular word within the module.

Thus, the array r of words can be seen as consisting of two arrays, r' and r";
of words and the sizes of the word in r' and " are floggl and [!oggl, Ta-
spectively, where [xi is the least integer greater than or equal to x.

(4) S is a set of queue sexvers S each associated with a Queue Ql.

The Q;'s are served to hold incoming tuples of the second relation being
joined. Like queue Q, each Q has two reglsters,T and H;,and one flag F

Each queue server S is designed to read data from its queue Q -and the mem-

ory module M(i). Thus, there are as many Si's as M(i)'s. A buffer is pro~

vided for each Si for holding the results produced,which are either output

to the MEC or stored back to the AP system for.further processing. The data

transfer is accomplished by an-oufput mechanism. i
(5) CP is a central pr;cessor which fetches column values/tuples from

Q and uses them as indices to address the bit array store for setting to i

or 0,or testing for being 1 or 0, or to locate desired words in x for various

pﬁrposes (to be detailgd iater). The CP also.serves to ailocate storage space

in MB for storing tuples of the relation heing joined. 'The registers T, D,

and BR(i), 0 < i < P-1, are provided for stoxage space allocation; and are

best explained when used.

PR

et i

3. IMPLEMENTATION QF RELATIONAL JéINS

This section shows how the hardﬁare performs relational joins. We will

flrst consider the 1mp1ementat10n of implicit joins and type 1 explicit JOlnS

and then consider type II exp11c1t joins.

3.1. .Queries Involving the Implicit Joins

i

Implementing an 1mp11c1t 301n by the single bit array stores is best

explalned by means of an example.

Example 1. Print all the green items sold by the D1 department.
To answer this query, a simplifigd database with tables SALES and TYPE
.-. * . . .)
is assumed in Figure 2. This query cgn be implemented by various ways. One

way is to apply the selection process to the table SALES to select the items

sold by the Dl department. The selected items are then transferred to the

table TYPE as a disjunctive condition to retrieve all the green items. The
procedure can be implemented by using the store TrA, which is outlined below:

(1) Clear the_single bif array store rA.

IZ) .Scan the table SALES by the AP system and output the items sold by
the Dl-department to the input processor IP. The items fed to IP are then
queued in Q. They are then fetched by CP and used as indices to addresé the
store TA aﬁd recorded in rA.

{3) Scan the table TYPE by the AP system and output and store all the

green items in Q. Any item in Q is ocutput to the MFC if it has been recorded

! .

in rA, i.e., it is an item sold by the D1 department.

Here we assume that the reader.is familiar with the data search performe&
by the AP system. What is'not made clear is the function of the single bit
array store rA; how the CP ;ecords the items in rA and how it determines which
green items are to be output to the host. |

Recall that data are encodedly stored in the AP system. Each bit position in

'

|

the array can be made corresponding to an encoded value. With this technique,
the addressed bit can be set to 1 or 0, or tested for being 1 or 0. We give
a real example to illustrate this technique.

Assume that BOLT is encoded as 0, i.e., <BOLT> = 0, and <CAM> = 1, <COG>
= 2, <GEAR>‘= 3, <NUT> = 4, and <SCREW> = 5. At the enﬁ of step (2), the bit
pattern of rA will be (0,1,0,1,0,..., 0). This pattern would record the list
of items CAM and GEAR. In step (3), items <BOLT> and <GEAR> are selected and
stored in Q for examination. Since rA(<BOLT>} = rA(0) = 0, <BOLT> is dis-
carded. Similarly, rA{<GEAR>) = rA(3) = 1, <GEAR> is output to the MFC. Be-
fore <GEAR> is output, it is decoded by the encoding and decoding unit (EDU)
in CCP. Of course, values Dl'and GREEN in the unry'havé to bg,encoded by the
EDU before the query is executed. (We negléct the detailed encﬁding and de-
coding processes here.)

The discussion above assumes that all the encoded ITEM values are within
the address space of rA. Ifnot,'they are ﬁivided into buckets; the values in
the first bucket lie between-oland 2t\— 1; the values in the second bucket lie
betqeén 2% and 2t 1; and so forth, where t 1is the number of bits required
in the address space. Each bucket is then evaluated by repeatedly applying
the same procedure being described.)

The idea of using the.single bit‘arrqy‘store to remember or recall data
is the same as thoég used in CASSM [16, 17] and CAFS [1}. CASSM uses a single‘
bit array store per cell (consisting of a memory element and a processing logic)
and one logical single bit array store, consist%ng éf the cbnéatenation of
single bit array stores of cells, addressable Ey'each processing logic. To
address a bit in the logical array store requires passing the bit address (i.
e., the encoded value) frog one logic to another. Moreover, only one cell is

allowed to address the logical array store at one time. If two cells want to

address the store simutaneously, one of the two cells must wait for the sub-

+

8

sequent revolution. This means aéditional memory revolutions {or scans)
are required in addfessing the bit array store. Our approach, like CAFS,
uses a central processor CP to set or test a single bit array store, there-
by eliminating memory addressing contention. Because of the use of an AP
system, which acts as a filter, less data than CAFS are fed to the CP for
setting or testing the bit array storé. 7

If the values selected from the second relation afe transferred to
select tuple; in the thirq relation, the second single bit array store is

needed. In general, two stores are sufficient and can be used alternatively

for a query involving a chain of implicit joins. '

3.2. Type I Joins

By extending the concept of single bit array stores to an RAM, type I
"explicit joins can be implemented as effectively as the implicit join. Two

examples below are used to illustrate this.

