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;ABSTRACf :

L In statiseical methods for feature extraction and_pattern classification,
,;iarge~scale matrix computations are"often perfofmed_over large image data basas.
 Based on Hwang/Cheng partitioned matiix algorithme [81, we &evelop a class'of
;matrix'ﬁanipﬁlatiou,aeEWorks w1th modular VLSI arlthmetlc chlps ‘ These special-

perpose VLSI matrlx manlﬁuTaeors are effectlve in ettractlna.featuées from rae FV:_
images and in cla531fy1n0 patteans oeer a.laroe feature space. Such VLSI pateern
analyzers are hlohly demanded in-real- tlme.plctnrlal anformatlon.processlng and
ln arL1f1c1al 1ntellloeuce auélacatloas.

Spec1al matrix/vector computatlons ars analyzed for p0851ble VLSI solutiom

'of pattern recognition problems. We emphasize computational complexity and ‘

achievalbe speedups'by VLSI hardwara auproacﬁes ‘Basic VLSI arithmetic modules,

partitioned matrix aloorlthms, and functlonal structures of the VLSI feature !
;'ewtractor and pattern classafler are presented Performance analysis and hard—‘ ﬂ
ware desién tradeoffs are aleo provided. _ - ' | i !

INDEX TERMS :
Very Larce Scale Integration (VLSI), pattern recegnltlon, computer arith-

metic, faature extractioa, matrix computations, pictorial information
processing, rezl-time applications, computer architecrurs. _ i
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1. INTRODUCTION

Coﬁputationally speeking, a statistical pattern recognition system consists
of th;eerphases as illustrated in Fig. 1. The preprocessing includes such image
operafious like enhancement, restoration, segmentation and etc. [13). After
preproce531ng, the picture WlllbL.SmDOthed segmentlzed and represented by an

'n—dlmen51onal input vector X = (xl,xz,...,x ) ‘The mlddle stage is for feature

extraction transformlng' - the vector X to a feature vector y = (yl,yz,...,ym)

in an m-dimensional feature space ; where mn >>m. After the features are extracted,

an intelligent pattern classifier is needed to determine the membership of the

pattern being examined among Enown classes of petterns. Either s;atistica} methods
-[6] or syntactic methods-[S] can be used to classify the pattefes.

| . Statistical decision-theoretic approach is used _to. partition the feature
space ieto mutuallyrexclusive regione (subspaces), where'each‘region cofresponds to
one known pateern elass. Large scale matrix computatiOns'are often involved in the
recognition poreess. Most frequently performed operations are matrix multiplica-
tion, inversion, L—Uldecomposition, system triangularization, and back subsitutionm,
etc. [3,6].‘ When dealing ﬁith large input. space, the size of ehe matrices to be
manipulated becomes too large to be haedled efficiently by conventional Single-

Instruction-Single-Data(SISD) serial computers through software approaches. Single-

Instruction-Multiple—-Data (SIMD) array processors and pipelined vector processors,

like Illiac IV, BSP, ASC,STAR; CYBER-205, Cray-l, etc, have been suggested to
handle large-scale matrix/vector computations t9]. However, these supercompouers
may not be necessarily cost-effective in performing the simple but repetitive
computations required in image processiné and pattern reccgnition.

Recent advances in VLSI microelectrounic techmnology has trx erad the thought
of implementing some pattern-analysis matrix algorithms directly in hardware. Such

VLSI pattern recognizers should be very useful in real-time, on-line, pictarial
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information processing or for artificial iﬁtelligence applicationS._VLSI systolic
afrays have been suggested in [10] for matrix manipulations. Recently; many
attempts were made to extend the systolic concept to VLSI signal/image processing
[1,11,12,16,17,18]. In this paper, we develop a class of VLSI matrix manipulatdrs
for fagt feature extraction apd pattern classification.

