TR~82-007
A Prototyée System for
Office Procedure Automation*
by

Yang-Chang Hong, Yui-Wei Ho,

- Chen-Hshin Ho,'and Te-Son Kuo

ABSTRACT

In this-paper, a systeﬁ is outlined which can provide office pro=x
cedure automation. The system is mainly based on an extention of
Petri nets for modeling office work as a set of humanzinteraction proxm
cedures, It includes five major modules: supervisor, execution moniyg
tor, mail manager, form manager, and data manager. These are
processes under VAX=1l/788 and being implemented at the Academia Sini=z
ca.. Their design integrates major office tasks and, thereby, has the

important feature of providing office workers with a single interface.

Keywords and phrases: Office Procedure Automation, InterwProcess
Communication, Token Machine, Automated

Office System

* This work 1s supported by Telecommunication Labs, R, 0. C.

PR E AT
S jﬁ; == carviy 13 IATATATY TR TE
3 kg Wiy Fudnal padvasan i

Fak, + 7 o
et TN i - ar pra TR R4
K : /i\ NOT TO BE TAXEN PiRUw e bl

il

1. Introduc;ion

Office automation has attracted and held great interest of the

computer science researchers and office data processing community in

- recent years. 'There have been softwares and hardwarewintensive tools

‘emergiﬁg as an aid in handling office tasks such as editing, filing,

mailing, analyzing and transforming data. Although these tasks can be
automated individually, they are initiated and dirécted by the people.
Computer systéms in this case do not play an active role, whgre the
user is charged with the information flow control. In automated_of=
fice systems, the design challenge is how the offiée tasks afe coordiyg
nated énd integrated iﬁ such a Qay that their iﬁitiation and cntrol
can be'accomplished by the system {2,6]. People can then do more
creative tasks. | |

. Several softwarevintensive tools attempting to automate offices
in the sense mentioned have been proposed and requtéd in the literaw
ture [(1,3,6,7,8,9]. The system described in this paper triés to
achieve the same purpose, It is mainly based on Petfi nets {5] incory
porated with data graph which model office work as a set of predefined
seéuences of activities interacting with database and stations gz

i.e., processing units (see appendix A and [4] for formal model defing

ition and its detail), It consists of five modules, which are

processes of VAX<1l/780: namely sﬁpervisor, (Petriwnet)'éxecution_monz
ftor, mail manager,. form - manager, and data manager (See Figure 1l).
Associated each has one or ﬁore VAX mail<boxes for interyprocess coms
munications. Mail manager = provides facilities for communications
between offices. 1In the current s;age, a mail terminal is used to

simulate communications with outside offices. Supervisor accepts

2%

requests for service from the administrator console, mail manager, or

monltor (that is, from another office procedure).

tor process once a8 request for service is entered into the. system and.

passes to the monitor the

required parameters fo; initiation., A monitor process, once

will be

treated,
driven’ by the internal form of the invoked procedure. The

execution of each procedure Primarily foJlovs the token machine cong

cept (see appendix B and [5) for detail). Since the monitor is writye

ten in reentrant code, there is in fact only one single Copy residing

in the memory. Form manager deals with interactions between station

and system., It receives commands from the monitor, displays forms or

memos at stations, and passes workergsupplied messages back to the

monitor, Pata manager deals with queries which retrieve
late data in the

datahase, It provides as a highzlevel interface

between monitor and VAax file system. & highwlevel- nonprocedural

specifications langurage is also provided for desecribing office prow
cedures, which could then bz translated into an extended Petrl net (in
its internal form) and run.

The body of the paper is &ividoa into three parts, In the
part the overall systenm architecture is described. The second part is
concerned with the internal forms (i.e., data

structures) of office

procedures. The third part is concerned with detailed implementation

of the systen modules; This is followed by-a_Summary and the status

of the project,

= 3.'1'

It creates a monis

name of the procedure -to be invoked and -

and manipug

first -

4

2, Overall System Architecture 7
The architecture of the office procedure automation system (OPAS)

is sown in Figure 1. It consists of five modules: supervisor,

‘(Petriznet) moniotr, form manager, mail manager, and data manager.