Example 2. Find the names of the employees who make more than their depart-

ment managers. The query is directed at the table
EMPLOYEE (NAME , SALARY , DEPT ,MGR)

where the managers are also employees - i.e., the values in the MGR column
also appear in the NAME column.

- One way to answer this query is first to scan the MGR column and out-

! »
put unique managers. Next select EMPLOYEE tuples where NAME = 'one qf the
selected managers' and then join the tﬁples beiﬁg selected with EMPLOYEE.
tuples that ﬂave the same as those names in their MGR columns. Finally,
scan the joined relation and output the employee names whose salaries are

greater than their managers. This method performs an implicit join followed

by an explicit join and a selection operatiocn. It is obvious that single bit

array stores alone are not sufficient to remember the manager names and
their salari?s fof being used to select thqse employee names who make
more than their managers. Our apprpagh which uses the single bit array
store rA and the array r of words for storing the manager names and their
salaries is putlined below:

{1} Clear rA.

{2) Scan the EMPLOYEE table and ocutput and store the entriés in the
MGR column in Q. The entries in Q are then fetched and used to set the rA
bi£s.

(3) Scan the EMPLOYEE table again and output and store the empioyee
names and their salaries in Q. Fetch each pair (énaﬁe>, <salary>) in Q
and test if rA(<name>) is 1. If rA(<name>) = 1, then store the salary
in the correspoﬂding r-word, i.e., r{<name>) + <salary>. Otherwise, dis-
card the pair.

(4) Scan the EMPLOYEE table again and output and store the employee
names, salaries, and manager; in q. Fetch each triple {<name>, <salary>,
<manager>) in Q and test if r(<manager>) < <;alary>. If yes, output the

<name>.’ Otherwise, discard the triple being held.

We notice that the encoded values in the SALARY column should have

v

the same order as they originally have. This procedure, combines one Type

fl I explicit join (this is the case where the two relations being joined are

not distinct) and one selection operation to 2 single process where the
manager names and their salaries are recorded in RAM and each incoming
EMPLOYEE tuple is virtually concatenated to a proper entry in RAM so that
the qualified employee names can be determined immediately. Our observa-
tion concludes that this technique can be applied to the joins in whigh

their join columns satisfy the referencial integrity [5]. The Exaﬁple 2

10

illustrates the case where the two relations being joined are not distinct.

The Example 3 below is the case where they are distinct.

Example 5. Jeoin the tuples of the SALES table with those TYPE tuples hav-
ing items whose price is greater than 4P and output the DEPT, TTEM, and
COLOR éolumﬁs. This isla typical explicit join of two relations. The
column ITEM in table SALES is sométimes called the foreign key. This join
.can bekrealized by the following procedure: .

(1) Cléar TA. .

{2} Scan the TYPE table and output and store the items and their
color in Q if their price is grééter than 4P. Fetch ®each pair (<item>,
<color>) in Q énd vecord it in RAM. Thaf is, rA(;item>j < 1 and r{<item>)

« <color>. - |

(3) Scan the SALES table and output the SALES tuples to Q. Fetch each
tuple (<department>, <item>) in @ and test if rA(<item>) = 1. If yes, con-

' catenate r(<item>) t6 the tuple being held and output to the MFC. Otherwise,
discard it. If further processing is needed each new tuple is stored back
to the AP system.

If entire relations SALES and TYPE are joined, there are at least two
ways to implement this joiq. The first way is to divide it into two steps:
“the first one is to join SALES and TYﬁE(l)kITEM, COLOR]lover ITEM, denoting
the resulting tabie as R1, and the second one is to join Rl and TYPE(Z)(ITEM,
PRICE) over ITEM. Each step follows the same procedure as deséribgd above.
The sccond way is to treat each word i? the arraf r as a pointer Qord point-
ing to the starting address of a block of words in MB in which a TYPE tuple
is stored, cxcept for its identifier, This approach would modify the step -
(2) of the above procedure as .

.. (2') Output and store TYPE tuples in Q. Read each ﬁuple and store it;

except for its identifier, t-id, say, in a block of words in MB. The start-’

|

11,

- ing address of the block is then stored in r{<t-id>} and the tuple identi-

fier is recorded in rA(<t-id>). The addresses recorded in r are provided

for step (3) for locating TYPE tuples,

The latter approach is generally better than the former ome. It is noticed
“that in type I explicit join, the relation whose join column is a candidate
key must be scanned first and the output data items are recorded in RAM.

