TR-82-012

A Simulator for Communication Protocols
By

Jyh-sheng Ke and Sheng-Ching Jeng

Institute of Information Science

Academia Sinica

This work was partially supported by National Council Grant

NSC71-0404-E001-02 PRERTEER

WMWWMM

WWWWWWMMWM

July 21, 1982

l.'Introdﬁction

"The design of communication pfotocols for cpmpﬁier netx
works is one of the most challenging ,problemé to the enw
gineer. | In'tﬁe 1ést few yéars a number of large scale nety
works have been implemented, and some of “them have beeﬁ
f1lustrated in the literature. It has beccme clear that the
design of the communication protocols for these networks |is
- a difficult job. Mahy of ﬁﬁe-problems in designing these
communication protocols, which involve asfnchronous parallel
.processes, are due to the difficulty of realizing and
analyzing the sequence ot.event coCurrences. |

For ovefcoming- these problems, the major objective of
our'researches, we try to £find out a good fool for the
specification and verification of communication protocols.r
The éubject of this report can be described as follows.

.Basing on Petri net theory to develop a model,
which is called the Petri net Derived.Model
(PﬂDM),’fdr the specification ¢f communcation

protocols.

.To develop a simulation system, which is called’
the Camnmunication Protocol Modeling System
{CPMS), for the specification and verification
cf communication protocols.

Part 2 is concernad about the Communication Protocol

Modeling System (CPMS) and Petri net Derived Model {(PNDM) .
Part 3 explains the Protecol Specification Language {PSL).
Part 4 explains the usage and implementation of CPMS siﬁulaw
tor. Part 5 presants‘an cuample of constructing the altere
nating bit preteocol and using the C?MS to simulate this prow.
tocol, In addition, appendices A and B list the general
form and Backus Normal Porm (BNF) of PSL, apgendix Cc lists-
the specification of the élternating bits protocol. Appenw
dix D is an example of CPMS simulation phase 2. And, appens.

dix DR is an example of CPM5 simulation phase 3,

2. The Communication Protocol Modeling System

Fig 2.1 shows the architecture of the Communication

Protocol Madeling System , CPMS.

Fetriwrnet Darivad Model

b ¢

4
Protucol Specification Language

i
internal tabular form of pPMNDM
g
Protocol Automatic | Protocol verification

Implementation i

Frotocel simuliation

Fig-2.1 CP#3, Communication Protocel Modeling System

i

s

The designer'of communication protocols must first use

the Petri net derived model (PNDM) to describe the ,protocol'

which concerns what is needed to be done and how to do it.
The PNDM is then tﬁansﬁormea into the syntactic descr;ption
by using é:otocal specification language, and is taken as
tﬁe input of the CP¥S through the eperation of CPMS, 1i.e.
through the simulation, to £ind cﬁt if any errors may take
place. Repeatedly modif? and simulate the PNDM until no
more error can be detected., Consequently, protocol may be

implemented semiautomatically.

2.). Petri Met Derived Model (ENDM)

in this secticn, a new tool for protocol specification

and verification, vwhich is called Petri ﬂet Derived Model,

is deseribed. PHDM 1s essentially an extendedwPetrignet

modei.

The extensions of PMDM based on General Petri net may
be caﬁegorized into four fields, including place extension,
variahle extension, transition extension, and function ex-

tension.

2.1.1. Place extensicn

In PNDM, a new type of places is introduced. The new
type place is called external place in the sense that it has
no input arc £fronm any transition, but may generate tokens

automatically when scome special events cccur. E.g, we may

use an external place to spécify the condition that there is

. a’'new message needed to be transmitted from the sender of .

the - communication system. IWhen a new message neceds to be
transfered, the corresponding place will randomly automati-

cally/génerate tokens in it,

2:1.2. Varisble extension
Sinée the Petri nat has no way to descripe_numerical
events, we exfand it by adding some variables. |
This extensien includes three types of variables, namesy
ly, structure variables, ccunter variables, and timq; végi%
_ables as. follows. Each of these variables has its qugié}

usage and may inereasz the modeling power of Petri nets..

2.1.2.1, Structure variables
- This tybe of.variables is mainly neeaéd for desq:ih;pg
meséages which are tfanéfe:ed between tﬁo communication sta=
rtibns; Usﬁélly,‘mességéé may have different formats, so we
mast ﬁfdvide some matﬁods to describe them. To use'sprucw

ture variables, the user must declare their formats as fol-

lows.
_variable name : simple type name (multiplicity) (1)
vdriable name : block type name . - (2)

Ekagﬁle_g.iuz_ﬁéssage format |
- HEADER - : B1(G) - - | (3)

B16(1) - TV

TITLE :

DATAL s B3() | - | (5)
DATA2 : AX o | (6)

TAIL : B1(6) (7

Expressions (1) and (2) are formal forms of variablg
deélaration. Type name is the name of dafa type which may be
cétegorized into simple type and biock type. Simple type
includes three types : bit type, byte type, and word type,
and their kéywords are Bl, B3, and BISE, respecti?ely. Block

type is the combinatiqn of simple types, it is declared at

the type declaration part. The multiplicity means the

length of the variable with type declared in expression (1).
At expressions (3), &4) and (7}, the length of variables are
static 1length with their multiplicity., And, at expression
(5) .- B8{) means the bytes strin§ with dynamic length whiéh
is determined bﬁ the assignment sﬁatement explained at the
transition extension part. In our CPMS simulater B8 has the
same mean as Baf). At ecxpression (5), AX is a name of block
type which must be declared at the iype declaration part.

. The type declaration of PHDM is similar to the type

declaration of PASCAL. The syntax of type declaration may be

defined with BNF in appendix B. Here, we give an example of

block type declaration.

Example 2.2 : Typa declaration of PNDM

AX={DAX1=816(2) (2)

DAX2=B8 ()} (9)

DAX3=AXB (10)
DAX4=B16()} (11)
AXB={DAXB1=B1612) {12)
DAXB2=B8 ()} | (13)

We may declare type Ax‘in‘expresSion (6) with express
sions (8)-(13). In ({(8), DAX1l . is the field name for refery
ence. To refer the daté declared at (8) or (12) with bl#ck
type, we may‘use DATA2=DAX1 to .refer data in (8) and DATA2x
DAXBeDAxBl to refer data in (12). That is, we add the dash
"2' between the variable name and the field name, or betweén
two field names, to construct a full néme for variable
‘'reference.

In our CPMS, the structure variables are mainly used
for message transfer. They 'may be assigned and cohpared..
These two terms will be explained detailedly in the
assignment~statement and ifxstatement of transition extens

sions.

2.1,2.2, Counter variable

This type of variable may be used for ‘contrdiiing the.
transition firing, i.e. it may influence the sequence of
transition firiné. The influeﬁtial methcd-will be introduced
at the transition extgnsion part.:

The functions of counter variables include counter

declaration, counter assignment, counter increasing, counter

modulus, and counter comparing.

Counter variables are declared at the variable déclara-

tion part, they; must declare counter name with modulus

_value. For example, the counter name of A(8) is A and its

modulus value is 8, i.e. when the value of counter A inw
creases te 8, the value of counter will belset'to be zero.

| Each countec may be aseigned by a value, and its value
may be Increased with one by increasinQéStatement. The

counter variables may also be compared in 1fgstatement.

2.1.2.3. Timer variabie

T1mer variable is similar to .counter variable,and can
be called as a decreasing counter.