They are processes undgr VAXzll VMS operating system. Each process
uses VMS "event flag" and "mailbox* facilities as a means of interproy
cess communicatien, inte;a:tions among processes are also shown in
Figure 1 (to be detailed later). .These processes are functionally
categorized into three classes:

i. System supervising wz Supervisor

2. Petrignet driving (i.e, procedure execution) gz Monitor

3; Activity serving ¢ Form manager, Mail manager, and Data

manager.
2.1 Supervisor

The supervisof'contréls the whole system, including:
» Create all otherAprocesses, 7

‘.-ACEept procedure invédation demands from the administrator
console, mail manager, or monitor,
+ Interactive with the.administrator console for system conwg
trol; and .
« Maintain an office log file.

- I1ts major function is the invocation of office procedures. A

procedure will be invoked if a procedure invocation command is resw -

ceived from the administrator console or if an MSG=PI message is read
from the mail manager or monitor processes (i.e., other office pro=

cedures). The invocation include creating a monitor process and

wéd=

B I S S

g

puttlng the procedure name {through whica the monitor. can obtain its

'internal form} and’ the initiation parameters to spervisor's mallbox

which are then accessible by this created monitor. ~Once the internal
form' 15 initiated, it will_drive the monitor., In this case, we soy

that a "procedure instance" has been created and in progress,

The supervisor contains an office control table (0OCT) for keeping"

track of information such as, procedure instance ID, starting t*me,

prior;ty, status, ete, for instance management, The administrator_

console has the right to make inquiries about any instance status,

ad]ust its priority, pause/stop its execution, etc, One entry is

added to the OCT table whenever a procedure instance is created, Any

termination messages {MSGyMT) or error message (MSGgMER) of procedure

instances will be sent directly to the supervisor which then reports

to the administrators and records them in the oCT table and the office
log file.

2.2 Monitor

A monitor process is.creaﬁed if a regquest for service is submity
ted to the supervioor. It then be driven by the internal form of the
invoked procedure, which leads to the execution of the _correspondiog
brocedure instance. The execution follows the token machine ooncept
{its realization is detailed in the Section 4).

Office activities performed in the monitor are divided into fiye
typeo: |

- Workiny data manipulation : Such as simple computation, asz
signment, éEc. | |

. Form manipulation : Forms are - interaction media between

. 5w

e

e e Y

i

system and office station, Form manipulation is accomplished

by the form manager.

. Database data manipulation : The monitor uses one simplified
relational algebra to retrieve or updété office data in the
database.

« Security identification : The identification is accomplished

by examing if the password associated with the sensitive

field of the form is matched against the workergsupplied
password. This could be extended to a sophisticated security
process if necessary.

. Time scheduling: Time predicates such as WAITFOR, UNTIL, etc.
are allowed to be specified in any above activities. The
monitor has to be able to handle this type of scheduling.

In the current stage, we do not emphasizé on supervisor intervention
to ccntrqi the monitor process. Since the monitor is a subprocess of
the supervisor, however,.the éupervisor can thus get full control over

the monitor using the process control facilities provided by VMS.
2.3 Form Manager

Form manager deals with interactions between procedure instance
(i.e.,, monitor procescs) and office station (or worker). The interaca

tion medfa are forms. If a monitor process needs. a “form i/0", an

'MSGqEP request -has to be sent to the mailbox of form managef.'Thg

request includes the internal representation of the form to be

dispiayed and the destination terminal(s). Cofresponding to each

agent terminal is a reguest queue which holds all the MSGwkP reqguests

using that terminal as destination. The requests in the queue are

b=

served on an FIFO basis. The form manager will then send worker keyzin

information back to the reqguesting monitor if input data to the moniw'

tor is needed. This completes the whole process of one form i/0 acxw
tivity. Note: Any sensitive field in the form could be associated with

a password fleld to identify the worker/ station (mdnitor's job).
2.4 Mail Manager