3.3 Type II Explicit Joins

3.3.1. General Description

Tyﬁe 1T explicit join may make the implementation rather costly in time
and storage. The cost in storagé is reduced by dividing "large" relations
béing joined into buckets according to their join column valués,in such a
way that the first bucket of the first relation is to join with the first
bucket of the second relation; ﬁhe second bucket of the first relation is
to join with the second bucket of the second relation; and so forth. A re-
lation is "large' if it satisfies one of the following conditions: (1) The
vange of the encoded values of its join column exceeds the address space of
.RAN and (2) it cannot be entirely stored in the memory bank MB. The process-

ing time is decreased by increasing the parallelism of the cross referencing.
This parallelism is achigye& by further dividing the tuples of buckets being
joined into sub—buckets. The first ;ub-b;cket of the ith bucket is then
joined with the firét‘sub-bucket of the jth bucket; the second sub-bucket

of the ith bucket is joined with the second sub—bucket of the jth_bucket;
and so forth, where ith and Jth buckets have thg same value-interval. The
join of the pairs of sub-buckets is done in parallel by the array of servers N
in our approach.-‘Althéugh the tuples in thé sub-buckets are not actually
sorted in the order of join column values, however, it will be seen that,

in logical effect, they are joined from the "sorted!" sub-buckets in our

approach.

In our design, the division of the large relations being joined into
buckets is-felegated to the AP system, similar to RARES [9], so that fewer
tuples are output to the hardware. ?he pairs of buékets are then sent to
the hardware, one ﬁair af a time, for computing the join. The hardware
uses two single bit array stores rA and rB for first filtering out the
iirelevant tuples of the join since the join column values in one bucket
L'may not appear in another. It 1s wofthwhile to do 50;.especially when

a large number of irrelevant tuples are involved. The rA, rB, and r,
~except for helping with fype I explicit joins on remembering or recalling
data as described previously, can also help with type II explicit joins on
dividing tuples of each bucket into sub-buckets. For one pair of buckets
being joined, the sub-buckets of one bucket are first stored in the memory
modules M(i) of MB, one per module. Each incoming tuple of the second buc-
ket is then stored in the cofresponding queﬁe Qi; that is, the first queue
Q1 accepts only those incoming tuples whose join columns have the same value-
interval as those stored in M(1); the Q2 aécepts only those incoming tuples
whose join columns have the same value-interval as those stored in M(2});
and so’fprth. This arrangement permits each queue server Si (0<i<p-1)
to produce the concatenated tuples‘bf the join from its quéue Qi and the
M({i) iﬁ parallel, without.any memory addressing contention. What is not .
made clear here is how eéch S, can know which tuples in M(i) are concate-

nated to the tuple being fetched from Q. This cap be seen from the fol-

lowing algorithm.

3.3.2. Algorithm for Explicit Equi-Joins of Two Buckets

Let us denote the two buckets being joined as RA and RB of relations A
and B with A = (Xl, Xps0vey X) and B = (Yl; Youuers YV) , respectively,

where .Xi(l <i<u) and Yj(l < j £v) are column names. Assume that

columns-)(a and Yb are of the same underlying domain. The following algor-

ithm is to compute the join of buckets RA and RB over (Xa = Yy). The re-

sulting table consists of the set of tuples t, where t is the concatemation

B

-of a tuple t' belong to RA and a tuple t" belong to R, and X, =¥y {xa being
i the Xa-comppnent of RA and Yy, being the Yp-component of RB). The algorithm

is outlined below:
(1) Initjialization: Clear rA, B, and r.
(2) OQutput Xamcomponents of RA,'set the rA to 1, and increment the cor-

responding counter words of r: Clear Registers, T and H,and the flag F . of Q.

Q

Scan the relation A and output the sequence of Xémcomponents x,"'s of’RA (in
encoded form) to IP. The IP accepts each component ;a and deposits it into
Q. The xa's in Q are then fetched, one at 2 time, and used as indices to
address the bits in rA and the corresponding counter words in r. The ad-
dressed A bits are set to 1 and Fhe corresponding counter {(or r) words are
incremented by 1. If Xa3 is’fetched, for example, then fA(xai) + 1, and
r(xai) « r(xai) + 1. At the éﬁd of step. (2), the word r(xa) contains a
value indicating the number of RA tuples with X5 = X, - ‘The discussions
which follow use [r(x)] to denote the contents or value of the r word ad-
dressed by x.

(3} Output wacomponents in RB,'set.the rB to 1, and ailocatc memory
space in MB for R 1, Clear registers,T and H,and the flag FQ of'Q and BR(1},

A
0 <1i<p-1, and D « 0. (Register BR(i) is used to hold an address of ith

\ 4 .
module and D is used to hold thé (identification) number 9f the module. Ini-
tially, BR(i) points to the starting address of ith module, 0 < i < p-1 and
D points'to the first modyle.) Scan the relation B and output the sequence
of Yb—components yb's of RB to IP. The IP accepts each Yy and deposits it

into Q. The yb's in Q are then fetched and used to test if the corresponding

bits in rA and rB are set or not.