The functions of timer variables include timec startr
statement, timer destroywstatement, and txmeout mechanism.
The value of timer variables can be 1nitiated by sta:tt
statement in which value is the mcdulus declared at timer
varianle declaration.

| Tne ‘value of timer variable is automatically decreased
by the execution of the sxmulator. If the wvalue of timer
variable decreases to zero, tlmeout mechanism of timer will
be actlvated. And the timeout signal may influence the se<
quences of tran51tion flring, because the conditton of forc=

ing function may be determlned by timeout,

5 T=

2.1.3. Transition extension

Transitions in PNDM may be divided into terminal tranm
sitions and node transitiéns, Terninal transitidhs-are like
‘transitions of Petri nets, but they may be deséfibéd by
transition action statements, and their firing .actions about
token flow may be determined by the values of counter .varia
ables. MNode transitions may be replaced by a Petri net
module supported by PuDM. In the £following, these .gktené

sions will be ekglained.

2.1.3.1. Transition action description

The transitions of PNDM may use the action statements
to describe the actiocn of transition firing, and these éc’

tion statements may be categorized into six types.

—— v wen e e

"Phis is the operations about counter variables. Two
types of counter statements are shown as follows :

..Counter assignupstatement
For example,
A <= 2
Sets the counter §aria51e have value 2.

+oCounter increasedvstatement ‘
For example,
+A

means the value of counter variable A will be

incremented by one.

2.1.3.1.2. Timer statement

The timer statement describe the functions about the
timer variables. Two types of timer statement are-shown as
follows : |

..Timer starte=statement

-For example,
timer TA <z §
starts timer TA.
.+ Timer destroywstatement
For example,
{xtimer TA

stops the mechanism of timer TA.

2.1.3.1.3. Transfer statement

These statements transmit or receive messages between
two communication stations. Two types of transfer statement
are sﬁown as follows :

«eSend statemant

For exaﬁple,
send 1 MESS
sends the'message MESS with format declared at vari-
able declaraticon and type declaration to transfer port 1.
.+Receive statement

For example,

s

PRy

- receive 1 MESS
receivés the message MESS from transfer port l.
when these two types of.ﬁtatement are executed and soﬁe_
errors are detected ,e.qg. ﬁransmission error, they will be
executed .sequehtially. -If no erf§£ ié détécted, the execun

tion sequence will skip one statenent.

2.1;3;1.4. Terminate statement

T ;n_ﬁhe transition action,.the system may be stopped jby
thesc - statements, .MTwé‘ t?pes of terminate statement are
shown as follows : |

L. L eeStOpP séatement

For example,
Stop
can stop the oéerdtion'of simulator,
.;Exit statement
" For example,;
: exit- | _
exits fromlthe-transﬁtion firing, and regard the

transition as being fired.

A structure varlable may be assigned by this statement.
For -different types cf vériabies, we must usz different key-
words for the simulator.

For example,

=19

e

T

Aty

HEADER=" 381901091 - - (14)
TITLE= 104 | - {15)
 DATAl= "abcdef . 18
| The equal symboi "o represents assignment. .And the

r
!

percentage symbol *8§° reéresents the header of bit string,

 and the double guote " represents the header of byte string,

and the word variable is‘directly assigned by an 1ntégér.

In (14), the length of bit string assigned to HMEADER is’
ﬁore than six, the over bits will be truncaﬁed, and the
assigned bit string will be %01P810. In (15), we assign
value 184 to word wvariable TITLE. 1In (16), the variable .
DATAL is a dynanie length byte string, and has been assigned
with the value “abedef®, ’

In other situations, the" length of string assigned may '
ba less than the length of variable declared, we may augment
bit @, space, and zero, respectively, to the space of unasz
signed. o

A special case may happen, i.e. the word string may be
declared such .that the assigned ' string is delimlted;by

space, like TITLE2= 184 105

2.1.3.1.6. if=statement
The format of ifwstatement is :
{£ (comparing) statementsl else statement=2,
If the condition of comparing is true, then éxecute

statement=1, else execute statement=2, Statement=sl and

.wll-

statement-2 ﬁéy be any type of statement except {fw
statement., The comparing part may aliow the COunte:nvariable
and non—counterwvafiable to be.compared. The comparisoh of
counterwvariables, i.e. comparison between counter varis
ables,‘which have iﬁteger values.. includes five types of
operatdrs, namely, >, <; =, Cm, ==,

The.cpmparison of nonzcounfer variables, i.e. comparis
son between non=wcounter variables, which have values of the

same format, only allows one type operator ==.

2.1.3.2 Transition controlled

This is the ability of transitions that they can select
the path of token movings when a transition fires.
There may be two types of such transitions as shown 'in

Fig 2.2 and Fig 2.3.

IP1 IP2 . IPn

Ll L)

K=1 E=2 . K_sn

!
b
oP .) i Ir

F16 2.2 U
. .I .‘ . H

M=1 =2 H=m
553
OP1 orz op m-
FI1g 2.3

In Fig 2.2,_the tokens moved are determined by the
value . of counter variable K. For example, if counter K has
Qalueuone@ tokens_will'be absarbed from place IPlL -and sent
to place 0P, In éig 2.3, the tokens moved are deterniné@ by
the value of counter variable M, e.g. if counter M has value
two, 'tokens. will be absorbed from place IP and ‘sent to the
place OP2. Such functions must be represented by ﬁhen?
statement in transition action.

In Fig 2.2., it is represented as follows : .

when (IP1¥K==1:02} IP2*K==2:0P} .. | IPN*K==n:0P)

In Fig 2.3., it is represented as follows 3’

" when (IP*Ma=1:0P1 | IP*M==2:0P2] .. .| IP*M==n:0Pn)

Text in front of the colon ':' is the condition which
specifies 1f the plaée holds tokens or if the counter com=
paring is true, e,g. IP1¥K==]l, means that piace IP1 holds
ohe token and counter K ﬂas value l. When condition matches,
tokens will be sent to the place which is specified in text
behind the colon, e.g. OP. | _

| These extensions are similar to the macro Ewnet [NOE
73]. Invfact, we borrow these concepts from E«net in order

to enforce the controlled power of Petri nets,

2.1.3.3. Transition hierarchy

Transition hierarchy is an extended property of transi-
tions. The transition. of PMNDM, which {is called sub=

transition, may be replaced by a Petri net structure.

=l3-

This . pfope;ty is good for analysis, we can make each
sub-transition éerrectiy} and then verify the correctness of
the whole model by regarding each sub=transition as a gen-

eral tzansitibn.

2.1.4. Function extension

PNDM all@ws-users ﬁo set the initial value of variw
ables, and to terminate the PNDM by describing the terminaw
tion condition. It_also‘allows-the force function to change

states of DNDM.

2.1.4.1. Initial function
Thé users may inftiate all places and counter vafiables
by using initial_function-atlthe module initialization part.
For example, pl:2 means that place pl holds two tokens, and

A <72 means counter A is initiated to have value two.

2.1.4.2. Termination function

" The users can specify the normal termination condition
of PNDM at the module terminatgon part. While the status of
PNDM matches the terminated condition described by the user,
the simulator will terminate and restart itself to simulaté
agalin.,

The termination condition is composed of places names
with the number of tokens,they hold. Fpi ‘example; pl:2;
p2:1; ,i.e. place pl holds two tokens , place p2 holds one

token, and no more tokens exist in other places.

2.1.4.3. Fofcing function

T This function is similar to the termination function,
except that it will not be terminated, The uesr can
describe many foreing functioﬁs and each includes two parts,
one is forcihg condition, and the otﬁer_is forcing action.

For example, pl:2; p2=4}
| timeout Eﬂl:
force

pl:l; p2:1; p3:l;

At this forciﬁg function, texts in front of "force" are
thercdnditioné, and behind it are the forcing actions, While
place pl holds two tokens, place p2 holds four tokens, and
timer t91 is timeout, i.e. .the forecing cohdition matchés.
the PNDM will be enforced into the forcing action, i.e. each
of pléce pl, p2 and p3 holds one token.

