\ TR-79-003
On Syntactic Pattern Recognition

by

Patrick Shen-pei Wang

Institute of Information Science Department of Computer Science

Academia Sinica University of Oregon
Taipei, Taiwan 115 ‘ Eugene, Oregon 97403
R. 0. C. U. S. A.

Ol

0002

On Syntactic Pattern Recognition

by

Patrick shen-pei Wang

Institute of Information Science
Academia Sinica

Taipei, Taiwan 115

R. 0. C,

Department of Computer Science
University of Oregon

Eugene, Oregon 97403

U. 8. A.

Table of Contants

~Abstract
Chapter 1 Introducticn
Chapter 2 Stochastic Programmed Array Grammars
§2.1 Array Grammars and Picturé Grammars
§2.2 Programmea Grammars and Matrix Grammars
§2.3 Stochastic Grammars and Fuzzy Grammars
§2.4 Stochastic Programmed Array Grammars and Syntactic
Pattern Recognition
Chapter 3 Cellular Automata 7
| §3.1 Definitions of OnefDimensionai Cellular Automata
§3.2 Definitions of de—Dimensional Cellular Automata
§3.3 Ceilular Automata and Array Automata
§3.4 Pattern Recognition by Cellular Automata
Chapter 4 Grammatical Inference
Chapter 5 Discussions and Open Problems
Chapter 6 Géals Future Research and Methodoloqgy

Annotated Bibliography

13

kL)

22

28
30
32
34
39
50
55

59

‘Abstract

This research paper deals with the development of syntactic
pattern recognition by computers. A new device for generating formal
languages, called " programmed grammar " is studied. In order to broaden
its capability for 2-dimensional cases, the so-called "stochastic pro- |
grammed array grammar" has been presented. Its alternative.counterparts
such as picture grammars,lmatrix érammars and fuzzy grammars are also
investigated. BAnother approach from cellular automata point of view
which is inherently faster than iterative acceptors is also introduced
and is related to array automata. Finally the grammatical inference
for discovering the grammars given a class of sampled data of a certain
type of languages is studied and is applied to syntactic pattern recog-
nition. The syntactic pattern recognition problems for 2-dimensional
cases have been studied recently only in rudimentary exercises. There
are still ﬁany open questions and formal works in this field need to be
developed.

The general goal of the intended research is to develop a theory
of syntactic pattern recognition through techniques from:

| 1. grammatical analysis, and

2. celiular automata analysis.

We intend to establish the following as subgoals:

1. to give a formal definition ©f " syntactic pattern recognition ",

2. to minimize the recognition (parsing) time with minimum errors,

3. to solve some incompleteness problems of tessellation automata, and

4. from syntactic pattern recognition to semantic pattern recognition.

Chapter 1 Introduction

In the past few years, two geneial approacheé for solving
pattern recognition problems have been developed, namely 1. decision-
theoretical (or discriminant, geometrical) approaéh : In this approach
a set of characteristic measurements called features are extracted from
the- patterns; the recogriition of each pattern is usually made by
'partitioning the feature space. Once a pattern is transformed
through feature extraction to a point or a vector in the feature
space, its characteristics are expressed only by a set of numerical
values. The information about the structure of each pattern is
either ignored.of not explicitly represented in the feature space.
Successfui‘applicétions of this approach to practical problems
include character recognition, medical diagnosis and crop
classification etc. (41,69).2. syntactic (or linguistic,structural)

. approach : This approach draws an analog between the structure
of-pafteﬁns and the syntax of languages. Pattern primitives are
first selected and their relations in the pattexns are described
"by a set of syntactié rules (or grammars). The recognition process
is accomplished by performing a syntactic analysis (or parsing)

to the sentence describing ﬁhe given pat?ern. JInitial applications
of the syntactic approach to the recogniﬁion of pictorial pattexns
have given quite pxom;sing resﬁlts. {21, 625,

In this research paper . oﬁr'interest will be concentrated ih
the syptactic approach maiﬁly dﬁe to the following motivatiqns:

1. In some very practical qpplications-of redognition problems (e.qg.
picture processing or more.geherally spéaking, scene analysis) in which

the structural information to describe each pattern is important,

- -

the decision-theoretical approach has not been very'effective and efficient,
A typical example is the separation of two patterns which are very
" closely alike (e.g. the handwritten Iatin lettexr "O" and "Q" or
Russian letter "M{“ and " o). It is Qifficult to divide the
regions because they are too closely adjoined to one another and
can only be well partitioned on subspace of small dimenionality.
The number of features and/or possible descriptions is usually
very large making it impractical to regard each (high-dimensional)
descriptions as defining a class. However the application of the
syntactic approach does not cauvuse any difficulties. For instance,
to describe the pattern of letters "0" and "Q", it is sufficient to:
have such simple concepts as the oval, "intersection","left and right",
"up and down".2. Syntactic patterm recognition is an attempt to adapt
the techniques of formal language theory, which provide both a notation
(grammars) and an analysis mechanism (parsing) for such structures, to
the problem of representing and analyzing patterns containing a significant
syntactic content. As this apparently includes maﬁy kinds of patterns
of intereét, syntactic® pattern analysis has recently become the
focus of amnr increasing amodgt of pattern recognition research.
3. Compared with the decision-theoretic approach, the syntactic
approach has not been ;s extensively investigated. ‘The mathemétiqal
linguistics needéd for the syntactic approach is not well developed yet.
4. However there ar; stiil some similarities between two approaches..
For instance, the feature extraction and selection problem in the
decision-theoretic approach and the primitive selection problem in the
syntactic approach are similar in nature.

it should be mentioned here that the terms "linguistic" and

"syntactic"” are used almost interchangeably herein, as has become
¥yn

common practice in the literature, although the former is a somewhat

broader term. Strietly speaking, “syn£éctic" refers only to the structural
aspects of languages; analytical techniques have been COHSidered{ both

for natural languages (33)_and for patterns (20) which may be considered
as linguistic but not synﬁhctic. ‘

Formal languages, the generélized phrase-structure grammars and

the corresponding automata (recognizers, acceptors) are the main tools
for solving syntactic pattern recognition problems. Recent studies

of ce}lulaf automata are also applied to recognition problems. Up to
date, however, the theories and results for 2-dimensional formal

language recognition problems are still very basic and only in rudimentary

‘exercises.
This paper is roughly divided into two parts : (1) a general

survey of the field {(chapters 2-~4) (2) a discussion of the area

of future research the author intends to pﬁrsue (chapters 5-6}.

—lym .

Part I

A General Survey of the Field

Chapter 2 Stochastic Programmed Array Grammars

This ch§pter is concerned with the syntactie pattern recognition
by stochastic programmed array grammars. Array grammars { § 2,1) deal
with two-dimensional formal languages. Once they are in the programmed
form §2,2), the grammars can be simplified and their generating
abilities are widely broadened. The proposed stochastic grammars (‘§2,3)
count in the unavoidable distortion and noise considerations in the real
life, hence largely enhance the capsbilities of solving syntactic pattern

recognition problems { § 2;4) in practical use. N 9

§ 2,1 Ariay Grammars and Picture Grammars

In dealing with the generation of two-dimensional pattern (languages)
array grammars and picture grammars [12 , 16 , 37 , 52] are widely used
and shown to be very useful. There are several ways to generalize
ph;ase—structure grammars whose rewriting rules allow the replacement of
subarray of a picture with anoéher subarray. KXirsch [3ﬂ developed a ‘ ‘
method of dﬁing this and a language of right triangles is studied. A
similar formal systeﬁris dévéloped by Dacey [16,17] and grammars for
languages consistiné.of classes of polygons are exhibited. A survey of
this area of picture lénguages is given by Miller and Shaw [37].

Array grammars can be thought of as the two-dimensional generalization
of context-sensitive grammars [27,30]. The formal definition is given as

follows:

Dfn 2.1.1 BAn array grammar is a quintuple G==(V,VT, P, #, 8)

where .V : non-emty finite set of symbols called vocabulary 7
VTCV: non;empty finite s§t of terminals
€ V-V, b1émk_ symbol
S5 & V-VT : start symbol
P : a non-empty finite set of | structure-preserving productions
or rewriting rules
The productions of P are of the form of = {3 defined as follows :7
Let J be a finite connected+. subset of 1_2 where I is tl.le‘ set of
integers. Then ol and £ are mappings ‘from J into V with the restriction
that if J/({i,j)}) = a GVT then’ ﬁ(i,j) =a {i.e. termina_ls are never rewritten) .
An arraf A is a mapping I2 i_‘“'ﬁ, V. A production & —=> 8 is applicable
to A if there exists a translation -C of the domain J of « , such that -
A I TJ= o . BArray A' is directly derivable from A, 'wr:i.tten-as A= A',
if for o —>f appliqame to A, z;'. l-‘CJ=/<3 and A’ |(12 - f'._j) =a [(12- TJ).
Let -_:% be the transitive closure of =3 ’I‘hén for A ——t>B, B. is said to be
derivable from A.
2 onto

An initial array AS is a-mappint I°——— {#,s} s.th.

{ (1,9 | AS (i,3) '=s} is a singletion. & termihal array Ap is a mapping
2 into ¢ ' ’ s sy | rs .
Im == {#} U VT'~ suqh that {(1-,3) IAT(:L,;]) c VT} is connected.
The array language generated by an array grammar G is denoted by

L(G) = {-B |1;=1,f~a B where A € A; and B € AI, }

+ By connected we mean rookwise-connected, i.e. points (i,J) and (i',5%)
are connected iff Iifi'| +]j - j'[€1, A subset K of I is connected
iff for any two points p and q inK, there is a sequence of points

) 3 1 \ = = . | : -.c_.l<
Pl" P/ ves Pn in X with 2% P, Pn- g and Pi connected to Pi+1' 1siSn.

An array grammar G is said to be montonic if it cannot erase, i.e. if
for arbitrary productions d—>B, B(i,3) = # implies l(i,§) = #. In this

- case, L(G) is called a monotonic array language (or alternatively isotonic

array language although montonic and isotonic have different senes in

string grammars [36]).

The first example of an array grammar is described by Kirsch [.33] for
generating a class of labeled 45 right triangles. Then it is generalized
by Dacey [16,17] te form polygons. The syntactic structure of these
1anguages is analyzed and it is shown that a mathematical group summarizes
the ;tructure holding betwéen languages constructed for polygons that are
related by proper and improper rotations (17].

A possible modification to the definition of a éerivation in a grammar
(either a string or array grammar) is parallel rule application, i.e. all
instances of the rule's antecedent are simultaneously replaced by the
consequent (rather than just one instance}. It should be_emphasized that
it is often useful to allow parallel application of rules in that, for a
given language, a grammar that opeiates in parallel may be much simpler ta
write than one that opénatessequentialiy. This modification is especiaily
natural for array grammafs sinéé local picture operations (essentially
eguivalent to applying ééts of context-sensitive productions) are often’
applied to digital picture in paralle l. The following simple illustration
will describe the situation.

Exmaple 2.1.1. Suppose G= (V,V&,P,#,S) be an array grammar

where v ={S, T, 1, #} VT= {l}

and the productions in P are

(1) # s T _ 1
s# 1T ¥ 74
(2) s >1 (4) T 1

157 1

Here L(G) is the set of ail isosceles right triangles composed of 1l's
in a field of #'s. 'The triangles are oriented so that the right angle is
at the lower left-hand corner of the array. The degenerate triangle.
consisting of a single 1 is also in L{G). One of the derivation results

would look like :

1
S S 11
(s (1)1 T (3)1 T (4 (LM (2)(3)(4) ((3) 1.11
1111

S =31 TDL T =31 1 =0 .iiieecesccssnsa =

where the #'s are omitted. The. operation is sequential, i.e. only one
instance of the rules antecedent is replaced by the consequents in each

“
step. Consider another simpler parallel grammar G' = ({S,l,#.jr {l} P #,8)

where P = 5 (1) #

s (2) s=>1
s#~1s

It is clear that L{G"'} =L(G} i.e. G G' (grammar G is egquivalent to

G‘). However to derive sequentially a triangle whose sides have length n

.an n {(n+1)/2 -step derivation is required while to derive parallely only

n-step derivation is requirad. _It's cbvious that the parallel grammar is
much more simpler and the parallel processing is faster.

It should be very ca;éfgl when pafallel processing is applied. If
instances of the antgeedent cannot overlap, such aprallel application can
lead only to senfential forms that are derivalbe by a succession of one-instance
appligation._ On the'ofher hand, if instances can éverlap, the notion of‘
parallel application reguire further clarification [52]. In general, the
languages generatea by é given grammar when its rules are applied in paralle} '
need not be the same aé the language when they are applied sequentially [51].

Furthermore, the language parsed in aprallel by the grammar can be different

from both of‘these.‘ However it is shown [51] that any language is a
parallel language and vice versa;

In addition to the array grammars there are still many other
micellaneous methods for two-dimensional "pictures” [8,16,17,19,33,36,37,
39,46,51,52,53,56,60]. The following section is a brief discussion about
picture-procéssing grammars " based upon Chang [12,13].

