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Abstract

Generalized minimum distance decoding schemes are
found for majority logic decodable codes. These decoding
-schemes are parallel to the classical majority logic

decoding schemes and thus can be easily'implemented.




1. Intreduction

Majority logic decoding (1] - [3] can be very simply
implemented; henée, it is attractive from a practical point
of view. Howeve;, majority logic decoding is basically a
hard decision decoding scheme and thus inherits information

loss caused by the symbol-by-symbol hard decision quantization.

It would be nice to have soft decision decoding schemes for

\

majority logic decodable codes which not only avoid degradation

-performance but also preserve decoder's simplicity.

Generalized minimum distance(GMD) decoding, on the
other hand, is a soft decision decoding scheme which provides

asymptotically optimum performance over an additive white

| Gaussian noise(AWGN) channel (41 . This decoding scheme

"was not designed for any special class of codes. Therefore

it did not try to utilize specific combinatorial structures
of block codes to reduce the decoding complexity.

Recently, works have shown that soft decision decoding
schemes do exist for ﬂajority logic decodable codes [53,[6].
The algebraic analog decoding(AAD) proposed by Rudolph et al
[51 adopts a special class of demodulation functions and by
which the decoders constructed will have complexities the
same as their hard decision counterpart. The performance of
AAD, when it does maximum-radius decoding, is conjectured to
be equivalent to that of GMD decoding [7]. Yu and Costello [6)
showed two decoding algorithms for completely orthogonalizable
codes on Qary output channels. Both algorithms achieve GMD

decoding and maintain simple implementations.




In this paper, we shall see that the.idea of GMD

T decoding can be easily applied to all majority logic
b decodable codes, which include l-step orthogonalizable
codés, L-step orthogonalizable codes, and codes using

R nonﬁrfhogonal parity checks. The decoding schemes presented
SRRy parailel to that of AAD and majority logic decoding, thus
S have complexities almost the same. By this it again

- de@dnstrates that combinatorial structures of block codes

. can help to reduce decoding complexity, even in soft

o decision decoding.
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I Preliminaries

Considér aﬁ-(n,k,d) linear binary code C over {0,1)"
and let the transmitted version of code word c =‘(cf,c2,
r++9Cp) € Cbe c* = (c},c8,...,c}), where ct = (-1)°1
Thus C* is over {+1,-1}" and the group {C,® } 1is isomorphic
to {C*,x} , where ® denotes modulo 2 addition and x denotes
component-by-component multiplication.

The recéived word T = (r,, 2,...,? ) is the real sum

of c* and an error vector e = (e, ,ez,...,e }, e, ¢ R,

Assume all the words of C* are equiprobable of being sent

- and the channel is time-discrete memoryless, Define the

bit log likelihood ratio of T, to be

1 = l’z,ooc,n,

P_(r.| 1}
¢:i, = Ln[ - '1I } »
where P (r;, | x) denotes the probability of r, given x,
x=1o0r -1, Then [ (¢1,¢2,;Q.;¢n )} is the channel
measurement information vector of r. Any decoding method

that finds a code word c* wh1ch maxlmlzes ¢ -.ck performs

'maxlmum 11ke11hood decoding [8].

Let T, a positive number, be some threshold [4} and

+1 , if Tg b,
o; = ¢i/T s if -T g ¢; < T, i=1,2,..., n,
"'1 » if ¢i = -T 3
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Thus, except for the hard-limiting at each end, the bit
log likelihood ratios are preserved in 6. Assume a,, is a
component in o which has the largest absolute value. If

a,, # 0, a can be redefined as

B =ofle,l = (a,/]a,] , e, /le,d o .., « /a,| ).

Now the ith component of B satisfies -1 < B, = i1, 1xisn,
and at least oneé component of B has its absolute value equal
to 1.

Now consider the case where tﬁe dual code.C' of C has
parity checks which satisfy a combinatorial constraint.
Suppose there are J parity checks, each checking the first
bit position and at most A of the checks checking any

other bit position. Let the J parity checks be

O
|

= ] ) [}
S, (°11’C12"°"°1n )

) L] 1 [
€2 T (°21’°22""’°2n )

t
(CJ1

]
i

' . A
T yoresCl )

where ¢iy =1 and ciy € {0,1} for 211 1€ j < Jand 1 < i < n.

n . . . s
Let Ai = j§1c§i for i = 2,3,...,n. Then A = max{lz,k3,...,
5

An}. Also let's = (J + A)/AJ , Where (X denotes the

greatest integer equal to or less than x. Since d 2 s {91,

g
we cah-prove the following theorem.
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Theorem 1. For any received g, there exists at most one

code word 5* such that

T,

B ec*> n-s. (1)
(Proof) Theorem 1 can be proved by using the same argument
given by Forney [4].

