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I. INTRODUCTION

This paper presents a new class of matrix algorithms for
possible VLSI implementation of large-scale matrix:arithmeﬁic
solvérs. “Fast matrix -solveérs are highly demanﬁed in signal/image
processing and in many real-time and 5cientif£c applications.
After partitioning, only a few functibnal type$ of VLSI arithmetic
'ghips are needed in submatrix computations. This partitioned
approach is not restricted by problem Sizes and thus can be-applieﬁ
to solve arbitrarily large linear systems of equations in an
. interative fashion. Large-scale matrix computations are needéd

in solving high-order Lineat System of Equations (LSE), A - x=b,

in many ‘important scientific and engineering aﬁplication areas.

So far, SIMD -array proéessors or pipelined vector supercdmpufers'
have been used to solve large LSEs by predeveloped software’
packages [3,6,14,161, Fast matrix‘algprithms-for solving LSEs’
have been;suggested_by Crout [1]1, Kant and Kimﬁfa'[QI, Saméh and
Kuck (151 and by many other researchers. The recent advent in
Very Large Scale Integration (VLSI) microelect?onic‘teChnology
has created a new architectural hbrizon'to'impiement large-scale
‘vector/matrix computations directly in hardwaré. [4.5{7.10?12,13,'

19,20,29,30] .

* This article was written, while the author was visiting the
Institute of Information Science, Academia Sinica, and Depart-
ment of Information Engineering, National Taiwan University,
from December 1982 to June 1383,
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It has been projected by Mead and Conway [11] éhat by the
late 1980'5 it will be-pqssiﬁle to fabricate 107 or 105 tran-
sistors on a monolithic chip. VLSI computing stfuctures have been
suggested by Kung and Lelserson [10], Preparata dn Vuillemin [13],
Hwang and Cheng [5], and Nash, et al [12]. A VLSI computing device
contains not only a large number of processing cqlls but also a
large number of interconnection paths thfoughput;the integrated
chip. The length'and q:ganizatibn;ﬂfthese commugicatiqn'paths
set a lower bound on the chip area “and time deiays required for
system operations. Systolic VLSI arrays [10] were proposed with
a global structure that must be limited in théii array sizes due
to bounded chip area and I/0 packaging contraints. |

Based oﬁ the state-cf-the-art of electronic aﬁd packaging
technologies, we can only expéct VLSI arithmetic devices for re-
gularly structured functions with limited I/O terminals. A modular
approach to fabricétg'VLSI‘devices is amenable frém the viewpoints
of fe351b111ty and appllcablllty We choose a matrix partitioning
approach to overcomethese technoloalcal constralnts in construct-
ing large-scale matrix solvers. These "partitioned" algorlthms are
for modular VLSI implementation of the following:four‘classes of
matrix.computations ' |

€ L-U decomposition by a new variant of Gaussian elimination.

¢ Normal inversion of a2 nonsingular trianguiar matrix.

o Multiplication of two compatible matrices.

o Solving a triangular system of equations by back substitutioon.
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We reserve the parameter n, for the order of a given.dense

matrix A, and the parameter m, as the size of. avallable VLSI
arithmetic chlps, where the zgglg k = n/m is an.integer. - We
shall use boldface capital letters, A L, U, V,..., to denote
nxn mat;;ces, 1ndexed.c¢p1tals, Aij’ Lij’ for m x n submatrlces,
boldface lewer-case letters, x, b, d,..., as n-element cq;umn
vectors; and in&exed icwe;-case letters, aij’ xi”f'f as matrik
entries or vector com?onenfs. Aillaﬁalytical fesulte on hardware
complexity and systcm performance are expressed in terms of these
paramsters p, m, and k under the assumptlon n»m, whlch holds for

praetlcal appllcatzcns.1ﬂm=proposed VLSI matrlx solvers can be-

applied in digital signal proeessing, structﬁral analysis,'Seismic

exp101tat10n, fluid dynamics, image proce551ng, pattern recognition,

tomputer assisted tomography, numeric weather forcastlng, art1f1c1al"

intelligence, and various real-time applications [6,7,20,23,25,26,27,

28,29,32]

II. VLST MATRTX COMPUTATIONS

For L-U decomposition by Gawnssian elimination, we consider

only nomnsingular LSEs in which all the principal minor submatrices

of A = (aij) are nonsingular. This provides a necessary and
sufficient condition to produce a unique lower triangular matrix
(jgj] with l%l =, =

gular matrix U = (u{j)'wueh that

AR

n = 1, and a unique upper trian-

ic

«U=A. In Croqt{s'reduction
method [1], the matrix A =L » U is decomposed according to the

following computations for i = 1,2,..., n.
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g -d. _The inverse matrices U

Ui = ajk - Z 13_3 use | for k=i,i+1,:--,n.