‘Picture processing grammér can be regarded as an 2xtension of phrase-
structure grammars té the two-dimensional case. The structure of .pictures
is usually hierachical, i.e. in a picture grammar higher level syntactic
categories. For example, a lihe diawing is defined in terms of 1ines, and
liﬁes are in turn defined in terms of, say, points. -Therefore, for line
drawings, rules transforming points into lines can always be applied

- before rules transforming lines into more complicated patterns are applied.

The motivation for choosing this model-picturelprocessing grammay is

presented as follows. Consider the following context-free grammar as a

model to describe horizontal lines :

(1) h-ds —> pt pt ' (2) b-ln —> h-ds pt
(3)‘1{-‘1n —> pt h-ds . (4) h-ln —> h-ds h-ds
(5) h-In —> h-1n pt (6) h-ln —> pt h-1n

h-1n —S h-ln h-ds h-ln —> h-ds h-1n

h-ln —> h-1n h-ln
| ﬁhere"h—ds :'gpriéontal gpgp,.ﬁ—ln : horizontal line, pt : point

An element of a picture is a symbol toggther with its associate vector,
and a picture is a collecfiqn of (symbol,,asociate vector) pairs. In the
above example we can associéte {1gy,i) to the symbol "pt". {(x,vy) specifies
the poéition.of the n pt " on fhelg;id; The third parameter is the number

of squares occupied by the picture element "pt". Similarly (x,y,1} is

associated with the symbol h~1ln, where 1 can be regarded as the length

of the h-ln and (x,¥) is the coordinate of the left most element position.

For instance Fig 2.1 represents the set V = {'pt (2,1,1), h-ds (3,5,2)

h~1ln (2,3,4)}

For convenience, we’ll write V as V = pt (2,1}1) A h-ds (3,5,2)/\h-1n {(2,3,4).

Fig 2.1 horizontal lines

It can also be represented ifn terms of points alcne :

U =pt {2,1,1) A pt (2,3,1) A Pt (3,3,1) A sc+ APE (4,5,1)

we would like to reduce U to V via the following grammar :

(L") h-ds
(2') h-1n
(3") h-:lin
(4') h-1n
(5') h-1n
h-1n
h~-ln
(6') h-1n
h-in

where x,y > 0,

(x,v,2) =>pt (x,y,1) A pt {x + 1,3,1)

{x,¥,3) > h-ds (x,y,2) A Pt (x+2,y,1)

{x,v.3) > pt (x,v,1) A h-ds (x+1,y,2)
(x,v7 § +4) => h-ds (x,y,2) A h-ds (x+45 + 2,v,2)
(%,¥,1+1) = h-1n (x,y,1) A Pt (x+1,y,1)

(x,y,L+§ #2) = h-1n (x,v,1) ,\h-as (x+1+§ ,y,2)
(X:Y:ll-+12-+§ } = h-ln (x,y,ll) A bh-In (x+) ¥11'Y'12)
(x,y,1+1) = pt (x,y,1) A h-ln (x+1,y,1)

(x,y,1+§ +2) = h-ds {x,y,2) A h=1ln (x+ § +2,y,1)

11,12,1 > 2, § are variable (§ will be explained later.)

Let W= pt (2,3,1) p pt (3,3,1) 4 Bt (4,3,1) 5 pt (5,3,1)

(1)
=> pt (2,3,1) 5 pt (3,3,1) p h-ds (4,3,2)

(") -
=> h-ds (2,3,2)/} h-ds (4,3,2)

(4" -
=%§ h-1n (2,3,4)

'Explanation of'j : if S = 0, the grammar describes only perfect h-In's.
If ¢ %0 (e.g. ¢ =1), then the imperfect line as shown in Fig2,2 can be
recognized as h-lines. 51 is a parameter which controls the gap width

between lines. With a nonzero J-, gaps between lines can be filled.

Eig‘z.z a noisy line

We are now xeady'to give a formal definition of picture processing

grammars. Dfn 2.1.2 A picture processing grammar G is a quintuple

-~ ——

{8,v,C,q9,P) where S is the set of basic symbols, V is the set of vocabulary
_ symbols, C € v is the set of categorical symbols, g is a function from
- VuUs into the set of natural numbers, and P is the set of grammar rules.

. 3] . 7 -y
Each rule in P is of the form ol (£(x)ix,s.eerx))) —34 (x)) A }gz(xz)ﬁ

e p Bty vhere £ gase..s By €V US, o€V the number of

parameters of the associate vector X, is équal to g{ }3i), 1€i&k, and
k21l

> ol

i1 9080 npe 19D

f is a partially computable function from I P

whose completion is also computable. A G-picture is a finite set of

symbol-~associate vector pairs 'Zi(ﬁl) A -/\gn (xn) such that (a)

f,i €5, 1€i<n and (b) x, € 19(Ei),'.léliSn.'
Dfn 2.1.3 A picture proceésing grammar G = (S,V,C,g,é) is called
hiérachical iff the;e éxists‘a'hontrivial partition of the rules P into
blocks Rl’RZ""'Rh' n).l,ls.th.rif o appears as. the left-hand symbol
of a iule in Ri’ then it will never appeakr as a right~hand symbol of any

rule in Rj, provided that §<{i.

Dfn 2.1.4" Given two grammars Gl = (SI,Vl,Cl,gl,Pl) anﬁ G2= (52'V2’C2'g2’P2)'

SV US, (B) Vyn (VUS) =8, and (o) gy (el) = g (L)

Suppose (a) 52 1

if o & S,/ then the composition of G, and G,, denoted by G

10 G2, is the

grammay (Sl,VlUV2 ,'Cz,g,PlUPz), where g is defined by
g, () ifk€ V. US

S Rt |
gz(oc)_lfa!evz

gll) =
Some theorems and important results'Will be described below [13] :
Theorem 2.1.1 If G is'a hierachical picture processing grammar, then in
the reduction of a G-picture, rules in block 35 can élways be applied
before rules in block R, are applied, ?rovided that §j £ 1.
Theorem 2.1.2 If G = (;..(iélo sz... Gn)...),rl)l, and SI’vl""'vn are
pairwise disjoint, then G is hieraéhical. _The converse is 'also true.

This theoreml;howé‘tﬁat the composition of'éeveral grammars results
in a hierachicai.grammar. Conversely, given a hierachical grammar, one
‘can decompose it inéb several grammars s.th. their composition is equivalent
to the criginal érammar;- In practice, we can design several pieces of ‘
grammars and then form their composition. The resulting grammar is of

course hierachical. With such & hieradhical grammar the picture analyzer

can then process efficiently.

Theorem 2.1.3 There is a constructive procedu;e to decide whether a
picture processing grammar is hierachical.

To summarize, we have shown that properly designed picture processing
grammars can be used to (a) recognize pictures (b) generate or synthesize
pictures (c) process or transform pictures and (d) perform inverse picture

transformations. In some cases the grammar is able to handle noisy pictures.
§2.2. Programmed Grammars and Matrix Grammars

In 1965 Abraham [2,3] first introduced a new type of generatiQe
grammar called matrix grammar-which can be described as follows :
Dfn 2.2.1 A matrix grammar is a quintaple G = (T,fT,zaTPuf*) where V is
a finite set of symbols (letters) called dictionary, V£ is a proper subset
of V called terminals.25 ié a finite set of sequences over V called
initial seguences. F is a finite set of pairs (%, y/), where & and
yfare sequences over V with restrict thgt Fev - Vo and |@| = 1. F*

is & finite set of matrices (called matrix rules) ., defined as follows :

(i} £* is a matrix rule if (ii) £* is & matrix rule if
it has the form ' it has the form
*
2\ 5
£ . £*
n) n

with fi € F (not necessarily fi% fj) where fz's are matrix rules or€ F
To apply a matrix rule a f* +o a string x means to apply all the
context free rules which form it, to x, in the given order. The generative

power of a matrix grammaxr can be shown in the following example :

Example 2.2.1 Consider the context-gensitive (type 1} language

L =_{ apie” \n 2 1 } we have the following matric grammar that generates

it : 6 = (V,Vy D, ,F,F*) with |
V== {S,X,Y,Z,a,b,c} ’ Vf’ {arﬁ,c} s F*® :[S,abc] [S,aXbYcZ]
F = {'(S,abc), (.8, aXb¥cZ) ;(X,aX) X,aX - X,a
(Y,by), -(-Z,cZ Yo Xea), (¥/b), Y,bY ¥,b
(Z2,c) }' c,cZ- Z;c

In other words, by properly applying matrix grammars, the context-free
production rules can genefate COntéxt—sQnsitive languages. The following
famous theorem (by Abraham) is ﬁery useful..

Theorem 2.2.1 For every given context-sensitive grammar G a strongly
gqui&alent matrix grammar GM can be CQnst¥ucted;

The generative capability of matrix grammars seem still so quiterl
limited and awkward that intuitively they can be expanded and generalized
in certain senses. Petér'[Sé] deals with.grammars where the productions
are arranged cyclicly, and each produétion may either be épplied'once or
as many times as;wssible. -Ginsburg and Spair [3] have considered the
classes ofrlanguages generated from ph;asé structure grammars by leftmost
derivations whose production sequences lie in some language. Chomsky [14]
has mentionéd a model of natural languages where the grammar contains
context-sensitive productions which are applied cyclicly. A group at
MITRE [2] has written a program for analyzing Epg;ish which utilizes
productions of this form as part of its grammar. In 1969, Rosenkrantz [54]
proposed a new idea of generativé grammax called programmed grammars which

laxrgely enhance the generative power of context-free production rules. It

can be described as follows = |

Dfn 2.2.2 A programmed grammar is G=(V,V,,P,J,8} where V.,V

I T’P'S are as in

§2.1. J is a set of production labels. With each r in J there ié associated
a unigue production {(r, (2, 1]b /V,W). Here (;Dand }bare same as in Dfn 2.2.1.

v and W are subsets of J. .The preduction is written in the follewing format :
(x) © —> 99 S (V) P (W). Note that the format is somewhat similar to

the dinstruction format of the SNOBOL programming language E,54] and of Markov
normal algorithm'[54].

" In applying the production to an intermediate string i p g is first
scanned to see if it contains ¢ as a substring. If so, the leftmost
occurrence of CP in E is rer;iacéd' by }U ; and the next production to be
applied to the ensuing string is selected from V (called success field).

It g does not contain QD , then 1;10 chnage is made, and the next production
is selected from W (called failure field). We'll use the Example 2,2.1
again to show the generative power of a programmed grammar .
Example 2.2.2 Let G be a programmed grammar

G = ({S,B,'C,a,b,c } . {a,b,c} Sy {1,2,3,4,5}.,3)
vhere P :(1) § 5 aBS$ (2,3 F (g)

(2) B—>aBB s (2,3) F (¢2)

(3) B—>C " s (4)'F (5)

@) c—>bes (3) F (§)

(5 c—>e¢ 8 (5) F (&)

n

"Clearly L{G) = ianbnc In;l} and the cores ,(CP—>'5//) are all in context-fres

forms. Compare with Example 2.2.1 we have vnly 5 production rules ‘which is
simpler.

From this example it is known that a major advantage of using programmed

grammar is that the grammars can often generate the sentences of a language

in a manner which corresponds to the way in which humans would envision
the generation. &among the many famous theorems deri%ed by Rosenkrantz[54]
I am particularly interested in the following one :
Theorem 2.2.2 The set of languages generated by programmed grammars all
of whose rules have cores with a single symbol on the left~hand side and
an arbitrary (possibly null) string on the right-hand side is identical
to the set of'recursively enumerable languages.

In summary, a key result is that programmed grammars whose cores
have a single symbol on the left-hand side and an arbitrary string on
the right-hand sidé can generate all.recursively enumerable languages.
The context-free programmed grammars generate a class of languages which
properly contains the ¢ontext~free languages and is pr0per1y_contained
within the context-sensitive languages. Cfpg's have considerable generative
power and it is often comparatively easy to write a cfpg_for a particular
language. However several problems which are decidable for context-free

grammars are undecidable for, cfpg's [54].

0 = typa 2
type 1
cfpe's
type 2
type 3

HUHY HY #vE

Fig 2.3 Hierachy of pgl

§2.3 Stochastic Grammars.and Fuzzy Grammars

Since in syntactig approach, abstract primi-tive ;element—s are usually
.selected, effects of noise and disto:;tion in the measurement 6f patterns
- can be rgdi;ced' only through extension 'prepiocessiné. From the view point
.of real-data processing, noise and di‘.storrtion are, in general, una\.voidable
in_'the actual piactice.- Ir oxder to take them into consideration, the use
oS stochast:_'Lc lTanguages fdxj pattern derscripti'on have recently been proposed
L as a possible ;f-;olution'.' This section mainly follows FuE21,22,23,34,62],
' Booth[10], Turakainen [65], Paz [45] and zadeh [72,73,74].

