 R-p-erf
| JR-&1- 03/
—EEpEHA=EEY DR %

. OPAS : An Integrated System for Office

Procedure Automation

sl

B % B OH Y
moB % W& B
HoE OB E ¥ TE
wE R M E
B & E R E
=R S |

';xamhﬁﬁﬁﬁjwftﬁﬂﬂ
S R

0033

ABEEL - EERASASALERFEDLEF LA
o BEEAGLE —EIEE M Pot Net) #5516 3 A
EABY AR FLE N AR S REAS » B
BFEN (RAERFHRBE] BLLEBRZHE A
ABEZH RBTITHRERDA G - EHF 52 6 2@
VAX— 11,/ 780 B J 8 b A9 8K #8 0E B K K 5 'E 8 6 06 BT L AR
BHEGRMUR —HASFLEBNEBESE - AR &
MRS EATEERAS L EENE =4 . H i
HEAARRE —BRL—KEREAE -

.ABSTRACT

In this report, a system is described which provides office
procedure automation. The system is mainly based on an extention
of Petri nets for modeling office work as a set of well-defined
interactive procedures. The office procedures can be specified
in an office procedure specification language, which are then
trénslated and stored somewhere in the system. A translated
procedure could be activated at any time and run. The system
consists of several modules which are software processes on the
DEC VAX-11/780 VMS operating system. They communicate with one
another via messages to constitute a whole enviromment for office
information processing. The design of this system integrates
major office processing facilities and, thereby, has the important

feature of providing office workers with a single interface.

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Motivation
1.2 Integrated Office Information Systems
1.3 The OPAS Approcach
1.4 Organization of This Report

CHAPTER 2 THE MODEL FOR OFFICE FROCEDURE
2,1 The PNB.Model

2.2 A Modeling Example

CHAPTER 3 AN OFFICE PROCEDURE SPECIFICATION LANGUAGE

3.1 Some Design Considerations

3.2 A Glance at Language Features and Concepts

3.3.1 Precedure Identification
3.3%.2 Specification of Agents
3.2.3 Invocation Parameters
3.2.4 Data Objects %
3.2.5 Declaration of;Objects
3.2.6 Form Definition and Form Features
3.2.7 B;sic Activities
3.2.7.1 ASSIGNTO Activity
3.2.7.2 INVOKE A%tivity
3.2.7.3 SENDTO Activity

3.2.7.4 Database Operations

3.2.8 Transition Firing Predicates

12

12

13

13

13

14

14

15

15

16

17

17

18

20

20

3.3 The Structure of The Languagel
3.3.1 Ptocedure Identification Section
3.3.2 Objects Definition Sectioﬁ
3.3.3 Procedure Detail Section
3.4 An Example Office Procedufe S?ecification Program
CHAPTER 4 DESIGN OF THE OPAS SYSTEM
4.1 Overall System Architecture
4.2 The OPAS Modules
4.2.1 Supervisor
4.2.2 Monitor
4.2.3 Form Manager
4.2.4 Mail Manager
4.2.5 Data Manager
4.3 Internal Form of Office Precedure
4.3.1 Procedure Control Block
4,3.2 Petri Net‘Driving Data Structures
4,3.3 Activity Realizatign Data Structures
4.4 Some Notes on Impleﬁentation
4.4.1 Petri Net Driving
4.4.2 Working Storage
4.4.3 Form Implementation
4.4.4 Database Interaction
4.4.5 Implementation:of Message-driven Modules
4.4.6 System Generation and Bootstrapping

CHAPTER 5 SUGGESTIONS FOR FURTHER EXTENTION

22
22
23
23
23
25
25
26
26
27
28
29
29
30
30
31
32
33
33
34
35
35
36

36

38

5.1 -Complete High—levél DBMS Interface
5.2 Additional Form Features and Form Precessing
5.3 Abstractions in The Specification Language
5.4 Replacement of Passive Work Station

CHAPTER 6 CONCLUSION

APPENDIX A. Formal Definition of The PNB Model

APPENDIX B. -Syntax of Office Procedure Specification
Language
APPENDIX C. An Example Specification Program --- The

Journal Editing Procedure
APPENDIX D. Intercommunicétioﬁ Message Format
APPENDIX E. Procedure Internal Form
APPENDIX F. Formats of Activity Internal Form
. APPENDIX G. Characteristics and Coding of Objects
APPENDIX H. Implementation of OPAS Modules
FIGURES

REFERENCES

38
39
41
42
44
45

47

50

56
58
61
63
64
68

73

!

CHAPTER 1 INTRODUCTION

i.1 Motivation

Office automation is emerging as a major application area of
computer technology [5]. Recently, there is an urgent need for the
improvement of the office worker productivity in order to keep pace

with the fast growing factory productivity [2] [i6]. According to

the January 1977 Economic Report of the President of the U.S.A.,

the average annual productivity increase of U.S.A. private bussiness
firms is 3.3% during the past two decades, while the average
productivity increase in industrxy is much greater - approximately
90% [16]- The rapidly decreasing cost of computef hardware and
communication equipments had made it feasible to equip office
workers with automated tools for productivity improvement. There
are now many computer science researchers and data processing
communities working actively on automating the information

processing in office [57.

Many Office Information Systems (OIS} have been announced by
computer and office machine manufacturers such as Wang, Xerox, IBM,
Datapoint, DEC and Prime etc.. [157.. These systems provide
facilities for office actiﬁities such as word processing {(including
text editing and form editing), information filing and retrieving,
data processing, electronic mailing, etc.. They aid the office
workers with automatic tools for performing office activities.
Although these activities can be individually automated, however,
they are initiated and directed by the workers. -0Office workers may
need to change working environment whenever a different task from .
the current one is concerhed (e.g. from a word processor to a data
Processing minicomputor)i2;. In desiging automated office systems,
the challengé is how to develope an integrated system which

facilitates automatic initiation and execution control of well-defined

‘l

routine operations (or called office procedures), as well as
providing a single, uniform user interface to clerical workers.
The system can thus play an active role. The worker can then do

more creative tasks.
1.2 Integrated Office Information Systems

Several office systems which provide inﬁegration or automation
in the sense mentioned above have been reported in the literature.
We will in this section give a brief survey on those systems which
relate to the design of the OPAS system.

Xerox Paio Alto Research Center started a project to develope
its early "lst generation" office information system in late 1976
{51. The system, called Officetalk-zero, provides through a single
interface facilities for editing, filing and intercommunicating.
The designers of the Officetalk-zexo believe that a new OIS should
be based on data objects of single page forms and files of forms.

Under this system, the office worker can manipulate electronic

images of documents with a sophisticated graphic CRT terminal to

fulfil his clerical work. = He can select to examine incoming
forms, to enter form fields (including to draw a singature), to
file or route a form,ito trace mailed forms, etc.. The entire
Officetalk-zero environmenﬁ is a distributed system consisting of
multiple minicomputers intérconnected by a communication network.
One of the minicomputers serves as a file server while the others
serve as work stations. The implementation had collected a number
of existing systems, e.g., text editor, graphic packages, communi-
cation facility, file server and others to form a single integrated
system. However, the effort had not aimed at the automation of
office procedure. Any activity must be initiated by the user. It
should be noted that the origional intention of the Officetalk-zero
project was to sﬁudy the procedural specification of office clerical
work. But the designers had recognized that this problem is too

hard to solve and turned to concentrate on user interfacing.

A famous representative of procedure automation systems is
the SCOOP (System for Computerization Of Office Processing) system
by Michael Zisman{31([6][10]. SCOOP aimed at the specification,
representation, and automation of office procedures. 1It, based on
Petri net[ll] augumented by production rules, models the office
as a system of asynchronous concurrent processes. In SCOOP's
view, an office procedure corresponds to an augumented Petri net.
It can be described by a nonprocedural specification language as
a set of activities associated with documents and represented by
some internal schema. When an office procedure is invoked, an
instance of the corresponding Petri net schema is created, together
with its context data structure, to keep track of the procedure in
progress. An‘executionlmonitor takes change of procedure execution,
which is driven by the internal representation of -all active office
procedures. The SCOOP probedure is quite interactive. The execu-
tionlmonitor reads in all user inputs and updates the appropriate
procedure instances. This can cause new mail to be delivered or
other éctions to be started. On a lower level, a few special-purpose
programs such. as document generator, mailing agent and file server,
etc. receive messages from the execution meonitor and actually
perform required office tasks. By considering the specification
language, the intérnal representation, and the design of a prototype
system using one unified modéi, Zisman's work had successfully shown
the feasibility of office érocedure automation. His notion will
probably have great influénce upon future office information
systems.

Another system emphasizing integration as well as automation
is the OFS (Office Ferm System) by D. Tsichritzis[l21.
Tsichritzis believes that office automation should take place
"evolutionarily"” rather than "revolutionarily"” and had chosen to
mechanize the.manual form system as a basis of his research.
OFS stresses on form management aspects such as accountability, .
auditing and tracing of forms instead of fancy user form interface.

Commands and activities has been provided to handle electronic

images of form with limited form features (e.g., no'repeated fields,
single page, etc.). Perhaps the most important contribution of the
OFS system is the notion of integrating form processing and data
management. That is, form instances can be managed as relation
tuples with form fields being manipulated as data elements in a
relation. (Another published work by Tsichritzis attempted to

. integrate database records and communication messages [13] .}

OFS also provides form oriented, condition/action based activity
automation. The condition part specifies activity triggering
conditions in terms of contents of form fields, arivals of form
instances at specific form trays, complementarity existence of a
set of forms or form instances, or activity termination, time
specification. The action part may include activities like
receiving forms, sending forms and running a pérticular program.--
Tsichritzis also claimed that much of office activity or procedure
is very ad hoc that a general, encompassing office procedure
specification tool is not so easy to achieve and may be too compli-
cated in order to be powerful. That is why he had chosen to deal
with only well-defined routine work associated with form at current

stage.

A third system providing integration and automation of office
tasks is the OBE (Office Procédure by Examples) extention from the
well-known QOBE (Quexy by Exémple) relational query language by
M. Zloof [173; OBE is an attempt to combine the facilities such
as word processing, data processing, electronic mail, graphic,
report writing and application development within a single interface.
With the QBE database management system as the base component, users
can easily extract data from the database and map it into the body
of objects such as letters, forms, reports, charts, etc.. Objects
can also be edited and sent to other work stations via a communica-
tion subsystem. OBE allows the user to specify trigger expressions
on a set of objects manipulation activities to form automated office

procedures. The types of trigger are the modification trigger

concerning with database updating and the time trigger. With the
example elements concept and the two-dimentional tabulating pro-
gramming facility of the QBE languagé, OBE has provided a solution
to the problems of DBMS intéffacingnand'user interfacing of 0IS

design.