'We choose a modular”apprqach to VLSI feature éxtractién/pattern classifica-
tion based omn Hwéng—Cheng matrix partitioning algdrithms-[Sl; Only limited types
‘of VLQI matrix manipulating chips are needed ﬁo construc# thé'hardware pattern
recognizer. We shall.first analyze the involved matrix/vector computations and
" then synthesize the needed VLSI matrix manipulators. The partitioned matrixrcompu—
tations are algorithmically specifié& with complexity anmalysis. For clarity pur-
pose, ﬁe_illustrate the design by constructing a linear pattern recognizef for a-
two-ciass problem enviromment. The rasults'obtained in the éequel can be systema-
tically generalized in'a multi—claés environment. The performancerof the proposed
- VLSI feature extractofs and pattern classifier will be compared with that of using

a conventional SISD serial computer ,

2. MATRIX CdMPUTATIONS IN PATTERN RECOGNITION

A computationai model of a statistical pattern recognition system is illus-

trated in Fig.2. A1l input vectors, E.(the'raw patterns to be recognized), form

the input space Vn. To design a feature extractor, omne has to produce a set of m

tranformation vectors {E; [i=l,2,...,m} with the aid of a set S of training samoles

with known classes. Each‘gi is an n X 1 column vector. We denote the j-th sample

of class s as ng)._ The output of the-extractor is the feature vector,y, which
]

is related to the input % by the following linear transformation.

Yy = D-x (1)

inp
(raw «
inpu
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Fig.2 Computational model of a statistical pattern recognition

system.
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. where D = [dl’d ,...,dm] is "the m ¥ n transformation matrix. Eigenvectors have

been used to. determine - this matrix D in Karhunen-Loéve. expansion {21, in
ﬁukunaga—Koontz [6], and Chien and Fu [2). Foley and Sammon [3] introduced a
discriminating.method to determine an optimal set of transférmation vectors
based on maximum sepérability instead on best fitting. We choose to modify
) Foléy—Sémmpn algorithm to aliow modular VLSI implementation of the feature gﬁ—
_tractor.
Let Ns be the number of training'samples and Us'be the sample mean for pattern

class s (s=1,2, in a two-class environment). The sample offset is denoted by

z§s)= x§s)—1é for j==1,2,...,NS. An n x Ns sample offset matrix is formed by
ZS = [zis),zés),...,zés)] , where each zés) is ann %x 1 édlumn vectbr. The n X n
‘ s :

within class scatter matrix Ss (for class s) is obtained by performing an orthogonal

matrix multiplication.

s =z -2° _ , | (@)

In Foley-Sammon method, a weighted scatter matrix is defined between the

pattern classes s and t.

Ast =g SS + (l-¢)- St _ (3

where 0= ¢ £ 1 is determined by a ''generalized" Fisher criterion as described in

{31. For a two-class enviromnment in which s = 1 and t =2, we simply denote AS =

A, =A. Let y =1y, - U, be the mean difference. We define ah X h matrix B _=(b,.) fof
12 1 2 H 350 "
h=1,2rh,m~l,where bij =EE . A_l- dj for 1 £ i, j £ h. We rewrite Foley-3ammon

algorithm as follows
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GE?ERATION OF TRANSFORMATION VECTORS

‘Step 1. Initialize i=1 and B -1 ¥bzi. Compute El by
o= a 4 lew o W
1 1
' ﬁﬁe#ezdi is é:scalé¥-gouétaﬁt-choseﬁl;o sétgsfy-al-° E? =11 and a§_= (UT'Erhz-ﬁ)_l
m Step Z;IIIndrement_i +~ 1+ 1;
Step 3. Compute the i-th transformation vector Ei by
4 ome A e (u - @A d B B (5)
i i : 77227 i-l i-l
nal . ) . . o :
whe?e'B = fi[gl;o,o,...,O]T is a (if-l) b3 l_cdlumnhvector-and oy is a normglizing
Vcdnstéﬁf sﬁéh'théfia? . E; = 1; Go té.Step{Z,rif i f-m.- Haltr if iZ m.
The computatlons spec1f1ed in Eqs.4 and 5 involve the inversions of A and
'Bi for i= 1,2r¢,$—l,wh1ch are very 1engthy. Instead of using the recursive
matrix inversion method suggested.in [37, we shall describe in sectiom 3 a block—
partitioning method to generate the inverse matrices, A_l_and Bil, through .
"partitioned" L-U decomposition.
We use linear ~discriminant functions for multiclass pattern classifi-
cation [3,5,13,15]. To distinguish among X patéern classes, K(K-1)/2 pairwise
" discriminant functions are needed. The discriminant function between two distiﬁct
classes s and t is defined by.
ij) gor