DFn 2.3.1 A stochastic grammar iz a 5-tuple GS= (VN,V—T,P,S,D)

where VN . finite set of nonterminals
v_ : finite set of terminals (VN) Vi‘ = #)

d
”

finite set of productions
s ¢ V., : start symbol
D e probébility'meé.suxe.(assignment) over P
The generating process of a string x eL(GS)' can be répresented as
ryoo r, r
_s==9f7’1‘ =57 .. ==5‘7n = x
) l L' " * Y 3 ‘0 1] .
. where x, € P and ’)/_i & (VNU \{__L, y*, The probability associated with the
generation of x iz defined to be the product of c_onditional probabilities
S pR) = p(rl)p(rzirl) eee plx lrl,..., rn_l)
. If the stridg x e L(GS) can be generated by m distinct sequences of

. p;:oductigns, then the probablity associated with the generation of x is

defined as
m

o .
glx) = Sopx) = Zplrdplr, [r).- plry |Tyeeeniry)
' 1 1

A production probability assigmnment D is consistent provided

:E: g(x) =1

XEL .(GS)

Thé necessary and sufficient condition for a consistent stochastic
context-free lancuage (grammar) has been'found by Booth (10] and Grenander
[21,227. But the conditions for a consistent stochastic context-sensitive
grammar have yet to be found. Furthermore D is called an unrestricted
production probability assignment provided P (rj Lyre-nr rj—l) = p (rj)
for all production sequences. Let p i be the associated probability of a
production jy-} %E' then a stochastic grammar is said to be normalized
iff _:El p?ﬁ =1 for all i sucﬁ that]Z i is the COnsequehce and '7 is the

L
premise from p. The following exampoes are given to demonstrate the potential
for using stochastic languages for the description of distorted and noisy
patterns. |

Example 2.3.1 BAn equilateral triangle and eight other distorted versions

are shown in Fig 2.4. The pattern primitives selected are given in Fig 2.5.

AN N AR~ ADDIA

::.bzr.:2 ab,_,_c a.'blcl ‘ ab1 3 ab 5Cy ab c ab3el ab302 ab303

'

Fig 2.4 noisy triangles

bz b1
g% ; N

FPig 2.5 primitives

—_— 12

Table 2.1 shows. the probabilities of these O different triangles. The
stochastic finite-state grammar which will generate these strings with

associated probabilities is G =‘(VN,VT,P,S,D) where

s

Yy = {3' By eBy By, 4} Vp 5 {a'bl'bz'bs'cl'cz'ca }
and 3 - p

'S -2 a Bl ' 1

2>, | bafba, 1/6,2/3,1/6

2,20 | eyl e /6,173,172

XN | -, | ey 1/24,21/24,1/12

2, o) | e, | c5 . 1/2,1/3,1/6 '

Note that here D is consistent, unrestricted and nomalized.

X p_(x). . 5 - B(x)
ablcl 1/36 ab2c3 2/36
ablc2 2/36 ab3cl 3/36
ablc3 3/36‘- ab3c2 N 2/36
abzci 1/36 _Fb3c3 1/36
ab2c2 21{36

Table 2.1

n

Example 2.3.2. A right triangle andleight other distorted versions are
shown in Fig 2.6 based on the pattern primitives shown in Fig 2.5 and

probabilities information listed in Table 2.2.

NANDNANNNNLN

: é.boc_:,,, a.bo > bo 3 ablc a.bic a.b 11 2 2 abac ab2c4

Fig 2.6 noisy triangles

-19 - . -

If we define the strings (triangles) in Table 2.1 as forming the pattern -

class I and those in Table 2.2 as pattern class ‘II, then c¢lass I [\ classI=

{'ablcz,ablCB,abzqz,abzc3} .

X _ptx) x _plx)
-abyc, 1/36 abl'c4 1/36
abc, 2/36 ab.c, 2/36
aboc4 21/36 ab,c. 3/36
ablc2 1/36 ab2c4 1/36
ablc3 7 4/36

" Table 2.2_

In the a1c1510n—theoretlc approach, the.cia551flcét10n problem ‘with
"overlapplng“ classes can be solved by applylng statlstlcal decision theory
[69]. A similar idea is alsO'épplied here. . The probab;lity'information-
p(x) of the strings belonginq to each pattern class plays an important role
in the classification problem. Fox éxample, suppose that the inpﬁt‘péttexn
{a trlangle) is represented by the string abl 2° With the assumption of
equal a priori probabilities (of the occurrences of each clasé} the
information'p(xxvcan be used for the maximum-likelihood [23] claési?ication
rule. That is, in!this case, ab1c2 should be olassified és.belonging‘to
class I since P_(X) = -ji :> _E.= P__(x) where x = ab_c,_ € class I(]class II;

Sl S [36 II° i 12
' In'[22] it has beén_showh that any normalized stocﬁastic context—-free
grammar (ns fy) has its equivélenb'choﬁéky'No;mal Form (CNF)} and Greibach
FNormal Form (GNF).' In a Very‘similar ﬁay, Zaéeh.(72) has successfully

~

derived the CNF and GNF of the so called fuzzy grammars (also known as

- 20 —

weighted grammars) which can be deseribed as follows :

Dfn 2.3, 2 a fuzzy grammar is a quadruple G (VN,VT,P ,8) where VN, V .P,8

are as usual. The elements of P are in the following form:

'/5((01——}/5’)= P . FPo

- where ol and)6 aré strings in (V'I‘ 5] VN)* and P is the grade (or weight)

of memberships /3 geven d . A fuzzy languages L(Gf) ger.lerated by Gfis
a fuzziy set in VT*. I.t is'a set of.'o:dered pairs L = | {(x, ﬂL(x))},

x € Vo *# where 0 € ﬂL(X) £1 is the grade:’lt_af' membership of X in L.
‘The union of two fuzzy languages L + L nVT* is defined as

1 2
/,gng 1 (x) = max (/(L () s /(L (x)), % €V or /[(L1+L2 /“L \//&(L

for short. The intersection of two fuzzy languages is L] L2 in which

/{{Llﬂl' (x) = min (/(/{L (X)"7aL =), xév * 0r/ax. N L, /6 L /\/aL

Thus /{{ can be thought of as a point in a lattice [38]. The concatenat:.on

of Ljand L, is denoted by L, L, and if x = ({{/~ then

' () = sup min (A{. (), (v))
/C{Lle . /6(111 /t(].'.-2
=N Y W (v))
M Lyl \u/ A A M L,
The grade of a string x € L(Gf) is represented by

/ﬁ(Gf(x)

sup m:.n(/(((s-—)o(). /(((o —éd).
,{((o(—> %))

sup min (Pll 'PZ' cee f ‘Pm-i-l)‘
or /Z(G.f(X) = \L’/('Pl A f)z “e /\'Fm+l)

= V(I;-{l foj)' for short, if there are k ways to derive
! 1 '

Note that here the fuzzy grammar Gf is defined almost the same way &as the
stochastic grammar GS if we .slightly modify our notation in Dfn 2.3.1 for

the unrestricted associated generation probabilities:

g(x) = :E: (1-r p ('Tj)) if there are m ways to derive x.
j=1 -
1

Theltheqry of fuzzy lénguages offers what appears to be a fertiie field
for further study. It-may prove to be of relevance in the construction of
better models for natural languaéés and may contribute to a better understand-
ing of the role of Fuzzy algorithems and fuzzy automata in decision making,
pattern recognition, and othér processes involving the manipulation of fuzzy

data. Further works can be found in [73,74].
iy -
§2.4 Stochastic Programmed Array Grammar and Syntactic Pattern Recognition

Jow we have enough inforﬁation ready to conbine the concepts of
"p:dgrammed and stochastic" idea together intd array.grammars. So far no
such a definition has been found yet. I try to define it in‘the following way.
DEn 2;4.1 A ;tbchastic programmed array grammar (SPAG) is a quadruple

Gspé‘? {GA,I,M;,Mf)fwhere GA is an array grammar as defined in Dfn 2.1.1,

I is an,initiai rule chpicg vgctor, and'Ms and Mf_arg programming matrices

for success‘brénch'figld'and failure branch field respectively. Let G, be

a grammar with n kules,‘numberedll,,..,n. 'Let Mé and Mf be two n-by-n
programming matrices, called the success and failure matrices, where each

row of M and M, sums to either 0 or 1. The scheme for selecting a

production is ; at the beginning, the rule is selected according to the

initial rule choice vector I, which is a1l xn xow matrix. Next, if rule

Y, R

X has Jjust been gselected but did not apply, then the next rule is chosen

according to the probability density imposed by the weights in the kth row

of the'Mf if this row does not sum to zero. If, in either case, the kth

row sums to 0, there is no next rule, and the derivation has halted. The
language generated by GSPa is denoted by Lg(GSPa). Clearly, Lg(GSPa} C
L(GA)' The following example will describe the potential of generating
array languages by a spag GSPa[SZJ

Example 2.4.1 Let‘Gspa= (GA'I’Msfo) where

G, = { {.S,T,U,V,A,B,C,H,X,Y,;[,#] r {A,B,C,H,X,Y,I} +#,P,8) where

A
R 4 uT # U # A
P (1) sy —> cr (4 v — ¥YI (6) UH —> YH
T I I H H -
(2) ™ —> IT - (3) V& TP xv (7) V& — xB
{3) T —>H
fomnooo0 0 (00000 0 O
Omno0000O 00000O0 O
and M_= 0002000 m.=10000000
0000100 i 0000010
0001000 0000000
0000001 0000000
looocoooq 0000000

' P

I=(1000000

It can be shown that L(Gspa) is the set of all labeled right triangles

which would look like this +

QWA
MHHW
HWHw

B
XXB

Compared with Xrisch E3i1, this is much more simpler. In general, if

rule 2 is applied k > 0 times, then the number of derivation is 3k +4, and

the length of the side (including vertices) is k + 3. Let y = number of
steps to derive a triangle, x = length of the side of a triangle, then y
is linearly dependent on s, i.e. ¥y = az + b. In this example, y = 3k + 4,
x=k+ 3 My =3x - 5, Meanwhile for the non-parallel array grammars
generating'these trigngles Yy is proportional to x quadratically.

Given a language L and a spag Gspa generating L, it.may be necessary

to define a new spag G's to recognize L, since the generating grammar

pa

may be such that no pair of matrices cause a parse to proceed correctly.
Also since the 1ﬁnguage rarsed by a spag need not be the same as the
language generated [51l], we define Lp(Gspa) to be the language parsed by

G . In .this example the new spag, G' is'défined'as follows :
spa _ . spa
L]

= ' 1 ¥ :
spa (GA'I M s’M f) where G, is the same as before

s

M= M=

J. - A\

I=(00000.0.1)

0
vl al ol ol ele)
QOO QOMKMHO
cCOoOr o000
OO ODO
HFOoOOODOOO
COD0DCOO0O
Hh
OCO0OO00OHO

e NoNoleReNoNe)
COHOOOO
coOOoOO0OO0OOO
e Yo loNeleNolle)
CoO0OCOO0OO0
COoOQOQ0OO

Foln

“r . 7

If we want to recognize a language'Lﬁ;hwe can parse it this way :

| "r_\ N
A]A\\ B : N
Y.H Y BN UH iU H NOH
NDLYTTE (6) ¥ (5) !y T (8 uarE (5) (0T w
Y I OHMN YIH I 'y T\ {4) U !
YIOE ™7 yI11e™yridtg = ¥YITe =2y |DI8=7 [YIIH
CXXIXB,. CS8V C XX W, CXV TIE AN cv .
| TR
H' ET\|\\\\ lf\\ - "
Ty .) !I.I.T\" . T\\ ’ I :
- =oa==w (2 17N t 1.
Borre BoiiimZ virdn Biur] 844 acceptea
cv vV cv lcv! “s#

In.[521 a'gene;atqf programmar.for"stoéhaStic ocntext-free programmed
grammar languéges'is designed. 1In [237 a stochastic push down automata
(spda)M_ is described and the language accepted by final state with a cut-
point 0EXC1 is TM,N) = { (x,p(x)) | x€* = (qgr7,,1) ITs
(q 7 p; (%)), fox ') e‘*--q‘ € F, i=1 k, and p(x) = X b, (%) 2

i'.i'i r & i r':i] Ly rrr s [Z:i 7

i=l

where k is defined as the humber of districtively different derivations
defined by’ 5'.' As sujgested by Rabin E23]; a stochastic experiment can be
derived to test v}het_he:'r a sequence x € L (Ms,.)\) is accepted by a given
stochastic automaton Ms = (23 '.gi ¢ M,]1;, F) with a qut—point 7\ -

In this experiment, the Chebyshew's inequality [35] is applied to evaluate

the confidence level g

P(

m S -TN 1
S RS PEEL A
n 2

n dc
where Mtimes (out of total n times) - M_ is ended in final state and ¢ is a

parameter whibh controls_the_trgde—off between and the expected theoretical
' 2
c

(px) - A2

termination time T = - . Fig 2.7 and Fig 2.8 show the relation

betWeeh.éz and c, and fhe result of stochastic experiment with various
confidence level. The conclusion of the experiment agrees with that of the

theroetical analysis

%E.

e e - - —

R L i

!
i
f
I
}
b
]

&

> C

///interested‘region

Fig 2.7

accepted region - rejected region

n
A /
e /]
S LYZ.
5001 /
t6s |
5C
ol oL 03 ol.o, > A

Fig 2.8 0 : theoretical x';-experimehtal

The felationship between formal languages and }\:'stochastic [21]
lanéuages can be roughly drawn in Fig 2.9 where :
AS : the set of _)\f stochastic lanquageé
R E : the set of recursively enumerable 1anguages
F S : the set of finite-state languages
C F : the set of context-free languages

C 8 : the set of context-sensitive languages

Note that A8 > FS

- P

P

NS N DF X ¢
' - : unknown region"\\ -y
"AS N CS = § R
and the AS 0 (CS — CF) is still unknown: Fig 2.9

In pattern recognition problems, the description of patterns can be
viewed as languages generated by.a certain stochastic grammar with the

underlying statistical properties. Based on the knowledge of the stochastic

grammaxr and the nature of
~ synthesized to relate

' toghetef‘with a threshold (e.g.

the input deseriptions and a priori knowledge,

clagsification, a stochastic automaton can be

cut-point}, a,@ecision-(or‘classification)

can be made. The value of the threshold can be adjusted dependent upon

the actual output decision (refer to Fig 2.10)

Language
Generator
{Nature)

.8tochastic

Adaptive
Threshold
X D .
) Stochastic
> Automaton
pattern {Classifier)
description *

desired

é—————-—ﬁ}é—————— output
\ .