14

Cases: (i} if rA(yb Y =0, i.e., the b does not appear in fhe join
column of RA’ then ignore the component Yy -
(i) if Ay,) = 1 and rB(yg) =0, i.e., they, is first en-
countered, then rB(yb)} « 1 and allocate memory space in MB

for storing RA tuples W1th'Xa =Yy -

The setting of rB(yb)} will prevent the subsequent incoming yb;

from re-alloéating memovry space in MB for those R

A tup%es having Xa Y

The memory allocation is done as follows:
(a) T+ f(yb)}, i.e., the value of word r(yb) is saved in T-regis-
- ter, which is a temporary register,

(b) x'(y,) <D and x"(y,) < BR([D]),'wperé [D] is used to index
one of BR(k), 0 < k < p-1. Remember that.;' may be regarded as
cansisting of r' and r".}

(c) MB([r(yb)1 = MB([r'(yb)]-[r”(yb 1) « 'mark', where 'mark' is
a special code used to mark the starting location of a block of
tuplés and '-‘.&ehotes as concatenation. _

(&) BR([D]j « BR([D]) + (T+ 1) and D« (D + 1) module p. The for-

. mer statement indicates that if there is any memory allocation
assigned to the module specified by D, th; allocation will
start at the nmew 'logical' location BR([D]). (Each "logical’

location can hold a tuple.) We add one extra word for each

allocation to store the *‘mark'. The later one indicates that

' .
next allocation will be assigned to the next module.

The above three statements allocate a block of (T + 1)} *logical' words in
the module specified by D-register (before updating) for storing R, tuples
with Xa =Yy - The condition rA(yb } =1 and rB(yb } = 1 indicates that the

block allocation for RA tuples with X_ = Y has been done.

15

(4} Output RA tuples and store the relevant tuples of the join in the

allocated memory: Clear rA and registers,T and H,and the flag F. of Q. Scan

Q
the relation A and output and store the sequence of RA tuples in Q. The
tuples in Q are fetched and the xa‘s are extracted. The xa's are used as

indices to address the corresponding rB bits. Each addressed rB bit is

tested for being set or not.

Cases: ' (1) If rB(ia) =0, i.e., the RA £up1e being held is irrelevant to
" the join since its join coluh? value X, does not appear in the

join column Ef Rp, then ignore the tuple.
(i1)- I€ rB(x,) = 1, thén r(x,)« T(x,)+ 1 and MB([r(x, 1) *

'the tuple being held'.

Notice that at the end of étep {4}, the address of the last 'logical'
word of each block will be contained in the éorresponding r word. This in-

formation is important to each server S; 'where new tuples are formed.

{5) Output RB tuples,:deposit the relevant RB tuples of the join into
the proper queucs Q;, and produce the concatenated tuples of the join: Clear

T and H'regiSters and the flag F, of Q, and Ti and Hi registers and the,Fi

Q
flag for 0 < 1 < p~1. Scane the RB tuples and output them to Q. The tuples
in Q are fetched and their join column values yb's are extracted. The ex-

tracted yh's are used to test if the corresponding rB bits are set or not.

.Eggg§; -(i) If rB(yb) = 0, i.e., the tuple being held is'irrelevant to
the join, ignore the tuple. '
“(iiy If rB(yb) ='1, then fetch the rf(yb } and concatenate it to
the Ry tuplc.and deposit into the queue specified by the value
in r'(yb); The r"(yb) holds an address poiﬁting to tHe start-

ing address of a block of RA tuples to which the,RB tuples with

IS

;It-

16

Yb =Yy will be concatenated.

Ll

Each s?rvér Si.will start its joining of tuples in Qi and the tuples
in M(i) once Qi is not empty (i.e., the contents of registers,Hi and T,»
in Qi are ﬂot equal). After completing the join of two buckets, the next
bucket-pair follows and-so forth, until 211 the bucket-pairs have been
processed. Logically, we. can say that each Si produces the concatenated
tuples of the join from two "sorted” such buckets. The concaten;ted tuples
are siored in the corresponding buffers which are then either ocutput to the
MFC or stored back to the .AP system for further processing.

So far, only a single join column is invelved in the join cperation.
If a joih on a composite column is‘coqcerned, ad@itiénal codes for compo-
site column values need to be assigned. Or, one can dynamically ehcodé each
composite column value with a unique value during operafion. The later ap-

proach may lead to high implementation cost.

3.3.3. An Illustration Example

This section shows how the above algorithm works by means of an example.
Consider the same database as given in Figure 2. As an example, we consider
the equi-join of table SALES on column ITEM with table TYPE on column ITEM,
though this jbin.is not a type II explicit join. We will follow the steps
of the above algorithm. . '

Step 1, Clear“RAM, i.e., YA, rB, and r.

Sfcp 2. Clear registers,T and H,and the flag B, of Q.’ Assume that the

Q
sequence of ITEM-components of table SALES that are input to Q is <CaM>,

<GEAR>, <CAM>, <NUT>, <CAM>, and <NUT>, as théy appear in the SALES table of
Figure 2. These components will be used as indexes to set the rA and update

the corresponding counter words of r. At the end of this step, the rA would

have the bit pattern (0, 1, 0, 1, 1, 0,...,0) and their corresponding values

o

17

"of the array r of words will be (0, 3, 0, 1, 2, 0,...0) (Figure 3(a)) -
i.e., there are three SALES tuples with ITEM-component = <CAM>, one SALES -
tuple with fTEM-comﬁﬁnent = <GEAR> , and two SALES tuples with ITEM-component

Step 3. Clear T, H, and FQ'in Q, énd BR{i), 0 < i < p-1, and set D T
to 0. Assume that the sequence of ITEM-components of table TYPE input to

Q is <BOLT;, <CAM>, <COG>, <GEAR>, <NpT>, and <SCREW>. These values are

used as indeies to test the rA bits for being 1 or 0. Since rA(%BOET>) =

rA(0) = 0, ignore the BOLT . Since TA(<CAM>) = rA(l).= 1 and rB(<CAM?)