Mail manager deals with interactions between offices. Any exew

cuting procedure may need nmessages from outside world. In this stage,

this is accomplishad by sending mails (MSGgFP messages) ¢to mail.

manager. Before a hardcopy of the mail is made, it must be numbered
and stored, This number would then be‘used as an 1D of the mail for
later references. When the mailed hardcopy is filled in and returned,
the operator uses that number to'notify the mail manager. The manager
is prompt to perform one form i/o for displaying the stored mail on
the CRT terminal so that the values returned can be properly keyed in.
The input data are finally sent back to requesting procedure,

Invoking procedures £rom outside offices is another major funeg
tion. This is done by sending the MSGuél message (which includes tﬁe

required information for procedure invocation) to the supervisor,

This mail process uses a CRT terminal plus a printer for communis -

cating with outside offices. Note: In the second stage {on going), it

~is designed to be supported by an electronic mail system with a set of

communication protocols for office information exchange.
2.5 Data Manager
Data manager provides procedure instances with a highslevel

a7

A

interface to the office database. It can be seen-as a rather simplig
fied relational DBMS in the current stage. A high level interface to a

relational DBMS is under way.

11 the executing procedure instances are users of this simpliyg
fied DBMS. If data retrieving or updating is needed, they.send to the
mailbok of data ﬁanager the relational algebra command (message MSGx
DBO) . The results are sent back to the requesting procedqre'via mesy
sage MSGuDBR. Currently, the available algebra operétions are SELECT,

UNION, and MINUS.

w8

daiac

3. Interna

l Forms

Internal forms basically are a set of data structures through

which an o
trénslated
for the fo

» Pro

+ Pro

ffice procedure described in a specification language is
and run, This design must be able to provide information

lloﬁing tasks:

cedure execution control,

tedure execution {i.,e., Petriznet driving), and

- Activity realization,

Corresponding to these tasks are the three types of data structures.

(1)

(2}

(3

Procedure control data structure ww It contains one block,
Procedure Control Plock (PCB).

Petrianet driving data structure v The driving primarily
follows the tohen machine concept.This type of data strueyg
ture consists o: two tables, namely , Marking Table (MT) and
Active Transition List (ATL).

Activity realization data structure e It contains seven
tables, namely, Transitign Detail Table (TDT), Predicate
Esupression List (PEL), ?redicate Component 1list (PCL),
Activity List (AL), Actural Argument List (AAL), Objects

Description Table (ODT), and objects Data Area (ODA).

The following subsecticns are the layout and illustration of these

‘data structures.

3.1 Procedure Control Bleck {PCB)

The

layout and explanation of PCB, cne entry per procedure in=

stance, are depicted below:

[Procedure Control Block] layout

w9

type . field comment
char*g PRC=ID proceduresID, i.e, the file name of inters

nal forms of the procedure invoked

char*24 PRCeAT activation time, VMS ASCII time

int PRC=PRI execution priority

char*} PRCanA execution status

int PRCwCMK current Petrignet marking, pointer (ptr)

pointing to one TMT entfy

int array PRCzCTR current executng transition, ptr to one TDT
entry

int array PRCzIPL(n) invocation parameter list, a list of ptrs

. to ODT entries which are invecation parameters,

The PCB function is to provide information for controlling office
procedure instances, The priority PRCzPRI of any executing procedure

can be properly adijusted by the supervisor, Its status PRC3STA nmust

reflect to one of the states (e.q., Yeadystoxngo, runhing, blocked,

etc) duriﬁg execution. A procedure “instance" ID is formed by concax
tenating its activation tln- PRCHAT to the PRCzID. We call it as the
procedure effective ID. It serves as the identification name of the

correspondlnq instance in the system. The PRCsCMK and PRCyCTR. record

the current execution point of the corresponding instance. PRCyIPL is

a variable-list of pointers pointng to 0ODT entr*es. These entries wl)

be established during the course of procedure instance creatlon.
3.2 Petriznet Driving Data Structures

Two tables, némely, marking table (MT) and:active transition list
(ATL) are desigrned to realize the Potri i=net driving.