Fig 2.10 Pormulation of Pattern Recognition

The concept of stochastic automata for pattern rrcognition seems very

practicai and powerful.

principles ofistochéstic automata applied to array gr

found vet.

However, unqutunately, the development of

ammay has not been

then,

Chapter 3 Celluar Automata

The subject of cellular automata - also known variously as
cellular space [15,64,661, modular computer [59], or tessellation
automata [7,70,71]! deals with large collection of interconnected finite-
state Moore maéhines {automata), each finite automaton being thought of
as a cell. It can be used as a medium for theoretical studies of pattern
recognition, bioléqical modeling and evolution processes, also as a
foundation for a theory of logical design-bésed on integrated circuits
[15,66]. It can also be shown [60] that cellular automata are faster

than iterative acceptors (in real time or linear time).
,§3.l Definitions of One-Dimensional Cellular Automata

One may envision a 1-D cellular automata as an infinite strip of
film, each frame of whiéh represents a copy of -a single finite-state
machine {or cell)}. Associ;ted with each cell is ‘a local transition
function 5 which obtains the next state of the cell as a function'not
only of the_prés;ﬁt stéée of the cell but alsto as a function of the
present states ;f a specified set of neighboring cells in its neighborhood.
Tt can be shown that a 3-cell neighborhood - a cell and its left and
right neighbors - always. suffices in the 1l-D case; hence we assume this
neighborhooa. If Q is the state set of each cell, then the input set
is Q x Q. That ié, the out put ef a cell is taken to be its state, and

this output is used as input to the two nearest neighbors. Hence

J : Q3—€> Qr(x,v,2) —> ¥' is the local transition function for a cell

in state y with left neighbor in state x and right neighbor in state =z.

A global transition function A can be defined as the simultaneous

invocaticn of J at each cell. Thus /\ maps a configuration, i.e. an

assignment of states to. each cell in a cellular space, into another

configuration. There is a special statech)e 0, called the quiescent

state, such that 5-(Qerb;Qb) =4 - We define a pattern as the

finite portion of a configuration between the two boundary cells.

Dfn 3.1.1 -A deterministic bounded cellular space (DBCS) is a 1-D cellular

space, denoted by the 4-tuple (X,Q, g /b) ,with the 3-celi neighborhocd,

state set Q, and deterministic local transition function 5’ : Q3—{> Q

restricted as follows: (1) b € Q is a special boundary state, (2) XC @, =

Q - {k}} is the initial alphabet (3) J-(qi,b,qj) = b for arbitrary

qi’qj £ © (4) two and only two cells, the boundary cells, are in state

b at time t = O.

pfn 3,1.2 The pattern transition function for a DBCS Z = (X,Q, J (b)) is
* *

the funection F : Qb*%> Qb such that F(qlqz...qn) = _J (b,ql,qz) 5

() 9ydy) -or 4 (@59 108 4 (a1 qb) and F(A) =/, the empty

string, where n is the number of cells .in 2 between the boundary cells.

nfn 3.1.3 An e}emenﬁ of Qi' is said to be a pattern for DBCS Z = (X,Q, 5 ,b).

Let R : Q:——i; Q Eé the extraction function which extracts the rightmost

element of a finite pattern : R(qlqqu.;. qn) =q and R(Ap) = b.

DFn 3.1.4 A DBCS Z = (X,0Q, 5.,b) is said to accept the language L & X*

{on L) if, for arbitrary x € L, ﬁhere is a time t s.th. R(Ft(x)) € A where

2 { Q is a set of accept states disijoint from X. We shall denocte a DBCS

usad in this mammer by the 5-tuple (X.Q, § ,b,n) and call it a DBCS acceptor.

*
A iz said to recognize L if it accepts L on Al and accepts L' =X - L on

[

A, vhere Alﬂ A, = ¢ and A, u A2C Q. If z recognizes L, we say 2

rejeckts L', Such a 2 is called a DBCS recognizer.

2 language accepting device is said to accept (recognize) a language
L_within time T(n) if, for any x of length n, it can aetermine whether
{oxr not) xeL within T(n) steps, where TN = N is a total time function on
the pbsitive integers. T(n) = n is called real time; T{n} ="ecn, c is a

constant is called linear time.

Dfn 3.1.5 L is a DBCS language if there is a DBCS acceptor Z_ = (X,Q,‘J.,b,A)

t
s.th. L = L(z) = {xéX* (3 [rEtw) € A]}. Similarly, L is a DBCS
predicate if it is recognized by some DBCS recognizer. A real-time DBCS
language (predicate) is a DBCS language (predicate) which is accepted
(recognized within T(n) = T. Similarly, the adjective linear-time implies -
T(n) = cn.

Thus a string is accepted if, when embeded between two boundary cells
in some DBCS acceptor, action of. the pattern transition function caused.
the rightmost cell to eventually pass into an accept state.

§3f2 Definitions of Two-Dimensional. Cellular Automata

A 2-D cellulaé'automaton is an infinite array of finite-state machines
{(FSM), called cells, whefe each cell is assigned a point in Iz(Fig 3.1).
In general, a cell is non—determinisfié. The local transition function
of a cellular space cobtains the next-étate the same way as defines in §EL1
except that the neighborhcod is 2s dimensional. This neighborhood is sometimes
called the von Neumann or Hl-neighborhgod (Fig 3.2) wheré Hk =3{i,3,)€ 12!

|i-+jl £ k'} defines a general class of neighborhood. It can be shown [58]

that there is no loss of generality in assuming the Hl—neighborhood.

The configuration C, global transition function F and the quiescent state
of a cellular space 7 are defined simiiarly as in § 3.1 excepf that
preimage is 12 instead‘of,I. The support of a configuration C is given
by supl(C) = {'(i,j,) lC(i,j,) X qo}'. An initial configuration (i.e. at

time 0) 1is assuﬁed to have finite support.

- -dt-rdda | (ot
A :

-
T A E Al . (0.0)
- i ___ilj“__ Y
T HIE + A v
1 N B Ky (-hed 2 54 0,0
S~ A AR A el
- + 4T
J}:E%_‘_ﬂ— —IT 3
{—r—A 4 & Az:‘:’:

= A -
ﬁlT““H_‘J'_\l/’TJ {0,-1)

Fig 3.1 Cellular Space Fig 3.2 von Neumann Neighborhood
(hl— neighborhood)

Dfn 3.2.1 & (2-D) array bounded cellular space {BCS) is a cellular space

for which each cell has aspecially désigned state B, called the boundary

state, and-a7loéal trransition function restricted to map a cell in state

B into state B in all cases. Furthermore no boundary states can be created

after time zero. .The boundary cells at time zero in a BCS are assumed to

delineate a connacté? subset of cells, called a retina of the BCsS.

Dfn 3.2.2 A simply-connected BCS (SBCS) is a BCS for which each retina is

simply-connected. 3 rectangular BCS (RBCS) is an SBCS for which each

retina is restricted-to form a rectanqle.' Thé rightmost cell in the uppermost
~

row of a retina in a BCS Z is called the accept cell for that retina in

7. Notice that, since no. boundary cells can be created after t = 0, a given

re

ac

*m

1

retina in 2 remains fixed in Z for all t 2 0. Hence we shall call the

accept cell of a retina in 2 the accept cell of Z.

accept cell

B [B] B ... |B{B]
B B
B B
B B
B{Bl Bl ... |B|B

Fig 3.3 a RBCS retina

§3.3 Cellular Automata and Array Automata

We can define a Turing array acceptor (TBA) in parallel to the
definition of an array grammar (‘§2.l) to be a 5-trple T o= (Q,22 ; J.,qS,F),
where Q is a finite set of stétgs of the form Q' x A (whzre A= 1,R,U,D),

_22 is a finite set of symbolés, (qs,Rf € Q is a start symbol, F Q:Q is a
set of final sta1_:es; J is a mapping from Qx Z, into 2Qx2xA such that
the triples in the image sets are all of the form ((q,Y),B,Y), Y£€A . The
intexpretation of J- is as fdllows: If T is in internal state p and has
Jjust moved in direction ¥, and it reads symbol A, it goes into some internal
state q, writes symbol B-and moves in direction Y. T is called deterministic
if the image under é. of every pair in Q x 22 is a singleton, otherwise,
nondeterministic. T is_called finite-state (FSAA) if it can never rewrite
the symbols that it reads, in other words, 1f every triple in the image

of any ((p,X), A) under § is of the form ((q,Y),3,Y).

By an inut array on za wé—mean é mapping G from 12 into ZZ: s.th.
the preimage P of za —-{4%} ig finite and connected. We allow T to operate
on G by starting with a pair whose terms are tﬁe start state of T and a
point (i,j) of P (the initial "position" of T). The mapping J is applied
to the pair ((qs,R),A). where & is the value of G at (i,j). If any such
sequence of applications of J leads to6 a triple whose first terms is in
F, we say that T accepts G.

A TAA will be called'array~bqunded (an ABA) if it "bounces off" #'s,
i.e. if every t;iples in the. image of any ((p,X),#) under 5 is of.the form
((q,X-l),#,X_l). It will be éssumed that the input array of an ABA always
contains a non-#. There are two famous therems related to array grammars
and array automata by Mllgram and Rosenfeld [36] as follows:
Theorem 3.3.1 Let’ Cif'be the language of an AG; then there exists a TAA that
accepts just the arrays of aﬁ? . Conversely, let & ' be the set of input
afrays accepted by a TAA; then there exists an AG whose language is cif'
- Theorem 3.3.2 Let aZ? be the language of an MAG (monotonic array grammar) ;
then there exi;ts an ABA that accepts just the arrays of cZ? . Conversely,
1et.c25' be the set of input arrays accepted by an ABA, then there exists
an MAG whose lahguage is ¥

Since céllulér antomata can both genérate languages as well as recognize
languages, if we can relate it with array automata (via array grammars) it
would ke very beautiful and pratiéal. So far . no sucH an eguivalent relation
has been found vet. Here 1 try to propese & pre~theorem wﬁich relates array
automata with cellular automata {via array grammar) in some cases, the proof

of which is still bo be worked out.

“ 3

U 4

Pre~Theorem 3.3.3 For any MAG with minimal circumscribing rectangle [15]
no greater than 2 x 2, there corresponds an equivalent cellular automaton
Z' with an Hl-neighborhobd which can sifwlate the MAG. The simulation time
depends on the number of rewriting rules and the sizes of the minimal
circumscribing rectangles of rules in the MAG. A more detailed discussion

will be found in Chapter 5.
§3.4 Pattern Recognition by Cellular Automata

A cellular automaton is intuitively a pattern reocgnition receiving
retina, especially in the 2-D case. Hence the pattern recognition capa-
bilities ¢f cellular aufomata is pafticularly interesting. Initial work
L 8,11,58]1 on this problém has shown that these devices can recognize a
wide variety of topological invariants, including connectivity,rin linear
time. It has also been shown [57,58,59,60] that cellular automata are
inherently faster than iterative acceptors. A non-deterministic bounded
cellular space is defined just-as is a DBCS with the exception that
J : QB~9 297 is a non-deterministic local transition function with the
restriction that J(qﬁ'b'qj) ='{13}, for #rbitrary qi'qj £€0. n
language is accéptéd in this case if at some time t it is possible for the
rightmost pattern cell, to enter an accept state. An n-D iterative automaton

is an n-D cellular automaton with a distinguished cell which has a local

transition function augmented to be a function of an external input also.

A string is said to be accepted byean iterative automaton if the distinguished

cell ultimately goes into an accept state‘and emits a corresponding output.

‘An iterative automaton used in'this aﬁceptipg mode ig)called an iteraﬁive
acceptor. A real ;ime iterative acceptor'accepfs within time T(n) = n.

2 real-space iterative acceptor uses no ohtér cells than does a real-time
iterative acceptdr. That is for the 1-D case, only the distinguished cell,
the n_cells immediately to i#s pight;rand the cells immediately to its left
can ever change state. Hence a real-time iterative acceptor is a special
case of a real-space iterative acceptor. An interative acceptor is non-

E determiniétic (Geterministic) if its local transition function, including
that of the distinguished cell, is non-deterministic (deterministic) - just .
as-for cellular automata.