T ] .

by = [aki - j{:ng Uall/ﬁll for k—1.1+2.- -, (1)
=1 '

provided ﬂiifl for 1=1,2."‘,n.

.Crout's method does not require to interchange columns and,
thus, eliminates the recording of intermediate results. Instead

of dealing‘ﬁith-one row or one column at a time, we have mddified

Crout's method to a new variant of Caussian ellmlnatlon by process-

ing rows/columns of mxm submatrices in parallel This submatrlx
approach leads toc the partitioned L-U decompos;tlon algorithm to
be described in Section III.

After the L-U decomposition, one can transform the original

‘system A - x =b toL - U .- x =b and then to an equivalent trian-

gular sysfem characterized by U - x = 7!

gularized: system, one <an compute the solutlon vector Xbyx-=

-1 es 0! ana 171

always exist, because U
and L are both nonsingular. We denote the inverse matrix g'l
v =‘(viij, which is again a triangular matrix with entries calcu-
lated by

Viek - 1/'\1!{1— for k=1,2," (2)

vij =~ 2: uyy - VKJ/AHJ for all j>i.
k=1+1

In Section IV, we shall partition the above computations to enable

block generation of vijwentries.

+b = d. Wlth this tr1an-.
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"~ In fact, the (dj) elements in vector 4 c¢an be generated auto-
matically by applying partitioned L-U decomposition of an nx(n+1)
matrlx obtained by adding the b vector as the (n + 1)-th column in

matrlx A, that is 'ai n*-I b. for i = 1,2,...,n0. The solutlon

vector x is ccmnuted by back substitution. -This sequence of compu-

tations can be alsoc done in subvectors tb be descrlbed in Section IV.

Afxn = dn/"-‘nn '
o ' - (3)
{ X3 = [di — Z Ui j*xj 111_1 '
| j=1x | . o
l .

for i='ﬂ—1 pn‘-“2f *ety, 231

IITI. PRIMITIVE VLST MATRIX CHIPS

Four primitive types of. VLSI arithmetic chip types are func-

tionally introduced in Flgs. 1—4.. These VLSI chlps w111 be

used as bulldlng blocks in implementing the partitioned matrix

algorithms. These chip types are used to perform m x m submatrix

or m-element subvector computations. Each chip is constructed

with a cellular array of multipliers, dividers, and interface

latches for pipelined operations [4,10,12]; 'Detailed schematic

loric designs of these primitive VLSI chips can -be found in refe-

rence [5,7]. Only their functicnal specifications are given here.

The D-Type chips are for L-U decomposition of each intermediate

m % n submatrix, Ao = er' U.p» 2long the principal diagoﬁal of
A (A

, Will be defined shortly). The I-Type chips are for the

inversion of triangular m x m submotrices L

r and Urr' The input/
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Fig.1 Functional specification of D-Type VLSI chips

“for L-U decomposition of intermediate suﬁmatrices
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cutput arithmetic speéifications of D-~Type and IéType chips are
'shown.ﬁzﬁigml—z; Both chip types have a fixed delay of Zm time
units, where one time unit equals the time required to perform

one nultiply-add operation, a b + ¢ =4d, or one divide operation,

a/b = ¢, by one step proéeséor in the cellular processor array
[5,7,10].

The M-Type is the predbminant chip type to be used in the

construction of various matrix solvers. Accumulative chain matrix

pultinlications are performed by a M-Type chip as specified in

Fig.3. The number, r, of pairs of m x m matrices to be multiplied
and added is determined by the external inpuf sequence. Therefore,
the time delay of M-Type chips is equal to T« m-?l. The V-Type (Fig.4) -

éhips’are deduced from M-Type chips. V-Type performs the -accumu-

is also measured as r e m + 1. Because each D-Type, I;Type or
M-Tyne VLSI gh;p contains ‘an arraf;of m X m step processors [5,7,
107, wé considér their interiér chip complexity as O(mz).' Eéch
V-Type chip contains a pipeline of m step pfcceSsofs and thus has
an interior chip complexity of 0(&). The time delays of D-Type
and I-Type chips have order O(m) and those for M-Type and V-Type

~chips are O{(m-r), depending also on the number of input pairs.