= rB{1) = 0 (initially, rB is set to (), set rB(1) .= 1 and allocate memory

space in MB for those SALES tuples with ITEM = <CAM>. Since r{<CAM>) =

r(il) = 3, thus, 4 logical words ﬁust ?e allocated. The allocation willdo

the following:

(a) Save the contents of word r{<CAM>), now being 3, in T.
tu ' (b) - Store the contents of D-register, now being 0, in r'(<CAM>) and
the contents of BR([D]) = BR(0), now being 0, in r"(<CAM>). The

E 3 word r{<CAM>) = r(1) now is a pointer word pointing to the start-

ing address of the first module. (In fact, the setting of rB
., bits can be used to distinguish pointer words from counter words.)
(c) MB([r(<CAM>)]) _ MB{0+0) « 'mark’.

(d) (i) Increment BR(D} = BR(O].by 4 (=T+1}) so that if there is any

\ memory allocation assigned to the first module, it will be allo-

\ v ‘

| cated starting from the fifth logical word (i.e. logical address 4).
(ii) D < (D+1) modulc P, now D indicatiné that rext allocation, -

if any, will be assigned to the module next to the current one.

The third incoming vélue ig <COG>. Since rA(<COG>) = rA{2) = 0, ignore the

I value. The same procedure is repeatedly applied to other values. At the

end of this step, the bit array store rB and r will be (0, 1, 0, 1,1,0,...,0)

and (0.0, 0.0, 0.0, 10, 2.0, 0-0,...) (Figure 3(b)), where r(1} = 10 = r'(1)

t

18

* (1) (i.e., concatenation) and the contents of all registers in CP are
also shown in Figure 3(b).

Step 4/ Clear rA and registers T and H,and the flag FQ of Q. Assume
that the sequence of SALES tuples input to Q is the samé as that of SALES
tuples appearing in Figure 2. Any tuples withkrB(ﬁ) = 1 {x being the ITEM-
component of.SALES) will be stored in the logical location in MB pointed b}
r{x). The first incoming tuple with rB{<CAM>} =1 is stored in the logical
location 1 of the fixrst moéule M(1). (After this, the-r"(l) has the value 1,
which is iniéially set to 0 and incremented by 1 when a tuple is stored.)
The second incoming tuple ;ith rB(<GéAR>).= 1 is stored in the logical loca-
tion 1 of M(2); the third tuple with rB(ﬁCAM>) = 1 is stored in the logical
iocation 2 of M(1); and so forth, unt%l the sixth incom&ng tuple which is
stored in the logical location 2 of MéS). At the end of thié step, (1),
(3}, and r''(4) have the values 3, 11 and 2, respectively. Figure 3(c)}
shows the contents of RAM and the first three modules M{0}, M(1}, and M(2).

Step 5. Assume that the sequence of TYPE-tuples input to Q is the same
as that of TYPE tuples appearing in Figure 2. . Any tuples with rB(y) = 0
(y being the ITEM-component of TYPE) are ignorant. Those tuples with rB(y)
= 1 will be dispatched into the queues Qi(O £ 1 £ p-1) determined by r'(y).
They are concatenated to tﬁe contents of r"(y) before dispatching into the
Proper queucs. The-first.incbming tuﬁle i; ignored sinéé rB{<BOLT>} = rB(0)
= 0; the second one concatenated to the contents of i“(<CAM>} = r'"(1) = 3 is
'digpatched into the first queué QO since r'(<CAM>) = »'(1) = 0; the third
tuple is ignored; the foﬁrth one conca£enated to the contents of f"(<GEAR>)
= r"(3) = 1 is dispatched into Q, since r'(<GEAR>) = T'(3) = 1; the fifth

one concatenitted to the contents of r"(<NﬁT>) = r"(4) = 2 is dispatched into

Q, since r'(<NUT>) r(4) = 2; the sixth tuple will be ignored. Since’ each

tuple dispatched is associated with a pointer pointing to the last tuple of

18

P
of the block to which the dispatched tuple'is concatenated, each server Si
thus can produce fhe-concatenatgd tuples of the join from each TYPE tuple ‘
in Qi and the block of SALES tuples in M{i), without memory addressing con-

tention problem.

19

‘4. ANALYSIS

The system performance is substantially influenced by hardware para-
meters such as the size of the RAM and the memory bank MB, the number of
servers, the length of server queues, etc.; especially'wheﬁ the type II
explicit join is concerned. Our analysis assumes that the RAM and MB are
large enough and hence concentrate on that how the number of servers and
the length of server queues affect the hardware.perforﬁance in computing
the type II éxplicit join. -

The analysis which follows will assume that the data transfer rate
from the AP system to the hardware is high enough, thereby keeping the
central processor (CP) busy. The analysis is divided into two.aspécts:
one is to, given an application, determine the number of servers required
and the length of their asSOCiated quéues, without blocking the data de-
posited to the array of servers. (In our approach, an application is
characterized in temms of the number of tuples of the relations being joined,
the number of attributes in a relation, and the number of distinct values of
the jo%n columns.) The other is, givén the number of servers, to determine
how good the hardware performance is under different applications.