Now we shall make use of the following easily proved theorem{ 57,59]:
The Speed-Up Theorem (for DBCS) Let k be an arbitrary positive integer.
For an arbitrary DBCS accepfor z = (X,Q, J,b,R) with |Q] = r,'there exists
'a DBCS acceptor 2'= (X,Q', § ',b,A) with |Q'| = Srk‘wuch that of 2 accepts
within time i(n) thenh 2! accepts within time (T(n)/k) + n.

There are micellanequs theorems conce;ning_about the-equivélencg and
complexity regults of cellular aptomata, iterative acceptors, and linear-
hounded automaté [58,60]. Here we are going to see an example which shows
the recongition capabiliﬁy of, cellular automata.

‘Example 3.4.1 L= {a?bmcm | n133_§ is a real-time DBCS language. Consider
Fig 3.4. To erase COnquion, let B be the boundary state in this case. At
the lst step, each ab goundary, bc boundary., Ba_boundary and ¢B boundary
is specially marked. Each ab bo;ndary sends a gulse to the right at 1/2
unit speed checking for all b's. - Each be boundary sends a pulse left at

unit speed checking for all b's. The Ba boundary sends a pulsg right at

unit speed checking all a's. Shoud it collide with a bec boundary pulse

at an ab boundary, theh form Ba'b' is guaranteed. The cB boundary sends

a pulse left at 1/2 unit - speed checking for all c's. Should it
collide with an ab boundary pulse at a'l be boundary, then.for.m bjch is
graranteed. Furthermore, should it also collide v;rith the Bar boundary pﬁlse,
which has determined the existence of form Baibi, at the same bc boundary,

then form BambmcmB is guranteed and an accept pulse is sent r_ight\.

. M mom .
Fig 3.4 amb ¢ recognizer

For 2-D case, a BCS Z eith retiﬁa R is a pattern recognition device
_in the following sense . Let X C Q- {B}be the initial alphabet of Z.

‘Let x* be the'_set of a_.ll connected words on alphabet X, where a connected
word is a mapping from a finite, possibly empty, ‘connected subset of 12 into
X. Assume that R 'ié'.’ initiaflly pr‘ogré.rmned with elements from X. Thus for

| * . [.
initial configuration CO’ C, (R) = w €X . The word w is said to be accepted

o
by Z (on &) if there is a time t such that [¥ () | .(i

R"jR) N & % &, where

ACQ - {B} is disjoint form X and (iR,jR) is the accept cell of Z. a
% : . . .
language L € X is accepted by Z (on A) if, for arbitrary w € L, w is
. . * .
accepted by Z on A. A language L'C__ X 1is a BCS language if there is a BCS .

with initial. alpha.bet X which accepts precisely L. Sirhilarly a language

Yo A -

L is recognized by a BCS Z if it is not only accepted by 2 but its complement
L' = x* - L is rejected by Z, i.e. L' is accepted on A; where afla=¢g.
A BCS predicate is a language L for which there is a BCS which recogﬁizes L.

The speed of recognition of patterns by BCS shall be a major concern.
For RBCS, a natural measure On the retinas is m + n, where m apd n ara
the dimensions of a retina. Hence linear time will imply a number of time
steps proportional to m + n, and area time is a number of time steps
proportionél to mn for RBCS and to the number of points in the retina for
arbitrary BCS. A time measuré of particular interest here will be called
perimeter time, i.e. a ﬁumber of time steps proportional to the perimeter
of a given retina. At best, perimeter time is linear time. At worst,
perimeter time is area time. Note that for RBCS, perimeter time is linear
time. External perimeter time is a number of time steps proportional to
only the external perimeter of a retina (i.e. addition to the perimeter due
to holes in the retina are not included).

| Previous work [60] in the area of pattern recognition by 2-D cellulér

‘autcmata has assumed rectangular retinas (i.e. RBCS). The following is
a very importané theorem by Smith [[60] :
Theorem 3.4.1 There s a DBGS Z which recognizes the language L of all
simply—connected-words on arbitrary finite alphabet X within external
perimet perimeter time..

A simple consequence from Smith is that if an ABA accepts a language
L within time T, then there is a BCS which accepts L within time 2T + kp2
Theorem 3.4.1 brings the time limét down to 2T + kp where p is the perimeter.

This is accomplished from the following lemma.

Lemma 3.4.1 Given a DBCS Z, there is a special cell in each retina R of
2 which can be uniquely identified within perimeter time. That is, for
CO an initial configuration in Z entirely quiescent on R which has perimeter

p, there is a special state $ and a special cell (i) € R, the accept

R’ 7R

cell, and a time t = kp, k constant, such that [Exkco)] (i) = % and

rR’IR

[.
such that [Ft (Co)} (i,3) % $ for all &' if (i,3) % @)} or feor all

R'jR
t* { t if (i,3) = igrig) -

This lemma is rather interestingrin that 1t makes extensive use ©f the
1-D firing squad result (éee Waksmgn[67])and of the 1-D Dyck language
recognizing BCS of Smith [57;59,60]. Both of these results are intrinsically

cellular automata theoretic, and hence take on the appearance, at least, of

basic theorems for cellular automata theory.

-_— 2R -

Chapter 4 Grammatical Inference

In Chapter 2 we see that the major tools for syntactic pattern
recognition are various types of ﬁgrammars". However the ways how to
derive them are not mentioned at all. The principal object of this
‘chapter is to describe some recent studies of methods for the automatic
Ainference on pattern grammars. |

The grammaticallihfernece problem can be described as follows :

a finite set of symbol strings from some.language L and possibly a finite
set of ‘strings from the complement of L are known, and a grammar for the
1angﬁage igs to be discovered. Precisely the same problem arises in trying,
+o choose a model or theory to explain a collection of sample data, This
is one of the most important information processing problems known and

it i; surprising that there has been so little work on its formalization
[9,19,28,33,47;69]1 The grammatical inference problem and its solution
hkave implications for péttern recognition research for two reasons :

(1) Consid?rable research Has been invested in recent years into the
developmgntrof linguistic methods for picture description and analysis,-
and the disgover§ of grammars for these systems has posed a problem.
Various researcﬁérs [19,69] have indicated a need for improved metheds for
grammaxr diSQQVery;‘(2) If pattern recognition is a research for structure,
in information.space, then grammatical inference can be considered to be
an example of pattern recognition in itself. In this case, the observed
data is the pattern to be analyzed, and the inferred grammar can be thouéht

of as its description or classification.

A grammgtical iﬁference problem is well-formed if we are given :
(1) The hypothesis space, i.e. the class of grammars to be inferred,

(2) The observation space, i.g. the form of the'sampleé, and anytﬁing
which is known about their structure, (3} The evaluation measure, i.e.
an objective definition of what it means for grammars to be the "best™
hypoﬁhesis on the basis of a sample, (4) The required performance, i.e.
the criterion an accepted solution must satisfy.

Of course, not all well-formed p;oblems have solutions, but unless
an inference techniqﬁe.solves some well-formed problem, it is diffiqult
to make any useful statement about its domain of applicability.

This chapter is roughly divided into two parts : thée first part
Qeals with the non-stochastic languages and the second part deals with.
stochastic languages.

For the non-stochastic language we'll give an example to demonstrate
the derivation and reduction processes of context—free gtammars;
‘Example 4.1 Find a ocntext-free grammar G = (VN'VT’P'S),

such. that L(G) = {canb, bba b l nJ}O}

First we introduce a predicate adﬁ {x;y) which is true if the substring
x 1s immediately left—adjééent to the substring y, then defining'syntactic
types in the usualzway in terms of constituents, using the adj predicates
[19,38]. Thus our fitrst phasé produces for each scene a grammar'for'each
alternative possible structural description. To shorten the description,
we shall look only at a 7-tuple of grammér {i.e. {caaab,bbaab,caab,bbab,
cab,bbb,cb.}) that will reduce to the final grammar. They are as follows,

taking the strings in the order given above and write C - AB instead of

= (x,y) : Alx),B(y) : adj (x:=vy). For instance we label the string caaab

as follows :

caaab

12345
then 6 : (4,5) : adj(4;5) 8 : (2,7) : adj{(2;7)
7 : (3,6) : adj(3:6) xg ;. (1,8) : adj(1;8)

The asterisk 2 corresponds to the structural description that we are able

to construct the string caaab. The structural tree is shown in Fig 4.1.

s (9)

/
1 8 = G

/\
3/_
/_53

P

p="

Fig 4.1 Tree of caaab

The productions are :
(a) 8 —3¢G; - ?2 —> a6,
6 —> a6, G, —> ab

Similarly we obtain :

(b) for string bbaab (d) for string bbab (£) for string bbb
5 -—> bbG, § —> bbGy § —> bbb
G,—> aGg ‘¢ —> ab '

Gg—> 2

{(¢) for string caab (e) for string cab {g) for string cb

§—-)ch 5 —> oG,y S —>cb

G 6———-} aG7 ' Gg-—-) ab

G7—-{-) ab
The first step of reduction process is to check : since substitute GS’G'?’
GS’G9 by G3 we have identical rules like G3—? ab, so eliminating rules

G —3» ab the resulting productions are :
5,7,8,9 ;

§ —> cG s —> oG
G

& —> a6, 6 —> 3G3

G, —> aG, S —>» bbG,

G3 —> ab 8 e CG3

s —> bbG, S —> bbb

G, —> aG, 5 — cb

The next pair of reductions identifies Gl' Ga'and G6' resulting in

S —» cGy 5 —> <G

1
Gl —_ an ‘ GG% aG-.L
‘G, —aGy S —> bbG,
' G —> ab S —> G
S. —=> bbG, S ~—> bbb
G4-—)-; aG, S —> ab

The next pair of reductions identifies G

11 G and G, resulting in

72 4

s —> cgy s —}bbel
G —> a6, S — bbb
6 —> ab § —3> cb

The next reduction intrOdﬁces Gl ->b apd selectively substitutes 91 inf
- for b in rules'3,5 aﬁdnﬁ. So we have finally :
_ ' whe
S -~—> ¢Gy. § =——> bbG
6 —> ag, G—>b
So the resulting context-free grmmar G is G_='({S,G1}, {é,b,c} '
_ o . : en
{s ~> G [bbcl, > f-LGl l'b} + 8. " |
Some remarks of this mehtod shéuld be mentiqned here : .
{1) Perhaps the most uns;tisfactory'disadvantage is that these grammars i
e
must be written in terms of a fixed set of predicates. z
(2) Only positive instances, i.e. acenes to be fit by the final grammar,)
nét a mixtﬁfe of scenes labeled "yes" and'“no“ are shown in the grammar to *
be found.)
(3) Only idgalized"poise free" cases are to be taken into account. The
statisti¢al considerations are ignored.
The third problem may partially be resolved via the concept of |
: - W
stochastic grammatical inference proposed by Fu [21,22,23,34]. For a ;
_finite-strings set over the set of symbolé |
X = {xl,....',in} 'xiéz*
.let the given probability information be K
R = !{fl,- e fn}' 0&g, &1 i
-where‘fi is the_ﬁrobability or the relative frequency of occurrence of i !

. thé string xj, After (xi,fi)lhas been obseryed, let
n{ziXk) = { (n£) | = = w Ex and vl € k|

'.where'tw[denotes the length of the string w and k Z 0. Based on the

information (X,R), a stochastic automaton can be defined as

M(XREK) = (7.0, § ,q,)

where 2 is the same set of input symbols

Q= _{h(Z;X;k) l z _EZ*} ié the set of states,

qc; = h(A ,X,k) is the initial state (A is the
empty string and _

F = {h(z,x,k) [niz,x,k) = (A ,fi).} for some
fi € R. is final state set . ’
Let Q' = {h(z;x,k) 1 (N £)) € h(z,X,k}) for some fiER}
be the set of states of which each serves at 1ea§t as a final state and
possibly also aé a transition state. The transition from state g = (w,fi)
= h(z,x,k) to state g' = (w',fi) = h(za,X,k), a € X, is defined as
(a*yp), if g' € (Q-Q") orq' =q€F
(gra) = : :
= {ta'vp)s (aprpy) Ja €F} L if g € Q' - B
lwhere P 31 and Py are ﬁrans{tiqp probabilities which will be calculated

-from the z'_f:elatidns J (qo,si) = (qf, fi), i=1, ... , n.

It is anticipated, that‘fc;)r a sufficiently large value of k (e.g.
k = -ﬁax xi) , the abové relation will give a unigue solution of all the
transition probabilities. In this case, the number of states would _ailso
ke large enough so that the automatqn would accept all the stri_ngs in X,

Then the following condition may be realized :

L(M(XIle)) = ,(XfR) Z i fl

That is, the language accepted by the stochastic automaton M (3,R,k) will

be exactly the same as X with the associated probability information R.
: n
. n . . s q =
However if -~ £, £ 1, there is a certain probability 1 - Z £
z i e~
=" i=1

that other strings will also be accepted. (This is also one of the reasons

that, instead of {p(xl), v ¥ p(xn)} , the notation R = {fl' e g fn }

is used. Nevertheless, the quantity :%} fi may serve as a measure of
confidence for the grammar inferred._l;i the following, without going
through any further theoretical treatment, an example is given to
illustrate the proposed procedure f217 .