IV, PARTITIONED L-U DECOMPOSITION

A systolic array of n2 step processors can perform the L-U
decormposition in 4n time units [l0]. However, such a systolic

artay in a single chip may require 4dn x w input/output terminals,
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where C,D ,{Aj_ and Bj for i = 1,2,...‘,1-}.
are - mxm matrices.-' |

T

13

Fig.3 Functional specification of M-Type VLSI
chips for submatrix mﬁltiplication
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where c,d.,an_ti{bi for i =1,2,.....,r}
are m=x=1 column vectors , and
{Ai fOI‘ i - = 1.2.&-- i ,I’} are

Fig.4 Functional specification of V-Type
' ' .. VLS1 arithmetic chips
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where w is the 1ength of matrix elements. For large n (say n21000)
1th typlcal operand length W 32 bits, it is rather impractical

to fabrlcate an n x n systollc array in a monolithic chip with
over 4n x w = 128 000 I/O terminals. Qur partltloned approach
w111 c1rcumvent this problem by u51ng m.x m VLSI array modules,
where n is much smaller than n in at least two orders of magnitude.
0f course, I/O port sharlng and time- d1v151on multiplexing are
ofton used to satlsfy the IC packag1ng constraints, even for small
u [5] | | ‘

The partltlonlng method to perform triangular decomp051t10n is
il;ustrated in Flg.ﬁ. The glven matrix é = (aij) is partltloned
into kZ submatrices ‘of order m x m each. The submatrix computation
sequence is also marked. This method is equivalent to Crout's
method, when m = 1. However, we assume m Z 2 in general. This
sequence of submatrix computations can be best illustrated by
parririoning an example matrix A of order n = 6 using size m = 2
VLSI chips. Here the ratio k = n/m = 6/2 = 3, (Fig.6) In total,
k x (k +1)y =3 x4 =12 , submatrices in.L and U are to be
generated for L«U-=A.

At step 1 we perform L U decomp051t10n of submatrix A;;
using a D-Type chlp'to generate two triangular submatrices: Lll
Two I-Type VLSI chips are then

11
used to compute the inverse submatrices Lii and Ui} at step 2.

and U11 such that All = L11 o U

The following matrix multiplications are then performed by 2(k - 1)

M-Type chips in parallel.
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Fig.5 DPartitioning sequence for L-U decomposition of a
nonsingular n x n matrix into m x m submatrices

in 2k-~1 steps, where k = n/m.
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1] for q=2,3,* .,k

For the example 6 X 6 matrix, submatrices L21’ L31"U12 and 813
are generated at step 2 as shown in Fig.6.
In subsequent steps, we need to generate the f0110w1ng inter-

mediate.submatrlces using M-Type chips.

L

r-1 ' ) C
- - L . U T B . . B !
Pg qu 3?1 ps sq (5)

for P|q=2f3t".|k'

.Local L-U decompositions are then performed on ﬁ;r at success-

sive odd-numbered steps as shown in Fig.5.

A ,
er . Urr = Apr for r=2,3,°* ",k . (6)

The remaining off-diagonal submatrices Lpr and Urq are computed by

inverting the diagonal submatrices Urr and er and then‘multiplying
. . . A .

them by intermediate submatrices Apr and ﬁ}q at successive even-

numbered steps. For r = 2,3,..., k, we need to compute

A -l
Lpr = Apr Urr for p=r+i,-+*-,k

| (7)
v.. =1} .2

rq = bpp « Brq for atrri.cotk
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For the example 6 X 6 matrix in Fig.6. The intermediate matrix
)

A . . .
Azz-ls computed at step 3. By'performlng L22 . U22'= A22’ we obtain

two triangular submatrices L,, and U,, , ﬁzs and ﬁ%z. Inverting
- . . I .
these submatrices and then multiplying them to ﬁzs'and 4$2,.we.obtaln
4 : - - ‘.'1 \ _.,,‘ -1
additional submatrices U,y = L;; ® A, ¢ and L32 = 532 * U,; at step
_ i A . -
4. Intermediate submatrix A33 A33 (L31,° 013 + LSZ s UZS) is
calculated at step 5. Performing L-U decomposition on‘ﬁss, we

" obtain the last two submatrices L33 and Usslat'step 5.

