ol

A Hardware Architecture

) Relational quns and

By

Yang-Chang Hong

TR-82-002

for Computing

Projections

:Institute of Infdrmafion Science

. Academia Sinica, Taipei,

g

February 1987

R.0.C.

. This -work was supported by Matiomal Science Council Grant

i
001
.

__%BSTRACT:"A hardware a?chitecture is deseribed which provides powerful join

".and projection capabilities to currently proposed relational associative data-
base machines (RADMs), The main feature of the hérdware is an RAM, consisting.
of . bit— and word-addressable stores, which can rapidly remember or recall data,

.This déta might be join column values/tuples selectéd from one relatiom, in

;_Wﬁich”casefthe'RAM helps_on.perquming the joining of these values/tuples with

":lthe'tupleS-iﬁVEhe'éécoﬁd relation. ,Altérﬁatiﬁely,.the RAM can help eliminate

' ‘repetitive tuples within the columns selected. The hardware uses a memory bank

- and an array of queue servers for the joining of two relatioms in which their

join columns do not satisfy the referemcial integrity comstraint. Great effi-
‘ciency of this architecture is achieved by much parallelism in the cross

referencing, giving a considerable performance improvement over existing RADMs.

i. Introduetiop """"f"'T;""""';""""""""°"'""""""'

2. Ha;dware,....;...............................

3. fmplementafiqn'qf Relational Joins;;.....,..........;....;.....L
3.1 Qﬁeries'Involviﬁéfthé'Impliéit Joins of Relationsveevee.s”

3.2 Explicit Joins With the RAM;;.....'.

" Content

3.3 TImplementation of Type L Explicit Joins

3.3.1 General Description .eveeeenas...

arrr s e a e ananbe

R e s tesaesS

3.3.2 Algorithm for Explicit Equi~Joins of Two Buckets

3.3.3 An Tllustration Examﬁle Ceeearae e

e e

4. Implementation of Relational Projections,...ﬁ....;.............

- 4.1 Projection Using Single Bit Array SEOTESE »venennnnmnincenssaions

4,2 Projeétioﬁ Using Hashing Logic et esreimaie e e taanar e

5. Summary and Further ReSearch +.eueieasveseroerasscroncanenasnssnsonss

6. References «rcesceacs

L R R L I R IR I A R SR N I R R O B R R B R R A N S N B R Y

Figure 1. Hardware Architecture

----- P N R NN B R R)

Figure 2. A Simplified Database With Two Tables SALES And TYPE Linked

by ITEM cenersssenaaes

Figure 3(a), 3(b), 3{(a)

PR N O N B Y

P I T T N BN B A A B R R A I R]

LRI I NN

N N

42 a8 s a0 aes

“10

10

12

15

18

18

19

22

24

25 -

26

26

past

“datas

suit
lang
of ¢

stoz

and,

har<

spet
tly.
£il«

15]

colr

rel
the
joi
col
rel
CAF
tup
dif
har
int

tup

1. Introduction

The trelational model {5] has, more than any other data models during the
past decade, attracted and held great interest of the database researchers and
"databésé;managemEnt commuﬁitj} Ité tébular-representation of data is ﬁéry
suitébie to'ér&inéiy“users-énd it provides a high~level, nonprocedural daté
language for users to interact with the database and satisfies the requireﬁents
of data'indépéhaeﬁce.'fTﬁe:model is structurally and. behaviorably far-frém the
stofage Orgénization‘and primitive'opérators of cén#entionéi compﬁter_hérdwére
' and, thereby; is Qery difficult to Sé"éfficiently ;mplemented by conventional
hardware;iir |

Several approaches to implementing a relational database‘by means of
spec1allzed hardware have been proposed [2 3,4,6,7,8,9,10,11,14,15,17]. Curren-
tly, the design of direct hardware support for the joining of relatlons (or |
files)_has been‘to concentrate on a form so called the "implicit" join'[l,S,ll,
15]; _Tﬁis join dées‘ﬁochreate a derived relatioﬁ; instead the valués of the
‘ eoiémﬁé Beihg joiﬁed, calléd_thé join céiumns, from theISelectéd tuples'in one
relafioﬁfare‘tr#nsfefred ﬁé seléct tuplesrinthe second/same relétion that ha%e
the same thosé values in their join columns. The algorithms designed for explicit
ﬁoins (as opposed to implicit joins), in which more data other than those join
column values in one relation are needed for computing the join with the second
relation, are mainly carried out by the host computer [1,9,10]. The LEECH and
CAFS machines use a filter for selecting tuples needed for the join. The selected
tuples are sent to the host to form the concatenated tuples of the join. The only
difference of these two machines is the design of the filter. RARES prevodes a
hardware-support algorithm for dividing the tuples of the relations being joined
into buckets according to different value—intervals.of their join columns. The

tuples within each bucket are sorted in the main memory and the sorted buckets

are uQed for computing the join by the host. They will not be very effective
if the number of.tuples;being joined is lérge.' The work by Tapaka‘gg,gijléj
proposed a totally hardware—suppoft join algorithm based on pipeline searching
‘and sorting engines. One disadvantagé of this work is that the algorithm requires
‘é considgrab%éuampunt_qf logic to ﬁe implemeﬁtéd.

| - EXcept CAFS[I]; little ié said gbout hoﬁ to iﬁplement the projection opera-
tion in hardware. CAFS uses a pre—compiléd index for'eadh.cbﬁbination of columns
fOIVPIOJecthH and each 1ndex valﬁé is assoc1ated w1th onerbltvp051t10n in ‘the
51ngle bit array store. For ; relation that has n dolﬁmns,_z pre—compiledl .
indices are general]v needed for supportlng all the p0551b1e prOJectlons‘on
this relation; _An alternatlée way of projection proposed by CAFS is to use a
set of fuﬁctions-to'hash conéatenated valués‘oflcolumns to bg proiectéd.to a

value corresponding to ome bit position in the store. This method might 1o$e

._1nformat10n because dlfferent values may not be able to be dlstlngu1shed by the

set of hashing fuqctions‘prov1ded.

- MOSF exis?iﬁgrelatipal associative gatabase machines (RADMs), e.g., CASSHM,
,RAP; RARES;_DBC:=etc.,-are_5ased.on the parallel procesding of fhe segﬁentedr‘ ”J
seqﬁential'search and cauwnot efficiently. support jein an& projection operatiomns
by means of their pargllelism. This is because (pbssibly) a great amount of
cross checking is involved in this typeof operation, which breaks the parallelism.
They, thus, are not alome sufficient to make a high-performance database machine.
New hardware which can perform a large amount of cross checking in paralliel has
to be sought to cope with a join- and project-dominating database application.

This paper describes a hardware architecture which can provide powerful
join and projection capabilities to curreéntly proposed RADMs. The main feature
of the hardware is an RAM extending the conceét of single bit array stores, as
suggested by CASSM and CAFS, for remembering or recalling data needed for joins.
Through this extention, the queries demanding the joining of relatioms which

satisfy the referencial integrity constraint [5] can be efficiently executed.