i

Figure 4 shows the overall structure of the step (5) of the type II

explicit join. There are two stages: one is the CP and the other is the
q
array of servers cach associated with a queue. In stage 1, the average

service time for CP to process one tuple is t C[Rz) is the number of

cp’
tuples of relation R,. SR2 is the selectivity.of R, (the second relation

¥

2

RZ’ in which tuples are felevant to the join. Thus, in average, there will

to be joined)}, i.e., the ratio C(Ré)/C(Rz), where R, is a subrelation of

be one tuple depositing into stage 2 in every tCP/SR2 seconds. If the num-

ber of servers is Np, the average service time for the N_ servers to process

20

one tuple will be ts/Np, where tS is the average service time for a single

server to process one tuple.

The condition for the hardware to be efficient would be ts/NP < tCP/SR2’

i.e.,

ts
N P ——
P top/Spo

This leads to the fommula of calculating the optimal rumber 0 o5 Of servers:

. N t : -
— s - . -
0 . = 17—7__%? S () | (4-1)

where [] is the ceiling function and w is the waste factor whose typical

value is 0.1.

4.1, Simulation Approaches |

‘Four simulation approaches are discussed in the following analysis. A
' hardware simulator is developed on thé PDP-11/70 which simulates the hard-
ware down to the logic level. It is provided for the simulation purposes.
Applications are generated using a random number generétor for generating

relations.

(1) Approach 1

This approach'%s to détermine SRZ and Ny under different applications.
These two values are then used to calculaté the optimal number 0nos of ser-
vers for each application. ' |

Through the time complexity analysis of the'step (5) of the type II

explicit join, we have formulas of tg and teop 28 follows:

: = . . -2
ts tiq*'tramq't1u+SR2 [(tiq'btsq) DGRZ * tsg} (-

tep= (DGpg + 1) * tg# Np » [t g * (DGgy + DGpp) + £, 40 * (tpy * DGpy) .3

21

t,, ¢ time for accessing one attribute value in the input queue.

t : .timelfoé accessing one attribute value in the server queue.
ty ° time for accessing one atéributé value in the memory bank.

time for acéessiﬁg”one bi;/word in RAM.

t 4’ .time for CP to perform.oné addition/subtraction.

tie ¢ time for examining the contents of one rA/rB hit.

tco : average time for a server to form a new tuple.

DGRI)'DGR2 ! number of sttributes in R;/Rz.

In our simulation, we assume that the values of tiq’ t . tr . and tm are

: sq am b
all 100 ns, t and t. 50 ns, and t__ 100 ns. To make the analysis easier
add lu co

to accomplish, we consider an application with:

DGR = DG, = 10

1 RZ
D(Rl’ RZ) = 100

C(Ry) = C(R,) = C(RY -

where D(R1, R2) is the number of distinct values of the join columns in re-

lation Rl/R2. fhus, we have

llOO-!-NP * 3050

0 0s 25075, + 2100 (1.1

(4.4)

-

where both NP and SR2 are functions 6f C(R) and D(Rl’,Rz)‘ More precisely,
they are functions of the ratio C(R)/ﬁ(Rl, R,). From the re;ults of simula-
tion, we can cstimate the values of SR2 and Np‘fof different applications,
and using equation (4.4) tp calculate the 0nos

Figure 5(2) shows our simulation results with D(RI’ Rz) fixed and vary-

ing C(R). It indicates that the log Pnos is proportional to log[C(R)/

D(RI’ R,)1, since increasing C(Rl)/D(Rl, R2) will no doubt increase the si;e

of resulting relation of the join, and therefore need more servers to carry’

out the concatenated tuples of the join.

{2} Ap?roach 2

In this approach, we fix Qnos determined from Approach 1, and vary the
length of quéues to estimate the perfofmanée of system architecture. et ts
be the average service time required to serve one R, tuple in step (§) (ts =
TSIC(RZ), where T5 is the total time rgquired in step (é) of the type II ex-~
plicit join).' We use tS/tCP as the base of performance evaluation,

Figure 5(b) shows the results of éhis approach. It indicates that only

‘a2 few units of tuple are require& for server queues and the queue length

itself is not a sensitive factor to differeqt appfications.

(3) Approach 3

In this approach, we fix the number (NP==12} of servers and the length
'(lser='4) of server queue, to estimate‘the system performance under different
applications. The base is still tS/tCP' The Onos's Tequired in each appli-
cation are élsoushown in Figure 5(c). We can see that the performance will
greatly degrade (i.e., tSJtCP > 1) if an application has the condition that
the Onos it'requires is much greater than the given N, (=12 in this case).

(4) Appooach 4

This approach is similar to approach 3, but we choo;e the applications
that have the ratio ;f iﬁput arrival rate to the array of servers and out-
put servive rate close to 1. The effect of the lengGh of seivice queues
on the system performance is studied. The results in Figure .5(d) shows that
the length of service queues affects the system performance only when the

ratio (ts/Np)/(tCP/SRz) is.close to 1. The application with log[C(R)/D(R1,R2)]

= 9 will satisfy this condition in our example (Np=12). That is, the length

23

of service queues will affect the system performance only when an application
with the rate-of input arrival rate and output service rate close to 1is

concerned. The result is consistent with the queueing theory.