—_— .._T ——
EL() =Vt ey | (6)
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— T = T,
where v = (yl,yz,...,ym) is the feature vector, Ve = (vl,v ,...,vm) is

2

called the discriminant vector and ast is a scalar threshold constant. All

discriminant vectos, Vg and threshold constants, d are determined with the

st’

aid of a set F of training feature vectorswith known class labels. TFor a two-

. : . : . P S e S - o
class recognition system, we simply write Eq.6 as flyy =v .« v+ ¢4 .. The feature'.

pattern ;iis classifiéd into class s, if. £ (v) = 0; and into class t, if otherwise.

st~

We choose to implement Fisher's method in generating the discriminant vector -
P g g

v from the training feature vectors. - The threshold comstant ¢ can be set to be

(s)

"zero" with appropriate choice of the coordinate system. Let y

i . be the J-th
training feature vector of class s, for j==l,2,...,MS. We denote the feature
mean difference as 6 =06 - 6 _and feature offset vector as WFS) = ygs) -8 .

st s B . J ] s
. . - . _ o, (8) _(s) (s)
Again, we define an m X MS feature offset matrix WS = [w, Vo e Wy ] for
s

~each class s = 1,2,...,K. The covariance matrix for class s is computed by

E.= o7 . W W o 7).

where ES has dimension m x m. We denote the convariance sum matrix Zst = ZS + Zt,-
The following computation steps are needed to generate the discriminant vector.

GENERATION OF DISCRIMINANT VECTORS

Step 1. Compute the feature mean differences est == es - Gt for all distinct class

pairs. Generate the feature offset matrices WS for all classes by subtracting the

(s)

mean BS from each training feature vector yj .
Step 2. Perform matrix multiplication as specified in Eq.? to generate comnvariance
matrices Es for all classes. Pairwise add the covariance matrices to produce
L for all s # t.
st

Step 3. Per each pair of classes, solve the following linear system of equations

to determine the m—dimensional vector G;t'
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Lo ! vst:_est 7 - ' Co : (8)
We use a .system . triangularization approach to solve Eq.8. Again,
_partitioned matrix computations,'are performed by VLSI modules in finding

the L—Uvdecompositibn_of Zst and then obtaining ?;ﬁ through back substitutiom.

3. PARTTTIONED MATRIX ALGORITHMS

Four basic typés’of-VLSIAarithmetic modules are functionally specified in

Fig.3. These VLSI chip types will be used as building blocks in implementing
- the partitioned matrix algorithmé. :Detailed cellular logic design of these

- pipelined arithmetic modules can be found in reference: [8]. Only their func-

tional specifications are presented here, The Type-1 module is used for L-U

decomposition of an r x r "intermediate" submatrix of a given high-order matrix

"~ of dimension nx n (or m x m), where n »> m >> r, The Type-II modules are for

. the inversion'of:triangular submatrices of‘size-r X r. Botb-Type I and Type II

modﬁlesrhave a fixed .time delay of 2r time units, where each time unit equals

ot

~the clock time for ome mﬁltiply—add operation, a +b % c= d, or for ome divide

operation, a/b = ¢, by one step processor in the systolic arfay [10] ar in the
cellular pipeiines i81.