The four systems mentioned above as existing examples reveal
most of the major concerns of the design of tomorrow's integrated
office information systems, i.e., the specification and represen-
tation of office procedures, the user interfacing, the DBMS

interfacing, and the form {(document)} processing facilities.
1.3 The OPAS Approach

OPAS (Office Procedure Automation System) is the first step
toward reality of an office automation project held at Academia

Sinica [¢] . The goals of this experimental system have been:

. to accomplish automation of office procedure
(including specification and representation)

. to provide integration of form (document) processing, data
processing, data management, and communication

to be general and practical

An office procedure in OPAS is a well-programmed, structured
set of coorperative activities and is represented by a Petri net
model augumented with data flow (to be detailed in chapter two).
Such a well-defined procedure can be activated by the will of a
human administrator, by messages coming into the office, by
arriving of specific time, or by other procedures in progress, and
then executes independently with interactions to agents inside or
outside the office for necessary human intervention. Each run of
an office procedure is called an "instance" of that procedure type.
The entire office can be viewed as containing a number of dependent

or independent procedure instances executed in parellel.

The design of OPAS attempts to make an uniform view on data
objects which include working data,ffelational tuples and attributes,
forms, "and form fields. All these data units can be manipulated
interchangeably in an office procedure. A few categbries of
activities on these data objects have been identified which, we
hope, can cover most needs of practical office operation.

Special attention had been given to database facility, -form
facility, and communication within office or between offices in
the development of OPAS.. This first stége of OPAS implementation
is aimed at the control structure (including internal representation)
to achieve automation and the basic internal schemes to achieve
integration. The control structure has been completed. Schemes
for working data processing, database manipulation, form processing,
communication, and office security have been established. Although
a portion of interfacing feature is rather primitive in the current
stage, e.g., simple form editing, manual mailing station for inter-
office communication, simplified relational query language, etc.,
the design has, however, an important‘feature of being able to be

extended to a powerful system.

The goal to be general and practical is in general very
difficult to achieve; The iﬁtroduction of working data into office
procedures and the identifiﬁation of categories of office activities
may reveal some efforts toward this goal. However, this is the
most difficult problem of the research that requires time and

energy toc solve.

The OPAS is'built up with experiences from those systems
previously mentioned and some ideas of our own. It is by no means
a complete system vyet. (Sdme limitations will be addressed in the
later.) But the efforts so far have indeed established a feasible

skeleton for automating office procedures.

1.4 Organization of This Report

This report consists of six chapters. Besides this intro-
ductory chapter, chapter two presents an introduction to the PNB
office procedure model on which the OPAS system is based 18] 19]
An example of procedure modeling'is given for illustration. Chap-
ter three describes an office procedure specification language for
OPAS. Various office activities and important language features
are discussed. In chapter four we detail the design of the OPAS
system, including its architecture and operation; implementation
of compenent modules and various features, etc.. Some suggestions
for further extension of the system are given in éhapter five.

Finally, a conclusion in made in chapter six.

CHAPTER 2 THE MODEL FOR OFFICE PROCEDURE

To show the aspect of OPAS procedure, in this chapter we des-
cribe the PNB (Petri Net Based) office procedure model for the OPAS
system. An example of procedure modeling will be given for illus-

tration.
2.1 The PNB Model

The PNB mddel uses the Petri net incorporated with data graph
to model office work as a set of predefined sequences of coorpera-
tive activities interacting with processing units (e.g. DBMS, work
station, etc.) in the office[gjf. Each well-defined office proce-
dure corresponds to a Petri net in such a manner that the actions
in the prbcedure are associated with transitions of the net. The
firing of transitions, therefore, means the execution of associated

actions.

Besides the enabling conaition of the origional Petri net de-
finition, "firing predicate” can be appended to transitions in the
PNB model. A transition can fire only when it is enabled and its
firing predicate has a "trué" value. In evaluating the firing pre-
dicate (a Bodean expression), data may be need from the office data-
bases, the work stations, etc.. When somé activity associated with
a transition gets executed, data from these sourses may be accessed,
too. Figure 2-1 dipicts the description péwer for data flow of the
PNB model, where the dashed lines denote data references. See [8]
for a complete description about how the PNB model is applied on
modeling various aspects of office operations. Appendix A gives

a formal definition of the PNB model and its execution.
2.2 A Modeling Example

As an example of office procedure modeling, we will use the

- 9 -

PNB model to express the journal editing procedure in an editorial

office. This procedure has been chosen for displaying a few import-
ant features of office work. For simplicity, the editing procedure
described below had been tailored to have only one:reviewer .fior each

paper to be reviewed.

The PNB model of the journal editing procedure is shown in Figure
2-2. (The associated data graph is omitted here for clearity.) This
procedure will be activated each time the editorial office receives
a paper. The Petri net shown starts operation with a token being.
put in place pl. Since the tl transition enabled now has no firing
predicate, it fires immediately. The resulted action is to log the
information about the paper (e.g., paper number, title, auther, sub-
mission date, etc.) into the file PAPERS. The completion of tl's
firing causes two token to appear in place p2 and p3, respectively.
This will enable, at‘the same time, two concurrent activities: one
is to send an acknowledge letter (form F2) to the author ({(transition
- t2) and the other to prompt a form F3 to the editor for selecting

a reviewer (transition t3). After both the two activities have been
processed, the parrallelism will get synchronized in order to enable
the transition t4. +t4 is then enabled and fired to cause the inser-
tion of a reviewing record into the file REVIEW (containing paper
number, reviewer name, staﬁus of the reviewing, etc.). Next tran-
sition t5 fires to send a letter (form F4) and a copy of the sub-
mitted paper to the selected reviewer. (The reviewer's addressAmay
be found in another file REVIEWER containing data of every qualified

reviewers.)

At this point, the editing procedure will pause to wait for the
response from the reviewer, with a token appearing in place p7. How-
ever, a time-out control should be established at this time in order

to make sure the reviewing be finished within limited time period.

Assume that the editorial office will inform the reviewer after wait-
ing for two months and reselect another reviewer if the reviewer
still does not send his review result back to the editorial office
after another 5 days. Transitions t7, t8 and t9 are added in the
net for such control. The token in place p7 enables transitions

t6 and t7 in a "conflict" manner---that is, the firing of one will
disable the other. In other words, transitions t6 and t7 are now
competing for the token in place p7. Which one of these two tran-
sitions will fire and grab the token depends on their associated
firing predicates. In the net, the predicate of transition t6é is
the arrival of the message F4* (reviewer's response) while that of
transition t7 is the elapsing of two months since it is enabled.
{(Note that both transitions have no actions at all.) If the arrival
of F4* occouss within two months, the firing of té6 simply enabbles
editing activities below p9. If, however, transition t7 fires first,
token will be generated in places p8 to enable t8 and t9 which are
still in conflict. Since the firing predicate of t9 is the elapsing
of 5 days, transition t8 which is a duplicate of t6 is again timed
for another 5 days. If this time limit is once more exceeded, the
firing of t9 will disable editing activities below t6 and cause
another reviewer to be selected by transmitting a token iﬁto place

p3. Then the same paper reviewing process will restart.

If the form F4%* comesgwithin the specified time limit, one of
the two transitions t6 and t8 will fire and cause another pair of
conflict transitions t10 and tll in order to check the response
from the reviewer. If the reviewer says he does not want to re-
view the paper, transition t10 will fire to reselect the reviewer.
Otherwise, the editing process continues on transition tll. The
remaining activities include a final decision for accepting or
rejecting the paper and other housekeeping work as dipicted in

the figure. The entire procedure terminates when a token is placed

- 10 -

it o b

in the place pl2.

In this example, we see that the PNB model has successfully
expressed a few important natures of office operation, such as
concurrency, synchronization, decision making and timing control
process, etc.. Detail implemehtation of the journal editing pro-
cedure in terms of OPAS's procedure specification language will be
discussed in the next chapter. '

- 11 -

J—

CHAPTER 3 AN OFFICE PROCEDURE SPECIFICATION LANGUAGE

Office procedure specificétion language serves as the single
interface between the OIS system facilities and the users. At
this stage, the OPAS system provides a rather primitive nonpro-
cedural language for office procedure specification. Once a user
has designed an .office procedure (i.e., the Petri net has been
sketched) , he can use this language to write down a "specification
program” which is the representation of that procedure for_OPAS.
This program (procedure) is then translated to OPAS's internal
representation (to be detailed in the next chapter), which is

ready to be invoked and run.
3.1 Some Design Considerations

There are many aspects and issues about the design of office
programming languages, such as the abstraction level, the compu-
tational completeness, the compiler consistency checking, the

application dependency, etc. [5] . The design of our specifica-

~ tion language, due to time and energy, is by no means a touch

or look into these problems. ", It is mainly designed to provide
a basic tool for office probedure specification as well as a

description of the OPAS features.

Basic reguirements for the design of an office procedure

specification language include:

.to closely match the office model

.to reveal the user environment of the system

.to provide convenient interfaces to system facilities such
- as form processing, office database management, etc.

,to be high-level and abstract for office workers

- 12 -~

The design of this language attempted to satisfy all of the above
requirements. However, the last two goals seem not yet achieved
very well. 1In the following sections, a few important language
features are first introduced. Layout of the language structure
and syntax then follows. BAn example is finally given to illus-

trate the use of this office procedure specification language.
3.2 A Glance at Language Features and Concepts

Several features and concepts of the specification language

are presented and discussed in this section.
3.2.1 Procedure Indentification

Each office procedure in OPAS is associated with an eight-
character procedure name assigned by the office programmer. This
name serves as the procedure ID. However, an office procedure
may be invoked in such a way that more than one instance of it
is spawned and runs in the system at the same time. An ID,
called the procedure effective ID, wWill be assigned by OPAS to
each procedure instance which is formed by concatenating -its pro-
cedure ID and activation time. This procedure effective ID is
used to identify the correspoﬂdiﬁg procedure instance throughout

the system.
3.2.2 Specification of Agents

The human agents, as other processing units of a procedure,
should not be fixed for every procedures in the office. For ex-
ample, worker A may serve as the order receiptionist while worker
B is working as the order administrator in an order processing
business procedure; However, both workers A and B may also be
working in another office procedure for another position . One
philosiphy of OPAS is that the total number of agents (work sta-

tions) within an office is fixed, but office procedures may par-
' gition them into different task groups in an overlapping manner.
Thus, any procedure may flexibly "allocates" any workers belong-
ing to the office-as its agents. 1In the specification language,
office agents are named AGENT1, AGENT2, ... , AGENTn. (The number
of agents is determined by the OPAS system generation.) A pro-
cedure specification will select its processing agents from this

set and may assign mnemonics to them.
3.2.3 Invocation Parameters

Many procedures are invoked by parameters. In an order
processing procedure, for example, the parameters may be the
customer ID, goods and quantity requested, etc.. These parameters
are called initial or invocation parameters, whcih are set up
during the invocation process. ZEach office procedure is allowed
to have data objects as invocation parameters. They are de-
clared in the specification program. An "jnvocation parameter
entry form" must also be defined for office procedures having
invocation parameters. When a procedure is invoked manually,
this form will be prompted on the termianl asking for entering
invocation parameters. If the invoker is another active proce-
dure instance, the passing of parameters will be accomplished
by OPAS. :

3.2.4 Data Objects

Data object in an OPAS procedure is defined .as the data
unit for office activities (to be detailed later). There are
three kinds of objects inithe specification language: namely,

working objects, database objects and form objects.

Working objects (single or grouped) are temporary, scratch

data. They are needed in lengthy computations, or can serve as

1

- 14 -

saving buffers for database and form objects. Database objects

are data (fields, tuples and relations) ‘in the office database.