_ -of

Our

the

arr

rdo

con

que

. rep
thi

_giv

-haz

als

ogor

-eaj

co

la

fo

an

as

art

thr observarioh reveale thet a:majority of-joins *are via the columns which have
etﬁé feferéﬁcial.integrity_eroperry., This meaﬁs_rﬁe extention of single fit
array steres ro an RAM is esseerial. For'those-joins in Whieh the join columns
jdo-nor setlsfy thlS integrity rule, we sugéest a memory bank for storlng teples
:-of one relatlon belng 301nea and an array of queue servers for performlng the

'concateﬁatedtuples of the JOln, in parallel from the bank and the array of

jqueuee-asepcrated Alternatlvely, the’ hardwere can be used to eliminate any
;repetirive‘ruples_:Within the'tolemps_being_projectedr .It will be_seenrthat
”;rhis herdwere'&eeign'emrhaeizee.oﬁ ﬁeeh parailelism.in the croes refereneing,
,,giving'a eensiderebie performance improvement over existing RADMs.-

. The’ body of the paper is d1v1ded into three parts. Ie the first part the
ihardﬁare archltecture is descrrbed The second part is concerned with the
;lgerithms_for ¢computing the joins. The third part is coecerned with the multiple
'Lf celumn 5fojé¢tibq'51g§£itﬁms;':rhis is followedlby:e‘Summary eﬁd further research.
52.-Hardwareri 3

The hardware (see Figure 1) deseriﬁed here proﬁides join and projection
~capabilities to an RADM. It accepts a sequence of column values/tuples from the
RADM where data.are searched-in parallel by rhe search logic. The command and
countrol processor (CCP) receives data requests from the host computer; it trans-—
lates them into commands for the RADM and the hardware, dietributes commands
for execution, receives the data transferred out of the RADM and the hardware,
and outputs the data to the host computer.. We will assume that data stored in
RADM are in coded form and the ercoding and decoding process are done by CCP.

The hardware consists of five major components — 1P, MB, RAM, S, and CP —
as shown in Figure 1 where

(1) IP is an input processor which accepts column values/tuples from RADM

and stores them in queue Q. The queue Q acts as a buffer between the RADM and

the hardware. Associated with Q are two registers T and H and one flag FQ'
Tﬁéffu and H-registers are used to hold the locations of the last and first
éntries of the queue. The setting of the flag FQ-indicates thg‘queue Q is
full., This will also nétice the RADM to stop outputting data to the hardware.
The IP.will start its processing once thé flag FQ'is clear.. |

(2) MB is a mewory bank for holdlng the tuples of . relatlons belng JOlned
or projected. It consists of p memory modules M(i), 1= i s p, and each module
has gq words whére P and q are design parameters._

S (3) The RAM is composed of onme or several single blt,dlrectly addressed
stores TA, rB,...,éndan array r of words.

It is used to hold intermedlate

‘results. The single bit array store is addressed by enco@ed column values of

the database. Thé arrayrr of words is also_addressed by encoded values and
can hold encoded vélues, counters;.and pointers (to Be deﬁailed later). If
“a pointer word is concerned, it cén point to a specific word of a specific
memory_module. Such a word can be regarded as_éonsisting of two parts : one
.sﬁoring'a value pointing to a particular memory modﬁle'and the other storing
a value pointing to a particular word within the module. Thus, the array r
of words can be seen as consistingvof twWo arrays-r' and r" of words and the
“sizes of the word in r' and r'" are rlog2P1 and rlogzq_l, respectively, where
[x] is theleast integer greater than or equal to Xx.
(4) S is a set of queue servers Si each associated with a queue Qi' The
Qi's are served to hold incoming tuples of tﬁe second relation being joined.

Like queue Q, each Qi has two registers Ti and Hi and one flag Fi' Each queue

sever Si is designed to read data from dits queue Qi and the memory module M(i).

Thus, there are as many Si's as M(i)'s. A buffer is provided for each Si‘for

holding the results produced which are either output to the host computer or

stored back to the RADM for further processing. The data transfer is accom-

L

pli

and

or

(te
_éfc
anc

X}

£ix
the

ex]

ex

- Ex

as
is
by
as

im

me

ule

w

uw

re

he

eue

M(i).

or

1—

,ﬁfExambie 1.

plished by an output mechanism.
:t5) ¢P is é éentral procéééor which.fetches ééiuﬁn values/tuples from Q
. and ﬁsés thém as:indiées to address the bit array stpré for setting to 1 or 0.
or testing for bging 1 or'O; or to loéate degired words in r for various‘purposes
(to be_detailed later); The CP also serves to allocate storage space in MB for
étoring f;ples'df thé relétioﬁ being jbined or projected. The regisfers T, D,.
- and BR(i); 1= 1is P,'dré'ﬁrovided'fofAsto;age spacé-éllocation. ,Théy are best
explained when used;r_

. 3. Implementation of Relational Joins) T

This section shows how the hardware performs‘rélational joins. We will

first consider the implementation of implicit joins and explicit joins in which

theirqjoih‘cdiﬁﬁns séfisfy the referencial integrity rule and then consider those

" explicit joins in which their join columns do not satisfy this integrity rule.

3.1 Queries Involving the Implicit Joins of Relations

Impléménting an implicit join~by the single bit array stores is best

"éxélaiﬁéd.By.méans,of‘éq éxample.

Print ali the green items sold by the D! department.

To answer this query,.a simplified database with tables SALES and TYPE is:
assumed in Figure 2. This query can be implemented by various ways. One way
is to apply the selection process to the table SALES to select the items sold
by the Dl department. The selected items are then transferred to the table TYPE
as a disjunctive condition to retrieve all the green items. The pro;edure can be
implementéd by using the store rA, which is outlined below :

(1) Clear the single bit array store rA.

(2) Scan the table SALES by RADM and output the items sold by the Dl depart-

ment to the input processor IP. The items fed to IP are then queued in Q, which

_w111 be used as 1nd1ces to address the store rA and . then recorded in TA by CP
(3) Scan the table TYPE by RADM and output all the green items and store
them in Q Any 1tem 1n Q is output to the host computer 1f it has been recorded

- in rA i.e., it is an item sold by the Dl department.

Here we assume that the reader is famlllar w1th the data search performed
by the RADM . What lS not made clear is the functlon of the 51ngle bit array.

store rA how the CP records the 1tems 1n rA‘and how 1t determlnes which green
1tehs are to be output to the host._'

Recall that data are encodedly stored 1n the RADM. ‘Eahh hitupositiOn in
the array-can be made correspohdlng to an encoded value. -HWith thisutechnique,
" the addressed bit can be set to 1 or 0, or tested for’ being 1 or 0. We give
:a real example to 1llustrate thls technlque

> Assume that BOLT 1s encoded as 0, i.e., <BOLT> = O, and <CAM> 1, &COG> =
'2 <GEAR> = 3 <NUT> '4 and <SCREW> eeSt, At the end of step (2), the blt |
pattern of rA will be (0 l 0,1 0,...,‘0). ThlS pattern would record the llst o
';of_ltems_ CAM and GEAR ; In step (3), ‘items <BOLT> and <GEAR> are selected and
'stored-in.Q for examination. Slnce_rA(SBOLT>) = rA{0) = 0, <BOLT> is discarded.
Similarly, TA(<GEAR>) = rA(B) =1, <GEAR> is output to the host computer. Before
<GEAR> is output, it is decoded by the encoding and decoding umnit (EDU) in CCP.
Of course, values Dl and GREEN in the query have to be encoded by EDU before the
query is executed. (We neglect the detailed encoding and decoding processes
hera.)