wl0xg

o

[Marking Table] layout wé onhe entry per marking

type field comment

int MK=NAT number of active transitions in the corresponding
marking | |

int = MEgFAT ptr to the 1lst active transition in ATL

One entry in MT stores one marking in a reachability tree derived
from the token machine. Al active transitiens in a. marking are
stored in the concecutive entries of the ATL table. The MKzFAT, used
to point to the first entry, and the MK=NAT are sufficient to fetch
all te entries in the marking., The first entry in MT is the initial
marking and the terminatiﬁg marking is indicated by an entry with MKz

NAT=’4K}TFP&T= ﬁ -

[Active Transition List] layout gz one entry per transition
ty#e field comnment
int ATsTP ptr to tne internal form of the corresponding
transition (i.e., to one TDT entry)
int ATz0MK pty to next marking in MT (i.e., the output
| mrarking obtzined from ﬁhe firing of the correspondy
ing transition)
since each transition in a net could be active in more th;n one

marking, the internzl form associated with that transition 1is not

‘stofed in ATL. 1Inztead, it is stored in TDT and a pointer, ATxTP, in

‘ATL is used to point to it,

Figure 2 is an example for illustrating the use of the tables MT

and ATL.

3.3 Activity Realization Data Structures

=wlle

This‘type_of data structure includes the internal forms (TDT,
PEL, and PCL) of transitions and their predicates, internal forms (AL
and AAL) of activites in the transition, and ODT and ODA tables for
stéring .the program objects used in the office procedure. They are

eﬁplained below.

[(Transition Detail Table] ¢z cne entry per transition

type field cemment

char*28 TR=zEN symbolic name of the corresponding transition
char*l TR=FIRE ingfiring flag

int .TRgXCH exclusive.chain link (ptr to next transition

in the chain)
int TRePEP starting location of predicate expression

of the corresponding transition in PEL

int TR=MAC numbe; of activities in the corresponding
transition

int TR#F&C pir to the lst activity in AL

.int TﬁwCAC activity bounter

Each TDT entry (plus PEL, AL, etc.) describes an internal form of
'ste transition in the procedure. It alsc contains some control items
for transition scelection and firing. The internal form must include
predicates and activities aszsociated with the transition, Since both
predicates and activities are variableszlength items, they ére stored
in PEL and AL, respectively. The TR«PEP and TR%FAC contain pointers
pointing to the starting locations of these two items., The TRywCAC
counts the numbar of activities of some transition that have been exes

cuted. TR=FIRE and TR=XCH will be detailed in the next section.

[Predicate Expression List]
type- fielad comment

int array PE=PEL predicate expressidn list

[Predicate Component List]

type field comment
char*l PCsOPR atomic predicate operator
“int . PCumOPN1 atomic predicate operand 1, ptr to an ODT
entry
int PC-0OPM2 atomic predicate operand 2, ptr to a ODT
entry

An atomic predicate (or called the predicate component) is of the form

f{operand 1)] op (operand 2)

- where op may be a comparison operator, or other operators, e.d.,

EXIST, UMTL, etc., and [] denotes an option. A predicate or prediy
cate expression, in general, is a Boolean expression of atomic prediyg
cates. All the predicates of the transitions are stored in PEL and
PCL. PCL stores the atomic predicates and PEL stores the predicate
expressions in reverse pelish notation. _For example; cﬁnsider the
pre@icate expression |

"(A=Q)v{B=1)a{C=2)"

A=y, B=1l, and Cz2 are atomic predicates and stored in PCL. The ex=v

pression in PEL looks like:

TR-PEP

—

PEL P 5 1 Poit P3| A Pil v

length of expression _
where pl, p2, and p3 are the addresses of the three atomic predicates

Cwll3e

ey

(A=8, B8=l, and C=2) in PCL,respectively, and"aA" and "v" are Boolean

operators,

[Activity List] laout v one entrf per activity

type field comment .
char*1 AC=COD ‘activity code
char*l AC=NAG number of arquments in the corresponding

activity (argument list length)

int . ACwFAG ptr to argqument list in AAL

[Actual Argument List]
type | field comment

int array AR=AAL = array for arguments in some activity

AT and AAL describe activities in each transition. Each activity
is assigned one <code during translation. Like the case above, the
variable item, the argument list is stored in a separate table AAL.