Form objects include forms and their fields. Working data items,
fields in tuples or forms have the same semantics in the imple-
mentation. So they.can be manipulated interchangeably in the

specification program.

All kinds of objects fall into two data types, alphabetic
and numeric. Objects are internally stored as character strings.]
' However, numeric objects are computational, but alphabetic objects

are not.
3.2.5 Declaration of Objects

Data objects can be definéd or declared in a specification
program as in traditional programming languages. A working object
must be defined in terms of its data type, length and format.
Although it is possible to process database objects in the speci-
fication program without any declarations, for simplicity the
current désign of OPAS restricts that record buffer (group work-
ing item) revealing relational tuple format be specified for
manipulating fields in the tuple. The declaration of form objects

will be discussed below.
3.2.6 Form Definition and Form Features

A form in OPAS mirrors the paper form in the manual office
in that they both consist of two parts: the predefined information
and fields to be filled. A form definition therefore must contain
the layout of the "form blank" [12] (i.e., a form with empty fields)
plus specification of fieid characteristics such as data type, for-

mat, etc.. In a specification program, the programmer defines a
form by giving its name and dimension in character position, followed

by drawing the form blank between two start/end markers with field -

positions being indicated by corresponding field name (prefixed with
a special character % to be distinguishable from predefined form
text). The field name must not be longer than the field length.

fhe form blank drawn in this way is then argumented with field des-
criptions, including field type, data type and field fofmat,‘for
every field names appearing in it. Forms are restricted to be single
page and cannot contain repeated fields or group fields [71 112]

currently.

The data type and format of a form field have the same seman-
tics as working objects. As for the field type, three possible types
are provided, namely protected, unprotected, and identification.
Protected fields are output fields in a form. They are filled when
a form is generated and can not be altered when the form is sent.to
some work station for interaction. Unprotected field are those
fields to be entered by human agents when the form is displayed on
the terminal. Identification fields are special unprotected fields
used to identify the authority of the human operator f£illing the-
form. Such fields can be included in any form to provide a basic
password security control for office procedure execution. Iden-
tification fields will be typed with no echo.

A form can be sent to either the work stations or the mail station
for interaction. In a specfication program, the user may specify more
than one "send operataon” on a form with different destinations.

That is, forms can be passed among work stations. A "field masking"
facility is also provided which allows fields unauthorized for access
to be marked out (gee later discussions). Note that in the current
design, the multi-instance concept of form processing is not yet

covered. ;
3.2.7 Basic Activities

'‘Referring to facilities of existing systems [11 (161 "[17]

_ 16 -

as well as practical considerations, we have identified the following

operations required for office processing:

.computation

.form processing
.file management
.authentication

.procedure instantiation

In the specification langﬁage, four categories of basic activities
are designed to accomplish these office operations. They are the
ASSIGNTO activity, the INVOKE activity, the SENDTO activity and the

database operations, as described below.
3.2.7.1 ASSIGNTO Activity

The ASSIGNTO activity performs computation on data objects.

Its syntax is
ASSIGNTO <object? Lexpression>»

which means to assign the value of the numeric or literal expression

<expression> to an object: éobject> .

The ASSIGNTO activity mirrors the assignment statement in tra-
ditional programming languages. One important use of it is to trans-
fer object values, for example, from fields in a relational recoxd
to form fields. The creation of a form could be viewed as filling
the protected fields via ASSIGNTO operations.

i

3.2.7.2 INVOKE Activity

The basic activity INVOKE is used to invoke office procedures.

The syntak is

- 17 -

INVOKE < proc—-name > WITH Zobj-list >
where <proc-name> is the name of the procedure to be invoked and
£obj-list> 1is a list of objects to be used as invocation parame-
ters. Once the INVOKE activity is executed, the specified office
procedure is activated and initialized with the invocation para-

meters.
3.2.7.3 SENDTO Activity

The SENDTO activity is designed to provide form interaction

between the office procedure and its agents. The syntax is
SENDTO <{dest? <form> WITH <field-list>

Which means to send the form <form>» +to the destination <dest?>

for interaction. < field-list> specifies fields in the form

involved in the interaction.

The destination in a SENDTO activity can be either a work

station or the mail station. When the destination is some work

station, the form image is displayed on that terminal and the

issuing procedure instance will wait for the workexr to £i1l the
unprotected and identification fields if any are specified in
the field list. After these fields are filled, the SENDTO acti-
vity is said to be completed (and the issuing procedure then ob-
tains the values of these fiélds). If the mail station is the
destination, a hardcopy of the form image will be produced and
sent out of the office via manual mailing system.- When the hard-
copy is filled and returned, a data entry process (actually, an
interaction on a special work station) is activated to put the
returned message back to the system. The issuing procedure in-
stance does not pause at the current transition to wait for the
message return. Such interoffice interaction is synchronized

by specifying an EXISTDOC predicate at another transition in

- 18 -

the Petri net. See section 3.2.8 for details.

one important feature of form interaction provided in the

OPAS system is the field masking facility. The field list in a
GENDTO operation contains only those fields authorized for inter-—
action. That is, different SENDTO actions on the same form may

I have distinct fields in the field list. This feature was desinged

for exercising security control over the office tasks.

The identification field in the form is another considera-
tion toward security control. The user can specify an identi-
fication field for each interaction to make sure that the key-
in will be done by the authorized people. In the current design,
the form interface program will handle the checking of the autho-
rized workers by not accepting the key-in until the identification
field . is entéred correctly. Of course, the security control can
be extended to a rather sophisticated checking process in the fu-

ture.

Before the SENDTO interaction, protected fields of form in-
volved should be filled using the ASSIGNTO activity. After the
SENDTO opération is finished, unprotected fields specified cbn—
tain input values which can ﬁe, for example, copied to other data
objects by ASSIGNTO\activitiés. Such assignmént operations can
be implicitly done by specifying data sources or sinks for fields

in the field list. For example, the activity

SENDTO AGENTLl Fl1 WITH FDl=Dl, FD2, D3=FD3
transmits the form Fl to tHe AGENTLl work station with three fields
FDl, FD2, FD3 involved where FD1l and FD3 have source object D1 and

sink object D3 respectively. If the field FD2 is unprotected,

after the interaction it is viewed as an object containing some

- 19 -

value. If otherwise it is protected, then it should have been
get by an ASSIGNTO (or another SENDTO) activity previously.

‘| 3.2.7.4 Database Operations !

The database operations are commands for manipulating data
_in the office databases. They provide the important user—DBMS

interface of the specification language.

Three commands are currently available for retrieving and

modifying data in the office databases. They are:

‘ - GIVING = <¢rel>
SELECT <rel> WHERE <gqualifier> {INTO < group-obi> }
<rel> UNION <group-obj> GIVING «<rel>

<rel> MINUS <group—obj>' GIVING Lrel>

The SELECT operation performs retrieving of data in relation <rel>
which satisfy the gqualification <qualifier> . The result itself
is also a relation (GIVING <rel>) or a group object in the pro-
cedure (INTO <group-obj>). The UNION operation inserts a rela-
tional tuple or record in < group-obj> into a relation, while
the MINUS operation deletes ;hé’tuple from the relation. The
introduction of record buffers in the above database operations
inherits traditional data processing concepts. Such user model
may be criticized to be not abstract or high-level enough for
non-specialists such as clerical workers. A possible database
interfacing design emphasizing on data abstraction will be dis-

cussed in chapter six.
3.2.8 Transition Firing Predicates

The specification language nust provide means for describing

the firing predicate with each transition in an office procedure.

rhree categories of firing conditions were identified form the
operation nature of the OPAS office model. They are the object
predicates the time predicates, and the document existence pre-

dicate.

The object predicates check the value of ocbjects. The

syntax is
<objl™> Zoptr> <obj2>

Where the two operands <objl> and <obj2> are data objects

in the procedure and <optr> can be one of the six relational
operators >, =, <, ?= (greater than or equal to), <= (less
than or equal to), and # (not egual to). These comparison op-
erations facilitate the data dependent flow control within office

procedures.

The time prodicates specify time constraints for transition

firing. Two kinds of time specification, namely,

UNTIL <date> <tim8>
and

WAITFOR «<days> : <hours>
are provided in the language. The UNTIL predicate specifies the
absolute.date and/or time when the associated transition can fire.
The WAITFOR predicate, on the other hand, provides relative time

scheduling counted from theé time the associated transition is en-
abled.

The document existence predicate was designed for interoffice

form interaction. When a form (with unprotected fields) is sent

to the mail station, the receiving of the ekpected return informa-
tion must be synchronized in another transition by specifying the

Predicate
EXISTDCC < form>

where <form> is the name of the form in question. Before the
ingquired form returns, the predicate will always evaluate a false
value, The associated transition will, therefore, never fires

until the form is sent back.

Predicates in the above three categories are called atomic
predicates. Atomic predicates can be combined by Boolean opera-
tors AND, OR, and NOT to form "predicate expressions". A pre-
dicate expression serves as the general firing predicate for
transitions. At any time, the evaluation of a predicate expre-
ssion with a true wvalue will trigger the firing of the associated

transition.
3.3‘ The Structure of The Language

Our nonprocedural office gpecification language contains
three sections: namely, thefpfocedure identification section,
the objects definition section, and the procedure detail section.
A brief description about the individual sections is presented

below. See appendix B for the entire syntax of this language.
3.3.1 Procedure Identification Section

The office programmer’ gives the following information in
the procedure identification section: the name of the procedure,
the invocation parameter list, and the agents specification.

There is no significant restriction on the naming of an office

1 procedure, but only the first eight characters of the name will
-g pe taken as the procedure identification. The invocation para-
é meter_list specifies working objects or form fields (protected
fields only) as invocation parameters of the procedure. The
agents specification declares office agents involved in the

procedure. Mnemonics can be assigned to each agent.

1 3.3.2 Objects Definition Section

All the working objects and forms appearing in the procedure
detail section must be defined in the objects definition section.
The associated information had already been given in section 3.2.5
§ and 3.2.6.

3.3.3 Procedure Detail Section

The procedure detail section is the major part of the pro-
cedure specification. It contains descriptions for the overall
Petri net structure of the procedure as well as the activity

details in each transition.

This section starts with the initial and termianting marking
specification, followed by é number of transition specification
for all transitions in the procedure. A transition is specified
by stating its transition ID, input and output places, predicate
expression, and the action associated. The predicate 6r the
action part of a transition can be null. The action part, if
specified, consists of a list of basic activities which will be
executed one after another if the corresponding transition fires.

L]

3.4 An Example Office Procedure Specificatidn Program

Appendix C gives an example specification program written

- 23 -

ﬁ;-in our office procedure specification language for the journal

editing procedure discussed in section 2.2. Note how the various
tasks in figure 2-2 are implemented in this program by record
puffers (group objects), forms, and programmed actions in tran-

sitions.