The above interative procedures are summarized in Algorithm 1.

for partitioned L-U decompositionof any nonsingula; dense matrix
A of order n. Submatrix computations are specified in groupé in
Eqs.4,5 and 7. Each group can be computed in-pargllel-within each
step by multiple VLSI chips. Submatrix computations can Ee also
computed in sequential order, if only limited number of VLSI chips

are available. We shall analyze the hardware chip counts and speed

' performance of various matrix algorithms in Sectiom VI.

V. DARTITIONGD MATRIX INVERSION AND BACK SUBSTITUTION

Partitioned algorithms are devélope& below for iterative
inversion of an n X n nonsingular triangular matrix using I-Type
and M-Type VLSI chips. For clarity, we demoﬁstrate the partitioning
method by finding the inverse of an example 6 = 6 upper triangular
matrix, U = (uij) with 2 X 2 array modules (for n = 6 and m = 2).
The inverse matrix V = (vij) = Q-l is partitioned into kz = 9 sub-
matrices as shown in Fig.7.

First, we perform the inversions of all diagonal submatrices

to generate V = U;; for p = 1,2,...,k. Such inversions are

PP
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ALGORITHM 1 (Partltloned L-U Docomposition)
;n*outs-

“An nxn dense matrlx
matrices AlJ for i,j= 1 2,
Qutputs:

k*{k+1) subm'atrices L

A=(aj j) part:.t:.oned into k2 mx m sub-
.k. where n=k-m. :

for QS.P;‘-'l;Z'"'-.'i‘“and U.g for.

52r=1.2."'.k. each of Order mxm. ] 4

Procedures:
(1) Decompose Ay1 into L11 and Uy1 such that Iqq- U11= A11.

(2). Compute - inverss matrices L i and Uli .

compute L. = A, - U0 v, =17 -
| Compute ;'Pl Apl 1% Ulp L11 A
(3) For g—2 to (k-1) steép 1 do
q-1

Compu‘te A 2
) s=1

De'compose‘A* =-qu qu

1p £OF P=2,3,7 k.

qu

L\

aq

P 1 1
C the . tri L and U
ompute the ma ices aq qq

. For p~{q+t) ‘_’_c_g K step 1 gg_

r-1
t L= - - ~“L.. *U
Compute Apy = Apq ps 'sq
. s=1
/\. r-1 : ( )
da. =A _ - e for r=min(p,
and 855 = fgp . Lys * Usp p.q)
. s=

Compute Ly, = ﬁpq . u;; b U= L;'l -"K‘qp.
Recteat
Reveat - X-1
(%) Compute @kk-‘: Apyx — 7 Lig ° Ugk 3
: s=1’
Decompose A, = L. * Upoe




Rl

. . )
e l . '
Ugq Yy20%13 e l1s e Y11 "12{"13 Y141Y15 Y18
t H
O Uaatas a4 itas Yas 0 Vaa!Vaz Va4 as Vae
— ——-l-l—---w- -t —— e y— At i~
o 00 M3 aitss s 00 lvgg vz, V35 V3
Y= = - : - :
i S R 0 0 10 vlvis Vi
“‘_" A . R S S P A p— “‘-— — — N e S
07010 0 s ugg 67T s g
! i
0 0 0 0 10 uy 0 010 0 0 v
Steps ,
= gt -yl -
Step 1 = Vyy = Upy i Vo = Upp i Y3 Y33
Stap 2 v, = -V, ( U, Vo) s Vag ‘sz'( UZB.- v33}
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Fig.7 Partitioned matrix inversion of an example
6 with m

matrix of erder n =

chips in k = n/m =

6/2

2 submatrix

3 steps.
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always possible due to the nonsingularity of matrix U. It follows
that k - 1 submatrices in the first off-djagonal are ﬁomputed-at,
step Zf‘ qu the.examﬁle systém in Fig.7, we havq to camputefvlz

~and Vz3 at step 2, ang V13 at step 3. These recﬁrsive steps for

génerating the inverse matrix V = gnl are summarized in Algorithm 2.

The computations in Eg.s can be also performed by M-Type chips.

Because of the two-level 'loo?ing, this algorithm require the same

orders of chip count and speed complexity as those for Algorithm 1.
Péftitioned multiplication of two large n 5:n matri;es; siy

A ¢ B =2C, is rather straightforward. We include it here for com-

pleteness. Basically, each m X m submatrix C bq of matrlx C is
obtained by performlng the cumulatlve multlpllcatlons specified in
Eq.9 using exclusively M-Type chips. Rartitioned matrix multipli-
cation is specified in Algorithm 3.