The discussion above assumes that all the encoded ITEM values are within
the address space of rA. If not, they are divided into buckets; the values dn
the first bucket lie between 0 and 2" - 1; the values in the second bucket lie

between Zt and 2t+l‘_ 1; and so forth, where t is the number of bits required

in the address space. Each bucket is then evaluated by repeatedly applying the

~the

_ same

e

per «
'fVSingi
. 'stort
logi
from

. 10gl\

tane
mean

Qur ~

 arra

‘use

for

sele

colt

- stol

of i

3.2

. exp!

is -

com

Exa

e

w

_ same procedure being described.’

The idea of using the single bit array store to remember or recall data is

_ the same asg those used in CASSM and CAFS. ‘CASSM uses a single bit'array-store
' per cell (con51st1ng a memory element and arproce351ng loglc) end one loglcal
Z51ngle.bdt array store, conststlng of the concatenation of slngle bit array
- 'stores of cells; addresseble by each proces51ng loglc.: To address a bit in the
' 1og1cal erray store tequlres pa531ng ‘the bit address (1 e. the encoded value)
:from one 1ogic to Enother; ‘Moreover;_only one cell is allooed to address the

' logical array store at one time. If two cells want to address the store simu-

taneously, one of the two cells must wait for the subsequent revolution. This

means additional memory revolutions are required in addressing the bit array store.

' Our”aﬁpfoach tike CAFS, uses a central proaegsor CP to set or test a single bit

array store, thereby ellmlnatlng memory addres51ng contention. Because of the

'T"use of,an RADM,;Which aets as a’ fllter -less data than CAFS are fed to the CP

for settlng or testlng the blt array ‘store.

When the values. selected from the second relatln are to be transferred to
select tuples in the third relation that have the same those values in their join

columns, in this case two single bit array stores are needed., In general, two

stores are sufficient and can be alternatively used for a query involving a chain

df implicit joins.

3.2 Explicit Joins With the RAM

By extending the concept of single bit array stores to an RaM, some type of
explicit join can be impiemented as effectively as the implicit join. The idea

is that more data other than these join column values can be kept in the RAM for

computing that type of join. Two examples below are used to illustrate this point.

Example 2.

Find the names of the employees who make more than their department managers.

The query is directed at the table
EMPLOYEE (NAME , SALARY , DEPT ,MGR) ‘ - g

where the managérs are also employees ﬂu-i;e., the values in the MGR‘column also
lappeaf in the NAME-éblumn. - .

Oﬁe-ﬁéy‘to énsﬁer this 4uefy'is first to scan the MGR cblumn and .output unique
managers. Next select EMPLOYEE tuples where NAME = 'one of the selected managers'
- -Jand tﬁen join the tuples being selec?ed with EMPLOYEE tuples that have the séﬁei
Ithose names in their>MGR'coiumn. Finally, scan theijoiﬁed'felétion and output.
‘the employee names whose salaries'afe greaterthanfhéirmanagers.i This method
'performs an 1mp11c1t join followed an exp11c1t join and a selectlon operation.

It is insufficient to use single bit array stores to remember the mandger names

" and their salaries for being used to select those employee names who make more

than their managers. Our aﬁproach.uses the single bit array store rA and the array

3;70f words for stofiﬁg the manager mames and their salaries, respectively, which
is outlined below :

(1) Clear the 51ng1e bit - array store \rA.l

(2) Scan the EMPLOYEE table by RADM and output the entires in the MGR column
and store them in Q.. The entries stored in Q are then fetched and used to set
the single bit array store rA by CF.

(3) Scan the EMPLOYEE table again and output the employee names and their
salaries and store them in Q. The pairs (<ﬁame>,<salary>) stored in Q are then
fatched, one by one,to test if rA(<name>) is 1 or mot. If rA(%name>) = 1, then
the <salary> is stored in the correéponding word in ¥, i.e., r(<name>) <« <salary>.
Otherwise, discard the pair.

(4) Secan the EMPLOYEE table again and output the employee names, salaries, and
managers and store them in Q. Each triple (<name>,<salary>,<manager>) stored. im
Q are then fetched to test if r(<manager>) < <salary> or not. If yes, output

the <pname>. Otherwise, discard the triple being held.

i orée
one
-‘Aséié
“tena
.deté
e
~join

‘<'be11

.- The

" bell

Exan

- pric

typ!?

cal.

is

(<d
If
new

the

lue

tray

We noticerthat the encoded values in the SALARY tolumn should have the same

'“or&er'ae they ertgiheliy hare.:-Thie-;rocedure eohbinee'ohexehplicit jein end

" one selection operation to a 51ngle process whetre the manager names and- thelr
'_.saiarles are recorded An RAM- ahd each 1ncom1ng EMPLOYEE tuple is V1rtua11y conca~
ritenated to a proper entry in RAﬁ so that the quallfled employee names can be
determlned 1mmed1ately. Our obserretlen concludes that this technique can i
Lﬁfigenerally be applled to the explrc1t Jelnlng of ahyitwo relatlens in which their

«join columns satlsfy the referenc1al 1ntegr1ty constraint. r?hls rule-is rewritten

;.bellow.-h

Let D be.a prleery domarn, and iet R1 be-e relatlon with a column A that is
>defined on D. Then; at any given tlme; each value of A in Rl must be either
(aj null,'or (b). eqhai to V; say, where V is the‘hrimary.key ralue of some
tuple in some relatlon R2 (Rl and R2 not necessarily dlstlnct) with prlmary

'_key deflned on D

m“The example 2: 1llustrates the case where R and R2 are not distinct. The example 3

bellow.ls the case.where Rl and R2 are dlstlnct.
Example 3.

Join the tuples of the SALES table with those TYPE tuples hav1ng items whose

- price is greater thanm 4P and output the DEPT, ITEM, and COLOR columns. This is a

typical. explicit join of two relatioms. The column ITEM in table SALES is scmetimes
called the foreign key. This join can be realized by the follewing proeedure:
(1) Clear tA.
(2) Scan the TYPE table and output the items and their color if their price
is greater than 4P and store them in Q. Each pair (<item>, <color>) stored in Q
is fetched and recorded in RAM. That is, rA(<item>) < 1 and ri<citem>») + <colors.
(3) Scan the SALES table and output the SALES tuples to Q. Each tuple
(<department>, <item>) stored in Q is fetched to test if rA(<item>) = 1 or not.
If yes, read r(<item>) and concatenate it to the tuple being held and output the

new tuple (<department>, <item>, <color>) to the host computer. 0therw1se, diseard

the tuple. If further processing is needed each new tuple is stored back to the RADM.