- 24 -

% CcHAPTER 4 DESIGN OF THE OPAS SYSTEM

One maijor goal of this report is to develope a framework which
realizes automation of office procedure. The resulted OPAS prototype
consists of several software processes communicating with one another
as well as work stations in office. The following sections describe

the architecture and implementation details of this prototype system.
4.1 Overall System Architecture

The overall architecture of the OPAS system is shown in Figure
4-1. The environment includes an administrator console, a number of
agent stations, a mail station, the office database, and the internal
form file. The administrator console is the control center of the
system. It functions to monitor the operation of the entire system.
System administrator at the console interacts with OPAS for demanding
and controlling procedure execution, as well as inquiring system sta-
tus. Agent stations are work stations in the system. Procedure ins-
tances communicate with agent stations for human intervention.
The mail station provides a channel for interoffice communication.
Incoming messages entef the syétem through the CRT terminal of it,

while the printer prints outéoing mails.

The OPAS system consists of five modules: supervisor, (Petri net)
monitor, form manager, mail manager, and data manager. They are pro-
cesses under VAX-1l1l VMS operating system.Each process uses VMS "event
flag" and "mailbox" facilities as a means of interprocess communica—
tionf4]'. Interactions among processes via messages are alsc shown
in Figure 4-1. ‘(Appendix D gives format of these messages.) The

five modules are functionally categorized into three classes:

1. System supervising —- supervisor
2. Petri net driving (i.e., procedure execution) -- monitor
- 25 —

==

3. Activity serving -- form manager, mail manager, and data

manager.

The supervisor accepts requests for services from the administrator
console, the mail manager, and the monitor (that is, from another
office procedure). It creates a monitor process once a procedure in-
vocation request is entered into the system, and passes to the moni-
tor the name of the procedure and required parameters for initiation.
A monitor process, once created, will be driven by the internal form
ﬁf the invoked procedure. Since the monitor is written in reentrant
code, ther’ is in fact only one single copy residing in the memory.
The form manager deals with interaction between agent station and
system. It receives commands from the monitor, displays forms or me-
mos at station, and passes worker-supplied inputs back to the monitor
The data manager deals with queries which manipulate data in the
office database. It acts as a high-level interface between monitor
and VAX-1ll file system. The mail manager governs communication be-
tween monitor process and outside office. It interacts with the mail

station to process incoming and outgoing mails.

4.2 The OPAS Modules

In this section we presént a detail functional description for
the five OPAS modules. Appehdix H gives detail implementation of
them.

4.2.1 Supervisor

The supervisor controls the whole system, including:
.Create all other processes,
.Accept procedure invacation demands from the administrator con-

sole, malil manager, or monitor,
.Interact with the administrator console for system control, and

- 78 -

.Maintain an office log file.

1ts major function is the invocation of office procedures. A proce-
dure will be invoked if a procedure invocation command is received
from the administrator console or if an MSG PI message is sent from
the mail manager or monitor processes (i.e., other office procedure).
The invocation includes creating a monitor process énd putting the

procedure name (through which the monitor can obtain its internal

|l form) and the initiation parameters to supervisor's mailbox which can

then be accessed by this created monitor process. Once the internal

| form is initiated, it will drive the monitor. In this case, we say

that a "procedure instance" has been created and in progress.

The supervisor contains an office control table (OCT) for kee-
ping track of information such as procedure instance ID, starting
time, priority, status, etc. .for instance management. The admini-
strator console has the right to make inquiries about any instance's
status, adjust its priority, pause/stop its execution, etc.. One en-
try is added to the OCT table whenever a procedure instance is crea-
ted. Any termination messages (MSG MT) or error messages (MSG_MER)
of procedure instances will be sent directly to the supervisor, which
then reports to the administrétor and records them in the OCT table

and office log file.
4.2.2 Monitor

A monitor process is created if a request for service is submi-
tted to the supervisor. It is then driven by the ‘internal form of
the invoked procedure, which leads to the execution of the correspon-
ding procedure instance. The execution follows the token machine

concept.

The monitor's work to realize procedure execution can be devided

| R

into three parts, namely, driving the Petri net, evaluating pre-
dicate expression, and performing basic activities. Most of

these are done internally in the monitor process itself (by access-
ing the procedure internal form) except for the three basic activi-
ties SENDTC, INVOKE, and database operation which require service
from the other OPAS modules. Intercommunication messages MSG FP
MSG PI and MSG DBO are sent to form manager {(or mail manager),
superv1sor and data manager respectively from monitor processes

for accomplishing these operatlons. Results are sent back to

the requesting monitor via other messages (e.qg. MSG_FFR'and

MSG_DER) .

In the current stage, we do not emphasize on supervisor-
intervention to the monitor process. Since the monitor is
implemented as a subprocess of the supervisor, however, the
supervisor can easily get full control over the monitor using

the process control facilities provided by VMS [4].
4,2.3 Form Manager

Form manager deals with interactions between procedure
instance (i.e., monitor procesg) and agent station. The inter-
action medium is form . If ‘a monitor process needs a "form
I/0", a MSG_FP request has to be sent to the mailbox of form
manager. The request includes the internal representation of
the form to be displayed and the destination station. Corres-
ponding to each agent station is a request queue which holds all
the MSG_FP requests using that station as destination. The
requests in the gueuve are served on an FIFQO basis. The form
manager will then send worker key-in information back to the
requesting monitor if input data to the monitor is needed.

This completes the whole process of one form I/0 activity.
Note any sensitive field in the form could be associated with
a password field to identify the worker/station.

i 4.2.4 Mail Manager

‘4 Mail manager deals with interactions between offices. BAny

executing procedure may need messages from outside world. 1In

this stage, this is accomplished by sending mails (MSG_FP messages)

to mail manager. Before a hardcopy of the mail is made, it must

% be numbered and stored. This number would then be used. as.an ID
: of the mail for later references. When the mailed hardcopy is
filled and returned, the operator at the mail station uses that
number to notify the mail manager. The manager is prompt to
\perform one form I/0 for displaying the stored mail on the CRT
terminal so that the values returned can be properly keyed in.

The input data are finally sent back to the requesting procedure.

‘Invoking procedures from outside offices is another major
function. In this case, this is done by sending the MSG_PI
messages {(which includes the required information for procedure

invocation) to the supervisor.

This mail process uses a CRT termianl plus a printer for
communicating with outside offices. In the second stage (on
going), it is designed to be supported by an electronic mail
system with a set of communication protocols for office infor-

mation exchange.

4.2.5 Data Manager

Data manager provides procedure instances with a high-level
interface to the office database. It can be seen as a rather
simplified relational DBMS in the current stage. All the executing
procedure instances are users of this simplified DBMS. If data
retrieving or updating is neéded, they send to the mailbox of data
Ranager relational algebra commands (message MSG_DBO) . The results

are sent back to the requesting procedure via message MSG_DBR.

- 29 -

currently, the available algebra operations are SELECT, UNION, and
MINUS.

Y

4.3 Internal Form of Office Procedure

By internal form we mean the internal representation of office
procedure specification which is used to drive the monitor. This

driving leads to the execution of office procedures. The internal

form actually is a set of data structures providing necessary infor-

mation for the following tasks:
.procedure execution control
.procedure execution (i.e., Petri net driving), and

.activity realization

Corresponding to these tasks are the three types of data structures:

{1) Procedure contrecl data structure —-- It contains one block,
Prcocedure Control Block (PCB).
(2) Petri net driving data structure -- The driving primarily

follows the token maghine concept. This type of data
structure consists?offtwo tables, namely, Marking Table
(MT) and Active Trénsition'List (ATL) .

(3) Activity realization data structure -- It contains seven
tables, namely, Transition Detail Table (TDT), Predicate
Component List (PCL), Activity List (AL}, Actural Argu-—
ment List (AAL), Objects Description Table (ODT) ,and
Objects Data Area (0ODA). '

The following subsections describe these data structures. Layouts

of individual tables are given in appendix E.

4 .3.1 Procedure Control Block

- 30 -

1

The procedure control block (PCB) provides information for'con—
trolling 'office. procedure instances. It contains an instance's
procedure identification (PRC_ID), activation time (PRC_AT), execu-
tion status (PRC_STA), Petri net pointers (PRC_CMK,'PRC_CTR), and
invocation parameter descriptor - (PRC_IPL). The fields PRC_ID and
PRC_AT together form the effective ID of tﬁe procedure instance
which'éerﬁes the identification of the corresponding instance
throughout the system. The status PRC_STA must reflect one of the
states (e.g., ready-to-go, running, iédle, etc.) during execution.
‘Petri net pointers PRC_CMK and PRc;pTR record the current execution
point of the corresponding instance. PRC_IPL is a list of pointers
" to objects in ODT which have been specified as invocation parameters,

There is no usual priority information in PCB. Since the
priority control is actuwally done by the supervisor'by means of
adjusting VMS process priority of procedure instances, such infor-
mation is kept in the OCT table inside the supervisor.

4.3.2 Petri Net Driving Date Structures

Two tables, namely, marking table (MT) and active transition
list (ATL) are designed to realize the Petri net driving.

The specification language translator uses the token machine
concept to derive the reachability tree{1l]consisting of every
possible‘Petri net markings for an office procedure. These markinds
constitute the MT and the ATL. All active transitions in a marking
are stored as consecutive entries of the ATL. Each MT entry con-
tains only a pointer (MK_FAT) and a length (MK NAT) field for
accessing these transitions. The first entry in MT is always the
initial marking, while the terminating marking is indicated by null

MK_NAT and MK _FAT fields.

An ATL entry consists of an output marking field (AT_OMK} and

S e e N e i e R

a pointer (AT_TP) to the detail information of transition. The
output marking is defined as the resulted marking due to firing

of a transition. Since each transition in a net could be active

'in more than one marking, the context of transitions are stored

in another table with the AT_TP pointer in ATL for access.

Figure 4-2 gives an illustration of the Petri net driving

data structure where (&) and (b) are a simple Petri net and the

,:'reachability tree derived respectively, while (c¢) shows the con-

tents of the corresponding MT and ATIL.
4.3.3 Activity Realization Data Structure

This type of data structure includes the internal forms

(IDT, PEL and PCL) of transitions and their predicates, internal

~form (AL and AAL) of activities in the transition, and ODT and

ODA tables for storing the objects used in the office procedure.

Each TDT entry (plus related entries in PEL, AL etc.) des-
cribes the context of a Petri net trnasition. It also contains
some control items (e.g.,the in-firing flag TR FIRE) for transition
selection and firing. This internal form must include the firing
predicate and activities aséociated with a transition. Since
both two parts are variable;length items, they are seperately
stored in the PEL and AL data structures, respectively. Pointers
and length counts (fields TR PEP, TR NAC, TR FAC) are kept in TDT
for access purpose. Another counter (TR_CAC) serves to count acti-

vities performed during transition firing.

PEL and PCL are data 'structures for storing firing predicates
of transitions in the net. All atomic predicates.(see section 3.2.8)
are listed in PCL, while PEL contains predicate expressions with

entries in PCL as operands. The expression in PEL are stored in

- reverse Polish notation.

i

AT and AAL describe activities in each transition. Each type

of basic activities is represented by an operation code followed

i py a list of arguments. (See appendix F for formats of activity

ihternal form.) As in the above data structures, the wvariable-

_ length argument list is stored in a separate table AAL with pointer

and length count in AT (AC_FPAG, AC NAG) for access purpose.