Back substitution for solving U ¢ x =.d was specified in Eq.3.
{The method can be partitioned into sections of m-element subvectors.
Figure 8 presents the partltloned solution of U » x = d with known,

[u ) and d = (d 2, cey 6] . Subvectors [xs, x6] ) [x3, x4]T
and [xl, xz]T are cqmputed sequentially with back substitution. In
general, k = n/m steps are needed in the back substitution. Matrix
U is partitioned into k X (k + 1)/2 submatrices of order m X m.

The solution vector x is divided into k subvectors and so is the

transformed vector d. Algorithm 4 summarizes the partitioned back-

substitution opérations. The computations of gp in Eq.10 are carried
out by V-Type chips. - Boundary conditions Up,k+1 = 0 and Xyey © 9

were assumed.
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P et T O A s R S RS TS
ALGORITHM 2  (Partitioned Matrix Iaversion)
Iﬁguts: : )
mx m submafrices.qu of‘mat:}x QF(uij)_for_a;l QZP=i.2,---.k.
Qutvuts:-
k- (k+1)/2 sutmatrices Vpq of the inverse matrix E?g‘l.for all
q=p=1,2, -+ ,k, each of order m x m. | o |

Procedures:.

1. For p-i to k step 1 do

-1 .
v =y
PP PP
Reépeat
2. For g1 to (k-1) step 1 do-
For p~i 1t¢ k-q step 1 do
4
. W = Y. U -y ; ,
Pt = 1 o +r,pfq '
i PsPTq =1 B P. p+r,ptq (8)
v = - ¥ .
"P.P*q pp  "p.pra
‘Repeat
Repeat
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ALGORTT:M 3 ° (Partitiohed Matrix Multiplication)

. m x m submatrices Apr and Brg of the matrix A=(ajj) and matrix

_B_=(bij), Where p,q,r’-’l'z;--n.'k. .

'Outputé:l

m x m submatrices Cng of the'resulting product matrix Q?(Cij)n

where p,q=1,2,°**,k. )

t

Procesdures:

For p+l to k step 1 do

For g«l to k step 1 do

(9)
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Fig.8 Partitioned VLSI triangular system solver
based on subvector back-substitution
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ALGORITHY &4 (Partitionmed Triangular System Solver)

Invuts:

m x m submairices Upg of U for gap=1,2,--+,k. The coefficient
subvectors dp for p=1,2,+++,k, each having m consecutive elements
of the Vgctér d. - | ‘

Qutputs:

The subvector xp of the solution vector 5?[x1}x2.---,xn]T.

-

whers EP=IX(P_1)E+1 'x-(P"l)m'f'z_'...l'me]T f.or P-=112s""|k-

i
‘Procedures:

For p<k to 1 in step (-1) Compute

- 1 : .
UpP from Upp 3

N K
d =4 - ' ’ P
S 8 T X Uy "% - . (10)
q=p+1i
-1 A

Repeat
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VI. VLSI ARCHITECTURES AND PERFORMANCE ANALYSIS

VL.SI chip requirements and speed complexity of partitioned
matrix algorithms are analyzed in this section. We consider two

architectural configurations for the proposed ViSI matrix algorithms.

In a strictly parallel cenfiguration, all submatrix operations at

each step are performed in'parallel by nultiple ?LSI‘chips; and
thos results in a minimum time delay per each step. The total time
delay among all steps is also minimized by oﬁerlapping some step

gperations. In a serial-parallél configuration the number of

available VLSI.chips in each step in upper bounded. Thus,_séme
parallel-executable operations may have to be executed sequentially.
Of course, serial-parallel operations will result in longer time .

delays due to limited hardware.

To implement Algoritbm 1 in hardware, we need to use one D-Type
two I-Type, and a large number of M-Type VLSI chips. The number-of
needed M-Type chips depends on the chosen architectural cenfiguration.
In Table 1, we traced the ;tep-by-stép operations of Algorithm 1
with a minimum-delay‘analysis. We have structured the algorithm

for minimum data dependency in successive steps. In other words,

some adjacent computation steps are overlapped in a lookahead fashion.