9

If the Join of SALES and TYPE is con51dered it can at least be implemented
_by_two_ways.- The flrst way d1v1des this 301n 1nto tﬁo sub301ns. one is to'Joln
SALES and TYPE(l)(ITEM; COLOR) over'ITEM, denoting the resulting table as Rl, and
the other is to join”Rl and TUPE(Z)(ITEM, PRICE) over ITEM. VEach subﬁoin.followe.
the same procedure descirbed above. The'eecondlway is to treat_each'wordfin tﬁe
array‘r as a pointer word containipg a value pointing to the startipg address of
.a block of words in MB in which a TYPE tuple, except for its 1dent1f1er ie stored.
VThls approach would modify the step(Z) -of the ab0ve procedure as

(2!) Output TYPE tuples and storethem in Q Read each tuple and store it,

except for its identlfier t—id, say, in a block of words in MB. The
7 starting address of the block is then stored iﬁ r(<t*id>) and the tuple
identifier is recorded in rA(<t—id>); .The addresses recorded in T are
prov1ded for step(B) for locating TYPE tuples.
_-It is qoite obvious that the latter approach is generally better than the former omne.
'Note; however, that not all the join columns satisfy the referenclal 1ntegr1ty con-
'__straint. We refer to-the explicit Joln shown in Example 2 or 3 as the Type I .

cexplicit join.and otherwise the type T explicit join.

3.3 Implementation of Type I - Explicit Joins

3.3.1 General'Description

An explicit join of two relatioms in which'the join columns do not satisfy the
‘referencial integrity constraint ﬁay make the implementation rather costly in time
and storage. To reduce the cost in storage, "large" relations being joined are
divided into buckets, according to their join column values in such a ﬁay that
the first oocket of the first relation is to joiniwith the first tucket of the
second relatiou;‘the second bucket of the first relation is to join with'the second
bucket of the second relation; and so forth. A relation is "large"'if it satis-
fies one of the following conditione : (1) The range of the encoded values of the
join column is over the”size of the address space of RAM and (2) It cannot be
fitly stored in the memory bank MB. The processing time is decreased by increas-

ing the parallelism of computing the concatenated tuples of the join of buckets.

10

Th
jc

wi

“wt
. of
.::lIF

. tt

te

fc

tx

;l?]

ed.

one.

on-

1e

ime

md

e

1ds5—

b4

This parallellsm 1s achleved by further d1v1d1ng the tuples of ‘buckets belng
JOlned into sub~buckets.. The first sub—bucket of the 1th bucket is then JOlned

with the first sub-bucket'of the i'th bucket; the second sub-bucket of the ith

s bucket is Jolned with the second sub—bucket of the i'th bucket aud s0 forth,
T where 1th and i th buckets have the same value 1nterval The JOln of the pairs
_ ofp~_sub—buckets is done in parallel by the array of servers in our approach.

It will be’Seen'that,_in'1ogical{ef£ect, the join isqimplemented as joining the

tuples from two sorted" sub buckets.

In our de51gn, the division of the 1arge relations belng JOlned 1nto buckets
AL '

is relegated to the RADM, sxmllar to RARES [9], s0 that fewer tuples are output
~ to the hardware. The pairs of buckets are then sent to the hardware, omne by omne,

for computing the join. Im computing the join of two buckets, the hardware uses

two single bit array stores rA and r3B for filtering out the irrelevant tuples of

Tthe join'since the'join column”values'in one'bucket'may not appear in another.

We w1ll see that it 4s worthy of dOlng s0,. espec1ally when a large number of

:erelevant tuples are 1nvolved The array r of words except for help:anr w1th Type I

exp11c1t Jolns on remember1ng or recalllng data as descrlbed prev1ously, can also

help with type I explicit joins on d1v1d1ng tuples of each bucket into sub-

. buckets. For two buckets bheing Jolned, the sub-buckets of one bucket are first

stored in the memory modules M{(i) of the memory bank, one per module. Each
incoming tuple of the second bucket is.then stored in the corresponding queue

Qi; that is, the first queue Ql accepts only those incoming tuples whose join
columne have the same value-interval as those stored in M(l); the Q2 accepts only
those incoming tuples whose join columans have the same value-interval as those
storedrin Mt2); and so forth. This arrange permits each queue server Si (L= 1i=p)
to produce the concatenated tuples of the join from its queue Qi and the M(i) in
parallel, without any memory addressing contention. What is not made clear

here is how each Si can know which tuples in M(i) are concatenated to the tuple

11

belng fetched from Q This can be seen from the follow1ng algorlthm.

3 3. 2 Algorlthm for Exp11c1t Equl—J01ns of Two Buckets

Let us denote the two buckets belno joined as RA and RB of relations A

and B w1th A= (Xl,Xz,...,X) and B = CYI’YZ""’Y), respectively, where
X, (1'5 1" u) end Y (1= J = v) are column names . Assume that columns X and
Yb are of the same underlylng domaln. Compute the join of buckets RA and RB

over (X =Y

b).' The resultlng table consists of the set of tuples t, where t
is the concatenatlon of a tuple t! belong to Ry and a tuple t" belong to RB
'end xa'=_ (x belng “the X —component of RA and yb being the Yb—component of

.RB). The algorithm for the 401n,1s outlined below :

(1) Initialization : Clear rh, T8, and . "

(2) Output X —components of RK and-set the rd and increment the correspond—

ing counter words of r @ Clear Registers T and H and the flag FQ of Q. 'Scan‘r

the relatlon A by RADM and output the Sequence of X —components Xa 's of R
(in enceded form) to IP. “The IP accepts each component x, and deposits it
into-Q. The.x s in Q are then fetched, one at a time, by CP and used asnlnducee
to ' address the bits in TA and the correspounding counter words im r. “The

addressed bits of rA are set and the correspondlng counter words are 1ncremented

. .] - .
by ome. For example, if x; 1s fetched, then rA(xai) 1, and r(xai) +-r(xai)-kl.

At the end of step(2), the word r(xai) contains a velue indicating the number
of RA tuples with the component Xai in their join columns. fhe-discuseions which
follow use [r(x)] to denote the contents ox value of the word in r addressed by
the component X.
| (3) Output Yb*components in RB’ set the rB, and allocate memory space in

MB for R, : Clear registers T and H and the flag F, of Q and BR(1), 1= i= p,

Q
and D + 1. Scan the relationAB by RADM and output the sequence of Yb—compo~
nents yb's of_RB to IP. The IP accepts each Yy, and deposits it into Q. The

yb's in Q are then fetched by CP and used to test if the corresponding bits in

12

TA am

Casesg

re—-al
memor
clear

and L

The

holc
stol
whic

tup:

rA and rB are set or not.
Cases : (i)‘if rA(ybj) =0, i.e., the ij does not appear in the join column
of RA,-theqtigﬁore'tﬁe compongnt'ybj; | |
 (iQ if rA(ybj) ='1_égd rB(ybj)'= 0, i.e., the ygj is f?rsf'eﬁcduntered,
" then rB(fbj) + 1 and allocate memory space in MB for storing RA
| tuples with Xa = ybj' |
The ‘setting of rB(ij)_will prevent the subsequent incoming y, = Vb3 from -
re—éllodaﬁing memory space in MB for those RA tuples having Ka = ybj' The