The Typé—III module performs accumulative matrix muitiplications. The
number, t, of pairs df r X T matrices to be multiplied is determined by the

external input sequence. This leads to the time delay of v « t + 1 for a Type-III

module. The Type-IV module, performing additive multiplications of submatrix-

vector pairs, is reduced from Type 111 and, thus, has the same modular delay.
Type—L, Type-1I, and Type-I1l modules are each constructed with © X t step

2
processors with interior chip complexity O(r’). Type IV module constzins

r step processors forming a linear pipeline with interior chips complexity 0(xr).




, Type-I :> L
A [j‘ A=L -0
. A : > U
457 212 213 | 1 0 0 U1 %12 Y3
391, 292 %3 | T Loy 10 ] 0 Uy Uy
ay a3 a3z | et By [0 0 s
(2). Type-IL VLSI Module (r = 3 shown)
Type-11 -1
U |___> _1 ':I> U =V
U=V . , ;
u u TN -1 v v v
11 Y12 i3 11 "1z 13
§ _ ,
0. mpy Mp3 - 0 Va2 Va3
0 0 ugy 0 0 Vi
(b). Type-II VLSI module (r = 3 shown)
iy :
<Ay A _Type-IIL ' A ... A Type-1V
Matrix >D P Matrix-Vecto
B B Multiplier bp ‘e bl Multiplier
2 1 : ,
P 1
D=C+ L A, - B, d=c+ L A b,
i=1 71 i i=1 "1 i

where C, D, A, and B, for
i i

i=1,...,p are all T x r matrices

{c}. TYPE-III VLSI Module

where ¢, d and bi fori=1;...,p
are all r x 1 column vectors and
Ai for i=l,..., p are all r x ¢

matrices.

(d}Y. Type-VI VLSI module

Fig.3 Primitive matrix manipulating VLSI modules of size T.
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~illustrate an example .case of n/f = k = 3 in F1g.4 a. The L-U decomposition of

(11)

Four important matrix glgorithms were shown'Partitionable by Hwang and
Cheng][B]." In$tead.of preseﬁtigg'the detailed algofithm steps, we show the
involved matrix computations with partitioning diagrams_in Fig.é. Each "capital"
entry iﬁ the matrix:diagrams'represents an ¥ X r submatrix. The given matrix has
_btdert'n(or ﬁ). We aséume n= f + k fof some integer k. The given matrix A

. L 2,2 . . .
is thus partitioned into k2 =n/r submatrices. For clarity purpose, we

‘ﬁ:at'rix A can be done in 2k—-1 =2 * 3 - 1 5 submatrix steps. All the -diagonal

* elements of L_equél‘to,l,; All“diagonal submatrices bf U are upper triangular

matrices. Submatrix computations in each step are specified along with the

needed VLSI module types.

The partitioned matrix multiplicationglc = A * B, can be dome in one step by
' k

‘computiﬁg all k2 r Q'r product submatrices {C.ji Cij = I A, - st for i,j =

s=1"1is

1,2,...,k} in parallel w1th k2 Type—III modules The inversion of ann n

‘trlangular matrlx can be done in k submatrlt computatlon steps (The case of k=4

is shown in Fig.é.b). Figure 4,c Shows the VLSI solutlon of a trlangular linear

_system ofiequatidns in (k=3) subvector steps. Spéed performance an& hardware”

requirements of these four partitioned matrix algorithms are summarized in Table 1.

4. VLS MATRIX MANIPULATORS - -

In this section, we present two pipelined matrix manipulation networks using
the primitive VLST arithmetic modules with interio; éomplexity C==O(r2) as shown
in section 3. One manipulator is for L-U decomposition of an n X n matrix A.