The ACgNAG and ACzFAG are used to fetch this list.

{Objects Description Table] layout:

type field comment

char*2 OD=TYP type information of ebjects
char*2 OD=LEN length information of objects
ch ar*2 OD=XD additional description

int OD=STA ptr to char array ODA

[Objects Data Area]
type field comment

char array 0OD=0bA storage for all objects in a proceddre

xl4=

B,

ODT and ODA allew the objects defined in an office procedure te

be processed., The object values in ODA are stored

characters whose starting location is in ODaSTA;

w15«

as

a

string

of

4. Implemenﬁation of System Modles
4.1 Some Notes on OPAS Implementation

4.1.1 Form Handling

Forms are a major medium of communication between system and
office agent. Any form instance transmitted between monitor and form
manager or between monitor and mail manager consists of a list of form
.fields, called fhe “form i/o pécket;" Each field is defined by two
parts, namely, the descriptor part and the text part. The descriptor
part describes the field in terms of ' its typs, length, location ,
etc., and the text part gives the field value. A form driver routine
residing in form manager and mail manager serves as displaying forms
on DEC VTléB terminals, as well as accepting field values input by the
workers. 1Its design allows several éimple editing functions to be
performed. Fof éxample, the reversesbackground display of input
fields, automatic field advancing fpr a list of fields, and the abilis
ty to permit the workér‘ to move the cursor freely are provided in
current stage, It will be extended to provide facilities for storing
form i/o packets in a form database so that forms can be managed as

they are done in manual office systems.

4.1.2 Initialization Param=ters |

ﬁany procedures need some_initialization data before they are
invoked for execution. For example, in an orderwprocessing procedure,
the initialization data may include tne customer ID, the amount of
goods requested, etc. In bPAS, this kind of data is called the "invos
cation parametérs.“ They are designed and definéd py the office
designer during procedure preparation. Whenever an cffice procedure

216w

i

O iR
RS
ke
TS £ 11+
el

P owelid

[O

SR

is translated, the designer is asked to define an "invocation parames

ters entry form" using some facility provided by OPAS. This form will
then be saved in the inernal form file of the corresponding procedure,

It will be displayed on the CRT terminal for accetping invocation

parameters if any request for service is rade.

4.1.3 System Generation
Before the CPAS system can get operation, several tasks bhave to
be done: |

1. 211 the office procedures translated must be registered and
stoved in the system.

2. An Invocation Control Table (residing in the supervisor as
well as in the mail manager for relating each registcored prog’
cedure to its invocatiqn parametér entry form) must be built.

3. A)ll the global relations must be generated and stored in the
office database. |

4. All the 0OPAS terminals must be assigned.

These tasks can be'accomplished-by using the facilities provided by

CPAS.

4.1.4 Bootstraping OPAS
OPAS 1is bootstrapped by running the supervisor process, which in
turn creates other procésses in OPAS in such a way that the system is

ready to accept reyuests for service from the administrator console

and the mail manager.

4.2 Use of UMS System Services

Three VMS system services make the implementation of the ODAS

o179

./flrr-:'
LI

B a2 LA

TP

system successful. They are mail box, AST i/o, and event'flag.-As
described previously, associated with each procéss is one or more VMS
software mailbox for interaprocess communication. The AST i/o (Asyny
chronous System Tra?)'plays a rather important role in the design of
OPAS processes. it enables each process to deliver an asynchronous
mailbox reading and continue. Once the messaqeris ready to read, the
process S 1nterruptéd (asynchronously trapped) to execute a special
program section for:acceptng (and processing) the megﬁage. When finx
ished, it goes back to its routine work. The AST"i/o is also used by
form manager for simultaneously handling all the agent terminal i/o's
«r i.e. ifo between system and station. '
The event flag is another VMSgprovided facility for intermprocess

communication, The monitor process ‘uses it to handle reading mails

from the mail terminal and forms in the system.