‘ meméry allocation is done as foilbwa : (Initially, registers BR(k), 1= k= p, are
élgére&zénd D+1:, i.e., each BR(k) points to the starting address of k-thmodule
and D points to the first memory module.)
SR (a) T + r(ybj), i.e;, thé value of word r(ijl-iS saved in T-register, -
which is a temporary register.
kb).r;(ﬁggsnf-ﬁ.;ﬁd-;;(y;gji%-ﬁR([D]), wherg o1, thé-conténts.of p;
| Zregiéter;.ié used to index one of BR(k), 1= k= p.
.(Rememﬁei that r.ﬁéy bérregafaed as consiétiné of t! and:r".)
(&) BR(D]) < BR(ID]) + (T + 1) -and D « (0 + 1) module p,-and if B = 0,
D + P, The former s&atement denotes that the current module will be
allocated following the logical location BR([D]) + T + 1 if it is to be
allocated again. We add one -extra logical word for each allocation (to

be described in next step.) The later omne indicates that the next

allocation will be assigned to the module next to the eurréﬁf one.
The ahove three statements allocate a block of (T+1) logical words (each can
hold a tuple} in the module specified by D—regiséer (hefore updatimng) for
storing RA tuples having the join column value equal to-ybj. For the case in
which rA(y ;) = 1 and rBly) = I, this means that block allcation for R,

tuples with Xa = ybj has been done.

(4) Output RA tuples and store the relevant tuples of the join in the

i3

allocated memory = Clearreéisters T and H and the flag FQ of Q. Scan.

the relation A by RADM and output the sequence of RA tuples and store in Q.

The tuples stored in Q.are then fetched by CP. The jbin column values xa's'
of each fetched tuple are extrécted and used as indﬁges to address the corres-

ponding bits in rB. .The contents of each addressed bit are tested for being

set or not.

A

7 _vant to the join since the join columm value'xai of the tuple does ‘

Cases : (1) if rB(X) = 0 i. e.,_the R, tuple being processed by CP is irrele—-

not aﬁpear,iu the join column of,Rﬁ, then ignore the tuplé.

(i1) if rB(x_;) = 1, then

Il

1, if rA(xai) 1, then‘rA(xai) <+ O‘and MB([r(xai)}) =‘MB([r‘(xai);).

Ir"(xai)]) + 1, where the. part r'(xai) points to a particular
~memory medule and r"(xai) points to a particular logical word in

the module specified.

2. T« r(x) + MB([r(x)]) and MB{[T]) <« the tuple being held by

CP, and MB([r(x)1) + MB([r(x)]) + 1.

From (i), we know that each logical word in MB pointed by the contents of the

word r(xai) is a word coutaining a value indicating the number of R, tuples with

Xa =x_. that have been stored. At the end of this step, the word will contain

a value one larger than the number of RA tuples with Xa =X .. This information

is important to each server Si where new tuples are formed.

(5) Output R_ tuples, deposit the relevant RB tuples of the join into the

B

proper queues Qi’ and produce the concatenated tuples of the join : Clear T and

H registers and the flag F., of Q, and Ti and Hi registers and the Fi flag for

Q

1 1= p. Scan the RB tuples by RADM and output them to Q. The tuples in Q

1A

are fetched aund their join column values yb's are extracted by CP. The extracted
yb's are used to test if the corresponding bits in rB are set or not.
Cases : (i) if rB(ybi)‘= 0, i.e., the tuple being held is irrelevant to the join,

ignore the tuple.

14

: ;Ea

“T@o&ﬁL

. are n

#ﬁgke

Logic,

- from

" buffe

‘pfoce
15;5
joiﬁs
_ﬁsing
nulti

(11,

- each

Cousid
equi-j
this j
the st

St

St

ed

n,

F

GJ) 1f rB(yb) = 1 then fetch the r(yb) con51st1ng of two flelds r (yb)

Vand r"(yb), and dep051t the concatenated RB tuple, con51st1ng of

_ r"(yb) and the RB tuple belng held, 1nto the queue spec1f1ed by the

_;fglaword T (yb). The r"(yb) holds an address po:.ntn.n':r to the startlncr -

A

:f Each server S Wlll startits]oiningof tuples from the Q and the corresponding -

are not equal) - After the JOln of WO buckets 1s completed the join of next

Logically, we can say that each Si produces the concatenated tuples of the jein .

',bucket-palr follows and 50 forth, untll all the bucket palrs have been processed

- from two sorted" such buckets. - Teh CDncatenated'tuples of the join. in each

' buffer will be elther output to the host or stored back to the RADM for further

proce551ng

So far,jonly a 51ngle JOln column is 1nvolved in. the 301n operatlon._vFor S
£ e A

' JOlnS of relatlons on multlple columns, the addre551ng b1ts or words of RAM

REEETE S b

“using 51ng1e encoded valueshaveto be modlfled - One way is to associate the

_multlple 301n column values w1th a pre—complled index, as suggested by E. Babb

[11, whenever such a join is concerned. Another way is to dynamically encode

© each multiple join column value with.a unique value.

3.3.3 An Illustration Example

This section shows how the above algorithm works by means of an example.

Cousider the same database as given in Figure2. As an example, we cousider the

equi—join of table SALES oun column ITEM with table TYPE on column ITEM, though

this join can be computed without creating a derived relation. We will follow

the steps of the above algorithm to illustrate how this join is computed.

Step 1. Clear RaM, i.e., rA, rB, and r.

Step 2. Clear registers T and H and the flag FQ of Q.

15

Assume that the

- ;i_#__aaddress of a block of R tuples to whlch the RB tuplerl1 be concatenateo.

”_module M(l) once Q is not empty (1 e.; ‘the contents of reglsters H ‘and T in Q.
i

sequence of ITEM~components of table SALEs that are input to Q is <CAM>,<GEAR>,
<CAM> ,<NUT> ,<CAM>, aﬁd <NUT>, as they appear in the SALES table of Figere-ze
These components will be used as indexes to set the rA and_updafe the corres-
pondlng counter words of r. At the end of thls step, the bit pattern of rA
will be (0 l 0,1, 1 0,..,0) and thelr correspondlng values of the array of words

_;vwill be (0,3,0,1,2,0,..., 0)(Fioure 3(3))-—— i.e., there are three SALES tuples
with ITEM;component = <CAM>, oneSALES tuple with ITEM—component = <GEAR>, and

‘two SALES tuples with ITEM* omponent = <NUT>.

Step 3"Clear T, H, and F_ in Q, and BR(l), 15 is p'-and set D to 1.