The other is for the inversiom of a triangular matrix of order n. As shown in
Table 1, Linear computation time, O(n) can be achieved at the expense of using
O(nz/rz) VLSI modules fcrbothalgﬁrichms. For n>>r, the quadratic chip count
becomes too large to be cost-effective. Therefore, we prefer to implement the
partitioned matrix algorithms in a serial-parallel approach. Such serial-

parallel mode results in a linear VLST chip count, O{n/r). Of course, the



Fig.4 Hwang-Cheng partitioned matrix algorithm :
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11 12 13
0|~ 0 U22 U23
L33 . 0O 0 U33

are r X r submatrices. n = 3r

(n % n)
Ar A2 A1
A = | Ayp By Bo3 ) T
A31 A3 fa3 ~
Note :
1. A1L A, ., L.., U..
. ij ij® ij
- 20 Lyys Ly Lyg are
equal to 1.
3. Ull’ U22, 37 are
Step 1. ,All L11 .rUll (Type
. L] —1'-
Step 2. Ly = Ay " Uyp 5 Ly
1 'L"l A3 U
12 11 212 7 Y13
A
Step 3.: A22 ,A22 - L21 ) U12
N
Byq T Ayy T gy e Ty
-1 A
Step 4, U23 L22 A23 3 L32
A
Step 5. Ayy = Agq -

31 -

-1

11

i

>

>

32

32

Y " (Types II and III)
" A3 | |
- V22
_ (Type III, I)
= A32 "Lyt Uy
- 1122‘l (Type III, II)

(Lgpr Uy Flyy t Upy) = Lyy 7 Usg

lower triangular submatrices with all diagnoal elements

upper triangulax submatrices:

of a matrix A with dimension n x n, where n = 3r.

(Type III, Type I)

Part(a) L-U decomposition

rr
L]
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{v.. v, v, v, ! (v, v, V.. v. |
11 "12 C13 14 11712 13 14
1o |9 Y22 Uaz U S0 Ty Yoy Yy |
= : , = = v
0 0 Us3 Uy 0 0 V33 Vg
00 0 U, 0 0 o0 v444 B -
— Step’l. V., = U‘i“; v | = U'iv- V.. =Ur 3V, =00 (Type I)
Step 1. Vi T U 5 Vo T U925 V33 T Va3 3 Vas T N4y NP
Step 2. Wy, = Vyp s Uy Vgp) 5 Vp3 = Vyp t (Why . Vaads
Va, = V33 - Wy Vgp)  (Type HD
Step 3. V,, = -V, = (U, » Vo + U, Vo)
2 13 11 12 ° “23 13 ° "33 (Type III) -
Vgg = Vag » Wyg = Vau ¥ 0o, « V)
-Step 4. V14 = —vll . (U12 . V24 + U13 . V34 + U14 . V44) (Type III)
-'(b)_Partitioned inversion for an example triangular_métrix of order
o= 4x
r r 7 b
U, U, Uys X, ) D, Note :
_ : X, and D, for 1i=1,2,3
0 U22 U23 X2 = D2 i i
are r X 1 column subvectors
\ 0 O U33J \X3J . DBJ
-1
Step 1. X, =TU,; * Dy (Type II, IV)
-1
Step 2. X2 U22 . (D?_ - U23 . X3) (Type II, IV)
-1
Step 3. X, =U;; - [D - (U, " X, + U, x3)l (Types 1I, IV)

(c) Partitioned solution of a triangularized linear system of

equations for n 3r.

Tig.4 (continued) Huang-Cheng partitioned matrix algorithms

. Part (b) and Part (¢}
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Speed Performance and Hardware Requirement of Partitioned

Table 1.
Matrix Algorithms
Strictly Parallel S$erial-Parallel
Operation . .
mode Operation. Operation
VLSI Compute VLST Compﬁtg
Algorithm Chip Count | - Time ‘Chip Count | = Time
L-U )
o .2, 2 : 2
Decompesition o(n~/x7) 0(n) o(n/T) O(n /1)
(Fig.4a,5)
Triangular
Matrix 0(n2/r2) 0(n) o(n/r) O(n2/r)
Inversion - ' '
- (Fig.4b,6)
Matrix - : .O(nzlrz) - 0(n) 0(n) O(nzlr)
Multiplication
Solving n : Matrrix order
Triangular o(n/r) o(n) r : Module size
Linear System
of Equaﬁions

. time

the

n/x
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~ time delay is'prolonged to be'O(nzlr); still much ‘faster than 0(n3) delay with

- the use of a uniprocessor.