. 5. SUMMARY AND CONCLUSION

We have shown how the RAM helps. perform 1mp11c1t joins and type I explicit
joins. We have also shown how the hardware performs the type II exp11c1t join,
Through the use of the RAM, the joining of two relations in which their join co-
lumns satisfy the referential integrity Tule can.be implemented as effectively
as the implicit jeoin. Since a majorltv of exp11c1t joins are performed v1a the
relatlonshlp defined in this rule the extentlon of single bit array stores to
an RAM is essential. - .

The analysis feveals that in the case where tmeovefall computing speed of

servers is gfeater than that of CP; the time requivred in the type IT join |
operation is linear in the cardinality of the two relations being joined,
independent of the card1nal1ty of theresultlng relation of the join. This in-
dependence is the result of the use of the array of servers.

We have proposed an algorithm for calculating the optimal number of servers
and the length of the server queues. The simulatibn shows that the optimal
number of servers is linear with respe;t to the ratio of C(R) to D(Rl’Rz) and,
given a fixed number of servers; one can determine how good tﬁe hardware per-
formance is under different applications.

Thi§ hardware provides powerful join capabilities to AP systems, especially
when a join-dominating database application is concerned. We believe that it
can be adapted to the Current VISI technology and has the important feature of
being applicable with little or no mod1f1cat1on to currently proposed AP hard-
ware. The new version of an AP system allows that a search on a single relation
is performed by the AP hardware, while a joining of two relations is carried

out by the extented hardware.

6. REFERENCES

{I] Bobb, E., "Implementing a Relatiomal Database by M

. A eans of Specialized Hard-
ware, ACM TODS, Vol.4, I, March 1979, ‘pp.1~29,

[2] Banerjee, J., and Hsiao, D. K., "DBC — A Databasa Computer

for Ve Lar
Databases," IEEE Trans. on Computers, Vol.C-28, 3, 1979. ¥y g8

[31 Chang, H., “On Bubble Memories and Relational Data Base," Proc. 4th Int'l
~ Conf. on VLDB, West Berlin, 1978, pp.207-229.

{4]°Chen, T. C., Lum, V. W., and Tung, C., "The Rebound Sorter : An Efficient

Sort Engine for Large Files," Proc. 4th Inc'l Conf. on VLDB, West Berlin,
' 1978, pp.312-313, ' :

jS] Date, €. J., An Introduction to Database Systems, Addison-Wesley, Reading,
Mass., Third ed., 1981, : .

{6i Edelberg, M., and Schissler, L., R., "Intelligent Memory," Proc. 1976 NCC,
+ Vol.45, AFIPS Press, Montuale, N. J., pp.691-701.

{7i Hong, Y. C., and Su, S. Y. W., "Associative Hardware and Software Techniques
for Integrity Control," acm TODS, V61.G, 3, Sept. 1981, pp.416-44n.

{8} Nong, Y. C., and Su, S. Y. W.,"A Mcchanism for Dutabase Protection in Cellar-
Logic Devices," IEEE Truns. Softwnggﬁﬁnginggitﬂ&, Nov. I4982,

{97 McGregor, D. R., Thomson, R. G., and Dawson, W. N., "High Performance for
Database Systems," Systems for Large Databases, North-Holland Publishing Co.,
1976, pp.103-116.

[10] Menon, M. J., and Hsiao, D. K., "Design and Analysis of a Relational Opera-
tion for VLSI," Proc. 7th VLDB, Paris, France, 1981, pp 44-55,

i i ni o i £ a Rotating
[11) Lin, C. 8., Smith, D. C. P., and Smith, J. M., ?he Pesxgn o
'As;ociati;e Memo;y for Relational Database Applications,” ACM TODS, Vol.l,
: 1, March 1976, pp.53-65. :
f12' Ozkarahan, E. A., Schuster, S. A., and Smith, K. C., "RAP — an Associative
Processor for Database Management,”" Proec. 1975 NCC, Vol.44, AFIPS PFess,
Montvale, N. J., pp.379-387.
[13] Shaw, D., "A Relational Database Machine Architectore,” iProc. 5th Annuai
: Workshop on Computer Architecture for Non-Numeric I'rocessing, Pacific Grore
Ca., March 1980,

{141 Smith, D. C. P., and Smith, J. M., "Relational Database Machines,” IEEE
Computers,Vol.12, 3, March 1979, pp.28-37.

{151 su, 8. Y. W., "On Logic-Per~Track Devices : Concepts and Applications,"” IEEE
Computers, Vol.l2, 3, March 1979, pp.11-25,

[161 su, s. Y. W., and Lipovski, G. J., “CASSM: A Cellular Systed for Very Large
Databases," Proc. Int'l Conf. on VLDB, Sept. 1975; pp.456-472.