ODT and ODA together provide the facility to manipulate objects

?.'in an office procedure. The descriptor table ODT describes the ob-
=‘=_‘ject type, data type, length, storage address in ODA, and other

B characteristics of each defined object. The ODA, on the other

{§ hand, provides character storage for all objects. Objects of

' either alphabetic or numeric data type are stored as character

string in ODA. (Appendix G gives a tabular description of charac-

teristics and coding of objects in ODT.)

Figure 4-3 depicts the organization of these activity real-

ization data structures.
4.4 Some Notes on Implementation
4.4.1 Petri Net Driving Ty

The Petri net structuré of an office procedure consists of
the marking table and the active transition list in the internal
form. The monitor drives the net by tracing entries in these
two tables.

Each MT entry has its active transitions listed in ATL.
When the net is in some marking, its active transitions will be
checked sequentially for their associated predicates (in PEL)
to determine which transition can fire. The first active tran-

sition with a true predicate value is selected to fire. The

firing of a transition will cause its associated actions to be
performed. After the firing is completed, the Petri net will
be in the state of the output marking of that fired transition.
The selection of a transition from this new marking will repeat

until the terminating marking is reached.

The evaluation of predlcate expression of an enabled transition
may invole objects comparison, form checklng, and time checking.
Comparison of objects is a simple operation on objects stored in
the ODT and ODA. Form checking operation is done by examlnlng a
flag field in ODT entry of the form. This flag is set when the
form is sent to mail station and cleared when the form is returned.
The processing of tlme predlcate is somewhat compllcated When a
time predicate is encountered for the first time, the predicate ig
viewed as false but a VMS set-timer call [4] is issued with the time
specified. This system call will result in a software interrupt to
be generated to the monitor pProcess when the specified time arrives.
Then, the corresponding interrupt handler inside the monitor will
record this fact by setting a bit in the internal form of that
original time predicate. After this, the time predicate is viewed
to contain a true value. Of course, any set-timer call which is
not yet on time must be cancelled [41 1f the corresponding transi-
tion is disabled due to the %iring of another transition.

4.4.2 Working Storage

Each OPAS procedure has working storage built up by ODT and
ODA. This working storage is used for holding temporary results,
form images, and relational tuples during procedure execution.

Data objects in the.working storage are manipulated by the
ASSIGNTO activity as well as other activities. Since all objects
are stored as character string, they are converted to binary va-

lues before computation and the result will be converted back

- 34 -

afterwards for storing. In the operation of a procedure instance,
it is likely that data exchange will happen frequently among objects
in the working storage as well as among the working storage, the
office databases, and the agent stations, just like what occurs in

a traditional computer program.

4.4.3 Form Implementation

A two-dimensional form is cut, line by line, into a list of
fields which are stored in ODT and ODA. These fields can then
be manipulated seperately as objects in basic activities such like
ASSIGNTO. In a SENDTO activity, included fields of form are groupea
to make a "form packet" which is the transmission unit of form
among OPAS modules. For example, the monitor may send a form
packet (message MSG FP) to the form manager for interaction.
2 form driver routine will take charge of constructing, display-
ing the form as well as accepting worker's key-in. Figure 4-4
shows the format of form packet. Each fields in it consists of
two parts, namely a descriptor part and a text part. The des-
criptor describes. the field in terms of its type, length, location,
etc., while the text part gives the field value.

The form packet scheme may hopefully serves as a basis for
further extentions of 0OPAS features, for example, the dutomatic
communication between offices, multiple form instance concept,

and management of form, etc..
4.4,4 Database Interaction

In the design of database facility, we chose to employ a
stand-alone DBMS process (the data manager) for database manage-
ment. Database operations are carried out by message interaction
between the monitor and the data manager. On performing a data-

base manipulating activity, the monitor sends to the data manager

- 26 _—

a MSG DBO request containing a query command string (generéte&
from the internal form of the activity), and then waits for the
results. The data manager, after having processed the quexy co-
mmand, sends the message MSG_DBR containing resulted data or a
status code to the issuing monitor process. The monitor will
copy the resulted data (if any) into its working storage. The :
interaction is then completed, with data retrieved into memory

or modification done in the database.
4.4.5 Implementation of Message-driven Modules
Three VMS system services make the implementation of the

OPAS system successful. They are mailbox, AST I/0, and event
flag. As described previously, associated with each process is

one or more VMS software mailbox for inter-process communication.

The AST I/0 (Asynchronous System Trap) plays a rather important

role in the design of OPAS processes. Since each module commu-
nicates in a one-to-many manner, any module cannot "wait" for
messages from any other. The VMS AST facility enables each
process to deliver an asynchronous mailbox reading and continue.
Once the message is ready to read, the process is interrupted
(asynchronously trapped) to_exeéute a special program section for
accepting (and processing) the message. When finished, it goes
back to its routine work.;_The AST I/0 is also used by form
manager for simultaneously handling all the agent terminal I/0's

- i.e. I/0 between system and station.

The event flag is another VMS provided facility for inter-
‘process communication. The monitor process uses it to handle the
reading of mails from the mail station and forms in the system.

1

4.4.6 System Generation and Bootstrapping

Before the OPAS system can get operation, several tasks have

to be done:

4.

All the office procedures translated must be registered

and stored in the system. |

An Invocation Control Table (residing in the supervisor

as well as in the mail manager for relating each registered
procedure to its invocation parameter entry form) must be
built. |

All the relations must be generated and loaded in the office
database.

All the OPAS terminals must be assigned. -

Facilities are provided to accomplish these tasks.

OPAS is bootstrapped by running the supervisor from the

administrator console, which in turn automatically creates other

OPAS modules (form manager, mail manager, and data manager) in

such a way that the system is ready to accept requests for ser-

vices from the administrator console and the mail station.

:‘CHAPTER 5 SUGGESTIONS FOR FURTHER EXTENTION

During the development of this first version of the OPAS sys-
rem, a few important features were identified but not implemented
due to the time limit. Some of them are proposed in the follow-

 'ing sections as a guideline for future extention.
5.1 Complete High-level DBMS Interface

One reason to select the relational approach as the office
database model in the design of OPAS is that a high-level, set-
handling data sublanguage can be defined easily for clerical workers.
The database operations in the procedure specification language

(see section 3.2) basically resemble the relational algebra approach.

- However, as mentioned before, the design is not yet complete in

that the user must use formatted record buffers for accepting and
manipulation relational'tuples. In this section a design to

accomplish set-handling for database data is sketched. In de-

5 signing the DBMS interface for a procedure automation system, the

' major problem is that data buffers must exist in the procedure
specification program but the user's interpretation of them should
be high-level or abstract. The workspace concept in data sub-
language DSL ALPHA may satify our needs. Here workspace is
interpreted as the communication area between office procedure
and the DBMS which is capable of holdihg an entire relation. A
procedure can have one or more workspaces. Take data retrieval
as an example. A SELECT operation can be specified to pull the
resulted relation into a workspace w:)

SELECT customer WHERE credit < 500 INTO w;
The workspace w now is viewed as a rectangular array containing
rows of tuples. Data in it can be referenced by adding prefix
"W' to attribute names, e.g., w.credit. This notation refers to

an aggregate object which is the set of values in the credit column

- 38 -

of the wofkspace w. For example, aggregate objécts.w;th prefix
w in the acfivity .

SENDTO MAILSTATION f4 WITH fdl=w.name, f£d2=w.addr, fd3=w.credit
will cause multiple instances of form F4 to be mailed, each with

different customer name, address and credit value.

A set of functions can be provided to manipulate aggregates
in workspaces. Typical examples include MAX, MIN, SUM, AVG, CNT,
etc. For example, SUM(w.order-amount) gives the sumation of do-
~ 1lar amount in ORDER relational tuples retrieved into workspace w,
while CNT(w.*) counts the number of tuples. Other relational
algebra operations such as JOIN, PROJECT, UNION, MINUS, etc. can
also be applied to the workspace, treating the latter as contain-

ing tuples of a relation.

Implementation of the above requires that the monitor program
loops internally to process the set of values in the workspace.
Considering the design of the OPAS system, the workspace can be
a dynamic area in the monitor data structure ODA oOr they can be
a scratch file in disk. The data manager, after having processed
a request (e.g., a SELECT operation), should transmit both the
resulted block of tuples and a tuple description to the monitor
mailbox. The monitor Willfstore both these two messages and
associate them with the internal representation of the corresponding
workspace. Then, whenever a reference of data in the workspace is
encountered, the monitor process starts a loop to process the data
in aid of the associated tuple descriptor. Processing in the loop
may be the distribution of multiple form instances, the sumation
or averaging of attribute values,etc., as illustrated above. In
fact, internal implementation of basic activities discussed in
chapter 4 must be changed into loops to realize the workspace

Processing.

5.2 Additional Form Features and Form Processing

~ 39 -

Current implementation of the OPAS system had narrowed the
usage of forms to be the interaction medium between system and
station. Significant restrictions include no repeating form
fields, single page (or display screen) form size, and no multiple
form instances. With these limitations, form processing capabili-

ties in manual paper offices are by no means covered yet in OPAS.

Repeating groups in form are necessary for users. There are
obviously repeating entries in bussiness forms, for example, items
in invoices. To adopt repeating fields, the structure of the form
packet in our implementation must be refined. Additional design
must also be consistenly applied to form description, display and
editing functions, etc.. The form size problem also follows natually.
- It seems not proper to allow repeating entries but reject the exis-
tence of multiple form pages. Moreover, there is not any storage
problem with form since it exists as electronic image. Thus the
handling of multiple form pages should also be included in the

above refinement.

In ordinary offices, official documents are usually filed for
future reference after they are produced and processed. For exam-
ple, if forms are invoices We may want to ask queries about monthly
sales. This need suggestskthat form field values be managed as data.
A simple, yet sufficient realization is to treat form instances as
relational tuples, with form field values considered as attribute
values [8]. The form packets in OPAS are well reédy for such handling.
Form relations can be defined with literal fields and descriptor
data in a form packet treated as special FILLER attributes which
cannot be accessed individually. Then form instances can be stored
in the oOffice database and retrieved later by database activities.
For example, the followihg activities

SELECT order WHERE cust—name = 'ABC CQ.' INTO W ;

SENDTO AGENT3 w.* ;
result a tracing of ABC CO.'s orders at the AGENT3 station.

- 40 -

Another problem which had been neglected in ‘current implemen-
tation is the handling of multiple instnaces of the same form type
in an office procedure. Basically, form instances of the same type
can be chained and stored in a dynamic area in ODA. However, aspects
of processing such as identification of individual instances, handling
of form aggregates, etc., do require further study and design.

5.3 Abstractions in The Specification Language

Abstraction on data structures as well as on control structures
should be emphasized on the design consideration of office procedure
specification languages [5]. One language feature which may assist

in proﬁiding both data and control abstractions is the aggregate-

oriented processing of data objects.