Using forcing function can increase the modeling power
of PNDM, particularly we can add the timeout mechanism into
the forecing condition, hence the system modeled may be more

close to the real world.

3+ Protocol Specification Langquage (PSL)

For the sake of computer processing, the protocol
designer must transform the PNDM into the protocol specifiv
cation language {PSL). Appendix A lists the general form of

PSL and appendix B lists the BNF of PSL. At appendix A, the

+15=

capital letters are the‘keywofds in PSL, for éonvenience, ve
replace them by shorter keywords which are in pargntheses at
the same 1line. We use the three dots to represent £he réé
petition ﬁhich is the same a3 the last text line. And,. the
protocol specification language is used for system modeling,
its basic unit is called medule, which may include eight
parts. o

Place declatation and transition desclaration are used

to declare the places and transitions by their names. These
two parts must exist in every module.

The data types used for variable declaration are desx

clared at the type declaration part. At the variable

declaration §art « there may be three types of variable

declaration, structure declaration declares the data vari=x
ables for message transfer, counter declaration declares
coﬁnter variables, and timer declaration declares the timer
variables. The system is initiated at the module

{nitializaticn part which is one typz of function exten=

sions, and 1is coxplained "in 2.1.4.1. At this part, the
designer may initizte the places with the number of tokens

held and the valus of counters which haQe been declared.

Mext part is called the module termination part, the
designer can specify the termination conditions which may be
more than one, and each termination condition may be

represented by a place with the number of tokens te be held.

Another type of function extension is called forciﬁg
function which |is 'explained in 2.1.4.3., also can be

transformed into the module forcing part with PSL,. It is

similar ¢to moduléitermination except that the foreing func=
tion doesn't terminate-while the condition matcheé, and will
go into a new situaiion defined by force ?art of forecing
function. 1Its condition may be determined by the timeout of
timer., | -

The last pért ié the most importadt in .PSLf -mainly
defines the structure of Derived Petri Net, It is called

transition description part. Each transition structure must

be described in this part and include the inpﬁt places and
. output placgs and transition action explained in 2.1.3.1 or
a sub-transition described by a module explained in 2.1.3.3.
| The place declaration and'transitton- deciaratibn must
exist in evéry module, However the other six parts are
optional.
In summary, after the model described by PNDM is
transformed into the language represented by PSL, the

designer can use it as the input of the CPuS simulator.

wljw

1._Implemeﬁtation and Usage of CPMS simulator

4.1. Implementation of CPMS simulator

Input data file

Phase 1 Text processing
*docum2® file
. vt
Phase 2 Proc;nsing.) 4 - |Error mecscg2s
of interpretation! or result of phase 2

intermediate deta

4
e \

files

cbout siructure

W

Phése 3 Simulator ' ‘,Result of simulation

The implement:~tion of CPMS simulator is divided into
three phases, Text‘processing is the work to be done at

-phase ‘1. In phase 1, the input data file is properly form

matted into the output data file with file npame *docum2* and

it is uéed as the input of phase 2.

At phase 2, its work mainly is checkihg and - intérpreﬁﬂ
ing the struCturé of the system modeled. If errors exist,
the error messages will be provided by the simulator. The
simulator will produce the inzerm:diate cdota files for being

urced by phase 3. These data files include places and

18~

;ransitions deciaration>'£iles, named ®"pfile* and “tfile",

counter, structure and timer declaration files named

wyefile®, ‘"yifile® and “vtfile" , termination and foreing

data files nemed "termifile” and "forcefile®, data type file

named “strfile®, and transition data files each of which

correspanés to 6ne transition which is called “tHrEEn,

At phase 3, the simulator uses information of the in=
termediate data files provided by phase 2 to simulate the
modeled systonm. | |

The simulétof first initializes al; variables and
prompts questions about simulation ranges, then the'simulaf
tor simulates the modsled systen, 1i.e. the -communicatiop

 protocol, specified by the designef.

4.2.Using CPMS Eglsimulate the communication protocol

In this section, we introduce the method of usinq the
ceMS tb simulate the communication protocol.

The CPMS is a qucling system for communication proton
cols. When the protocol) designer wants to use the CPMS éo

" design a proteccl, he first must use the Petri not derived

model (PNDM) to describe the protocol, and then transform

the PNDM into Zhe protocol spacificction language (PBSL). .

Next, us~ the PSL as input of CPMS. Through CPMS processes,

the designer will knew if any ervors taking place in the

communication protocol, and repeatedly modify the PNDM until

=19~

no error.can be detected.

To ﬁsé‘CPMS, the protocol designer first edits . a data
file which contains éﬁe PSL specification of the modeled
system, This data file will be used as input of the CPMS
‘simulator. The CPMS simulator includes three phases. Phase
one takes the PSL specification data file as input, and
changes ‘the data file into proper fecrmat for the processing
of phase two. He must use the command as follows.

.phl data=file~name

After phése one finishes, he may key in the next comw
mand for phasa two as follows, |
.ph2
phase two of CPMS is like the processing of compiler or
interpreter. Mainly, it checks the syntax of the input data
file specified by PSL, and it can find out all errors except
the syntax error of transition action statements. Through
the display of the interactive terminal, the designer can
find out syntax errors if any. Repeatedly, he modifies the
data file and executes phase)} and phase 2 until no error
can be detected. And then, the desigper may use the command
as follows. to execute phase 3.
.ph3
At phase 3 of CPMS, simulation is to be done; First,
‘the system will ask the desligner about "How many termination

times need to be done ? ", and "which modules nead to be

2P

simulated ?2".

The designer must answer the questions prompted. The
tetmination_times of the first question meaﬁs the times of
the system simulatéd to go into deadlockiéonﬁition or the

system simulated to match the condition of termiantion

specified by the desigher in the termination declaration.

The second guestion means that the designer can indicate
which module will be simulated, each module has a unique
name and is specified at the first line of module declara«
tion.

At'phése 3, when syntax errors take place at the state=
ments of transition actions, the simulator will terminate
immediately. 1In case of errors, we must modify the PNDM and
simulate it again from phase 1.

ﬁ At phase 3, the simulator will provide the information
about the sequence of transition firing, the conditions of
deadlock, and condition of termination and foreing, and the
conflict between transition firings. Some properties may
not be able to be found out in oﬁr simulator. However, tﬁe
designer may observe theAsequences of transition firing, and
find out some special conditions happening, e.g. looping and

completeness,

5. The Alternating Bits Protocol

[

In this chapter, we will take the alternating bit prow
tocol as an example to describe the sequence of using the

CPMS'simulatof.

5.1 The alternating bits protocol

The alternating bits protocol is provided for a simple
but reliable message transfer service over an unreliable
transmission .medium. It uses an one=bit sequence number for
each message ;ent. The sequence number is complemented on
each new meséage sent. When the receive: receives ﬁessages
correctly, it:transmits the acknowledgement. to the_ sender.
If the acknowledéement is not receivéd by the sender within
a timeo;t period, the same message will be retransmitted.
The prqtocol guarantees correctly sequenced delivery of mesw
éageS?even if the mediuﬁ lose messages or acknowldegemeﬁts.