Example 4.2 The strings and their associated probabilities listed in

Table 2.1 are given as the input information , i.e.

.(K,R) = {(ablcl,l/36),(abic2,2/36),(ab193,3/36),(ab2,c1,1/36),
(abz-cz,

21/36),(ab2c3,2/3§},(ab3cl,3/36),(ab3c2,2/36),
(ab303,l/36)}

Let M(X,R,k) = (22 NeP S,q;,F) where :z = {a,bl,bz,bycl,cz,c3 }
For k = 3 2z = A (1wl = 3) 9= (X,R) -
zZ = a (|w] =2 q; = {(blcl,l/36,(bl,c2,2/36),
(blc3:%/36);(b201,1/36)i(b2c2,21/36);(b203f2/36),(b3cl;3/36),,

(b392,2/36),(b303,l/36)}

iw] =1 z = ab£ q, = {(01,1/36),(c2,2/36),(03,3/36)}

It

&

3¢ 9 {(01,3/36),(c2,2/36),(c3,1/36)}

N

il

3]
il

ab._c

w=0 z=abo, q _{t)\,l/as)} abioy qg = {(N,2/36) |

171’

z = abjcy, g, = i()\ ,3/36‘)} z = ab,c,, qg = {(A ,—21/-36)}

5 = abzél' q9‘=,q5 z.=ab,Cy, Gy = 9

z = absc,, -qii = d, ‘ z = abjc,, gy, = qé

z = ab3c3, ql3.= qS 7 |

F = (N/1/36), (A.2/36),(\(3/36), (0N ,21/36) = GQgrdgsdqrdg

.Q' = {qsrqefq—l‘tqa.g Q-Q' = {qorqqu2rq3rQ4} QT -F=4¢

dla,a) = (q,p) N g, =h(N,Xk, g =haXk =q

d(ay b)) = (ayepy) " §lagie) = agpg)
§ tay by = (ag,py) § (ag.c,) = lagipgs
§layipy) = (ayp,) §lagiey) = (aqepy)
§ (@y,0l) = (d5:m5) § (a ;) = (@yupq)
& (ayrcy) = (ggrpy) & (a ,0,) = (ag:p;,)
& (ayrcy) = (ay,p,) § (agrey) = (ggrppy)

we then can construct the transition diagram of the stochastic automaton :

Fig 4.2 Transition Diagram

From Fig 4.2 and the information (X,R}, the following relations can be '

established : P{P,Py = 1/36 PyPyPg = 1/36 plp4‘911 = 3/36
PyP,Pg = 2/36 P P3Py = 21/36 piPsP1y = 2/36
Py P,Py = 3/36 PiP3Py4 2/36 PyP,P3 = 1/36
and the normalization conditions are =
Py = 1 Pyt Py ¥ By =1, Pyt Pg TR L
Pg + Pjo * Pg = L Py * Py TPz =l

we obtain

P, = Pyy = Py = 1/2, Py = 2/3, Py = Pg = Pi3 = 1/6,

il

After the stochastic automaton is synthesized, a corresponding stochastic
finite-state grammar can be constructed using a procedure gimilar to the

non-stochastic case [22,23]

S—Sen p if flg,a) = (q,p), a€2 , where A is the
nonteriinal associated with the state ¢ and g€ F

A—>an, p if 5 (ay,a) = (ayp)s a-E-Z , where A,, A, are

rhe nonterminals assoicated with the ‘sﬁates‘

gy 9y respectively and qz_& F.

e . 7

A->Db P :Lf S (a,b) = (qf,p), béz ;- and qfé F where A‘*

is the nonterminal assoicated with the state q.

=

Based on the above procedures we can find out the corresponding

reqular grammar as follows : 'GS = (CN'VT'P'.S'-Dj' VN = {Sl'Al'A2'A3'A4} ,

N : | '
VT = ZJ and the rules of P are exactly the same as in § 2.3. This method,

although very promising, is restricted reqular grammars (via finite-state

Yy

aﬁtomata) only. The procédure for the construction of context-free
sampled languages has not been found yet, let alone the context-sensitive
grammars as well as the recursively enumerable grammars.

So far we have dealt with one-dimensibnal problems (i.e. string
lanquages} only. The way.to'derive a grammar for two-dimensional languages
{patterns) is partially successfully proposed by Evans [19] based on "
descriptive-oriented" approach. The following example demonstrates the
procedure:

Example 4.3 Suppose the input patterns are the scenes shown in Fig 4.3(a)
and (b). The primitive cbject type is linesegment (seg) and the available
predicates are join (x;y) and close (x:;y), which apply to any object x,y

‘made up of a sequence of line segmeénts and test for situations like those

shown in Fig 4.4(a) and (b).

| e

N

(a) (b) (a) (b}

Fig 4.3 Fig 4.4

In a very similar way as in Example 4.1 we can find the production rules
for (a) look like follows :

1

-

S —> (%,¥) : seg (x), Gy (y) : close (x;y)

38

Gy ~—> (x,y) : seg (x), G,(y) = join (x;v)
3 G2J—%>(X:Y). : seg (X)f seg(y) :jein (x;y)

and for (b)

4 : 8 — (x,y) seg (x), Gy{y) : close (x:y)

seg (x), seg (y) : join (x;y)

5: G —> (x,¥)

We take the union of these two and after the reduction process (similar

"as in Example 4.1) we get the final result :

8 —>» {x,y} : seg (x), Gl(y) : close (k;y)
G —> (x,¥) = seg (x),'Gl(y) : join (x:y)

G, —> (x,y) : seg (x), seg {y) : Join (uy)

The result is a grammar that w111 recognlze any polygon.

Strlctly speaklng, Example 4.2 also deals with. tow-dimensional
‘patterns {noisy triangles). - However, the grammatlcal inference procedure
for stocﬁastic programmed array grammars have not been found yet. Even

the array grammatical inference alone is unknown.

_— 4G -

PART 1II

Discussions and Future Research

A

Chapter 5 Discussions and Open problems

Through the investigationé from Chapters 2 - 4 we already have an
introductory .idea about two main tools for 2-D.syntactic pattern recognition
problems, namely, stochastic é:ogrammed array grammars and cellular sutomata.
In chapter 2, it has been argued that effective methods for syntactic
pattern recognition will requiré grammatical formalism which (1) generate
rich ciéss of languages, (2) have an associatea probabilistic mechanism,
and {3) are amenable to effective and efficient analysis procedures. The
stochastic pﬁog;ammeaﬂarray grammar is proposed as one possible solution
of such formalism. The power of the ;ontext—free programmed grammar (cfpg)
is reviewed and illustrated by examples (§ 2.2}. A stochastic programmed
array grammar is.defined-(§2.4) and some of its properties are considered.
In short the context-free grammar is considerably more compact than the
finite-state (ragular) grammar. The programmed grammar ig still more
compact than the context-free grammar. Examples of a stochastic cfpg
which generates noisy triangles are presented (§ 2.3). In parallel to
the stochastic, programmed, array grammars, the so called fuzzy, matrix,
picture processing grammars are aiso investigated. Their aﬁplications to
recpgnition problems,}gdvaﬂtages,idisadvantages and some open problems
are discusse (§ 2.1,2.2,2.3,2.4). In Chapter 4 an algorithm for
" discovering grammars given a set of sampled data languages is describéd
as grammaticgl'inference. Its capability limitation is also discussed
(pp43 -47). Two big open problems should be emphasized here : (1). Inf2.1
it is noted that the language generated by a given grammar when they are

applied in parallel need not be the same as the language -when they are

4

1x2,2x1,2x2). Ifitis 2 x 2 we can select the so called J,

applied. sequentially and that parallel'graﬁmar is faster than sequential
grammars. It's already known [51] that a context-free parallel language
is not necessarily a context-free sequential language. ' However it is
still an open question whether any context-free array language is a
context-free parallél array_El]. '(2)'Thé algorithm described in Chapter 4
is applicable to descriptive patterns only. Perhaps the worst defficiency
is thzst it can not'grdw. Thefformal algorithm‘to_derive-array grammars
(wﬁich elimina£é such defficiency) is still an 6pen qu;stion.

In Chapter 3 we have approached pattern recognition with cellular
automata via formal languaée theory. A special interest in time and memory
requiremenfs led us to introduce and stﬁd§ the real-time DBCS languagés

{ §3,l , 33,2),‘those languéges‘aéceptéd in real time by deterministic

cellular automata which are bound to.use only "real memory", i.e. only

the memory of those cells to which an input.is pre§énted. Cellular
automata and array automata are rélated via a Pre-Theorem (§13.3). A more
detailed discussion will be described as follows : |

Suppose AG is a monotonic array'grammar, whqse rewriting rules have
a minimal circumséribing_rectangleA[15] no Qreafer than 2 x 2, (i.e. 1 x 1,

1

neighborhood [58]_for the corresponding cellular automata. For instance,

the rewriting rule !gb-€> ﬁz corresponding to the following local
transition function S with J, neighborhood:

*hk 5 *kpk 5 -t 5

*Ak —> X, *BC —= Y , BC* — 2

*BC T %%k

‘where *'s are redundancies {(which means don't care).

I£ it is 2 x L or 1 x 2, the Hl neighborhood (§ 2.2) is enough. For

B Y
g

c?g corresponds to the following local

instance : the rewriting rule

transition-functions 5 with H, neighborhood :

. B
B — ¥, * ook g
c *

From’[S?] we know that for an arbitrary cellular space Z with a
Jy neighborhood, there is a cellular sp&céAZ' with an Hy neighborhood
which simulates Z in two times redl time. Thus we can propose a so called
-Pre-Theorem as -described in §13.3.

‘Since it has been shown (§3.4) that cellular automata are inherently
faster than iterative acceptors and cellular automata can do both generation
as well ‘as recognition with high.speed [43], and recognition can be treated
as a reverse process of pattern generation, we are particularly interested
in the following:open problems : (1) Can every finite pattern be generated
from 515: in l-dimensional, binary, scope-3 tessellation automata ? This
is an iﬁcqmpleteness problem proposed by Yamada and Amoroso [71]. 1t nas
already been solved partially by Amoroso and Patt tGJ. (2) Are the context-
free languages a suoset of the real—time DBCS iangﬁages ? We have shown
.bnly partial answers to this question [59]. For example; the linear contexty
free languages are r?al—time DBCS languages. (3) Are the real-time DBCS
languages closed under concatenation and reversal ? The answer to the
general‘question‘is probably'No. The real-timé DBCS languages have been_
shown closed under union, intersection, complementation and set difference.

(4) Do there exist non-linear DBCS predicates, i.e. DBCS languages which

="

require nOnulinear‘recognicion time ? It seems that rhe answexr to this
ﬁery interesting problem should be Yes, but attempts to use the diagnoali~
zation proof technique £59] have all failed so far. The major difficulty
appears to be the real'memorY~requirement. This is essentially the problem
‘first posed by Beyer [8].

To summarize, syntactic pattern analysis and recognition have been
found to offer an‘approach to dealing with.partern data vhich cannot be
conveniently described numerically or otherwise so complex as to defy
analysis by conventiocnal technigues. .éome formidable hurdles‘remain co
be cleared before syntactic pattern recognition can be‘widelyrapplied.

Some problems and areas of Promise include :

(1) a sﬁntactic approach rorthe determination of appropriate syntactic
-elements. .Some sort of interaction between the primitives selection
procedure and the evaluatlon of recognltlon performance is needed, both
" to optimize the performance and to minimize the analyzer complexity.

(2) Grammat;cal Inference A{grammar synthesis based on samples of
pattern data) technlques are needed by which analyzers could learn grammars
from sets of tralnlng patterns [19,22,28 47]

{3) Generalrzatlona of concatenation to multiple dimensions and more
'complex syntactlo relatlonshlps, e€.g. Shaw's PDL and web grammars due.to
Pfaltz and Rosenfeld appear. prom;s;ng 1n this respect[1,37,46,51,52,53].

{4) Presently attainable processing speed need to be improved, i.e.
efficient parsing of development of special pattern languages and grammars.
Parallel proceSSing and cellular autemata are possible solutions'[43f51,57,

58,59,60].

(55 Detailed formaﬁion of a stochastic syntactic pattern analysis
model capable of processing patterﬁ with distortion and noise. A future
imaginary syntax-controlled pattern scheme-::gistochaStic grammar is found

- for edch individual pattern class; fof each pattern:to-be,classified, a
‘parse and its associated ptobability.afe»Obﬁained according to each class
.grammar; -based on’ the parse probability, the cléssificétion is then made

' accorging to.a criterion such'as minimum risk. Advantage: apply syntactic’
analysis directly to the raw data rather than goingﬂthrdugh an initial

. noise cleaning ‘stage whi§h makes little or no use of the wealth of prior
information stored in the pattern grammar [21-23]..

(6) Further éohtributibps of;automata.theory'to,the-syntactic analysis
problems: Work is continuing on characterization of the.classes of
1ahguages recpgniéable by various‘tfpes of'éutomata._ Stochastic autcmata
[23] theory may eventually provide both.a theoretical_foun>ion for
‘étdchastic syntactic énalysis and an alternative approach to_the realization
of analytical‘mech#ﬁism based on stochﬁstic grammars [21,22,23,40,44,45,
63,65 1.]