Many office operations are frequently performed on groups of

documents [7]. For example, in journal editing procedure more than

one reviewers would be assigned to review a paper and thus multiple

copies of reviewing documents must be processed within the procedure.
Other examples are‘daily memo destribution, trace of filed forms,
etc.. If objects can be manipulated in aggregates, the user speci-
fication can be condenced and low-level control structures removed.
Consider the fbllowing exémple. Assume in the journal editing
procrdure the number of reviewers for a paper is variably deter-
mined by the chief editor. The activities (suppose'"rev(*)“ means
all occurrences of the repeated reviewer field in the reviewer-
selection form)
SELECT reviewer WHERE name = rev(*) . INTC W ;
SENDTO MAILSTATION letter-to-reviewer WITH
faddr = w.addr, fname = w.name, ftitle = paper-title;
fauthor = paper—author ; _
can be specified tc conveniently prepare and mail reviewing forms
to each reviewer selected. A contrast is that the user must employ

explicit loop control (using transition predicates and counter ob-

- 41 -

jects) to implement each activity above, which is certainly much
more low-level and boring. In specifyingisuch aggregate-oriented
processing, the user needs not concern with the number of duplicates
in the aggregates. In fact, it is dynamic as in the example above.
rRepeated operations will be initiated according to the run-time

context of the aggregate objects.

Abstract object types may also be provided instead of atomic
alphabetic/numeric classification. Such high-level data types may
include NAME, ADDRESS, DATE, DOLLARS, etc.. They will help in offer-
ing better error detection and automatic conversion in object mani-

pulation.
5.4 Replacement of Passive Work Station

Another limitation of the OPAS system may arise from the
automatic control of office processing. The system design took
into consideration only various aspects for realizing precedure
automation and nothing else. Work stations in the system turn out
to be in a passive position in that interaction between work station
and procedure instance are totally initiated by the system. Workers
at the work stations can do-nothing but sit and wait for the calling
from some procedure instancef Such system operation is certainly
not complete enough. If, besides interacting with procedure ins-
tances, the workers can accesé through the work station system
facilities such as information retrieval, electronic mail, etc.,
they can work in an active manner and take charge 6f those office
tasks which are difficult to be organized into well-defined office
Procedures. The OPAS system will then be more practical and complete.

A feasible improvement is to replace simple terminals in OPAS
with stand-alone, microprocessor based word processing systemn.
These word processors should be link to the VAX minicomputer in

such a way that the office database, OPAS's utility programs(e.g.,

- 42 -

- the specification language translator) can be accessed from the word
s processbr stations and OPAS itself can interact with these stations.
Then we can construct an environment in which clerical workers work
in aid of automated tools to carry ou£ creative or advanced office’

tasks while routine office procedures automatically run in parallel.

The extention to such a powerful system may encounter many
interfacing and integration problems. One approach to $implify
the complexity is to view the office procedufe'instances automati-
cally running as message (or form) generating agents. An interface
program may reside at each work station, taking charge of communi-
cating with these message generation agents and other stations.
The worker at a work station changes operation modes to'do word
_processing, to issue data retrieving queries, or to process incom-
ing messages or forms, etc.. In the case of messages processing,
forms sent from automatic procedure instances can be queued on a
mail tray and selectively examined or filled, exactly like messages

from other work stations.

[CHAPTER 6 CONCLUSION

As addressed in [2], automatic work flow control is a key to

:f}the improvement of office productivity. In this report, we have pre-

" gented a system which supports automatic execution control of office

: procedures.

The design of the OPAS system attempts to achieve procedure-level

 J automation of office work as well as integration of office information

processing facilities. To accomplish automation, control strcture

" has been established by incorperating_the supervisor module which go-

[verns system operation, the moniter module which realizes office pro-

cessing, and the various server modules form manager, data manager and
 mail manager. Execution of an office procedure is then implemented

' by spawning a computer process (the monitor) which runs by itself to
'fuifil the required task. The integration is achieved by providing
form processing, database management, and data processing facilities
T-through the single office procedure specification language interface.

Schemes to support these processings, e.g., the form packet, the wor-

2 king storage and DBMS interfacing, had also been included in the de-

‘ _sign of the moniter and other related modules. The entire system is
'. being implimented on a VAX-11l/780 computer under the VMS operating
- system. The prototype system described in this report has bheen
completed by the July of this year. Continuing efforts are under way
on advanced topics such as interoffice communication, security con-

trol, form management, and database facility, etc..

- 44 -

Appendix A. Formal Definition of The PNB Model

a. PNB Model Definition

A Petri-net-based model is a 6-tuple(2=(T,P,D,@, > X), where
(i) T is a finite set of transitions;

(ii} P is a finite set of places;

(iii) D is a finite set of depositories;

(iv) @ = 1U0: T — P, where

I: is a mapping of a transition to its set of input
places, and

0: is a mapping of a transition to its set of output
places;

(v) A= 1ildo: T — D, where
i: is a mapping of a transition to its set ‘of input
depositories, and !
o: is a mapping of a transition to its set of output
depvsitories;
(vi} ¥ is a set of doublet (ct,af) over T, where

ce: is a boolean .expression associated with transition
te T, and

af: is a simple or compound action of teT.

b. PNB Model Execution Definition
‘The execution rule of a:PNB diagram can be defined by a dou-
blet T= (M,T) over 2, F, .and B, where

(i) F: is a set of incident markings. An incident marking
f¢ is a marking with only one token present in each
place of I(t), teT;

(ii) B: is a set of outgoing markings. An outgoing marking by
is a marking with only one token present in each
place of O(t), t&eT; '

(iii) M: is a set of "reachable markings" including the ini-
tial marking m,. Of course, my;, the terminating
marking belongs to the set, i.e., mge M;

(iv) 7: MXT — M is a "firable function" of transition in
T . If a transition t fires under marking m, we say
Z(m,t) = m’, with m’= m-f;+b;, where m, m'eM, f;eF,
and by&B. A transition t fires under marking m if

- 45 -

a) m=2£f; and
b) c¢ = TRUE in (cg,az).

A transition is enabied if only a) holds.

A~

7 appendix B. Syntax of Office Procedure Specification Language

Notations:

<ps> : start symbol cf production rules
L nonterminals
capital words terminals (key words)
alb : - either a or b
L] optional
{ } ‘ multiple occurrences
<ps> ::= <id-section> <data-section> < procedure-section®
END

<id-section ::= PROCEDURE IDENTIFICATION PROCEDURE-NAME[IS]
<symbol> ; [PARAMETERS [ARE] <symbol-list):]
{ <system-device> [IS] <symbol> ;} '

<system-device> ::= AGENTOl | AGENTO02 | ... | AGENT99 | MATLSTATION

OBJECTS DEFINITION { <data-decl> ; }

Il

<data-section>

<data-decl> ::= <item-decl> [<group-decl> I <doc-decl>
< item-decl> ::= <symbol> [IS] < data-type> [< formatD>]
< group-decl> ::= GROUP < symbol> <item-decl> {[,] <item-decl>}
ENDGROUP '
<doc-decl> ::= FORM <s§mbol> [LINE <integer> [,] COLUMN
<‘intege£>] <m;arker>. <doc—-text> < marker>

{ <field-decl>}, ENDFORM
<data-type> ::= ALPHABETIC [NUMERIC

<format> ::= <integer> I <integer> . <integer>
< marker> ::= >

< doc—-texty» ::= <string-or-field> { <string-or-field> }
< string-or-field> ::= '<string> ! <field-symbol>

< field-symbol> ::= % <symbol>

< field-decl> ::= <field-symbol> <data-type> [<format>]
< field-type> <value>

< field-type> ::= PROTECTED[UNPROTECTED IDCODE

- 47 -

< procedure-section> ::= PROCEDRUE DETAILS <init-term-marking>
<transition> {; <transition» }
¢init-term-marking> ::= INITIAL-MARKING [IS] <integer-list> " ;
TERMINATING-MARKING [ISJ <integer-list> ;
¢transition> ::= TRANSITION-NUMBER <integer> TRANSITION-NAME
| [Is). <symbol> ; INPUT-PLACES [ARE] <integer-list>
OUTPUT-PLACES [ARE] <integer-list> ;
PREDICATE [IS] <« pred-expression> ; ACTIONS [ARE]
<action-list> ENDTRANSITION

<pred-expression> ::= - I <pred-expl>
<pred-expl> ::= <pred-opn> l(gpred—expl:»)]<pred—expl>
: <pred-opr> <pred-expl>
Ig < pred-opn> ::= <data> <rel-opr> <data> |
EXISTDOC < symbol> |
UNTIL <date> <time> |

WAITFOR <days-hours>
<pred-opr> ::= AND|OR
' < rel-opr> ::=>|=[<|;é ['>~_~ I <=

< date> ::= <two-digits> - < month-name> - <two-digits>
< week—-day> |
< time> ::= <two-digits> : <two-digits>
< days—hours> ::= <three-digits> = <two-digits>
<month-name> ::= JAN|FEB|MAR|...|DEC
< week-day> pr= SUNIMON' “ee I SAT
<action-list> ::= - <action> {; <action>—}
<action> ::= INVOKE <symbol> WITH <data-list> [

ASSIGNTO < symbol> <expression> I
SENDTO <dest> <symbol> WITH <doc-param-list> |
. _ . < db-operation>
< db-operation> ::= SELECT <symbol> WHERE <qualifier> ‘
GIVING <symbol> | <symbol> UNION <symbol>
GIVING <symbol> | <symbol> MINUS <symbol>

GIVING <symbol>

~ 48 -

<expression>
< string-exp>»
<arith-exp>

<arith-opr>

e

I

i

Il

i

<string-expx> ’ < arith-exp>

<string-data> I <string-data> / <string-exp>
<num-data>] (<arith~-exp>»> , <arith-exp>
<arith-opr> <arith-exp>

=1l

appendix C. An Example Specification Program --- The Journal

Editing Procedure

¢l PpROCEDURE IDENTIFICATION
‘¥ PROCEDURE-NAME journal-editing;
PARAMETERS ARE paper-no,title,author,address, sub-date;
AGENT2 IS editor; MAILSTATION IS mailprint;
ORJECTS DEFINITION
GROUP papers-t
paper-no ALPHABETIC 5, title ALPHABETIC 70, author ALPHABETIC 30,
address ALPHABETIC 30, sub-date ALPHABETIC 8,
paper-status ALPHABETIC 1
i ENDGROUE;
f GROUP review-t
pno2 ALPHABETIC 4, reviewer2 ALPHBETIC 30, date2 ALPHABETIC 8§,
status2 ALPHABETIC 1
ENDGROUP;
GROUP reviewer-—t
rnol ALPHABETIC 4, rnamel ALPHABETIC 30, raddrl ALPHABETIC 30
ENDGROUP;
FORM auth-ackn COLUMN 80, LINE 7
.7 ‘
To: %corr
$addr
From: CACM Editor

This is to acknowledge the receipt of your paper entitled
"stopic".