To accomplish these functions, the sender and thé'réﬁ
ceiver stations must maintain local sequence number counters
respectively. The 'sender uses a counter to maintain the
sequence number which is tﬁe sequence number of the .last
transmitted message, and if the acknowledgement is received,
the counter will be complemented and used as the sequnce
number for ;the next message. The receiver also uses a
counter to maintain the sequence number of the next message
expected to received. This mechanism can remove the duplje

cate messages.

nr22-

5.2 Modeling the aiterhatinq‘bits-?rotocol by PNDM

First, we add new transitions ML and AL to represent
the message and acknowledgement transmission loss as shown

in Fig 5.1. _
SENDER : M

: - . _ L.$§\

RECEIVER

g
O’\\p—l
N\
fart
L\ d
=
H

©2 e does |

- e

)

VAR: M(Mess, Mo) prg g.4 © .- VAR: A(ACK.No)

Here, we use counter M and counter A to represéﬁt the
iocal counter of scnder ‘and receiver, respectively. in
addition, we use. tha counter R to represent the number of
retransmission times.,

We use the transition actions to describe the traﬁsiﬁ
tien hiezafchy to-éﬁtend the protocol in Fig 5.1. Transi-
tion tl; t2, t4, and t5 have more deep méaning than before.

The action of transition t2, t4, and t5 are replaced by

transiticn action statements as follows. -

td receive 1 mess

exit

w23

1f (messwno == $1) ax<sl
if (messéno == 30) ax<=ad

if (ax == a) ++a

t2 - receive 2 ack
exit
+im
r <= @0 ,
&n timer tOl

t5 send'z ack

From the logic viewpoint, we are only concerned about
the sequence of transition firing, and the data is not ims
portaﬁt in this example. So we only consider one bit data
which is the sequence number of meséages. At transitiqn'tQ.
when the sequence numbet‘ef the message received is correct,
" the local counﬁer A at receiver will be complemented by
ététement ++a. At transition t2, Qhen the sequence number
of acknowledgement received is correct, the local counter M
at sender will be compleﬁented by statement ++m aﬁd the
retransmission times counter will be reset by,#tatement r &=
P. At transition ﬁs, the receiver sends ﬁhe acknowledgement
to the sender. | | '

The action of transition"tl may be extended to submo«

dule tl.sub by employing the concept of transition hierarchy

as follows.

tl(tl.sub). /N
: s

M=$

t

tl.t2 when(tl.pl*m=ag:tl.p2|tl.pl*m==l:tl.p3)

tl.t3 - mess=no=30d

‘send 1 mess=no

tl.t4 messxno=%1

send 1 mess=ho

tl.tS +4r
if (r>5) stop

timer t@) <= @

The actions of transition tl send the méssage with
sequence number determined by the value of local counter M.
When the number of retransmission times is over five, the
system will be stopped, and the timer is started by states

ment timer t@#l <= @ at transition tl.tS.

5.3 Converting Representation from PNDM to PSL

-25=

o

[

After thefproiocoi has beeﬁ specified by PNDM, we ' must
transform it .into' the form of PSL. We must first declare
the places.\t:ansiﬁions, and variables used, and then specir
fy the termination conditions and forcing functions. Finally
we describé.tpe structures and actions of each transition.

Appendix’ ¢ 1ists the aiternating bits protocol
described with PSL.

5.4 Using the CPMS simulator
M To use CPMS, we edit the specification of the alternats=
ing bit profocol into a data file called “ABP". And then,
execute the following commands sequentially.
.phl ABP -
+ph2
~ «ph3
Through these three commands, the 'simulatian can be
run, and the results will be displayed at the.intgractive
terminal,

Appendix D is a result of CPMS simulator phase 2.

 Appendix DR is a result of CPMS simulator phase 3.

=26+

T

Aopendix A.: General Form ggrprotocol Specification Language
MODULE module name (modb)

PLACE DECLARATION (decp)
placeﬂame'; ses s }placename B

END CF PLACE DECLARATION.{edclp)

TRANSITIOM DECLARATION {delt)
transition namej;..e .so.jtransition name;

END OF TRANSITZON DECLARATION (edclt)

TYPE DECLARATION (dely)

type name = type;

-* »
. -
‘. - *

- END OF TYPE DECLARATICON (odely)

VARIABLE DECLARATION (dzlv)
STRUCTURE {structure)
variablec neme : type name; ... §
COUNTER (ctr} -
counter variable name : (modulus value); .es ;
TIMER COUNTZR (tmgt:)
timer veriabl name : (modulus value); .e.e

END OF VARIADLE DECLARATION (edclv)

A=1

e

MODULE INITIALIZATION (modi)
place name : token humber‘;

VAR variable name <g assign value ; ... ;

END OF MODULE INITIALIZATION (emodi)

MODULE TERMINATION (modt)
TERMINATION termination name (term)

‘place name : token number ;

- -
io. -

END OF TERMINATICN te;mination name {eterm)

END OF MCDULE TERMINATION (emodt)

MODULE FORCING (modf)
- FORCING forcing name {forcing)
.placename : tokens number ;

’

TIMEOUT timer counter name (timeout); ... ;

T

" FORCE placename 3 token numeber ; (force)

END OF FORCING forcing name (eforcing)

.
.

END OF MODULE FORCING (emodf)

TRANSITION DESCRIPTION (dest)
(TRANSITION DESCRIPTION BODY>

ND OF TRANSITION DESCRIPTION (edest)

END OF MCDULE module name {emodb) -

Lt b L bt h Ao ik &b i Aok aude- o hrkabed &~ S-hckiiy e Soioh: BT Ark i il i B

TRANSITION DESCRIPTION (dest)

TRANSITION tzaqsition name (tran)
RECEIVE ARC {(rarc)
placeﬁame {arc number) ;
- : | .

END OF RECEIVE ARC (erarc)

ATt

¥

TRANSMIT ARC (tarc)

placename ({arc number) ;

. - L]

END OF TRANSMIT ARC {etarc)

‘TR&NSITION ACTION (actt)
| l.when statement
2;counter initiate, increase.
3.timer start, destory.
4.,if statement.
4.l.counter comparing
4.2.nonwcounter compariﬁg
5.send, ;eceive statements
- 6.exit, stop stateménts
7.assignment statement

END OF TRANSITION ACTION (eactt)
(<MODULE>]
END OF TRANSITION transition name (etran)

END OF TRANSITION DESCRIPTION (edest)

A-d

Appendix B : BNF of protocol specification language

<module)::=<module title><module body><{module tail>

<module title)::=modb <module name> |

~ <module taiiS::se@odb <mpdu1e name>

<ﬁodu1e name> : :=<{name>

<module bod§>;=-<p1agg declaration><transition declaration>
'[itfpe declaration>] [¢<variable declaration>]
[<modﬁ1é initialization>j[<module termination>]

[<module forcing>]([<transition description>]

<place declaration>::=<{place decl title><place decl body>
{place decl tail>

(plagg deql title>;:=dglp |

<plgge.&ecl tail’;:=edelp

<§1ace decl body>::=<place name>; |<place decl body><place name>;

<transition declaration>::=<tran decl title><tran décl body>
<tran decl tail>
<tran decl title>::=dclt
<t:an.dec1 tail>::=edelt
<tran deq1!body>::f<transition name>; |{tran decl body>
| <transition néme);
{transition name)::=<name> |

<place name>::=<name>

Bl

494

<type,declaration)::-(typendecl title><type decl body>
<type decl tail>
<type decl titled:s=dcly

~<type decl tail>::=edcly

<type dacl body>::=<type definition>;i<type decl;body>
{type definition);

{type defiﬁition)::w(type defi name>=<typed

<type dnfi name>::=<named

{typed>: -<simp1e type>|<block type>

<simple typed::=Bl(<index integer>)|B8(<index integer))

| IB16 (<{indcx integer))

<index integerd::=<integer>|<null>

<null>: ==

{record type>::={<record sectiond>}

{record sectiond>::=<field name>=<typel>;l<recbrd section>

{field name>=<{typeld

¢field named::=<{nzmed>

<typelds:=<simple type>i<type defi name>

<variable daclarationd>::=<var decl titled><var decl body>
¢var decl tail>
{var decl titled::=cclv

<var decl) tnil>::i=edclv

Bw2

<var decl body>::s<structure var decl><counter var decld>
| <{timer var decl> | |
<structire var decld>::sstructure <str var décl body?
{str var deél bodyﬁ::-(variable named @ ctyﬁel);
| I;str-var decl body)(variable'name> : ktype1>;
<cduntef var decl>:s:=ctr <counter var decl body> | |
<counter var decl body>::=<counter name)(<counter modulus valued);
|<counter var decl body><counter name>
(<counter modulus valued);
‘<eounter named::=<name>
<variable name)::=<named>

<counter modulus valued:s=<integer> .