A VLSI L-U deéompqsifion network in shown in Fig.5 for the case of k=

n/r=3. In general, such a network requires to use one Type-I module for

1

submatrix L-U decomposition, two submatrix inverters (II. and II, as shown),
7andV2k-l'Type I1x ﬁéduiésjfor fadditiﬁe._éubmatrix multiplications. These

~ amithmetic modules are interfaced with high-speed latch memories to yield

pipelining pperapiqns'with,feedback connections. For the example matrix decom-

‘position shown in Fig.4.a, we. show fﬁe_snap shots of the 2k-1=5 submatrix

computing steps ianig.S.a,b,c,d. The active modules and data paths involved

- in each stepare.stressed by "boldface" boxes and lines. in the snap shots.

Multiplexers are used to select the appropriate input to the functiomal

modules at”différent éteps; _Note that théhstePsraré_divided according to the

“boundary éf_submatfix”OPefations. _Each step may require different. number of

v .

?ipeline dyéles'to domplé;e the operation, To decompose an n X n matrix A into

- two triangular matrices, L and U. such 'that A =L - U, the network shown in

Fig;5 requires the following computation time

n2/2r - n/?2 + 2n/r + 17r - 2

o
It

.O(nzlr) for n>>r (9)
The total chip count of this L-U decomposition network equals

M. =1+ 2+ (20/r - 1) = 2a/r + 2

= 0{(n/t) for n>> T (10)
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> 31
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‘Noteﬁ All active VZS¥ K.
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are darkened.
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(b) ‘Step 3

Fig.5 Functional design of a pipelined VLSI matrix network for partitiouned -

21

L-U decomposition : (a) Step 1 and Step 2, (b) Step 3. {The netwotk

for k = n/r = 3 is shown):
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It is interesting to note that Tl -_Ml - C = O(nzlr) « 0(n/t) - .0(_1'2) = O(nB),
where O(n3) is the time complexity of implementing the 1L-U decomposition
algorithm ’t;y a uniprocessor.

| The matrix invetsion algorithm in . Tig.li.b . is realized by the pipelined
matrix ﬁlanipulator in Fig.6 for the case of k=4. In general, inverting an
nXaq trlangular matrlx requ1res to use k Type—II submatrix inverters and

2(k- 1) Type-—III submatrix multipliers. Thus the total module count equals

MZ k+2(k—l) k—2

-'=. O(k)‘;‘ Q(n/r)- forin>>r SR ' - (1)

- The 1nput ass:.gnments and data flows at 1ntermedlate and output terminals are
spec:.fled at the attached table for the four submatr:l_x steps. The -total - tlme

of using this network to generate the inverse matrix V = U is estimated to be

= n?jor +n/2 + 2nfr + T - 2

-
Il

I

‘O(nzlr)- for n>> ¢ ) . ‘l _ {12)

We shall use these two matrix manipulation pipelines in the construction of the
feature extrator and patterm classifier,

5. VLSI FEATURE EXTRACTION/PATTERN CLASSIFICATION

In a feature extractiom process, the major computations are to perform

T T - = - ~1

Z 2 « Z d [d PR« S i

< o Zt Z» 20 [ 1’d2’ ’dl-l] B:‘L—-l’ and to generate the inverse of
matrices A and Bi for all i=1,2,..,m~L Wedenote the integer ratio NS/r=hs and
Nt/r = ht' Figure 7 shows the functionul desipn.of 2 VLSTI feature extraction net—

work. The Offset Matrix Gemerator produces matrix Z_ and Z, by subtraction.
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' : ] 33 IIIé I L——v——>"
- 7 . e : ‘
Ups—> 114-——€4: ' .
’ —> V4

Terminals | = ' Outﬁut
a -b .'c d e £ g h { i hi
Step-2 | Uy | Upg d Vag | Vo | Vauf Voo | Va3 | V12| Va3 | V34
Step 3 U [ Va3 { Vs | Vaat v v v, v

, 11 1 Va2 , 13 { Vaq
Ui | Va3 | U2s | Vas -
U v

Step 4 U12 V24 _ : v
13 34 11 §{~ 14
Uiy | Vaa
Note : All 4 Type-iIl modules are active during Step 1.