4.3 Impiementation
Monitor
[Initialiéations]'
1. Read in the MSGzMIP message.
2. Read in procedure internal form usiné procedure ID
in MSG=M1P.
3. Set invocation parameter values.
4, Set PCB entries,

5. Create the Monitor mailbox (mailbox name = procedure

effective ID)

6. Start Petrizmnet driving (the following)

(Transition Selection]

wi8~

)

1. Start with the 1st active transition of the current marks
ing, check its predicate expression; if predicate expressw
fon is true, the transition is fired, else try rest active

transitions.

2. If all active transitions of the current marking have a

false predicate, Monitor hibernates.

{Transition firing] | ‘
1., Fire the selected transition by performing activities
associated with it one by one.

2. After done, go to [marking advance}.

{Marking advance!
1. Set the current marking to the output mafking of the
current transition,

2., Go to {transition selection].

Fotm Manager
[Initializations]
1. Read in *agent terminal assignment" file.

- 2. Assign agent terminals accordingly.

3, Create mailbox
4. Issue an AST mailbox reading to get request.

5. Hibernate and wait for reguests.

[Main Loop] (once wakened from hibernating)
1. 1If "form completed chain"™ is not empty, process its entries
(using input values gathered to build an MSG=FFR message and

send it back to the regquesting Monitor process); For any

219>

358

¥R

oK

terminal whose request queue is not empty, start next form 1/0
in the queue.
2. If *Start I/0 chain " is not empty, process its entries one

after another. (A form I/0 is started by prohptinq'the form

and issuing AST reads to accept input values,)

3. If both chains are empty, then hibernate; else goto step 1.

[Mailbox AST reading haﬁdler]

{activated once the reading is completed)

1. Insert form packet request into "request queue” of the correspond=
ing terminal. _ |

2. 1f this is the lst regquest in the gqueue, put the corresponding
terminal into_'sfart I/0 chain®.

_ 3. Wake up Form Manager from hibernating.

(Terminal AST reading handler]

(activated whenever any agent types a character on the terminal.)
1., Store the character typed if it belongs to an input field.
2. Echo the character.
3., If. the character is not a carriage return, lssue the next
ontegcharacter AST read; glse (f.e., the form on that terminal

is completed) put the terminal into "form completed- chain®.

Mail Manager
{Initializations]

1. Read in Invocation Conﬁrol Table.

2. Create mailbox

3. Issue an AST mailbox reading to accept any requests.

[Mailbox reading handler]
1. If the form is to be returnéd (having input fields), register

and save it into "pending Form Table."

{Main Loop]

1. Prompt the ready méséage to the operator and wait for comz

mands. | |

2, If the command is 'énter form", use registration'nuﬁber giveﬁvto
retrieve'the saved'ﬁorm packet and stért form 1/0; after done,
use field values entered to build an MSGgFFR messagé and send
it-back to the requesting Monitor process;

3. 1f the command is *invoke procedure®, use the procedure 1D
giﬁen t6'rétrieve the invocation parameter entry form and
request for initilization pafameters; after done, build and
send an MSGQPi message to the supef?isor.

4. go to step 1.

s2lr

5. A Summary

The Office Procedure Automation system cutlined in this paper is
being implemented in a VAX=nll/VMS environment. This prototype systeﬁ
using a petrignetzhased model has been completely implemented. The
data manager is now being extended towards a powerful, ﬂiqh:level
interface to a daﬁabase management system in such a way that the sysg

tem ¢an manage the messages {or forms). The mall manager is also

being extended to provide intermoffice communication facilities. We

plan to extend this syétem to a distributed office system with chinese

data processing capablilities,

=227

.0

)

6.

1.

2.

3.

4.

5.

6.

7.

8.

9.

References

Chang, J. M., AND CHANG, S. K., "Database Alterting Techniques for
Office Activities Management," IEEE Trans. on Communication,

COM=38, 1, January 1982, pp.74+x81l.