Maximal concurrencies are achieved by parallelism within each step

and overlapping between successive steps. The total time delay of

Algorithm 1 'implemented in strictly parallel mode is equal to

T =6n + 2n/m - 4m - 2 = 0(n), if n>Hn>>1 (11)
For large n, M-Type chips predominate the chip requirement of

Algorithm 1. We plot in Fig.? the actual chip count in successive
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Time and Hardware Complexities of the

Partitioned L-U Decomposition (Algorithm 1)

Step Submatrix Time Complexity FILSI Chip Count
Computations —_ — :
' Start Time Delay égﬁeiype M-Type
1 444 = L11°U11 0 2m 1 '
L7, U7g 2ni om 2
. ]
2 Lpl Apl Ull 4m
U. = .-l (for p=2,3,...,k) mt 1 2(k-1)
ip 11" “1p .
7
A22 5o+ 1 m+ 1 1
)
3 Moz = Lag Vs 6m + 2 om 1
2  —
Log Ugg 8m + 2 2m 5
{q=2) E 28 ——— —
pz’A?p (for p=3,4,...,k) 2 (k-2)
L o, U _ 1Cm + 2 ‘
p2 2p {for p=3,4,...,k) m+ 1
N : :
A1;—1 k~1 (5m+2)(k~-2)-1 |(k~2)m+l 1
?
3 Lg-1,%-10 Yp-1,k-1 (6m+2) (k-2) 2m 1
k-1 ’ X "
Lgii'k—l; Uﬂil koy | (6mF2)(k-2)+2m om 5
L) ] .
(D 177 A (5m+2) - (k-2)
1 ’ - m+ - ( {-—-2 .
k,k-1? ""k-1,k +(4m-1) (k-2)m+1
Lk ko1’ Uk " (6m+2) (k-2)+4m m+ 1 5.1
p B Aoy b
A - . -
. Ay (5m+2)(k-1)-1 | (k-1)m+l 1
Pik = Ly Uik (6m+2) (k-1) om v ]
Total Compute Time I = 6n + %5-- (4m+2) %_O(n) for n >>m >> 1

Total VLSI Chip Count M 3 Oanfmz} for n >>m

>> 1

’;—*-1<nlm) 2

Notei

q is the looping index used in Algorithm 1 and k = n/m.
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:steps, 3q for:q = 2 2350k -1, of Algorithm 1. The chlp requlre-

rment increases steadily until the loou1ng 1ndex q = 13. The effect

.0f resource”sharing-between'adjécent steps‘beﬁomes'appérent for -
213, Thgzpeak'Of each curve édfrespéndskfo'the‘miﬁiﬁuh numbér,

‘M, of M-Type .chips required to,achieve the miﬁiﬁumléelé?'T in Eﬁ:fi.

This number ‘has been estimated algebraically to be
o P N .
Ms n"/(1im”) fernxd>n>>1 - {12)

From Eqs.11 and 12, we conclude that the partifioned L-U decompo-

sition (Algorithm 1) can be realized with 0(n /m ) VLSI cﬂipé ﬁith

1nter10r chip conplexvty O(m .
Using a uniprocessér, 0(n>) time steps are needed to perform
the L-U decomposition. It is. intéfesting to no{é that the tfible

product of the chip count O(n /m J, the compute tlme O(n), and the

chip size O(m ) ylelds the uniprocessor compute tlme OCn ) that_ls

omé/m%) - o(m) ¢ o(m? )‘ = o3 ) (13) .

This property is-calle&'conservafidn'law between aVaiiéBie,héf&ﬁé?é
chips and achievable speed. |

The chip'count;.O(nzlhzjj is too high:to Be of‘praéfical #éiué, 
because of the fact that n:»m. Therefore, we have to bound the
chip count with a linear order, C(u/m), inva;sérial?péraliéi*imple-
mentation of the partitiOned?ﬁatrii‘algorithﬁ. One can use 2n/m - 1
M-Type chips to- implement a Séri&lQpafallelﬂéfthitectufe'f;} Aigo— "

rithm 1.. Using O(n/m) chips'yields the following prolonged time

delay fdr”Aigorithm_l;
T = nz/m - n/2 + 2n/m f'l?m - 2'hnO(nZ/m)‘fér‘n:b.mﬁbil
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The conservation law is again preserved imthis serial-

pérallei architecture. In this case, we observe that
2 Zy = 3
O(n/m) ¢ 2(n"/r) « C{m™) = O(n") (15)

Similar analyses can be made to estimate the chip counts

and time delays for ‘Algorithm 2.and Algcrithm 3. As shown in

Table 2, both VLSI matrix algorithms can be imp;emented by
0(n?/a?) VLSI chips with O(n) time delays for the strictly
parallel architecture; and by O{n/m) chi?s with‘O(nzlm) times,
for the.serial-ﬁafallei cqnfitﬁratidn. Only I-Type and M-Type

chips are needed in Algorithm 2. Algorithm 3 requires te use only

M-Type chips. To solve a triangular IL3Es (Algofithm 4), one

I-Type chip ard n/2m V-Type chips are needed. The total time
‘&elay is O(n). Only O(n/m) VLSI chips ave used in Algorithm 4.