Modules III,; and iIIi are active in Step 2.
Modules 1112 and IIIé are active in Steps 2,3.

Modules III3 and IIIé are active in Steps 2,3,4.

Fig.6 Functional design of a pipelined VLST matrix network for partitioned
matrrix inversion. (The network for k = an/r = 4 is shown).
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* network designed_in ‘Fig.6. We generate the ' {nverse- of matrlx A by AT =

A-matrix Generator performsfweighting and addition of Z and Zt. The Trans-

formation Vector Generator computes the vectors dl,dz,...,dm . The Feature

_Generator performs the linear transformation spec1f1ed in Eq.l.

Two Matrix Multlgly Networks are used to compute the scatter matrices

SS and St.- Each matrix multlply network comsists of n/r independently operated

" Type-IIT VLSI modules. The L-U decomposition is based on the design shown in

Fig.5. The inversions of triangular matrlces I. and U are generated by the

-1

-1 -1 -1

_(L-' gy ~=0- =L . - One L-U decomposition network, two VLST matrix inverters,

- and one matrix multlply network are used for generating the matrix A

-1
he hardware used to generate A " can be also used to obtaln the inverse

matrices B for all 2= 1% w-1. The order of each matrix B equals i. The

_'ratlo i/r may not be necessarlly an 1nte0er. We can always augment B, to become

B, hav1ng order h = rk/fl- T, Whlch is an integer multlple of the module size

T and, thus, implementable w;th.the proposed VLSI modules. Bh is related to B

by

B = ‘ . ‘ . (13)

where Ij is an identity matrix of ovder j = h - i. The inverse of Bh can be

computed by

Bt 0
i
B;l = :
0 I, (14)
]
= = - . . . . -1.
Let Di = [dl’dZ""’di]' The matrix multiplication Di Bi is performed by

the same matrix multiply network generating the scatter matrix St' If i/t is

. . -1 .
not an integer, the matrices D, and Bi can be also augmented with zeros and
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identity matrix.in order to use size-r VLSI modules.

The time delay of a Fisher llneer classifier is attrlbuted malnly by the
computations of WS . Wg, Wt - Wz, and by solving Eq.8. io solve a deuse system
%o v = 5; first we perform L-U decomposition of matrix I to yield (L - U)'_;-=
L. (U - ;) = 6: ThlS represents the solutlon of two triangular subsystems.

The forward ellmlnatlon is spec1f1ed by L - 6 = 6 and the back eubstitution
corresponds to U » v=23. The solutlons of these two subsystems 1ead to the

solution of the orlglnal system charaterlzed by £-v = §. Flgure 8 shows’ the

functional de510n of a VLSI linear pattern cla551f1er. The Offset Matrix Generator

ot b e

performs matrix‘scaling and addition to yield the matrix L. The Ihreshold Genera-—

" kor produces the threshold ‘constant @ accordlng to a given optimizing criterion.
. The matrices W and W are computed in parallel Fzch matrix multiply network

contains m/x Type—III VLSI modules. .The L-U Decomp051t10n Network trlancularlzes

the metrlx L. The Trlangular System Solver solves the two triamgular sybsystems,
L +§=Fand U » v = § , sequentially. There are O(m/r) VLSI modules in the
triangular system solver. ‘The matrlx—vector multiplier consists of B Type-IV
VLSI modules, where B =[ ((m/r -3)r - 2)/(2r + 2)1 + 1. For m>>r, § = m/2r
Maximal overlapped'operations are performed in successive steps of using the’
matrix—vector multiplier.. 8 subvector data buffers are used for iterative back

substitution. The reason to use 8 identical buffers for storing multiple solution

vectors is to enable parallel processing in the matrix—vector multiplier.