Chang, S. K., KnowledgewzBased Database Systems, Chapter 14 (a

fortheoming textbook).

Ellis, C. A., and Mutt, G. J., "Office Information Systems and Com=

puter Science,” ACM Computing Survey, 12, 1, March 1988, pp.27¢68.

Ho, C. H., Hong, Y. C., Ho, ¥. W., and Kuo, T. S., "An Office Works

flow Model ," Proceedings NCS, Taiwan, 1981, pp.3543368,

Peterson, J. L., "Petri nets,” ACM Computing Survey, 9, 3, Sepsg

Tsichritzis, D., “OFS: An Integrated Form ﬁanagemetn System,"

Proceedings VLDB, 1988, pp.l6lxl66.

Tsiéhritzis, D., "Integrating Database and Message Systemns,"

Proceedings VLDB, September, France, 1981, pp.356z362.

Zisman, M. D., "Representation, Specification, and Automation- of
office Procedures," Ph.D. Dissertation, Wharton School, University

of Pennsylvania, 19717.

IEEE Computers, 14, 5, May 1981, pp.l3w22.

<23y

APPENPIX
A. PNB model definition
A Petriznet—based model is a 6gtuple & ={t,P,D,%,4,2), where
() T is a finite set of transitions; ‘
(ii) P is a finite set of places;
(111) D is a finite set of depositories;
{iv) ¢ = 1u0: T+ P, where
I : is a mapping of a transition to its set of input
places, and
0 : is a mapping of a transition to its set of ouﬁput
places;
(v) A =1 Uo: T+ D, wheré
i: is a mapping of a transition to its set of input
depositories, and
o: is a maépinq of a transition to its set of output
depositories;
(vi) I is a set of doubleﬁ {ce e ap) over :‘ T, where
c. 3 is a boolean expression associated with transition
te¢ T, and

a, 4 is a simple or compound action of t & T,

B, PNB execution definition
The execution rule of a PNB diayram can be defined by a doubw
et I' =(M,t} over @, F, and B, where
(i) F: is a set of incident markings. An incident marking f¢
is a marking with only one token present in each place
of I{t), teT.
(ii) B: is a set of outgoing marking. An outgoing marking by

w2dn

is a marking with only one token préseﬁt in each place
of O(t), teT.

{(iii) M: is a set of "reachable markings™ including the iniyg
tial marking m;. Of course, mg, the terminating marks
ing, belongs te the set. i.e. m,_e m.

(iv) T:MxT » M is a "firable function® of transition t in T,
1If a transition t fires under mafking m, we say T{m,t}
im', wiﬁh m* = myg ft + by, where m, m'é M, £, €F, and
bt-G B. A transition t fires under marking m if

| a) m3 £ and
b) ¢ =True in (ct ,.at)
A transition is enabled if only a) holds.

. mi2bw

8

Administrator
Console

-~
e

7
7

MSG PI

Vs

-

1

A

-

% Super-—

visor

Mail
Manager

N

‘\. \\d
MSG_FP
N

MSG_FEFR

MSG_MIP MSG |
¥SGPI

Monitor

KSG_MER
G MT

Form
Manager

¥

\\\wData
Manager

Fig.l OPAS System Architecture.

MT ATL

MK NAT| MK _FAT AT TP |AT_ OMK
1l 2 1 sp—> 1 to 1
2 2 3 h\'] 2 tl 2 —
3 1 5~ 3 t, 3
4 | 1 6 ~ 14 t., 4
5 1 7 ﬁ* 5 ty 5
6, o 0 {6 | 5
éilminating 7 te 6
marking
(¢) corresponding MT and ATL
{a)y Ppetri-net
<1 0000 0>
t, Fig.Z Petri-net driving data

structures MT and ATL.
<0 1100 0>2

t, 5

<0 0110 0>3 <0 1 01 0>4.

<00 01 i 0> 5

¥

<0 0000 0>6

(b} reachzbility tree -

2T