Only the strictly parallel architecture is suggested for com-
structing the VLSI triangular system solver. Again we have

preserved the conservation law. In this case, we observe that

0(n/m) + O(n) « O(m) = 0(n®) " (16)

where 0(n2) is the compute time of using a uniprocessor to solve

a triangular system.
It is obvious that tradsoffs exist between the chip counts

and time delays of all partitioned matrix algorithms. The trade-

offs in implementing Algorithm 1 are plotted in Fig;io. The time
delay is a monotonic decreasing function of the chip count. When
the chip count exceeds the uppér bound M (Eq.12), the minimum

time delay is achieved as shown by the flat portion of the curves
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Table 2. VLSI Chip Requirements and Speed
Performances of Various Partitioned
Matrix Algorithms

VLSI | . L
chitec~ Strictly Parallel System Serial-Parallel System
ure and Architecture with Architecture with Bounded
le- Minimm Time Delays Chip Count
Xity , — -
VLSI Total VL3I Total
Matrix Chip Count Compute {Chip Count Compute
Algorithm and Types, Time and Types Time
Algorithm 1 2/ 2 '
for L-U 0<n /'m ) o(n) O(u/m) O(nzf"m)
D i~ .
ecg?gisl D,‘ I,: M* D’ I, M*
Algorithm 2
{tor Inver- | o(n?/m?) o(n/m) ,
sion of C(n) : 0(@ /@O
Triangular{ I, M* ' I, u*
' Matrix :
Algorithm 3| ~/ 2/ 2 - ]
i 061 m Oﬁxm !
for Matrix / ) 0(n) /) O(nz/m) '
Multipli-~ i H |
cation '
MNote:
Algorithm ¢ / All measures are
. O(n/m} based on the
For Solving 1. v O(n) assumption ns>>m>>1,
friangular 4 where n is the matrix
. LSEs order and m is the

VLSI chip size.

* Dominating Chip Type to be used.
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in Fig 10. By presenting a speed requirement, one can use these
curves to decide to minimum number of VLSI chips needed to
achieve the’ desired speed performance. On the other hand, one
can predict  the speed performance under préSpecified hardware
allowance. - This tradeoff study is necessary for cost-effective
d951gn of large-scdle matrix system solvers.

VII. VLSI MATRIX ARITHMETIC SOLVERS

Two pipelined matrix solvers are presented below based on
the partitioned matrlx algor1thms. One matrix solver is for the
L-U decomposition of an n x n matrix A with m x m VLSI matrix
chips.  The other ‘is for the inversion of a triangular matrix

of order n. Only the serial—parallel architecture is to be

presented with 0(n2/m) compute time, O(n/m) chip count, and
0(m2) chip complexity.

A VLSI L-U decomposition pipeline is shown in Figs.11~-14 for
the case of k = n.m = 3. In general, such a pipeline requires to
use one D-type, two I-type, and 2k - 1 M-type éubmatrix VisS1
modules. These VLSI chips are interfaced with high speed latches
and feedback connections. Only the snap shops of 2k - 1 =
submatrix steps are shown. During each step; the active chips

‘and data paths are stressed by boldface boxes and data paths.

~ The matrix inversion algorithm (Fig.7) is realized by the

‘pipeline processor shown in Fig.15 for the case of kX = n/m = 4.

In general, k I-type, and 2(k - 1) M-type submatrix multipliers
are needed in this serial-parallel implementafion of_Algorifhm 2.

 The input assignments, data flows at intermediate ahd'output-
‘terminals are specified at the attached table for four steps.
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Fig.14 VLSI pipeline for partitiénéd L-U decomposition:
Step 5 in Fig.6. '
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VLSI matrix solvers bhave been suggested to implement fast
feature extractors and pattern classifiers [19]. Systolic VLSI
architectures have been suggosted for cenvolution and resampling
[22], for signal/imase processing [27], and for other numeric and
alphanumerical algorithmg {22]. Configurable interconnection
networks have bssn proposed by Synader [31] for designing reconfi-
gurable SIKD srrvay precessors or MIMD multiprocessor systems.