<timer var decl)>::=tmctr <timer var decl body>

<timer var decl bodyd::=<timer name)(<timer modulus value>);
{<timer var decl body><{timer name>(<timer modulds'valuc>):

<timer nameb::=<{name> |

<timer_moduius value>::=<integer>

<module initializationd>::=<{module 1ﬁit title><module init body>
<module init tail)>

<module init title>::=modi |

<module init téil)::zemodi .

<module init body>::=<place name>: <token number>; | <module init

bodyi(place name>:<{token number>;

B~3

TENR

o ‘xj &2

e
;R

nueD

LYY,

a2

EI8Y>

Hwonk

' [T

RN

ihons,
ther -

P
Bt

{token number)::=»<integer>

<module

<module

<module

<module.

<module

<module
<{module

<module

termination>::=<module termi title><module termi body>-
| <modﬁle tefm_tail)
termi titled::=modt
termi taild>::=emodt
termi body)::?<modu1e termi>{<module termi body>
| <module termi>
termi)>::=<module tbody titled><module tﬁody>
 <module tbody tail> |

tbody titled::=term <term name)

tbody taild::=eterm <term name>

_tbody>::=<place named>:<token number>;|<module tbody>

<place name>:<{token number);

{tern named;::=<{name) - .

<module

<moduls

<module

<module

<module

<module

forcing>::=<module forcing title><madqle forecing body>
. <module forcing tail>

forcing titled::=modf ‘

forcing tail):==ém6df

forcing body>::=<module forcing>]|<module foreing body>
<module forcing>

forcing>::=<module fbody title><module fbody>
<module fbody tail>

fbody title>::=forcing <forcing name)

T

<module fbody ta§1>::=e£orcing_<£prcing name)>

<module fbody)::s(fbodyl);force.<£body2> L

<fbody2>::={place named>:{token number):l(fbédy2><place named
| :<token -numher>; ,

<fbody1$=:-<f§ody2>l<fbody12;Atimeout {timer name>;

<forcing named)::=<{named

<transition description>::=<tran desc title)(trﬁn des¢ body>
. {tran desc tail> |

<tran desc title>::=dest
<tran desc tail>;:=medest
<{tran desc body>::i=m(<tr body'tit1e><tr body><tr body tail>|

<tr body titled<tr body><tr body taild><tran desc body>
{tr body title)::=tran |
<tr body tail>::=etran _
<tr body>::=<{tr rec arc><tr trs arc><{tr actionl>|

. €tr rec arcr<tr trs arc><module)

<tr rec arci>::=rarc ; <tr recarc body> ; erarc ;

{tr recarc bhody>::=<{place named>{<arc number)):l(t; recarc body>
<plage hame)((arc number>); |

<{tr trs arcii:=tarc ; {tr trsarc body> ; etarc ;

{tr trsarc body>::=<{place name)(<arc numberd>); -

I<tr trsarc body><place named(<arc numberd};

<tr action>::=actt ; <tr action bodyd> ; eactt ;

B=5

{tr action body>::=<when statementd>|<statements group>
<when'statement>é:=when(<when actiond)
<when action>::=<{place name>*<{counter comparing>:<{place name>|

<when action>'|'<{place name>*<{conuter comparingd:<place name>

<statements group>::=<statement>l<statement group><statement)>
<{statement>::={counter statement>|<timer statement>|
£1f statement>|<terminate statementd|<transfer statement>

 {<assignment statement>

<éounter statement>::=<{counter assigned statement)

| |<counter increased statement)
<counter assigned statementd::=<counter name> "<4* <assigned value>
<assigned valued::=<integer>

{counter increased statementd::= ++ <counter name>

<timer statementd>::=<{timer start statement)]
<timer destory statement>
{timer start statement>::=timer <{timer name> "<+ g"

{timer destory statement>::=stop | exnit

<transfer statementd::=<send statement>|<receive statement>
{send statement>::=send <{port no><message named>
{receive statementd>::=receive <port no><message named>

<port no>::=1|2

<message name>::=<{variable named

<if statement)::=if (Kcomparing>} <statement)> else <{statemcnt>

<comparing>::=<{counter compar ing>|<noncounter cemparing>

<counter comparingd::=<{counter named><{comparator><counter named

|<counter named><{comparator><{integer>
<noncounter comparingd>::=<{variable name>"=="<variable name>

|{variable name>'=='<va1ue of variable>.

<comparatord:i= < | > | == | >= | <=

<assignment statement>::=<bits assién statement>|<byes
~ assign statement>|<words assign statement>
<bytes assign statement)::=<struc£ure variable named>=""
_ | <bytes string>
<bytes s;rihg)::=<digit>l<char>!<byte string><dicit>{<byte
h -_string)(char>'
<bits assign statementd::=<structure véri%ble'na3e>=%
<bits string>
<bits string>::=8]1|<bits string>@i<bit string>l
<words assign statementd>::=<{structure variable named=

<words string>

{words string>::=<integer>|<word strihg) * ® <intege>>

{structure variable named::=<{variable nameY | <{structure variable

named>=<field name>

<value of variable>::=%<bits string>|"<bytes string>|<wecrd strin->

{name>: -<name><char>l<char>

<integer>: a(digit)l<integer><digit> '

<char>=:=alb|cl...lz

B=8

-

Appendix C : Alternating Bits Protocol Described 91 PSL

modb test

dclp

Pl:p2;p3;p4:p5;:m;a;p6;

edclp

declt '

*

ti;t2;t3:t4;t5;t6:m1:a1;

edclt

delv

structure

meSSQnozbl(i)
ackmno:bl (1)

ctr a(2);m{2);r(s);
mx (2) jax(2) 5

tmetr t@1(8);

edeclvy

modi
p3tl;p6:1;
var m<=0

ac=9

C~l

module name

place declaration

transition declaration

variable declaration

structure variable declaration

counter declaration

timer declaration

module initialization

r<=9

emodi

modt ., _ _ * module termination conditfon
term testl |

Pl:1;

pd:1

etZerm test)

egodt

modf - * module forecing
forcing testl |
timeout tg1
force pl:l
. p2:8
p3:0
- aforecing testl
"foreing test2
pil:l
pas
timeout tol
force pl:2
p2:2
r3:2

pdcd

eforcing testl

emod £

dest | f-transitidn description
tran te ’ * transition tg description
rarc * receive érc .

p6

erarc

tare - . * trasmit arc

P4 o

etarc |

etran tg

tran t3 ' * transition t3 description

rarc

p3

erarc

tarc
pl
etare

etran t3

tran ml : * transition ml description

rarc

C=3

erarc
tarec
etarc

etran ml

tran al
rarc

a
erarc
tarc

etarc

'etran al

tran t4

rarc

P4;m;

erarc

tarc

p5

etarc

actt

receieye 1 mess;
exit;

if (mess~no==%1) ax<+l;

if {(mess-=no ==%0) ax<=H;