Q.E.D.
ERE " We note here that when s = d, any decoding method -
which successfully finds this c*{(if it exists) is credited
with doing CGMD decoding.

Suppose there exists a code word whith does satisfy(1)

- and we denote it as g;‘; .Define z = (21;22,...,zn) by letting
(RS IR . + 1 . if 8i > 0’
. Zi = i = 1,2,‘- [} ’n-
-1, if Bi < 0,

Then since |B,| = 1 for all 1 = is=m, we have following
lemmas.
Lemma'1;<5 X g;-have at most s - 1 components which are less
.than or eqdal to zero. |
""Lemma 2. The sum of any s or more components in 8 x c*
is greater than zero.
_ The proofs of these lemmas are obvious and are thus
omitted.

Let Tg=‘{i1,iz,...,it}'be a set of t indices such that

Bi, Chip = 0, 1 s £ t. Then 0< ts s-1Dby Lemma 1.

—_—
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Also let T' = {j1,jz,..f,js;t} be the set of s-t indices
such that for a j, ¢ T', Bitcﬁit is among the s-t smallest
components within the n-t positive components of 8 x 5; .

Obviously the intersection of T and T' is empty and, by

Lemma ‘2 we have

I =z L B.c*, + L gt > 0
ieme 3 mj Cjeq +omi
It is clear that X is the smallest:value that the sum of

any s or more components of g x g; can have.

2<ixn
convention the a® = 1 for any real a. Now we are able to

provide the results in the following.

II. Main Result

Let

J n

cl, '
Fi(8) = Ay + j§1yj igzzill. (2)

It is seen that there are J +X terms in (2)-and;anyozi as
well as B,appear less than or equal to A times in (2);

Define

Decision Rule I :

1, if F.(8) > 0

o>
-
([

-1 , otherwise,

a denotes an estimate of a. We can now prove the following
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Theorem 2. If B - c¢* > n-s, then Decision Rule I gives

ko= ek,

1 m1

(Proof) We shall show that c;iF1(§) > 0 whenever (1) is
tryue. From (2) we have

n |
= c..'
F (B) RB1 m1i * Z Yj m1 .E ziJ1 * _ (3)
. j=1 i=2
'+ Since c'e €', ¢+ ¢' = 0 (modulo 2},
n . °5i
* = i =
S iEZ (cmi) . for j 1,2,...,J,
and we may rewrite (3) as
' E ()= 7 18] ; (2]c* 334,
c* F (B)=7 |8,]z,ck EY-H (4)
mt T 1= p 1171 'm1 §=1 3 {=2

There are J +) = sA terms in the right hand side of

(4) and By Lemma 1 at most tA terms are less than or equal.,

to zero. Since ts= s--1, at least A terms in the right hand

side of (4) are greater than zero. Therefore we can arrange

(4) to have



caqFq(B)

.A'. ' n §
. ) . ‘ C.
= ¥ (|8, | z,c* + ¥ y, I (z,e*)731)
g=1 1 1t m. jELLE. Jigz i mi
a
N x \
3 E ‘2 x
=1 %

where Ly {1, 2,...,A} , [L,| = 's-1, & L, = {1, 2,...,

A} , and LiT\ Li =¢ for all 1= i, j=x . A set L, is chosen

such that for all s or more terms summed into Iﬁ, at most

t £ s -1 of them are less than or equal to zero,

According to the definition of yj, it is easily seen that

8 X, is the sum of s or more distinct components in g x 5;. So

‘ by Lemma 2 we have X, =z X > 0 for 2l1 1 2 &1 and thereby
r* )
cx F,(g) > 0.

Q.E.D.

We illustrate the proof of Theorem 2 by an example.

Example. Consider the (7,4) binary'Hamming code. Let

[g]
n

(111010 0)
(110100 1)
(L010011)
cg=(1001110).

o In
Lo -
] it

O
il

In this case J = 4 andA= 2, So s = 3 and we have t £ 2.