VLSI pattern recogaizers oifer high speed and accuracy which
are useful in real-tim2, on-line, pictorizl information processing.
This is the first step towards advanced autcmation and machine
intelligence. Recently, many attempts have been made in developing
special VLSI devices for signal/image processing ané pattern re-
coznition [12,13,14,25,29,40,41,42], Host of these approaches in-
volve large-scale matrix computations or syntatic parsing operations.
Ve list in Table 3 gome candidate PRIP algorithms that might be
suitable for VLSI implementation. An exomple is presented in Fig.l1l6
illustrate the VILSI approzach to statistical fecture extraction.

' The cystenm architeciure of an integrated picture processing
computer is conceptually illustrated in Fig.17. The system consists
of four ﬁajor subsyatems, as shown by the major bhlocks. in the draw-
ing. The host computer can ba any one of those existing pattern-

znalysis computers curmarized in [20]. The backend database machine

is specially developed for image daitabsse management. Either soft-
= i< ,

ware or hardware approsches can be zdopted in developing image data-
base management systens. Yhe frent-end communication processor is

used to handle terminal activities or to be connected to a computer
netwerk for rewote users. The shared resource pool contains VLSI

functional units or attachked special processors for fast PRIP
oﬁerations 25 examplified in Table 3. A resource arbitration net-
work is needed beiween the host processors and the shared resource
pool.
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Table 3., Picterial Information Processing
Algorithms for Possible VL3I Implementation

Image Processing Enhancement, Filtering, Thining, Edge
Detection, Segmentation, Registration,
Restoration, Cluatering, Texture
Analysis, Convolution, Fourier Analysis,
feto., .

Pattern Recognition}Feature Extrsction, Template Matching,
Statistical Classification, Graph Algo-
rithws, Syntax Analysis, Change Detec-
tion, Language Recogaition, Scene Analysis
and Synthesis, ete. .

Image Query Pro- Query Decomposition, Query Optimization,
cessing Attribute Manipulation, Picture Recon-
struction, Search/Sortirng Algorithms,
Query-by~Picture~-Lxemple Implementation,

7 etc.
Image Database Relational Operators (JOIN, UNION, INTER-
Processing SECTION, PROJECTION, COMPLEMENT), Image-

Shetch~Relation Conversion, Similarity
Retrieval, Data Structiures, Priority
- . "~ |Queues,. Dyvnamic Programming, Spatial

- |Operators, etc.
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‘algorithms can be imﬁlemanted with O(nzlmz) chips'in linear time

-O(n) L OT with O(n/m) chlps in quadratlc time O(n '/m). In either’

‘conservation law between operating speed and total chip counts.

Our partitioned approach offers better extensibility, maintainabi-

VIII. CONCLUSIONS ' J

Gaussian eliminat;on has been modified in this paper through

a blbck'partitioning approach. These paititioned VLSI matrix

case, we have achleved a 51gn1f1cant speedup over the O(n ) compute
time of a ser1a1 unlprocessor.‘ M-Type chlps are the major type

of VLSI chips to be used in 1mp1ement1ng matrix solvers. In

systolic arrays, the chip complexity is of order 0(n ). Ih‘our
modular approach, it has been reduced to OCm ). For n=m, this
implies higher”feaSibility based on tha ﬁrojected VLSI chip and
ﬁackaging technologies. . o ;

Design tradeoffs of VLSI architectures have to satisfy the

lity, and flexibilit? to digital aystem designers. Optimized design

must consider ligh performance/cost ratio. The proposed partitioning
matrix algorithms are also suitable for software implementation.

The tradeoffs between hardware and software approaches should be an

- o - e . - —— . — - - haitntiiel - = N

1nterest1ng research topzc.

Toward the eventual reallzatlon of fast VLSI matrix solvers
with standard VLSI chips, there are still many practical problems :
yet to be solved; such as‘ccmputer—aided layout of VLSI circuits,
operand buffering within chips, I/0 port sharing and multiplexity,
packaging and reliability issues, etc. We firmly believe that |
partitioning is a logical and feasible approach to designing large-
scale matrix manlpulatlon_machlnes.‘ Modulatlon through algorlthmlc
partitioning is much better off than through unstructured physical

circuit partitioning, as far as the systemization of VLSI computing

architecture is concerned.
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