C=4

* transition al description

* transition t4 description

* transition action

if (ax==a) ++a;
eactt

etran t4

tran t2
rare

az;p2;

erarc

tare

. p3

aetarc

actt
receieve 2 ack;
exit;

++m

r <=+ 4@
<wtimef tol
eactt

etran t2
tran t5
rarc

p5

erarc

‘tarc

* transition t2 description

* transition t5 descripticno

T

- etarc

actt
send 2 ack
eactt

etran t5

tran tl _ * transition tl description
rarc
pl

erarc

tare
p2;m;

etarc

modb tl.sub' * transition hierarchy
delp | o describing transition tl
ti.pl;tl.p2;tl.p3;tl.p4;

edclp

delt

edclt

dest

C-6

tran tl.tl . * transition tl.tl description
rarc |

Pl

arare

karc

t1l.pl

ﬂttré

~tran tl.tl

~ran tl.ts5 * transition tl.t5 description

if (r>=5) stop;
timer t@} <= 0;-
eazt*

e~ran tl,ts

“ram tl.t2 ' * transition tl.t2 description

rarce

C=7

tl.pl

erarc

tarc

tl,p2

tl.p3

etarc

actt

when(tl.pl*m==8:t1.p2 | tl.pl*m==1:t1.p3)
eactt

etran tl.t2

tran tl.t3 *'transition tl.t3 descripticn
ratc |
tl.p2

erarc

tarc

tl.pd -

etare

actt

mesS—-ho=%08
send 1 °mess=no;
‘eactt

‘etran tl.t3

‘tran-tl.t4 ‘ * transition tl.t4 descripti--

C=8

rarc:
tl.p3
erafe

tare

ti.pd.

etarc

actt

mess=no=4l

send 1 mess+=no

eactt

etran

édest
ehodb

etran

edest

emodb

-

tl.t4

tl.suB

tl

test

* end of module transition ﬁl..

cqg'

Aggeqdix 2 : Result of CPMS simulator phase 2 with ABp

read one data line : modb test
module name : test D B

read one data line

. : delp

place declaration .
read one data line : pl
placename : pl ‘
read one data line : p2
placename : p2 T
read one data line : p3
placename : p3
read one data line : p4
placename : p4d .
read one data line : p5
placename : p5 ' .
read one data line : m '
placename : m !
read one data line : a }
placename : a : |
read one data line : pé6 1
placename : p6 ' : i
read one data line : edclp ‘1
end of place declaration

_ : :
read one data line : declt
transition declaration
read one data line : tl
trans, name : tl

read cone data line : t2 .
‘trans. name : t2 . !
read one data line : t3 k
trans. name : t3 |

i
read one data line :

t4
trans. name : t4 '

read one data line
trans. name .3 tS

read one data line
trans. name ‘: t6

read one data line
trans. name : ml

read one data line
trans. name : al

1)

t5
t6
ml

al

read one data line : edelt
end of trangition declaration

read cne data. line

-
-

variable declaration

readlone data line

structure variable

read one data line

structure : messwho

- yead one data line

-
.
-
-

-
-
»
-

delv
striucture

mess=nosbl (1)

bl(1)

ackzno :bl (1)

structure : ack=zno:bl (1)

read one data line
counter 3 a(2)

reéd one data line
counter : m(2)

read one data line
counter : r{5)

read one data line
ceunter @ mx(2)

read one data line
countar : ax({2)

read one data line
‘timercounter :

read one data line

*e

L1

-
-

ctr a{2)
m(2)

r(s)

nx (2)

ax{2)

tmctr t@l(8)

tg1(8)

edcly

end of variable declaration

read ohe data line

modi

module initialization

read one data line : pl:l
w=place name : token numbersy
pl:1

read one data line =‘p4=1
pa:l

read one data line : var m<=¢ ;
-wvariable name (=i assign valueqs
ménd f .

read one data line -
a<-0

alup

read one data line : r<x8
r<¢l :

read one data line : emodi
end of module initialization

read one data line : modt
module termination

read one data line : emodt
end of module terminqtion

read one data line : modf
module forcing

read one data line : forcing testl
forcing with name : testl

read one data line : timeout tgl
timeout : . tdl

read one data line : force pl:zl
force pl:l

read one data line : p2:0
force : p2:9

read one data line
fo;ce s p3:0

-

p3:8

read one data line : eforcing testl

end of forcing with name : testl

read one data line : forcing test2
forcing with name : test2

. D=3

. read one data line : pl:l
pl:l '

read one data line
p2:2

p2:2

read one data line : timeout tgdl
timeout. : tel

read one data line force pl:2
force : . pl:2

T

read one data line : p2£2
force : p2:2

read one data line
force : p3:2

p3:2
read one data line : p4:4
force : p4:4 '

read one data line : eforcing test2
end of forcing with name : test2

read one data line : emodf
end of module forcing

read one data line : dest
transition description

read one data line. : tran té
transition with name : té

read one data line : rarc
receive are '

read one data line : pé
rec, arc name : pb

read one data line : erarc
end of receive arc

read one data line : tarce

transmit arc

read one data line : p4
transmit arc name : p4

read one data line : etarc

D=4

end of transmit arc

read one data line : etran té6
end of transition with name : t§

read one data line : tran t3
transition with name : t3

read one daﬁa line : rarc
receive arc

read one data line : p3
rec. arc name : p3

read one data line : erarec
end of receive arc

read one data line : tarc .

transmit are

read one data line : pl
transmit arc name : pl

read one data line : etarc
end of transmit arc

read one data line : etran t3
end of transition with name : t3

read one data line : tran ml

_transition with name : nl

read one data line
receive arc.

rarc

read one data line : m
rec, arc name : m

read one data line

: erarc
end of receive arc
read one data line : tare

transmit arc

read one data line : etarc
end of transmit arc '

read one data line : etran ml
end of transition with name : ml

D=5

read one data line : tran al
transition with name : al

read one data line : rarc
;eceive arce

read one data line : a~
rec. arc name : a

read one daté line

t erarc
end of receive arc
read oneé data line tarc

. -.

transmit aré

read one data line : etarc
end of transmit arc

_read one data line : etran al
end of transition with name : al

read one data line : tran t4
transition with name : t4’

read one data line : rarc
receive arc

p4

read one data line :

rec, arc name : p4

read one data line : m
‘rec., arc hame : m

read one data line : erarc
end of receive arc

read one data line : tarc

transmit arc

read one data line : p5
transmit arc name : pb5

read one data line : etarc
end of transmit arc ‘

read one data line : actt
transition action

read one data line : receieve 1 mess
receleve 1 mess)

D«b6

. read one data line : exit
exit :

read one data line 1. if. (messanoxa%l) ax(:l
If (mess<nos=3l) ax<=l

read one data line : if (messzno -stﬂ) ax<=d
if (mess=no ==%@) ax<+d

read one data line : 1f (ax==a) ++a
1f (ax==a) ++a ‘

read one data line : eactt

end of transition action

read one data line : etran td
end of transition with name : t4

read one data line : tran t2
transition with name : t2

read one data line : rarc
receive arc ‘

fead one data line : a
rec, arc name : a

read one data line : p2
rec, arc name : p2 :
read one data line : erarc
end of receive arc

read one data line : tarc

transmit are

read one data line : p3
transmit arc name : p3

read one data line : etarc
end of transmit arc

'read one data line
transition action

"

actt

read one data line : receieve 2 ack
receieve 2 ack

read one data line : exit

D=7

exit

read one data line.
++m :

read one data line :
r <= @ :

read one data line :
<% timer t#l

?egd one data line :