The range of ;mpoﬁtant'problems to which syntactic pattern analysis
could be applied and which otherwise appears to be beyond the scope of
pfesently known techniques wiil continue to stimulate research in this new

direction,

Chapter & “Goals, Future Research and Methodology

ﬁs'statéd in the beginning of this paper our goals of the intended
reseaxch is to develop a theory of syntactic pattern recognition through
technigues from (1) grammatical analysis and (2) cellular automata
aﬁalysis. We intend to establish the following as tentative subgoals
(1) to give a formal definition of."syntactic pattern recognition” (2)
to minimize the recognition (parsing) time with minimum errors (3) to
solve miscellansous open piobleﬁs cited in Chapter 5 and {(4) from syntactic
pattérn recognition to sémantic pattern recognition.

Based on our discussions and the general goals, our future research
in fhis'field can be described as follows : |

(1) Given a class of sample array languages as iﬁput data find an
array‘grémmar that generates them. This includes many subresearch such
as {a)} Find the regquired mihimum size of the sample language, the grammar
from which can generate theﬂwhole setgof language.- For instance, in
Examplér4.l if the grammar” derived from aﬂﬁﬂsix Strings‘out of the 7-tuples
can not g;nerate the whole set {ca?b, bzégb | 1{2()} then the 7-tuple is
the reqﬁired minimum set. (b)y Put the grammar in the programmed form as
discussed in ‘§2.2_and if the associated probabilistic distribution set
is given (as in Chapter 4) put it in'the,stochgstiq'programmed form so
that the grammar may be in the most simplified compact form. (c) Sinqe
the results derived from # grammar are always éuite different depending
upon whether it is applied parallely or sequentially or even parsingly

(as discussed in §fL].and §2.4) different grammars (for generation or

parsing, pérallel or sequehtial) can be designed and they shouid<be
coﬁpared from speed point of view (number of steps) (d) Classify the
lahguage‘as discussed'in§2.2 or find a hierachical structure for array
' grammars -similarly as in’ §2.1[13].
{2) From the arréy grammgr‘obtain its corresponding array automata
or Turing apceptors { A§3.3) that can recognize the array languége. In
this step we méy design a stochastic experimen£ { §2.4) to test the
donfidence'level and the recognition time, trying £o enhance the'confidence
“level (by adjusting j\ [23]) and minimizélthe ;eqognition time (by adjusting
the grammar). |
(3) Either from sfep_(z) (see §3.3 [36]) or directly from step (1)
{via Pre-Theorem of -.§3.3 and a xésult from Smifh [60] which says that |
domains {(o,oi} , {'(0,0).(0,1-)} N a.ndJ {(0,0),(_0,'-1)} ‘sﬁffice for the
productiéns of the ciass of afray grammars.). ﬁe can find its correspondihg
‘cellular automata { §3.3, §3;4) that recognize the array languages. 'We
can also compare the results frOm'bofh ways and find whether there is aﬁy
'diﬁferenbe. .He;e-miseéilaneous-open problems may be énCOuntered'as
discussed in Chapter 5.
| (4) Pinally we sﬁbﬁld Eémpare thé results of step (2) with step (3)
and see in which Qneyfhe recognition speed is faster. It is expected that
cellular automata are f&ster‘than arcay automata (‘§3.4), but for the
stochastic and Geterministic cases [58] we are still not quite sure. Until
then, a more complete model for syntactic pattern :eqognition may then be
estabiished and a new.trial effoft from-syhtacticipattern recognition to

semantic pattern recognition will be pioneered if proper "meanings™ are

assigned to each syntactic structure [(s].

The future research described above can roughly be skétched as 'in
the diagram shown in next page.

From.the general survey, discussions and future research described
above we have introduced some formalism in our research for the concept
of syntactic pattern reqognition by "stochastic", "programmed", "array",
Ygrammars", "grammatical infe#ence" and "cellular automata". This will
be the basic spirit of ocur mefhodology which will include techniques from
probebility theory (statistics), programming 1anguages (FORTRAN V, SNOBOL
ete), mathematical lecic (formal theory, lst order predicate calculus) ,
modern algebra (group theory, lattice, homomorphism etc) and automata

theory (with their relations to formal languages) and so on.

——— — — — e - S e e Ema mem Er— e T e v e e w—

INPUT SAMPLED DATA
oF

ARRAY LANGUAGES

==

FIND

|
| " Find required
| 2 minimum size of
I samples

I

ARRAY GRAMMAR

X

FIND -

- Put it in most
simplified compact

“form

Classify
the grammar

v

Design for

parallel ﬁ {generation

sequential |parsing

ARRAY AUTOMATA

R

FIND

J Design a stochastic experiment
to check the confidence level and
the . recognition speed

CELLULAR AUTOMATA [€

Vs

Encounter

miscellaneous open problems

COMPARE RESULTS |

S;f—‘——ﬁv”——f"“_d/

Main Researches

Try to establish a more complete
model for syntactic pattern recognition
(with minimum error and fastest speed)

T T e e e e A e e e e e A E— e ——

Subresearches .

Fig 6.1 Sketch Diagram of the Future Research (note that the

upward directed arrows mean that a reverse process will

also be very interesting research tqpic.)

4

[2]

[2]

[3]

‘Linguistics 4 (1965), 61-70

[4]

£s]

(6]

[7]

[8]

o]

ANNOTATED BIBLIOCRAPHY

Abe, N. et al "Web Grammars and Several Graphs" J. Computer and System
Sciences 7 (1973), 37-65

Concerned with the class of. web grammars introduced by Phaltz,
Rosenfeld and Montanari.

Abraham, S. "Compound and Serial Grammars" Informatlon and Control 20
1972}, 432~438

Two new classes of generative grammars are defined, compound grammars
and serial grammars. The generative power of them consisting of finite-

state grammar is investigated.

"Some Questions of Phrase Structure Grammars I" Comput.

Special interest was shown towards generative grammars and a new

.type of generative grammar called "matrix grammar®, which can be considered

as a programmed grammar with only success branch field.

Aho, A.V. "Indexed Grammars — An Extension of Context-Free Grammars"
IEEE pub. no. 16-C~56 (1967)
_ Attempting to define a class of languages in the region of unconditional"
transfer context-free programmed grammars (utcfpg's) with identical
success and failure fields. -

Aho,‘A V. and Ullman, J D. The Theory of Par51ng, Translation and Complllng
Prentlce—Hall ed. (1973), vol 1 and 2

Developed the relevant parts of mathematics and 1anguage theoxry and
developed the principal methods of fast syntactic analysis.

Amoroso, S. and Patt, Y.N. "Decision Procedures for Surjectivity and
Injectivity of Parallel Maps for Tessellation Structures" J. Computex
and System Sciences 6 (1972), 448-464

Demonstrate the existence of nontrivial 1n3ect1ve parallel maps, which
appears to be qulte rare.

Arbib, M.A. "Simple Self-Reproduc1ng Universal Automata‘“Informatlon and
Control 9 (1966), 177-189 - .

Present a self-reproducing universal array with simple programming.
This is made possible by using as ba51c unit a finite automaton which can
excute an internal program of up to 20 instructions.

Beyer, T. "Recognition of Topological Invariants by Iterative Arrays"
Ph.D dissertation, MIT (1970)

Propose iterative acceptors that can recognize topological patterns
with real memory requirements.

Birmann, A. W. @and Feldman, J.A. "A Survey of Results in Grammatical
Inference" Frontiers of Pattern Recognition, Watanbe ed. Hawaii {1972), 31-54.

Describe some of the major developing results on grammatical inference
and indicate where the interested reader.can look further.

[10]

[11]

[12]

[13]

Booth, R.L. “Probabilistic Represeﬁtationﬁof Formal Langtages™ IEEE
Symposium on Switching and automata Theory 10 (1969), 74-81

A necessary condition for "consistency" of stochastic production
rules is derived.

Burks, A.W. Essays on Cellular Automata U. of Illinois Press (1270) -

A collection of 15 essays of cellular automata edited by Burks in
memory of Von Neumann. Most of them are concerned about the theory of
self-reproducing automata.

‘Chang, S.K. VA Method for the Structural Analysis of 2-Dimensional
Mathematical Expressions"™ Information Sciences 2 (1970}, 253-272

A structure specification scheme is déscribed which can be used to
specify the structures of certain 2-dimensional patterns. Algorithms
are developed to test whether a pattern has a well formed structure with
respect to a given structure specification scheme.

“picture Processing Grammars and its Applications" Information
Sciences 3 (1971), 121-148

A method for the description of the hierarchical structure of 2-
dimensional pictures is proposed. The model is called picture~processing
grammar. ' - - '

[14]Chomsky, N. "Formal Properties of Grammars" Handbook of Mathematical

[1s]

[167

[17]

L 18]

Psychology John Wiley and Sens, Inc., New York, 2 (1963), 323-418
The closure properties of languages are discussed. ' ’

Codd, E.F. Cellular Automata Academic Press, N.Y. {1968)

Helpful to computer designers and programmers who want a better
understanding of the principles of homogeneous cellular systems, to
automata theoreticians, and to biochemists interested in the possibility
of biochemical computers with self-reproducing capability.

Cook, C.R. and Wang, P.S.P. "“A Chomsky Hierarchy of Isotonic Array
Grammars and Languages" Computer Graphics and Image Processing 8, (1978)
pp. 144-152. R ‘ ' _

Complete the Chomsky hierarchy of isotonic array grammars. Obtain -
Chomsky and Greibach normal forms for context-free array grammars.
Surprisingly, the famous context-free languages {a"p"|n>1} is not isotonic
context-free, but isotonic context-sensitive. '

Dacey, M.F. "A 2-Dimensional Language for a Class of Polygons" Pattern
Recognition Pergamon Press 3 (1971), 197-208

Poly is a 2-dimensional language the produces line pictures of polygons
that may be decomposed into 45° r¥ight triangles and rectangles. The elements
of the language are described and an example illustrates the use of the languay
to produce a picture. ‘ ' :

Eickel, J. and Loeckx, J. "The Relation between Derivations and Syntactical

Structures in Phrase-Structure Grammars" J. Computer and System Sciences

6 (1972}, 267-282 ‘ o
Conditions for a phrase-structure grammar are established which warrant

that any of its derivations univocally defines a syntactical .structire of

the sentence.

"

e e e i o

ic

gons
ments |
languat

.cal

rant
¥

[19] Evans, T.G. "Grammatical Inference Technigues in Pattern Analysis”
Tou ed. Software Engineering 2 Academic Press N.Y (1971), 183-262
Describe some recent studies of methods for the automatic
inference of pattern grammars. '

[20]‘Fischer, M.J. "Two Characterizations of the Contect-Sensitive
Languages" IEEE Symposium on Switching and Automata Theory 10
(1969), 149-156 '

Two dimensional bugs define precisely the context-sensitive
languages. Consider also finite state acceptors with n two-way non-—
wrltlng 1nput tapes.

[21] Fu, F.S. "On Syntactic Pattern Recognition and Stochastic Languages"
° Frontiers of Pattern Recognition Watanabe ed. (1971), 113-137
Stochastic languages and their applications to syntactic pattern
recognition are described. BAn algorithm in grammatical inference for
discovering such languages is also studied.

[22] and Huang, T. "On Stochastic Context-Free Language" Informatién
_ SClences 3 (1971}, 201-224
‘ Properties of normalized stochastic languages are discussed and
alternative procedures for constructing the Chomsky and Greibach normal
forms for normalized stochastic context~free grammar (nscfg) are presented.
[23] and Li, T.J. "On Stochastic Automata and Languages" Information
Sciences 1 (1969), 403-419 -

For the ~stochastic languages, a flexible stochastic experimental
procedure based on Chebyshev's inequality is proposed. Then, the class of
maximmm-likelihood stochastic language is defined on the basis of the
maximum-likelihood final-state distxibution.

[241 and Bharat, K. "Tree Systems for Syntactic Pattern Recognition"
IEEETC, vol c-22 No. '12 (1973), pp 1087-1099°
An approach of representing patterns by trees is described. Tree
grammars are used for pattern description, and tree automata are used for
classification. Illustrative examples are given.
[25] and Lu, S. "A Clusterlng Procedure for Syntactlc Patterns" IEEETSMC,
vol SMC-7, No. ‘10 (1977), pp 734-742
A distance between two syntactic pattexns ig -defined in terms of
error transformations. A clusterlng procedure for syntactic patterns is
also described together with a character recognition experiment illustration

[26] Hartmanis, J. and Stearns, R.E. "On the Computational Complexity of
Algorlthm“ Trang. Amer. Math. Soc. 117 (1965), 285-306
Present a diagonalization proof technlques txrying to solve some non-
11near recognition. time problems.

[27] Hopcroft, J.E. and Ullman, J.D. Formal Languages and Their Relations
to Automata Addison-Wesley Press (1969)
Presents the theory of the formal languages as a coherent theory
. and makes explicit its relationship to automata.

[28] Horning, J.J. “A Procedure for Grammatical Inference" Information
Processing {(1971), 519-523

Exhibit a procedure which is possibly an optimum solution to the
grammatical inference problems, and discuss a number of variations,
including the learning of probabilities as well as grammars, and learning
in the presence of noise.