(17} su, s. Y. W., Nguyen, L. H., Eman, A., and Lipovski, G. J., "The Architectural
Features and Implementation Techniques of the Multicell CASSM,™ IEEE Trans. on
Comonters, Vol. C-26, 6, June 1979, pp.430-345,

{18] Tanaka, Y., Nozaka, Y., and Masuyama, A., "Pipeline Searching and Sorting
Hodules as Components of a Data Flow Database Computer," Proceedings of IFIP
Congaress 80, pp.427-432. :

[197 Todd, Stephen, "Hardware Design for High Level Databases," IBM United Kingdom
Scientific Center, Peterlee, TN 49.

y)

- N

WSIUDY 2Dy

J13jng

lajing

J7

fapng _dl...”

WasAs Jy o
¥00G PIIO}S

AN} IYDLY

310MPIDH

‘'t ainbiyg

e

wold p 0

indino > f
) e ke .
g —..n_—._ _..n:) -
£ i-d 1-d AII .
3 D !
; (1-d) 48 JOSSav3)d
. * 1 V 011u0
1 4] j011u0}
. .] .
: . ! : A m_ . Wolsas PUDWWO?)
. .] enanQg o d —
_.I :. m : a v AHU.II.“HV..V n‘g'3 d3d
1. wa bt RO HB| sossadousg
—..._ ln K ﬂ joiuan 10553201
Ha} .
0) ug d9 tndup d] 31asaidny
Uy 9 . ‘sanjoa Papoaud
0, Oy ‘ : }0 ouanbas y
m_:noE. Ny
s A ~ ’
1-w
{1)H oinpow . , . I I
C mAH_.
.] ajuod H
) EXYETE £
{l-d)H anpow {anjDA b4 ~
l
jung Asowaw gy 0
. -.._n _L TR ER) mh 4_._
i
- - S ———

SALES TYPE

DEPY 1TEM ITEM COLOR PRICE
<D1> <CAM> <BOLT > <GREEN> <5p>
. <D1> <GEAR

i : > | <cam> <RED> <2p>
<n5> < CAMD> <C0G> <RED> <4p>
<05 > <NUT> <GEAR> <GREEN> | <4p>
<Dg> <CAM> <NUT > <BLACK> <8p>
<D10> <NUT > <SCREW? <YELLOW> | <7p>

Figure 2. A Simplified Database With Two Tables SALES
And TYPE Linked By ITEM.

RAM | RAM — e

TA 8 ' rA B ¢ "
c|o ¢ 0 joje] o g cp CBR(0)] 4
1 3 1 [T o 0 o J—
. 210 0 2 010 0 0 BR (1)} 2
311 1 3 111 1 0 3
4 [2 o [1[] 2 0) BR(2} 3
510 0 5 0lo] O 0 T BR(3)1 0
I . S 0 B : 2 ‘ . '
M-1} 0 0 M-110lo0f o 0 aR({P-1f O
Figure 3{a) T Figure 3(b) .
M8
RAM o re ¢ g M (Q) M(1) T M(2)
010]0} 0 2 0 | mark x mark merk
1 o] o 3 o .
2 10j0] 0] x 1 [{<DiI> <CAM3>)f ‘@ (< 01> ,<GEAR>) E (<DS5 > ,<NUT >)
1 ¥ 25\ " @
i 2 1 ;) R }2 HeDS > <CAM>) . {<D10> <NUT>)
512j0 0 0 A |<pd> <Cams) - .
. - v . . * » . :

N Figure 2 (c¢)

ter . ’ ' %
C(sz-sm — qQ, || ——@—-— To MFC
cP > | ' —>> or stored back
C(R,) | to apr system
input tuples] }
|
C(R)(1-Sp)y - |
| | _
| e
i o QP—! @ H_
|
Figure 4

| a]a) (Onos)

™

1000
1841 o , *
100} . ////(

‘ 2 4 8 16 32 65 128 '1;9[(R
R,)

DG, = DG, =10

D(R,,R;) =100 |

C(Ry)=C(R;) =C (R)=100, 200 , 400 , 800 ;1600

3200 , 6400 , 12800

‘Figure 5(a)

ts]tcp l
1.2+
115+
o lger=2
11+ _
- -——-""—.-———__' » B
1.05—-——--—-—-"-"“"“"'"’" | o o lger=3
——— - f: . e lser=4
1 M] .“{SGI':S
AL
1 1 1 L& 1 1] -
1 2 4 8 16 32 64 128-
9 {
DG,=DG,=10
C(R;)=C(Rz)=C(R)
D(R,,R2)=100 ,
Figure 5(5)

st

e/ tep

15}
- [
104 -
2 [
5_
3 []
] -, of
= . . ’/
1 1 { !) 1 ! ——
1 2 4 8 16 32 -84 128 ‘
log [—C(R)]
D{(R, R;)
P47 12 2 W 2 184 fyo,,
[D_ng=12

Iser=4 ({(in tuple. unit)

Figure 5(¢)

.\. . . .
1.1)
8. [.
.03} \\- _
7.\:) \. R .
1‘0_____6_‘.“_—-—-_,*-.::—'.—“‘-‘-‘—'—‘ o * *——
T .
L ! ! _t L] -
2 4 6 -8 10 12 .
' Iser.
- C(R)
LT 7
laj[D(R;,Rg) ‘ 6, i ,8 s 9, .10
t./ .
fa = i =0.687 , 0.796 , 0.904 ,1.012 , 1.120
: tgpl st
["3&’:12 . ’

Figure . 5(d)