_ -Q
" Assume that the sequence of ITEM—components of table TYPE 1nput to Q is - <BOLT>,

<CAM>,<COG>,<GEAR> ,<NUT>, and <SCREW>. These values are used as'lndexes to test
the rA bits for being 1 or 0; Since rA(<BOLT>) = rA(Q):= 0, ignore the <BOLT>.
Since rA(<CAM>) = rA(l) =1 and rB(<CAM>) = rB(l) 70 (initially,hrs is-cleared),
set rB(;) = 1 and allocate memory spaceln MBfor those SALES tuples w1th ITEM =
T<CAM> :Siﬁce;r(ﬁcgg>)‘= r(l) = 3,lthus, 4 logical words must be allocated. The
ellocation wil; db'tﬂe following = |
| " (a) Save the contents of. word f(<CAM>), now being 3, in-T.
"(b) Stors the contents of b—;egister, now being 1, in r'(<CAM>) and the
contents .of BR(D)'='BR(1j, now being O,.in " (<CAM>). The word
T(<CAM>) = (1) now is a pointer word pointing to the starting
=address of the first module. (In fact, the setting of rB bits can
be used to distinguish pointer words from counter words.)
(e) (i) Increment BR(D) = BR(1) by 4 (= T+1) so that if there is any-
meﬁbrv allocatioﬁ‘essigned to the first module, it will he allocated
starting from the fifth: logical word (i.e. logical address 4).
(i) Increment the D-register by 1, indicating that next allocation,
if any, will be assigned to the module next to the current one.

The third incoming value is <COG>. Since rA(KCOQG>) = rA(2) = 0, ignore the-

value. The same procedure 1is repeatedly applied to other wvalues. At the end

16

. dinec
-~ firs

" whic

sSecc

of

loc:

. shov

tha

ITE

dis

ten

fir

con

Eir

fou

int

of

W)

of this step, ‘the bit -array -store B and r will be (O 1,0,1,1, 0,...,0) and (0,

Sl O 0 2 0,3 0 O,...,O)(Flgure 3(b)), where r(l) = O = r'(1) - r"(l)(l e.,

- concatenatlon) and the contents cf all re01sters in CP are shown 1n Figure. 3(b).

Step 4 Clear rA and reglsters T and H and the flag F. f Q{ Assume that

) cQ
the sequence of SALES tuples" 1nput to Q is the same as that of SALES tuples -

'fenpearinglin Fiﬂure 2 . Any tuples with rB&x)'=1 (x be1n0 the ITEW—component of
',-SALES) Wlll be stored in the loglcal location in MB p01nted by T(x). .The first

A 1nc0m1ng tuple w1th rB(<CAM>) 1 is stored in the loglcal location 1 of the

- first module M(l) (Atter thls, the logical location 0 of M(1) has the value 2,

“ which is 1nit1ally set to6 1 and incrementéd by 1 when a tunle is stored.), The

second incoming tuple with rB(<GEAR>) = 1l is stored in the logical locatiom 1

of M{2); the third incoming tuple with rB(<CAM>) = 1 is stored in the logical

Alpcatidn Z_Of'Mfl);_and so forth, until the sixth incoming tuple which is stored
Vin‘the'iogieal 1ocation 2 of M(3)' At the end of this step, the logical locations
'-_O of M(l) M(Z), and M(3) have the values 4, 2, and 3, respeetively. Figure - 3(c)

rshows the conteuts of RAM and the first three modules M{1),-M(2), M(3).

Step 5 Assume that the sequence of TYPE tuples input to Q is the same as
that of TYPE tuples appearing in Figure 2. Any tuples with r3(y) = 0 (y beinz the
ITEM—conponent‘of TYPE) are‘ignorant. Those tuples with rB(y) = 1 will be
dispatched into the queues Qi(l = is p) determined by r'(y). They are conca-

tenated to the contents of r''(y) before dispatching into the proper queues. The

first incoming tuple is ignored since rB(<BOLT>) = rB(0) = 0; the second one
concatenated to the contents of r"(CAM } = r"(1l) = 0 is dispatched into the
flrst queue Q; since r' (<CAM>) = r(l) 1; the third tuple is ignored; the

fourth one coucatenated to the contents of r"(<GEAE>) = r'"(3) = 0 is dispatched
into Q2 since t'(<GEAR>) = r'(3) = 2; the fifth one concatenated to the contents
of r"(<ﬂUT>) = r"(é) 0 is dlspatched into Q3 since r' (<NUT>) = r(4) = 3; the

sltth tuple will be 1gnored Since each tuple dispatched is associated with a

17

'pointer pointing to the beginningzof a block Qf,tuples to'wnich the dispatcned
tuple is concatenated, each servef-Siofhus can produce the concatenated tuples
of the join from eachTYPE tuple in Qi and the block of SALES»tuples in M(i)}. |
'uithout memory addressing contention problem. | | . |

4. Implementation of Relatlonal Progectlons

A major 1mplementat10n issue is how to effectlvely remove any repetltlons -
" within the columns selected | For a-nrojecclon 1n.whlch the prlmary key-ls one
of the columns of a relatlon belng progected 1; can be_lmplemented solely by
‘RADM because theré is no repetltlon 1nvolved - Othersrcan be imnlemented by

" means of the'proposed hardware. Thls ‘section will be devobed to the illustra-
tion of how the.hardware helps ;emove the repetitlve_tuples Wlthln the columns
projected.

4. 1 PIOJECthH U51ng Single Bit Array Stores

- A-single column prOJectlon can be 1mplemented as follows

(1Y Inltlally TA is cleared

(2) Scan the column belng projected and output the.column values to P whlch
stores them in queue Q. The values v's in Q are then fetched and used
as indicestto address the fA.. If rA(v) = 0, i.e., the v51ué'v-i§ not
yet output, then v is output and rA(v) <« 1. 1If rA(vj =1, discaro the

value v. This step continues until all the column values have been

processed.
By making use of the single bit array store,.the repetitions can be removed
in one scan of the values of the column to be projected. This algorithm requires
that the size of rA should be large enouch so that each column value has one bit

position in rA corresponding to it. If not, the same procedure should be repeatedly

invoked ome for each value interval.
In the case of multi-column projection, the values of the columns being pro-

jected are concatenated to a single value, say cv. If the range of cv's are still

i8

Wi

C oo

th

al

ha

Ty

Ccv

wh

. me

~of

A |

within the add;esé space pf rA, then the séme algorithm used in Ehe singlé '
. column projectioq'can be apﬁliéd;' If the value range of cﬁ's is 1a¥ger than
thé gddress'sbaéé of_?A, it is divided into ﬁalue intervais and the above
algorifhm h§s tdvbe'repéatealy‘invokéd.bné for each'value interﬁal. However, it
happeﬁs quite often that' the range'oflcv's is rather large, while the number of
:vélqés cv}siin‘each vélﬁerintérvalrisrlowi fhié génefall§ requires a great

 number of algorithm invocations in order to eliminate any repetitive values cv's.

”_4£2 PrqjeétionlUsiggtHaéhing Logic™:
-) Oﬁé‘ﬁayqfo'éffeétivelf pfbféc;‘a reiatién-is fo hash.the cﬁnéefenafed,valueé
‘ "c%fs'té éddréés the Bif store instead of using'év's directly. The values cv's
which bash to the‘same bit positions are formed subfiles u&ﬁxﬂlarestored in the
_ meméry bank MB. The values cv's in each subfile are fhen séparated by the array
_ of_servers. The detailed algorithm is shown below :
 ujt15 Initializatidn'$ Cléar rA; rB, and r.