[29] Ibara, 0.H. "Simple Matrix Grammars“ Information and Control 17 (1970)
354-394
Simple matrix languages and right-linear simple matrix languages
defined. The closure properties of the bounded languages are also discussed.

[30] Kain, R.Y. Automata Theory: Machines and Languages Mc-Graw Hill Press
{1972) .
An extinguished textbook containing mathematical linauistic, turing
machines, miscellaneous automata and formal language theories etc.

[31] Kanal, L. and Chandesekaran, B. "On Linguistic, Statistic, and mixed Models
- for Pattern Recognition"” Frontiers of Pattern Recognition. Watanbe ed.
{(1972), 163-192 : .
Present a selective discussion of some aspects of linguistics,
statistical and mixed approaches of pattern recognition.

[32] Kasvand, T. "Experiments with an On-Line Picture Language" ditto

A preliminary version of the on-line picture language has been completed.

[33] Kirsch, R.A. "Computer Interpretation of English Text and Picture Patterns”
IEEE Tran. 13 (1964), 363~376
Consider a class of information sources consisting of English text and
pictures with an illustration of al algorithm for matching the sentences
-given by a simple grammar against the class of simple pictures which these
sentences support to describe.

[34] Lee, H.C. and Fu, K.S. "A Stochastic Syntax Analysis Procedure and Its
Application to Pattern Classification™ IEEE Tran. on Computers c-21 7 (1972),
660666 ' -

A Procedure is described for stochastic syntax analysis of context-
free languages. The parsing algorithm utilizes a bottom-up technique used
in procedure languages. All decision encountered in the algorithm are
determined statistically.- Also developed is a stochastic context-free
language for usevin pattern classification of chromosome images.

[35] Meyer, P.L. Introductory Probability and Statlstlcal Applications
Addison-Wesley Press (1965)
A textbook: Precise mathematical language is used and some concepts,
definitions as well as theorems are discussed.

[36] Milgram, D.L. and Rosenfeld, A. "Array Automata and Axray Grammars®” .,
Information Processing (1971), 69-74 '
It is shown that grammars that rewrite arxrays are equivalent to
Turing machines having array "tapes” and that "monotonic™ array grammars
" (in which arrays never shrink in the course of a derivation) are equivalent
to "array-bounded" machines.

[37] Miller, W.F. and Shaw, A.C. "Linguistic Methods in Picture Processing” Proc.
AFIPS, FJCC 33 (1l968), 279-290
Survey research in linguistic meéethods for describing and processing
pictures. Also extract some common features and difficulties and 1ndlcate .
dlrectlons for future research. _

—_—H7 -

[4

[4

[4

[4

[38 JMondelson, E. Introduction to Mathematical Logic D. van Nostrahd N.¥. {1966}

{323

[40]

[41]

ra2]

[43]

[44]

[45]

A very nice textbook containing propositional calculus, quantltatlve
theory etc.

Narasifhan, R. "Syntax-Directed Interpretation of Classes of Pictures"
C. ACM 9 MarcH- (1966), 166~173

Describe the structure of syntactic descriptive models by con51der1ng
their specific appllcatlon to bubble chamber plctures_

Nasu, and Honda, "Fuzzy Events Realized by Finite Probablllstlc Automata”
Information and Control 12 (1968), 284-303

Concept of probabilistic events is introduced and their closure
properties undex the operations on-the set of all fuzzy events is studled.

Nilsson, J.N. Learning Machines McGraw-Hill Press (1965)

Present some of the results of research in the new and exciting field.
of the learning machines. The basic approach adopted in this book involves
the concept of discriminant functions that define the behavior of the
pattern-classifying machine.

b .
Nishio, H. "Heuristic Use of Image Processing Technique for Theoretical
Studies of Automata" Frontiers' of Pattern Recognition, Watanabe ed. '
Hawaii (1972), 373-388
Problems of information transmission in cellular automata and
pattern recognition are studied.

Ohmon, K. et al "aAn Application of Celiular'Logié‘for High Speed Decoding

‘of Minimum-Redundancy Codes™ FJCC (1972), 345-351

Present a new high speed decoding system consisting of'cellplarblogic_
which have such merits as high decoding speed, design simplicity and
case of machine fault detection.

Page, C.B. "Strong Stability Problems for Probablllstlc Sequentlal Machines"
Information and Control 15.(1969}, 487-509

The: strong stability problem is studied for the behav;oral equivalences -
indistinguishability and. n-moment equlvalence.

Paz, A. Introductlon to Probablllstlc Automata Academic Press (1971)
Serve both as a monograph and as a textbook with a large collection
of exercises distributed among the various sections including: stochastic

sequential machines, Markov chains, events, languages and acceptorsy etc.

[46]

Pfaltz, J.L. "Web Grammars and Picture Description" TR—70—138,.C0mPUth

- Science Center, U. of Maryland, Sept. (1970)

[27]

A method of ana1y21ng pictures of "neurons" is "described. Creates a
data structure to represent the given picture and uses this structure to
direct array-processing operatlons Whlch provide the 1nformatlon model’
for the analysis.

Reghizzi, S.C. "An Effective Model for Grammar Inference"” Inforxmation
Processing (1971), 524-529

A grammar inference model ig a black box which. receives prlmary
linguistic data, and produces a grammar. The effectiveness of a computer

. program based on the algorithm opens the way to several potential applications

and confirms some assumptions concerning natural language acquisition.

—_— AT -

[4€] Richardson, D. "Tessellation with Local Transformatlons" J. Computer and
System Sciences 6 {1972), 373-388
Contributions to the characterization of continuity and translatlon
invariance and processes which can occur in a tessellation universe in
which the "law of the nature" is a local transformation.

[49] Rosenberd, G. "Direction Controlled Programmed Grammars" Acta Informatlca
1 (1972), 242-252
A generalization of the notion of a context-free grammar is presented.
It is based on the notion of a programmed grammar.

[50]2&osenfeld, A. "A Grammars for Maps" Software Enginéexring 2 Tou ed. (1971}
227-239 ' ‘ o
Describe a grammar that has the set of “adjacency multigraphs" as
its language. ' '

[51] Rosenfeld, A. “Isotonic Grammars, Parallel Grammars, and Picture Grammars"
' Machine Intelligence 4 (1971}, 281-294
Isotonic context-sensitive array rewriting rules are essentially the
same as local digital picture processing operations. Since the latter
are often applied to pictures in parallel, it is of interest to study grammars
which operate in parallel. : '

[52 JRosenfeld, A. and Mercex, A. "An Array Grammar Programming System" C.ACM
16;1 (1973), 299-305
A package of Fortran programs has been developed that permits a
user to interactively design and test array grammars. Examples are
given involving array 1anguaqes consisting of 51mple geometrlcal patterns,
as well as a language of "neuron pictures”.

[53] _ ' and Pfaltz, J.L. "Sequential Operations an Digital Picture
Processing" J.ACM 13(1966), 471-494
The relatlve merits of performing local operatlons on a digitized picture
in paraliel oxr sequentially are discussed. Some appllcatlons .of the connected
component and distance functions are also presented.

[54] Rosenkrantz, D.J. “Programmed Grammars and Classes of Formal Languages
J.ACM 16 No. 1 (1969), 107-131
~ he proporties of programmed grammars, a generallzatlon of phrase
structure grammars, with various types of production cores are investigated.
The new classes of grammars are defined which lie between the context-
free and context-sensitive grammars in their generative power.

[55]. Solomaa, A. "Matrix Grammars with a Leftmost Restriction" Information
and Control 20 (1972), 143-149)
The family of languages generated by matrlx grammars with context—
free ()\ free) core productions and with a leftmost restriction on dexi-
vations equals the family of recursively (context-sensitive) languages.

[56] siromoney, G. et al "“Picture Languages with Array Rewriting Rules"
Information and Control 22 {1973}, 447-470
Generative models of plcture languages with -array rewriting rules are -
presented. A distinct hierarchy: is chosen. to exit between the different
classes introduced. B :

i
e

[57]

[58]

[59]

[60]

[sl]

[62]

[63] _

[s4]

[6s]

(1971), 466-482

Smith, R.A. "Cellular Automata and Formal Languages” IEEE Symo.
Switching and Automata Thecry 11 (1970), 216-224
Cellular automata are shown to be inherently faster than iterative
acceptors. Many positive results are presented to indicate that the context—
free languages can, perhaps, be accepted in time n and space n by cellular

automata.

-On

"Cellular Automata Complexity Trade—Offs“ Information and Control 18

The general theory of cellular automata is 1nvest1gated with special
attention to structural complexity. T

"Real-Time Language Recognition by One-Dimensional Cellular -
Automata" J. Computer and System Sciences 6 (1972), 233~-253
Pattern Recognition by parallel devices is investigated by studying
the formal language recognition capabilities of 1-d cellular automata.
Closure properties and cellular antomata transformatlon lemmas are
also presented. :

"Two-Diménsidnal Formal Languages and Pattern Recognition

by Cellular Automata" IEEE Symp. on Switching and Automata Theory 12

(1971), 144-152
A formal study of pattern recognltlon capabllltles of cellular

.automata is undertaken based on a class of recently introduced grammars

for 2-D array grammars. B3Also solve an open problem of Beyer.

Stanat, D.F. "A& Homomorphism Theorem for weighted Context-Free Grammars"
J. Computer and System Sciences 6 - (19272}, 217-232

Exhibit a. form of the theorem u51ng a Greibach normal form and
allowing weighted productlons.

Swain, P.H. .and Fu, K.S. "On Syntactic Pattern Recognition" Software .

Engineering 2 Tou ed. (1971), 155-182

A review and evaluation of thé state of the art of syntactic
pattern recognition. . -

n "Stochastic Programmed Grammars for Syntactic Pattern
Recognltlon" Pattern Recognition Pergamon Press 4 (1972) 83-100

A stochastic version of the programmed grammars is proposed as a power—
ful and convenient formalism for syntactic pattern recognition. An algorithm
for parsing strings generated by stochastic context-free programmed grammars
is described and an example is presented which generates noisy sguares.

Thatcher, J.W. "Self-Describing Turlng Machines and Self—Reproduc1ng Cellular
Automata" from Essays on Cellular Automata, Burks ed. (1969)., 103-13L

Provide an elementary introduction to some fascinating, as well as
important aspects of automata theory. Describe a basic note of unlversallty
in the von Neumann cellular automata.

Turakainan, P. "On Stochastic Languages“ Information and Contrxeol 12 {1968),
303-313

The notion of a nrobablllstlc ‘automaton is generalized, and it is
shown that this does not affect the family of representable languages.

[66]

[67]

[68]

o]

[70]

[n3;

'[72j

[73]

{74

.Illinois Press, Urbana {1966) i

299-317

‘theories, and self-reproducing automata motivated the definition of the

_/4LL (x,g) The fuzzy set M(x) is defined to be the meaning of the term Xy

von Neumann, J. Theory of Self-Reproducing Automata, Burks ed. U. of

An algorlthm for determining. a configuration of self—reproducxng
cellular- model is designed. - 5

Wang, P. "Sequential/Parallel Matrix Array Languages," J. of Cybernetics,
vol. 5.4 (1975). pp. 19-36

Sequential/parailel technique for two-dimensional pattern generatlon is
introduced. Several propertles are also investigated.

"Recognition of Two-Dlmen51onal Patterns" Proc. ACM '77, Seattle
Wa (1977), pp- 484-489 co

A method for recognizing two-dlmen51onal sequentlal/parallel matrix’
languages is presented.

Watanabe,rs. Methodologies of Pattern Recognition Academic Press (1969)
_ Written by 29 qutstanding authorities presently active in the field,
place emphasis on the "philosophy" of his approach rather than math. deri.

Yamada, H. "Tesselation Automata" Information and Control 14 (1969),'

Certain mathematlcal studies of pattein recognition, evolutlon

tessellation automaton which is a mathematical model of an infinite array .
of uniformly interconnected identical finite-state machines.

. and Amoroso, S. "A Completeness Problem for Pattern .Generation
in Tessellation Automata™ J. Computer and System Sciences 4 {1970), 137-176

" Deals with the question of whether or not, for a given tessellation
automaton, there exists a finite pattern that cannot evolve from a given ;
primitive pattern no mattex what sequence of environmental input transformat10n=
are applled.

Zadeh, L.A. "Note on Fuzzy Languages" Information Sciences 1 (1969),.421-434
It is shown that any context- sensitive fuzzy grammar is recursive.

For fuzzy context—free grammars, procedures for constructing the Chomsky

and Greibach normal forms are outlined and illustrated by examples.

.nQuaﬂtitativé*Fuzzy SemanticS" Information Sciences 3 (1971),

-159-176
Given a partlcular X in T, the membershlp functlon,lf(x,y) deflnes
a fuzzy set, M(x), in U whose membership function is given bxzé'ﬂﬂx)(#

with whlch playing the role of a name for M(x).

'"Slmllarlty‘Relatlons and Fuzzy odering" Information Sciences
3 (1971), 177-200 ‘ '
Various properties of similarity relations and fuzzy oderings .
are investigated and as an 111ustrat10n, an extended version of Szpilrajn® s
theorem is proved. :