Thank you for your ;nﬁrest in our journal.
> _

$corr ALPHABETIC 30 PROTECTED,

saddr ALPHABETIC 30 PROTECTED,

%topic ALPHABETIC 70 PROTECTED

ENDFORM:

FORM revr-sel COLUMN 80, LINE 15
>
To: CACM Editor

From: Journal-editing-procedure
Subject: %subjectl

Please select one reviewer for the paper entitled
gtitlel

by
%authorl

Reviewer: %reviewerl '

Sign here: %ed-sign

T —

%subjectl ALPHBETIC 40 PROTECTED VALUE "REVIEWER SELECTION"
stitlel ALPHABETIC 7Q PROTECTED, !
sauthorl ALPHABETIC 30 PROTECTED,

sreviewerl ALPHABETIC 30 UNPROTECTED,

$ed-sign ALPHABETIC 8 IDCODE VALUE "XKGZMAAA"

ENDEF'ORM;
FORM to-revr
>
To: Zname

gaddrl
From: CACM Editorial Office
Subject: Submission of paper to be reviewed

We would like to invite you to review the paper entitled
$p-title

for us. Please fill the form appended and mail it to us

within two months.

Thank you very muchl!

>

gname ALPHABETIC 30 PRQOTECTED,
%$addrl ALPHABETIC 30 PROTECTED,
$p-title ALPHABETIC 70 PROTECTED

ENDEFORM ;
FORM revr-response
>
To: CACM Editorial Office

From: %revr
Subject: Paper Review Response

Do you accept this review request?(Y/N) %c
Review opinion: ;
goll

%0l2

>

grevr ALPHBETIC 30 PROTECTED,
$c ALPHABETIC 1 UNPROTECTED,
%01l ALTHABETIC 80 UNPROTECTEDS
2012 ALPHABETIC 80 UNPROTECTED

ENDFORM;
FORM to-revr-1
) >
To: grevr—-1 ;

gaddr-1
From: CACM Editorial Office

We have to remind you about the paper entitled

"Tetitg-1"

which was submitted to you at %date-1. Please send the
e ~ response form to us within 5 days.
i

Ii 51

Thank you very much.

>

¢revr—-1 ALPHABETIC 30 PROTECTED,
%addr-1 ALPHABETIC 30 PROTECTED,
stit-1 ALPHABETIC 70 PROTECTED,

2date-1 ALPHABETIC 8 PROTECTED

ENDFORM;
FORM ed-decision
>
To: CACM Editor

From: Journal-Editing-Procedure

Subject: Final decision to accept paper or not

The reviewer's opinion of the paper
3Lt

is
gol
%02

Final desision: (A--accept,R--reject) %f-dec

Sign here:
>

%+t ALPHABETIC 70 PROTECTED, %ol ALPHABETIC 80 PROTECTED,

262 ALPHABETIC 80 PROTECTED,

%sig ALPHABETIC 8 IDCODE VALUE "XKGZMAAA
ENDFORM;
FORM auth-ackn-1

>

To: gcorr-1

gaddr-2
From: CXCM Edltorlal Office :
Subject: Response for paper submission

This is to inform you that your paper
$title-1
submitted at %date-2 has been %arr

Thank you for your intrest in our journal.
>
gcorr-1 ALPHABETIC 30 PROTECTED,

2addr-2 ALPHABETIC 30 PROTECTED,

2title—-1 ALPHABETIC 70 PROTECTED,

garr ALPHABETIC 6 UNPROTECTED,

2date—-2 ALPHABETIC 8 PROTECTED

ENDFORM;

- 52 -

PROCEDURE DETAILS
INITIAL-MARKING IS 1;
TERMINATING-MARKING IS 4,12;
TRANSITION~NUMBER 1
TRANSITION-NAME paper-login;
INPUT-PLACES 1; OUTPUT-PLACES 2,3;
PREDICATE - ;
ACTIONS :
ASSIGNTO paper-status "E";
papers UNION papers-t;
ENDTRANSITION;
TRANSITION-NUMBER 2
TRANSITION-NAME author-acknowledge;
INPUT-PLACES 2; OUTPUT-PLACES 4;
PREDICATE - I
ACTIONS
SENDTO mailprint auth-ackn WITH corr=author,
addr=address,topic=title;
ENDTRANSITION;
TRANSITION-NUMBER 3
TRANSITION-NAME reviewer-selection;
INPUT-PLACES 3; OQOUTPUT-PLACES 5;
PREDICATE = ;

ACTIONS
SENDTO editor revr-sel WITH subjectl,titlel=title,

authorl=author,reviewerl,ed-sign;
ENDTRANSITION; .
TRANSITION-NUMBER 4

TRANSITION-NAME log-review;

INPUT-PLACES 4,5; OUTPUT-PLACES 4,6;

PREDICATE -~ ;

ACTIONS .
review UNION (pnd=paper—no,reviewer=reviewerl,
date=$DATE,status="B") ;
ENDTRANSITION; :
TRANSITION-NUMBER 5

TRANSITION-NAME inform-reviewer;

INPUT-PLACES 6; OUTPUT-PLACES 7;

PREDICATE - ;

ACTION
SELECT reviewer WHERE rname=reviewerl INTO reviewer-t;

SENDTO mailprint to-revr WITH name=reviewerl,
addr2=raddrl,p-title=title;
SENDTO mailprint revr-response WITH revr=reviewerl,
' | c,0ll,012;
ENDTRANSITION;
TRANSITION-NUMBER 6 .
TRANSITION-NAME walt-response-1;
INPUT-PLACES 7; OUTPUT-PLACES 9;

PREDICATE
EXISTDOC revr-response;

e G o e e

ACTIONS - ;
ENDTRANSITION;
TRANSITION-NUMBER 7
TRANSITION-NAME two-month-timing;
INPUT-PLACES 7; OUTPUT-PLACES 8;
PREDICATE
WAITFOR 60:00;
ACTIONS ,
SELECT review WHERE pno=paper-no INTO review-t;
SENDTC mailprint to-revr-1 WITH revr-l=reviewerl,
addr-l=raddrl,tit-l=title,date-1=date2;
ENDTRANSITION;
TRANSITION-NUMBER 9
TRANSITION-NAME reselection-timeout;
INPUT-PLACES 8: OUTPUT-PLACES 3;
PREDICATE
WAITFOR 7:00;
ACTIONS

review MINUS review-t;

ENDTRANSITION; :

TRANSTTION-NUMBER 8.
TRANSITION-NAME wait-response-2;
INPUT-PLACES 8; OUTPUT-PLACES 9;
PREDICATE '

EXISTDOC revr-response;
ACTIONS - ;

ENDTRANSITION;

TRANSITION-NUMBER 10
TRANSITION-NAME review-rejected;
INPUT-PLACES 9; OUTPUT-PLACES 3;
PREDICATE

NOT c="Y"; 'ﬁ
ACTIONS ’ :

ASSIGNTO subjectl _

"Reviewer. reselection due to rejection”;

SELECT review WHERE - pno=paper-no INTO review-t;
review MINUS review-t;
ENDTRANSITION; :

TRANSITION-NUMBER 11
TRANSITION-NAME final-decision;
INPUT-PLACES 9; OUTPUT-PLACES 10;
PREDICATE

C'—"“Y";
ACTIONS ¥

SENDTO editor ed-decision WITH tt=title,ol=oll,
02=0l12,f-dec,sig;
ENDTRANSITION;

ASSIGNTO subijectl. "Reviewer reselection due to timeout“}

:Q RANBITION—NUNBER 12
- PRANSITION-NAME paper-~rejected;
INPUT~PLACES 10; OUTPUT-PLACES 11;
PREDICATE
It f-dec="R";
.~ ACTIONS
SENDTO mailprint auth-ackn-1 WITH corr-l=author,
addr-2=address,title~1=title,arr="rejected”,
date-2=date?l;
“' papers MINUS papers-t;
ENDTRANSITION;
TRANSITION~-NUMBER 13
TRANSITION-NAME paper-accepted;
INPUT~PLACES 10; OUTPUT-PLACES 1l1;
PREDICATE
f~-dec="A";
ACTIONS
SENDTO mailprint ahth-ackn-1 WITH corr-l=author,
addr-2=address,title-1l=title, acc—“accepted“
i , date-2=datel;
¢ papers MINUS papers-t;
' ASSIGNTO paper-status "D";
papers UNION papers-t;
ENDTRANSITION; '
. TRANSITION-NUMBER 14
TRANSITION-NAME clear—files;
INPUT-PLACES 1l1l; OUTPUT-PLACES 12;
PREDICATE .~ ; '
ACTIONS
review MINUS review-t;
ENDTRANSITION;

T —

=

appendix D. Intercommunication Message Format

The common message format is

(Bit) 31 16 15 0

(not used) message type

message text

where,

message type: message type code, e.g., MSG_MT, MSG_MIP, etc,
message text: contents of message, variable-length.

The message text part of each message type is detailed below.

MSG_MIP (Monitor initialization)

internal form | activation| ; |invocation parame-
file name time n [ter value string
(Byte) 1 8 9 33 35 ...

n: length of invocation parameter value string

MSG PI (Procedure invocation)

procedure | n invoqation parameter
name -value string

1 g8 9 11 ...

n: length of inveation parameter value string

. MSG_FP (Form packet)

form | sending process | dest.| n [form packet
name | effective ID

1L 8 9 40 41 43 45 ...
n: length of form packet

- 56 -

issuing procedure | n | returned field values
effective ID

1 32 33 35 ...

n: length of field value or form maﬁager/mail manager

error code.

jiMSG_DBO (Database operation)

issuing procedure | n | query command string
effective ID

i 32 35 ...

n: length of guery command string

MSG_DBR (Database..operation. result) -

issuing procedure [nl | file name of |n2 |resulted
effective ID resulted data lst tuple
1 33 34 ...

nl: length of file name or data manager error code

n2: length of lst tuple

. MSG MER (Monitor error report)

4

procedure effective ID | error
o code

1 33 34

- R7 -

ﬂ'ﬁmendix E. Procedure Internal Form

Z‘Procedure Contral Block (PCB)

5%2. Marking Table (MT):

MK _NAT int

MK_FAT _ int

I 3. Active Transition List (ATL)

AT TP int

AT OMK int

I¥ 4. Transition Detail Table® (TDT)

TR_SN . char*20
TR_FIRE char*l
TR_PEP int

Field name .. Type Descrittion

PRC ID char*8 procedure ID

PRC_AT char*24 activation time, in VMS ASCIT
time format

PRC_STA char*l execution status

PRC CMK int current marking pointer to
TMT entry

PRC_CTR int current executing transition

‘ pointer (to TDT)
PRC TPL int list of pointers to ODT entries
: array used as invocation parameters

no. of active transitions in
this marking

1st active transition, pointer
to ATL

tran. internal form pointer
(to TDT)

output marking -pointer (to MT)

symbolic name of transition
in-firing flag

pred. expression pointer

PE_PEL

PC_OPR
PC_OPNL
PC_OPN2

7. Activity List (AL)

AC _COD
AC_NAG
AC_FAG

AR AAL

OD_TYPE
OD_LEN
OD_XD
OD_STA

5. Predicate Expression List (PEL)

int array

6. Predicate Component List (PCL)

char#*1l
int

int

-.char*l

char*l

int

Actual Argument List (AAL)

int array

Objects Description Table (ODT)

chax*2
char*2
char*2

int

- 59 -

Field name Type Description
TR _NAC int no. of activities
TR_FAC int lst activity pointer (to AL)
TR CAC int activity counter

predicate expression list

predicate operator
pointer to operand 1

pointer to operand 2

activity code

no. of arguments

pointer to lst argument

storage for argﬁment list
of activites

type information
length information
an extra descriptor
data address in ODA

4

- 10. Object Data Area (ODA)

OD_0ObA char
array

- 60 -

storage area for objects
{(in characters)

{pppendix F. Formats of Activity Internal Form

1. ASSIGNTO object expression
AC_COD = ACSASG
AC NAG = 1
AAL =

pointer to PEL for prefix Polish string

2. INVOKE proc-name WITH obj-list

AC_COD = ACSPI
AC_NAG = n (# invoking parameters)+1l
AAL- = procedure-name invoked

ply

p2

pn /-

3. SENDTO dest

>

n parameters

form WITH

AC_COD = AC$SND

AC_NAG
AAT,

2 + # form argument fields

form name

destination code

al}
a2

|

an -~

4. DB operation:

field-list

<0, masked

argument fields, ai=0,
>0,

- 61 -

no related source/sink

source/sink objects

AC_COD
AC_NAG
AAL

i

ACSDB

44n*2

code (1-SELECT, 2-UNION, 3~-MINUS)

rell (pointer to relation name string in ODA)

rel2 (0, pointer to relation name in ODA;
0, pointer to group item in ODT)

n (# of attribute/value pairs)

al (attribute 1)

vl {(value 1)

Appendix G.