;.‘f(2) Héshing and'Canting : Scan the relation being projected by RADM and

cb _outﬁgtrthe'yalues‘of';hé;columﬁs selected to iP.' The values come from
the same tuple are concétenated to a singie value cv which is stored in
Q. Each cv in Q is then fetched and ﬁashed with a hashing functiom to
a value hv. The value hv is used as an index to locate r and increment
r{hv) by one. After this step,'each entry of r will contain the number
of ev's that hash to that entry. |

d (3) Output and Allocation : Scan the relation again. Each cv stored in

-res Q is read and hashed. If r(hv) = 1, output the cv. Otherwise, if

it rA(hv) = 0 allocate the memory space in MB for storing the corresponding

2atedly subfile and rA(hv) < 1 which indicates that the allocation has been made.
(The memory allocation is referred to section 3.3.2.)

ros (4) Scan the relation again. Each cv in Q is read and hashed. If rAa(hv) =1,

still

19

store the cv in the allocated space in MB (referring to Section 3.3.2).
(5) Processing : Each server takes the ¢v's from its corresponding memory

module and eliminates repetitions and output the results .

to the host computer. Note that each server used convention

algorithms to femove_repetitions and rB is used in memory .
alocafion‘notiexplicitly shown in the algorithm.

T&o probléms may be associated with the algorithm : one being that if one
sgbfile is considerablé large, the server which proéesses it will take long time
to finish and the othér being that if' the reiation being projected is toec large
" to be stored in MB; the pfojecfiou cannot be proceeded without dividiﬁg it into
sﬁbtasks. |

The firsf problem céﬁ be-solv;é by limiting the size éf subfiles. For a
subfile which contains more than, b, say, concatenated wvalues, it will be
by péssed in thé current process;'ﬁo allocation for the subfile is made. The.
cv'sg iﬁ the subfile are just marked. The mérked cv's are then processed in the-
'S;bsequent process bfrthe same algo;ithm with another hashing fumction. The
algorithm is repeatediy applied until the projection is complete. We note
that there are two cases which may c;uée a large subfile :

(1) The hashing function .used causes a great deal of collisions.

(2) The number of duplicated tuples within the columns selected is really

large.
The case (1) can be avoided by choosing a proper hashing function each time the
algorithm is invoked. 1In fact, the stgp (2) of the algorithm can be modified as
hashing the concatenated values of subset of the columns being projected instead
of hashing each cv as a whole. Different subsets of the columns being projected
are considefed each time the algorithm is invoked. This can avoid the complexity
of hashing logic employed. For case (2), the size of the subfile can no waﬁ be

reduced. In such case, the algorithm can never be terminated. To avoid this

20

sit

to

‘bae

wit
beh

way
arr

mod

situation, we have to limit the total number of times allowed for the algorithm
to be invoked during projection. S

What is - not made clear here is the problem of how a tuple that has not
‘been pfocegsed (i.e., not yet been output or discarded) can be.marked a tuple -
within the columns selected ounce cutput to the hardware for projection can never
be”réturenedrto-the RADM. if has to be marked somewheré in the.bardwareQ'que”
way ta fell‘if a tuple has been proceééed or not is to use an additionai Bit
array sﬁoﬁegrcﬁfor'rEmembefing;tﬁose'tuples'ﬁrocesSed.'uThe algorithm-thus-is
moaifiéd as follows :

(1) Initialization : Clear rA, rB, and r.

(2) Hashing and Counting : Scan the relation being'projectéd by RADM and store

| 'tﬁe conéatenated values cv's of the columns selec&ed and their associated

‘tuple identifier x's in Q. Each cv with x is then fetched. If rC(x) = 1
(i;e{, théédrfesponding?nrhas‘been processed.), discard the cv. Otherwise,
the vaiﬁe cv ié héshed to a value hv which is then used as index to locate

"t and increment f(hv)}by'one. "After this step, each entry of r will
contain éhe number of cv's that hash to that en;ry.

(3 dutpﬁ; and-Allocaﬁionf: Scan the relation again. For each cv with x, if
rC(x) = 1 then thervalue cv has been processed and will be discarded.
Otherwise, if .r(hv) = 1, output the value cv immediately and set the
rC(x) to 1. If 1 < r(hv) < b, use the contents of r(hv) to allocate
memory space in MB for storing the corresponding subfile and set both
rA(hv) and rC(x) to 1. The setting of rA(hv) indicates that the alloca-
‘tion has been completed.

(é)lScan the relation again. Each value cv in Q is read and hashed. If
rA(hv) = 1, store the cv in the allocated space in MB.

(5) Processing : Each server takes'thecv's from its corresponding memory

module and eliminates repetitions and outputs the results to the host.

21

The algorithm requires that the number of bits in xC is the same as that of
tuples in the relation being.projected. Another way to tell if a tuple has

SR

'been processedlor not is to introduce n extra bit array steres rC’
—1.;, rC(i), each of whlch has the same size as rd, if n times of 1nvoking the
'reléofithm are considered. Instead of checking the contents oﬁ rC{x), we ;ecord
the value cv that is processed in the ith invocation on the.eorfesPon&ing rC(i)(hv)
,Hby settlng rC()(hv) to 1 Thefehecking ofrthe value cv;if it_hes beeﬁ_pfocessed,
‘or not in the prev1ous 1~1 1nvocat10ns 1s .done by examlﬁlné the sseées-réc%)(hv5;
(2)(hv),..., rC(l 1)(hv) for belng 0 or 1 " The setting of one of'the'stores
_1nd1cates that the correspondlng c¢v has been processed and cannot be counted in

'l'the subsequent process.

5. Summary and Fufther Reseatch

' We have shown how the RAM heips perform 1mpllc1t 301ns,'type—I expllclt joins,
‘and slngle column prOjectlon.‘ We have also shown how the. hardware helps perform
type~IL explicit joins aed multi~-column progectlons. Through the use of the RAM,
_the joining of relations in which their join columss satisfy the referencial
integrity rule can be implemented as effectively as the explicit joins. Since
a majority of joins of relations are accomplished via the relationships defined
by the rule, it appears that the computing of joins in our approach is fast.

The hardware provides powerful join and projection capabilities to existing
RADMs and, thereby, gives a considerable performance improvement over existing
RADMs, especially when a join- and project-dominating application is involved.

We believe that this extention is adapted to current VLSI technology and has the
important characteristics of being applicable with little or without modification
to currently proposed RADMs' hardware. The new version of an RADM allows :that
data search is performed by the search logic, while join and projection operations

are carried out by the extended hardware.