++m
r <z 9
<= tiqer t8l

eactt

end of transition action

read one data line :
end of transition wi

teadlbne data line :
transition with name

read one data line :
receive arc

read one data line
rec, arc name 3 ps

read one data line
end of receive arc

read one data line
transmit arc

read one data line :
transmit arc name :

read one data line :
transmit arc name ;3

read one data line :
end of transmit arc

read one data line :
trangition action

read one data line :
send 2 ack

read one data . line :
end of transition ac

etran t2

th name : t2

tran t$
:_t5
rarc
P5
erarc
‘tare
a
a
P6
p6
etarc
actt
send 2 ack
eactt

tion

D=8

read one data line : etran t5 -
end of transition with name : tS5

read one data line : tran tl
transition with name : til

read one data line : rarc
receive arc

read one data line : pl
rec, arc name : pl

read one data line : erarc
end of receive arc ' :
read one data line :

tarc
transmit are ‘ , '

read one data line : p2
transmit arc name : p2

read one data line : m
transmit arc name : m

read one data line : etarc
end of transmit arc

read one data line : modb tl.sub
module name : tl.sub

.read one data line

: dclp
place declaration
read one data line : tl.él

placename : tl,.pl

read one data line : tl,.p2
_placengme s tl.p2 '

read one data line ='t1.93
‘Placename : tl.p3
read one data line : tl.p4

placename : tl.p4

read one data line : edclp
end of place declaration

read one data line : delt
transition declaration

pP=9

read one data line : tl.tl
trans. name : tl.tl

read one data line : tl.t2
trans, name : tl.t2

read one data line : tl.t3
trans. name : tl.t3

read ‘'one data line : tl.t4
trans., name : tl.t4

read one data line : tl.tS
trans. name : t1,t5

;tead one data iine : edclt
end of transition declaration

read one data line : dest
transition description

read one data line : tran tl.tl
transition with name : tl.tl

read one data line : rarc
receive arc '

read one data line : pl
rec. arc name : pl

‘read one data line : erarc
end of receive arc

read one data line : tarc

transmit arc

read one data line : tl.pl
transmit arc name : tl.pl

read one data line : etarc
end of transmit arc

read‘one data line : etran tl.tl
end of transition with name : tl.tl

read one data line : tran tl.t5S
transition with name : tl.tH5

.read one data line : rarc

D=19

receive arc

read one data line : tl.pd
rec, arc name : tl.p4

read one data line : erarc
end of receive arc

tare

read one data line
transmit arc

read one data line : p2
transmit arc name : p2

read one data line : m
transmit arc name : m

read.one data line : etarc
end of transmit arc

read one data line : actt
transition action
read one data line : ++r

++r

read one data line if (r$v5) stop‘

if {(r>=5) stop

"

read one data line timer tgl ii 8

timer tOl << @

read one data line : eactt
end of transition action

read one data line : etran tl.t5
end of transition with name : tl.ts

read one data line : tran tl.t2
transition with name : tl.t2

read one data line : rarc
receive arc

read one data line : tl.pl
rec, arc name : tl.pl

read one data line : erarc
end of receive arc

D-11

read onefdata line : tarc -
transmit are

read oné data line : tl.p2.
transmit.arc name : tl.p2.

read one data"linev: tl.p3
transmit arc pame - tl.p3 .

read one ‘data-line : etarc -
end of transmit arc

read one data line : actt
transition action

read one data line : when(tl.plim==g:tl.p2 | tl.pl*msal t1.p3)
when(tl.pl*m==0:t1.p2 | tl.pl*m==l:tl.p3)

raad_one‘data line : eactt
end of transition action

read one data line : etran tl.t2
end dof transition wi;h~name‘= tl.t2

read one data line ¢ tran tl.t3
transition with name 3 tl.t3

read one data line : rarc
receive arc

read one data line : tl.p2’
rec, arc name : tl.p2

read one data line : erarc
end of receive are

read one data line : tarc
transmit arc

read one data line : tl.p4
transmit arC nawe : tl.pd

rTead one data line : etarc
end of ttanswit afc

read one data line actt’
transicion action

;read one data line '; ‘messe-nowyy
mess-no=%u

 ur12

read one data line : send 1 mess
- gemd 1 mess

: read one data line :. wactt
end of transition action

.read one data line : etran tl.t3
~end of transition with name : tl,.t3

tead one data line : tran tl.t4d
transition with name : tl.t4

read one data line : rarc
rpceive4arc

‘read one data line : tl.p3
rTec, aArc name ' : tl.p3

read cne data line : erarc
end of receive arce

read one data line : tarc
transmit arc

read one data line : tl.p4d
transmit arc name : tl.p4

read one data line : etarc
end of transmit arc

read one data line : actt
transition action

read one data line : messeno=il
messS=no=gl

read one data line : send 1 mess
send 1 mess

read one data line : eactt
end of transition action

read one data line : etran tl.t4
end of tranSition with name : tl.t4

read one data line : eaest
end of transition description

reac one data line : emodb tl.sub

D=13

successfuily

read one data line : etran tI
end of transition with name : ti

read one data line : ed6§t
end of transition description

read one data line : emodb test
successfully

D=14

Appendix DR : Result of CPMS simulator phase 3 with ABP

How many terminations times do you want.?
This modulex=test need simulate (yln) ?
This modulew=tl.sub need simulate (yin) ?

place pl hold 1 token
place p2 hold # token
place p3 hold # token
place p4 hold 1 token
place p5S hold # token
place m hold ¢ token
place a hold 9 token
place p6 hold # token ’
place tl.pl hold @& token
place t1.p2 hold ¢ token
place tl.p3 hold # token
place tl.p4 hold @ token

transition t2 is selected to simulate,
transition t3 is selected to simulate.
transition t4 is selected to simulate.
transition t5 is selected to simulate,
transition t6 is selected to simulate.
transition ml is selected to simulate.
transition al is selected to simulate.
transition tl.tl is selected to simulate,
transition tl.t2 is selected to simulate.
transition tl.t3 is selected to simulate.
transition tl.t4 is selected to simulate,
" transition tl.t5 is selected to simulate.

et Lt et bl et b e St o R |

TUTYTAT AN AT I TR T TN
sinulation start

b A b Arhch -hotatchaatc St Sl £ i bafed St e)

AT IRTINNAT TR Ty

transition tl.tl is enabled

transition tl.tl firing
absorb 1 tokens from place pl
send 1 token to place : tl.pl
transition tl.t2 is enabled

transition tl.t2 firing

DR-1

absorb 1 tokens from place tl.pl
send 1 token to place : tl.p2
send 1 token to place : tl.p3d

HRA TN TN TR TP AT AIRT AT
action statement when(tl.pl*m==i.tl pz | tl pl*m==1 tl. p3)
when statement action

transition firing reversing

send 1 token to place : tl.pl
absorb 1 tokens from place tl.p2
absorb 1 tokens from place tl.p3
absorb 1 tokens from place : tl.pl
send 1 tokens to place : tl.p2 '

ﬁ'w*”'”'ﬂ’ﬁ"f??ﬂ?"”?ﬂﬂﬂ?ﬁ371*?
transition tl,t3 is enabled

transition tl.t3 firing ‘
absorb 1 tokens from place tl.p2
send 1 token to place : tl.p4
Atk do e Sk e b a4 et - 4Rl o i i AR i |
action statement : messzno=3if
bits assignment :
ﬁ**wﬂn—ﬂfawﬂ*wﬂwﬂ*wr—*Tww*ﬂ?31t
HEEn et T I RN TE TR TR TTY
action statement : send 1 mess
send message.
PegmTeTETATETET IR TR ITANTANT
transition tl.t5 is enabled

transition tl.t5 firing

absorb 1 tokens from place tl.p4

send 1 token to place : p2

send 1 token to place : m

E2 LAt i s b b et At

action statement : ++r

counter increasing

k- kot ek Bt B Rl e A v i Sk~ f Sk i i

ATITEATATATLITIVTARNINTTINATINT

action statement : if {r>=5) stop

if condition is false

LTI oot~ Sy rrd~ e e far it B 1 &y St ey et e & it
ot it St 0 3 R Tt (b £ e -+ v e -+ ot et 0 0

actxon statement : timer t@l <« @

start timer counter :