6. PERFORMANCE ANALYSIS AND CONCLUSIONS

Matrices juvolves in feature extraction have order n and iavolved in
pattern classification have order m. All VLSI modules manipulate submatrices
of order r. The proposad VLSL matrix manipulators perform gfficiently under

the assumption ns»m>»>t. The systolic arrays are globally structured with

o
s

RATIASEY B

| -——"

e wmam
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chip complexity O(nz) or O(mg). We have reduced the chip complexity to O(rz)
through modular approach. Modulation makeé it more feasible for IC fabrication

,'Vand I1/0 packaging, and also provides better extemsibility. The hardware L-U

- decompositor (Fig.5) and matrix inverter (Fig.6) each has a speedup of 0(n3)/0(n2/r)f

or 0(m3)/0(m2/r) over the comnventional uniprocessor. The hardware chip counts
have orders O(n/r) and O(m/r) respectively.

. : . : T
The matrix multipliers for computing the scattexr matrices Zs « 27, W . WT,

s’ s 8
and the product matrices Di . B;l have, each, a chip count O{(n/r) in Fig.7 and"
0(m/x) in Fig.8. We generate the resuiting product'matrix one row at a time
with the same speedup as those for the L-U decompositor and matrix inverter,

Of course, if O(nz/rz) or O(mzlrz) Type~III'subma£rix multipliers are used, the
product matrix can be generated in linear time 0(n/r) or O(m/r). The choice

is up.to cost effectiveness. The triangular system solver used in the pattern
classifief“(Fig.S) has a‘speedup éf‘b(mzj/o(ﬁ/r)'over theﬂunipr6cessof approach.

. The thiﬁ count in this solwer is O(m/r) with_chip complexity O(r) for the
Type~LV modules. We have explored maximal concurrency in each submatrix com-—
‘putation step in these partitioned matrix operatibns. _With pipeiining, high
degree of overlappeé operations between successive submatrii steps are also
explored.

Design tradeoffs in  developing VLSI feature extractor and pattern

classifier have to satisfy the conservation law between operating speed and
hardware chip count, as demonstrated by the fact the T = M * € = 0(u3), where

T, M, and C are the compute time, chip count, and chip complexity respectively.
For L-U decomposition, matrix inversion, and matrix multiplicacion, the following

alterative choices can be made :

For -
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4 .
0@/r) -+ oGa/r) + 0D = 0()
. ﬁ for serial-parallel mode
T+-M-C = o B S (15)
' 0(n) - 0?/x? - o) = o)
for strietly parallel mode.

For. pattern cla331f1cat10n, the varlable "a" in Eq.lS should be replaced by
"m'.- For the triangular system solver in Flg g, the following comservation

" law must be satisfied.

T .M. C=0(m - O0@/r) - 0(r) = 0(md) o (16)

'1Feature extration and pattern classification are the initial condidates

We demonstrated onlj the VLSI realizatiomn

;Qf“the‘Foley—Sammon:feature extraction method and of the Fisher’'s linear elaSsifier.

Other methods such as the eigenvector approaches to feature selection and Bayes
quadratic discriminant functioms should be realizable with the proposed "par-
titioned" matrix manipulators. Many other computatiouns required in image processing

and pattern tecognition are also good candidates for VLSI realizatiom. It is

~highly desired to develop VLSI computing structures also for smoothlng, image

registration, edge detection, image segmentation, texture analysis, multi—stage
feature selection, syntatic patterm eecognition, pictorial query processing,
and image database management, etc. We hope that this initial effort will
inspire further research projects towards the development of effective real-time
pattern—analysis and image—understandieg system with the emerging VLSI technology.

The potential gain lies not only in speed but also in realiabitity and cost-
P g

effectiveness.
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