Suppose 8 = (0,92,1,0,21,-0.6,-0.98,-0,95,1). Then there
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exists a code word ¢* = (11 -11 -1 -1 1) such that
B » c*¥>n-s. By definition, we find that y = 0.2],

?2 = 0.6, v, = 0.21, and y, = 0.6, Inspecting (4) we can

group the terms in'(4) as following,

n N n el
} ; = . * 1% * 21
TP CarFq (8) ( |B1121C§1 * Y1.§ (23ch1 MERPI (23¢0s)™ )
i=2 i=2
n cl, n cl.
' % * 3i * 4i
- +CI8ylzpely vy T (zyep )70 4 v, T(25e3)7 )
o i=2 - i=2
ER = 2(0.92 - 0.21 - 0.6) > 0 .
*, So &% = 1 which is a correct estimate.
“z,gk. Corollary 1. A 1-step orthogonalizable code can be GMD
Rt decoded.

The proof of Corollary 1 can be shown by noting that
it is possible to find J'= d - 1 parity checks orthogonal |
on the first bit position and X = 1 for other positions.
A same result has beeﬁ féund in {6,Theorem 6 1 from a
different approach,
LT We now extend this result to L-step orthogonalizable
codes. Let d be the minimum distance of an L-step orthogna-

lizzble code and let

[g]
]
~
L
d‘.
-t
-
0,
]
.
»
-
(g3

2]
i
~
le]
b -
-
(g)
"
-y
€}

]

t 4 . ¥
(c "1,1 ’c "'1,2 ".‘.',cd"'[,n )
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be the set of d- 1 parity checks orthogonal on positions

l,pT,pz,..},pu. Let P = {p1,p2,...,p“} s

Yip = min(]g,] ,[8.] ),

ig P
and
c!,
Yy o= min(lBil 3,5 =1,2,...,d-1.
1éP
i
Let
F.(8) d-1 c:.ii
B) = v,z Wz, + TY, @ z, .
1P 1P jep * j=1 jiép i
il
Define

Decision Rule X :

c? N c* = {

s if F1P(§) > 0

-1 , otherwise.

Then we have the following corollarxy,

Corollary 2.

N

cf He* = ¢c* §§ e

ie p 1 m‘liep mi

The proof of Corollary 2 parallels the proof of Theorem 2

and is thus omitted.

I£8 5§ > n-d, then by Corollary 2

Ifg - 5; > n-d, then Decision Rule I gives

L

11
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F1?(§)cm1_§ cr. > 0. (5)
i@

How mote that

: = ° % A 2
Fip(®@ I 2, Fop (B)(eg, M cf, )7 T 2,
:__52 ) ie P e P
== = * & * *
(‘1P(§Jcm1 I cmi)(cm1,n cmizi)'
le? ieP

By (5), we have that if g g: > n-~d, then

. o : { ~k *
sign (F1P(§).n zi) sign (e*, m cX; zi).
iep iepP

Since B - g;'> n-d, we can have at most d - 1 positions
which satisfy zic;i < 0. Therefore, if we can next find
2d - 2’ checks orthogonal on a linear combination of positions
Qys0,re05a ) where thz set Q = {q1,q2,...,qv} < P, then
we can correctly estimate sign [c* T c*,z,]. If it is
m1iEQ mi i :
possible to carry out this preocedure for the remaining steps
of the decoding procedure — each time determining at least
2¢ - 2 orthogonal parity checks — until a set of parity
checks orthogonal on the first position is obtained, then
Ci1 will be correctly estimated. We have thus proved the
£ollowing result.

Corcllary 3. An L-step orthogonalizable code can be GMD

decoded using the disjoint checks provided that the subcode

to be decoded at the second step is (L ~ 1 )-step orthogona-

12
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IV. Conclusion

It has been shown that generalized minimum distance
decoding schemes exist for majority logic decodable codes.
These decoding schemes utilize the combinatorial structures
of majority logic decodable codes and can be very easily
implemented. So they are attractive from a pfactical point
of view. Further, it is worth to note that the iterative
extension proposed for AAD [5) can also find application
here. Though the probability of word error will never be
increased by iteration,.it is also found that the iﬁerative
extension will not always lead to maximum likelihood
decoding, even if a sufficient number of iterations were
allowed,

The existence of soft decision decoding sﬁemes for
majority logic decodable codes, and especially these.
decoding schemes are parallel to their hard decision
counterpart, naturally instigates a question. That is,
for all other linear block codes which have simple hard
decision decoders, can we construct their parallel soft
decision decoders ? There is no answer yet at this moment,

we wish more work could appear in the future.
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