22

th

ha

-.ﬁ-of
-
_ed

an

' (hv)

sed

TA) -:- |

ion

ions

Aithbugh the design of join and pfojéction algorithms has been completed,

' there are still many issues to be investigated. For example, performance of the

hardware based on different deéign parameters such as the length of queues, the

'f $izés of_the BAM-gnd #hé‘membfy:bang; éﬁé. ﬁeeds-tp belwafked_oﬁt.:.THé fqnctions‘
.iﬁfTIP,'CP,‘ahd egcﬁ servéf-héﬁe.to be'définédf"Since-diffefent'tipés of operé—
‘3£iﬁng?één'bgégiﬁ?different performance results, this_iﬁﬁiiesrthaé aifferent, but
.;ééﬁi#éleﬁf;nexécu#iontoraersxof;operatioﬁs involvéd in a'édérf may resﬁltiin

"Lﬂ:différeét_pexformaﬁde results. This leéds_to‘a study of a scheme which allows

any query expressions to be optimally executed on the new version of RADM.

23

6. References

(11

[2]

3]

[4]"

[5]

[6

"
110}
(111

[12]
(13}
[14]

[151
[161

(17}

Bobb, E., "Implementing a Relational Database by Means of Speclallzed Hard-
Ware," ACM TODS, Vol.4, 1, March 1979, pp.l1-29.

Banerjee, J., and Hsiao, D. K., "DBC — A Database'Computef for Vefy Large
Databases,' TEEE Trans. on Computers, Vol.C~28, 3, "1979.

Chang, H., "On Bubble Memories and Relational Data Base," Proc.‘4th Int 1
Conf. on VLDB, West ‘Berlin, 1978, pp.207-229. : : .

Chen, T. C., Lum,"V. W., and Tung, C., "The Rebound Sorter : An Eff1c1ent
Sort Engine for Large Files," Proc. 4th Int'l Conf. on VLDB West Berlln,
1978 po. 312 -315. .

-Date, C. J., An Introductlon to Database Systems, Addieon—Wesley, Reading,
Massr, Thlrd ed,, 1981, :

Edelberg, M., and Schlssler, L R., "Intelllgent Memory,' Proc. 1976 NCC,
g -

~Vol.45, AFIPS Press, Montuale, N. J., pp.691-701L.

Hong, Y. C., and Su, S. Y. W., "Assoc1at1ve Hardware and Software Techniques
for Integrity Control, "ACM TODS, VSl.6, 3, Seht.. 1981, pp.416-440.

Hong, Y. C., and Su, -S. Y. -W., "A Mechanism for Database Protection in
Cellular-Logic Dev1ces," Paper under rev1ew for the TIEEE Trans. om Software

: Englneerlng

McGregor, D. R., Thomson, R. G., and Dawson, W. N., "High Performance for

Database:Systems," Systems for Large Databases, North-Holland Publishing Co.,
1976, pp.103-116. o , . ‘ -
Lin, C. S., Smith, D. C. P., and Smith, J. M., "The Design of a Rotating
Associative Memory for Relatlonal Database Appllcatlons," ACM TODS, Vel.l,

1, March 1976, pp.53-65.

Ozkarahan, E. A., Schuster, S. A., and Smith, K. C., "RAP — an Associative
Processor for Database Management," Proc. 1975 NCC, Vol.44, AFIPS Press,
Montvale, N. J., pp.379-387.

Smith, D. C. P., and Smith, J. M., "Relational Database Machines," IEEE
Computers,Vol.12, 3, March 1979, pp.28-37. '

Su, S. Y. W., "On Logic-Per-Track Devices : Concepts and Applieations," IEEE
Computers, Vol.12, 3, March 1979, pp.l1-25.

o

Su, 5. Y. W., and Lipovski, G. J., "CASSM: A Cellular System for Very Large
Databases," Preoc. Int'l Conf. on VLDB, Sept. 1975, pp.456-472.

Su, S. Y. W., Nguyen, L. H., Eman, A., and Lipovski, G. J., "The Architectural
Features and Implementation Techniques of the Multieell CASSM,'" IEEE Trams. on
Computers, Vel. C-26, 6, June 1979, pp.430-445.

Tanaka, Y., Nozaka, Y., and Masuyama, A., "Pipeline Searching and Sorting
Modules as Components of a Data Flow Database Computer "' Proceedings of IFIP
Congress 80, pp.427-432.

Todd, Stephen, "Hardware Design for High Level Databases,” IBM United Kingdom
Scientific Center, Peterlee, TN 49.

24

2IN7091TYILY SaempiBg T 9andTd

A _ Have ©3
. USTUBUOSH| 4 Woeq poiols
— andano : ra

. . "10. 3800 O]

Ly

T da . : . ”
“Tmuuﬂm‘ _ : mrH d A«I . _ - o . xo3ndwo) IS0l

25

:) {d)ug . HOMMMM”MM woig 9 O
o 07 ¢ } , €) O . .
. . Lo e ' Coe . MHH_ Wavd |, § pUBLWOD _||w
' . . P . a . mﬁmﬁ.@ O A”H..lll.v aono
TH ¢ — s
\r__ Hood P (¢} ¥d| xossso01dg
¥ zg H [Texjued | . 20559201d)
(1)¥8| 10 andur 4I 372 ‘sordn]
1. Tw T o ‘ L ~ tsgneA pIpodus
—|*°33nd — B G o S . . - . jo @vuanbas y
Ny
(T)W sTnpow . \
— . 1~W
(@)w sTnepow RN
. . 1equtod mAll
. Faequnos 19
{d) W aInpou /dnTea m
| 0

Nueq Axowsw €K W S :
.] L : R I .t,-,.-..,v MM<H

18]

~j

TYPE

SALES o
DEPT ITEM ITEM COLOR PRICE
<p1> <CAM> <BOLT> <GREEN> <Sp>
<D1> - < > - ' .
D1 GEAR <CAM>. <RED> <aps
<D5> <CAM> <COG> <RED> <4p>
<D5> <NUT> <GERR> <GREEN> <4p>
<D8> - <CAM> <NUT> <BLACK> <8p>
<D10> <nuT> | <SCREW> | <YELLOW> | <7p>
Figure 2. A Simblified Database With Two Tables SALEé
And TYPE Linked By ITEM.
. T ‘
RAM - RAM - —
rA ¥B r rarB. . r'* " ;
[8]
1T 3 1 p 1l 1 0 D
2o 0 2 01 0 0 . BR({2){2
3] 1 3 i) 2 0 4 .
4 2 4 o {1] 3 0 (BR(3)}3
510 a 5 D lol O 0 T BR({4}}0
M-113 0 M -1 ol o 9 BR(p)| O
Fiqure 3{a) Figure 3(b)
"4 of logical words in the block
MB
RAM
rh ¥rB r " M(1) M(2) ﬁfB)
ofolo o 0 0 4 ¥ % w2 9 hE
1o {1l 1 0 » 2 =
2010l 0 0 g /1 [(<Dl>,<cam>)) & (<D1>,<GEAR>) -\ [(<D5>,<NUT>)
3P 1 2 0 rﬂ_'-‘f 2 [(<D5> <CAM>) <D1g>,< >
s o113 5 , . . {(<D10> , <NUT
s5ojol o 0 3 |(<D8>,<CAM>)
™M-110 |0 O 0

Figure 3(c)

26