Characteristics and Coding of Objects

p—

~ Objects . OD_TYPE OD_LEN . .. OD_XD . OD_STA .
—_ y T T
byte l:byte 2|byte libyte 2|byte 1l,byte 2
Single "01l0 :A* i charécters - T - ODA address
Item L # int.'#frac.)
'9 digitslaigits I
i { A :
Group : : i
Ttem 20 :A #c?ar #comp., items "
|
Comp. A ! n | 1"
Iteg no1 I'g (same as 10) | ptr to:group
1 1
l l : -
I }
" ! line ‘eco oo | inter.|addr of chain
Form 300 A dim. !daim. |¥#field f1ag |proc. name
i
literal {u ' ! line 1 col
field 31 B #c?ar lloc. | loc. ODA address
|2] i
ID " i 1] n 11 11
1
i
unpro. o A " " " n
field 33 19 (same‘?s 10) :
1 '
protect. n34 | A n " b ow 1]
field 3 b9 : ,
! ! :

* A: alphabetic, 9: numeric.

- 63 -

appendix H. Implementation of OPAS Modules

Monitor
1) Initializations

1. Read in the MSG_MIP message. .

2. Read in procedure internal form using procedure ID in
MSG_MIP.

3. Set invocation parameter values.

4. Set PCB entries.

Create the monitor mailbox (mailbox name = Proc

effective ID).
6. Start Petri net driving (the following)}.

2} Transition selection

1. Start with the first active transition of the current
marking, check its predicate expression; if predicate
expression is true, the transition ig fired, else try

rest active transitions.
2. If all active transitions of the current marking have

a false predicate, monitor hibernates.

3) Transition firing

1. Fire the selected transition by performing activities
associated with it one by one.

2. After done, go to 4).

4) Markihg advance

1. Set the current marking to the output marking of the

current transition.

2. Go to 2).
Form Manager
1) Initializations

1. Read in "agent terminal assignment” file.

2. Assign agent terminals accordingly.

3. Create mailbox.

4. Issue an AST mailbox reading to get a request.

5. Hiberate and wait for regquests.

2) Main loop (once wakened from hibernating)

1. If "form completed chain is not empty, process
its entries’ {(using input values gathered to build
an MSG_FFR message and send it back to the requesting
monitor process); for any terminal whose request
queue is not empty, start next form I/0 in the
gqueue. ‘

2. If "start I/0 chain" not empty, process its entries
one after another. .(a form I/0 is started by prompt-
ing the form andfissuing AST reads to accept input
values.) '

3. If both chains are empty, then hibernate; else go

to'step 1.

3) Mailbox AST reading handler (activated once the reading is
completed}
1. Insert form packet request into "request queue" of
the corresponding terminal.
2 If this is the first request in the queue, put the

corresponding terminal into "start I/0 chain".

- 65 -

3. Wake up form manager from hibernating;

4) Terminal AST reading handler (activated whenever any agent

types a character on the terminal)

1. Store the character typed if it belongs to an input
field. '

2. Echo the character.

3. If the character is not a carriage return, issue the
next one-character AST read; else (i.e. the form on
that terminal is completed) put the terminal into

"form completed chain".
Mail Manager
1) Initializations

1. Read in Invocation Control Table.
2. Create mailbox.

3. Issue an AST mailbox reading to accept any requests.
7) Mailbox reading handler

1. If the form is to be returned (having input fields),
register and save it into "Pending Form Table".
2. Print out a hardcopy of the form on printer (with

registration number).

3) Main loop
1. Prompt the ready message to the operator and wait for
commands.
2. Tf the command is "enter form", use registration numbexr

given to retrieve the saved form packet and start form

- 66 ~

I/0;: after done, use field values entered to build
an MSé_ka message and send it back to the requesting
monitor process.

3. If the command is "invoke procedure", use the proce-
dure ID given to retrieve the invocation parameter
entry form and request for initilization parameters;
after done, build and send a MSG_PI message to the
supexrvisor.

rs

4, go to step 1.

score file for
class A <

T1lustration of data graph in the PNB

o0

S e

tl(Calculate average score)-

bl
~
by

pl
<:::> W (workspace)

Figure 2-1
model
t10
tl2
Figure 2-2

tll

tl13
pll
tl4
pl2

The PNB model for journal editing
nrocadure (continued on next page)

Transition Predicate

tl -

t2 -

t3 -

t4 -

t5 -

t6 F4* arrived

t7 2 months
elapsed

t8 F4* arrived

t9 5 days
elapsed

t10 Review re-
jected

tll F4* is re-
view opinion

t1l2 Paper re-

- jected

t13 Paper acce-
pted

tl4 -

Figure 2-2

A ——— i ——— o o okl b ok e ol e A A S S S S i . ey vy — [——

S —— et ek Sk M e v e e ot A Rt e Y T S — f— — S T T — T . St Tt

Log submission information in file
PAPERS.

Send acknowledge form F2 to author.

Prompt F3 to the editor for reviewer
selection.

Insert a review record into the
file REVIEW.

Send letter (F4) and a copy of paper
to the reviewer.

Sénd letter F5 to inform the
reviewer. :

Inform the editor.

Promt form F7 to the editor for
final dec;sion.

hDeiete PAPERS record; Inform the
;author,

Update status of PAPERS record;
Inform the author.

Delete REVIEW record.

S ————— A B e
— At ot S S — —

(Continued)

- 69 -

| B

“Administrator i
Console
- - —_r —————— e~ .
~ -~ 7
// . S | \,\‘ ///D .
uper - . \

/ / visor \ A\ 33
/ MSG Pl : Form [~ \ . _
/[MSG MER. | M o

_ / MSG MIP MSG_MT anager NG | .
L Mail - MSG_P1 SG/F; / \l\\ . .
-—+'—— Manager \M\SG FP \([="~ MSG_FFR l N
== S
! .
\ MSG_FFR | Monitor —~ / Agent stations
/ MSG DBO /
N : ’I \ _ - /
OPAS{ ; MSG_DBR /
' / \ Data y
Manager /
1 //

* —

Figure 4-1 OPAS System Architecture

»

| <1 000 0 0>
t
o ,(1\

<011 00 0>,

TN

P o b WM

MT ' ATL

MK NAT|MK FAT| AT TP |AT OMK

1| 2 s tg 1

2 3. L2 |t -2

1 5'-\\\\‘{ 3|t 3

1 6‘“\\\\\}4 t 4

1 7-—~\ 5 t, 5

o | o \\\\\j 6.{ t 5
terminating { 7 i 6

marking

(c) corresponding MT and ATL.

Fiqure 4-2 Petri net driving data
structures MT and ATL

<0 0110 0> <01 0010>

T

<000 0 110>

.

<0 0000 0>

(b) reachability tree

0T - PEL - PCL 00T

NG
: 1wl =T 71 —
IGEY 3 i s
'TR—FIRE/' o pred. |component
TR_PEP«exp. {10 : w
- R NAC 11 |) - objects

TR_FAC } :
TR_CAC R

- AL ; | AAL

AC_COD|AC_NAGIAC _FAG —\-———g
activity argumenktsT.___

Figure 4-3 Activity realization data structures

field 1 field 2

N ,___-J____\
Ll “

L D1 T1 D2 | T2

L: total length

Di: 6-byte field descriptor ,
(consisting of OD_TYPE,CD LEN,OD_XD}

Ti: field value

Figure 4-4 Form packet format

1.

16,

11-

_12-

peferences:

e .
R .
bt T

Bailey, A. D., Gerlach, J., McAfee, R. P. and Whinston. .

i - : ns
"Tnternal Accounting Controls in The Qffice of The EﬁgﬁreAi Igéé
Computer, May 1981. ,

Baumann, L. S. and Coop, R. D., "Automated Workflow Control: A Key
to Office Productivity,"” Proc. AFIPS Office Automation Conference
March 1988. ' ’

Chang, S. K. ,"Knowledge-Based System," Chapter 14 (to be pub=-
lished). ' .

DEC, 'VAX/VMS System Services Reference Manual," 1978.

Ellié, C. A., "Office Information Systems and Computer Science," ACHM
Computing Surveys, 12, 1, 3, 1984d.

Ellis, C. A., "Information Control Nets : A Mathematical Model of
Office Information flow," Conference on Simulation, Measurement and
Modeling of Computer System, 1979.

Hammer, M., Howe, W. G., Krushal, V. I., and Wlandawsky, I., "A Very-
High~Level Programming . Language for Data Processing Applicaions,"
CACM 20, 11, 4, 1977. '

Ho, C. C., "O0ffice SyStems Mcdeling, Analysis and Design," MS
Thesis, National Taiwan University, Taipei, -1982.

o, ¢. C., Hong, Y. c., Ho, Y. W., and T. S. Kuo, "an Office Work-
flow Model,“sProc. NCS, Taiwan, Taiwan, Dec. 1981, pp.354-~368.

Ku, Y. M., "A Tool for Designing Information Transfer Systems," MS
Thesis, National Chiao=-Tung University, Hsin-Chu, Taiwan, 1981.

petersan,vJ. L., "Petri Nets," ACM Computing Survey 9, 3, 3, 1977.

Tsichritzis, D., "OFS : An Integrated Form Management Systems,"
Proc. VLDB, 1982. :

Tsichritzis, D., "Integrating Data Base and Message Systems," Proc.
VLDB, 1982.

Uhlig, P. R., Farber, D. J., Bair, J. H., "The O0ffice of The Fu=
ture," ICCC, 1979.)

Wohl, Amy, "A Review of O0ffice Automation,® Datamation, February
1984@. ‘ ' '

7isman, M. d., "Representation, specification and Automation of
Office Procedures,™ Ph.d. Dissertatlon, Wharton School, University

of pennsylvania, 1977.

7Z100f, M. M., "QBE/OBE : A Language for Office and Business Automa-

17
tion," IEEE Computer, May 1981.

‘_j-.-k