Rtk bt St uin Schade A-S L S, ety &= i ie et Av i

transition t4 is enabled

transition ml is enabled

DR=2

timer counter t@l has value 7
timer decreasing

~ transition t4 firing

absorb 1 tokens from place p4
absorb 1 tokens from place m

send 1 token to place 3 pd

AR TE AR ETIRANTATTTTTITIETTNY
action statement : receieve 1 mess
receive message

AT TTANIAIT T TAUTINT YA IINT
OURET=E T AT T AN TN AT NWANTER
action statement : if (mess=no==%1) ax<w1
if condition is false

HARTRE TN IT AR TAT ALY ATAATEATIITT
PN TINYTT TR ITTETTARTITY
action statement : if (mess<no ==%0) ax<1ﬂ
if condition is true

counter assignment

Amrnmee RTINS TR T T IR
FATTERTTTTTT AT TARN AL S TN FINITINT
action statement : 1if {ax==a} ++a
if condition is true

counter increasing
'I*""H"!'f'ﬂ"f'.t'1‘1‘31’!'-1"'\"1‘1"&"3"?’?1"1#"1!"[
transition t5 is enabled

transition ml conflict with previous transition firing

transition t5 firing

.absorb 1 tokens from place pb
send 1 token to place : a

send 1 token to place : pé
~w---ﬁ—-w*—*v--RWQH-T-wvﬂﬂ----
action statement : send 2 ack
send message

e Attt =o. & bbb £0ad ook i St bedou- ek i i A
transition t2 is enabled
transition t6 is enabled
transition al is enabled

‘ i
timer counter t@#l has value 6
timer decreasing.

DR=-3

transition t2 firing
absorb 1 tokens from place a
absorb 1 tokens from place p2
send 1 token to place : p3
g TR TR AT AT T VI
“action statement : receieve 2 ack
receive message
171ﬂﬂuwtrt"wws1a#ﬂﬂﬂ1?ﬂﬂ3!tt-tt
?'ﬂﬂﬂ*?ﬂfi"l"i"#ﬂ‘ﬁ"?t?"‘!“".t"#'#"l‘ﬂ
action statement : +m
counter increasing
TS TR AR IR AN YN AT
1w~w«wnﬂvﬂ#nﬁﬂﬂwwth?wrwwwrwﬂww
action statement : r <v @
counter assignment .
ATRETTEINAT IR TR TATATARTIANTETY
'!l"!"'ﬂﬂ'ﬂ"ﬂﬂﬂ'Hﬂfﬂf‘iﬂﬁﬂ??*tﬂ?ﬂ?ﬂ?i?
action statement : <x timer tol
. destory timer counter
ERE IR TRETR A TYITRNEEIAETARNIRTIVEY
transition t3 is enabled
transition t6 {s enabled

transition al confliet with previous transition firing

transition t6 firing

absorb 1 tokens from place pé
send 1 token to place : p4
tiansition t3 is enabled

transition t3 firing

absorb 1 tokens from place p3

send 1. token to place : pl
transition tl.tl is enabled

transition tl.tl firing

absorb 1 tokens from place pl
‘send 1 token to place : tl.pl
transition tl.t2 is enabled

transition tl.t2 fi:ing

DR-4

absorb 1 tokens from place tl.pl

send 1 token to place : tl.p2

send 1 token to place : tl.p3

BTN AT AAT T ETTITTTTY %
action statement : when(tl.pl*m-#e tl.p2 | tl.pl*m=-1:tl.p3)
when statement action .

transition firing reversing |

-send 1 token to place : tl.pl .

absorb 1 tokens from place tl.pz

absorb 1 tokens from place tl. P3|

absorb 1 tockens from place 3 tl.pl

send. 1 tokens to place : tl.p3 .

’ 'ﬁ‘fﬂ'??'ﬂ‘?fa". oy F:WW#??"T*‘E!‘?'J‘R#B’?"?

- transition tl.t4 is enabled

transition’ tl, td firing .
absorb:1l tokens from' place tl.p3
send 1'token 'to place : tl.pd
vﬂﬁﬂ-uwﬁﬂﬁ‘ﬂ?ﬂﬂ?ﬂﬂﬂr#ﬁ-v-twwg*r
action statement : mess~ho=%l
bits:assignment '
aimTTTTINEEARTAR IR TR T Ten
TITATR TR AT AN T ST EINIAITEINETY
action statement : send’' 1l méss
send message

Hr T ISR ANTT IR AT T IR TEYT
transition tl.t5 is enabled

transition tl.t5 firing

absorb 1 tokens from place tl.p4
send 1 token to place : p2

send 1 token to place : m

il fo gt b d-dnh rd b 8 i Atk e A Rk A Rl i o
action statement : ++r

counter increasing

AR YRS TN T T IS TSI TNT
TN AT AT T YRGS N TN T
~action statement : {f (r>=5) stop
if condition is false

P Sl st S i AP S YR S - YR U AP o P 4 AL M o O o
S RS R LR Bt bk B e B Aot Dttt
action statement : timer t@l << @
start timer counter
GemmaEATPTTT TS IRITNNTTTE
transition t4 is enabled
transition ml is enabled

DR=5

timer counter tdl has value 7
timer decreasing

timer counter tdl has value ¢
timer decreasing

timer counter t@l has value 5
timer decreasing

. timer countér,tsl has value 4
timer decreasing

timer counter t@l has value 3
timer decreasing

_4;3§. ? transition ml firing
N absorb 1 tokens from place m

transition_t4 conflict with previous transition‘fitihq

. .timer counter tol has value 2
:timer decreasing:. .

- q

rer €01 has valué 1

timer cour

Les | timet decreasing

timer &duhter t@l has value B
timer decreasing -

timer timeout - 0

forcing action

Place p2 hold 1 token

Place p4 hold 1 token

L e e T e
“after action

! place pl hold 1 token
- place p4 hold 1 token
2 g frfren\?-zﬂme.v-xwﬂa:'ﬁw-mﬂ“7-.2'.1?'.113:
P ; transition tl.tl is enabled
S

transition tl.tl firing
absorb 1 tokens from place pl
send 1 token to place : tl.pl
.transition tl.t2 is enabled

DR=6

transition tl.t2 firing

absorb 1 tokens from place tl.pl
send 1 token to place : tl.p2

send 1 token to place : tl,.p3
AT UNETST ..:;.-'f?u-‘..l--... e e B R i i s)
action statement : when(tl.pl*m==@:%l,p2 | tl.pl*m==):tl.p3)
when statement action

transition firing reversing

‘send 1 token to place : tl.pl
absorb 1 tokens from place tl.p2
absorb 1 tokens from place tl.p3
absorb 1 tokens from place : tl.pl
send 1 teokens to place : tl.p3
btk a o b2 R Rkt b ek b B it fo Rt oyt e n A
transition tl.t4 is enabled

transition tl.t4 firing

absorb 1 tokens from place tl.p3
send 1 token to place : tl.pd
AR T TN TET TR NTITINATY
‘action statement : messwno=%1
bits assignment

o hrie Dot kot B o i Ak ke 7 ke b i
e e T L e
action statement : send 1 mess
send message

i e e e ol e e RN et i i by s e R & 1 e R R R~ i 4

DR=7

