

TR-IIS-19-002

 Equational reasoning for non-determinism monad:

 the case of Spark aggregation

 Shin-Cheng Mu

June 11, 2019 || Technical Report No. TR-IIS-19-002

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2019/tr19.html

Equational Reasoning for Non-determinism Monad:
The Case of Spark Aggregation

SHIN-CHENG MU, Academia Sinica, Taiwan

As part of the author’s studies on equational reasoning for monadic programs, this report focus on non-

determinism monad. We discuss what properties this monad should satisfy, what additional operators and

notations can be introduced to facilitate equational reasoning about non-determinism, and put them to the

test by proving a number of properties in our example problem inspired by the author’s previous work on

proving properties of Spark aggregation.

1 INTRODUCTION
In functional programming, pure programs are those that can be understood as static mappings

from inputs to outputs. The main advantage of staying in the pure realm is that properties of pure

entities can be proved by equational reasoning. Side effects, in contrast, used to be considered

the “awkward squad” that are difficult to be reasoned about. Gibbons and Hinze [2011], however,

showed that effectful, monadic programs may also be reasoned about in a mathematical manner,

using monad laws and properties of effect operators.

This report is part of a series of the author’s studies on equational reasoning formonadic programs.

In this report we focus on non-determinism monad — in our definition that is a monad having

two effect operators, one allowing a program to fail, another allowing a non-deterministic choice

between two results. We discuss what properties these operators should satisfy, what additional

operators and notations can be introduced to facilitate equational reasoning of this monad, and put

them to the test by proving a number of properties in our example problem: Spark aggregation.

Much of this report is inspired by the author’s joint work with Chen et al. [2017], in which we

formalised Spark, a platform for distributed computation, and derived properties under which a

distributed Spark aggregation represents a deterministic computation. Therefore, many examples

in this report are about finding out when processing a non-deterministic permutation (simulating

arbitrary distribution of data) produces a deterministic result.

2 MONAD AND NON-DETERMINISM
A monad consists of a type constructor M :: ∗ → ∗ and two operators return :: a → M a and “bind”

(=<<) :: (a → M b) → M a → M b that satisfy the following monad laws:

f =<< return x = f x , (1)

return =<< m = m , (2)

f =<< (g =<< m) = (λx → f =<< g x) =<< m . (3)

Rather than the usual (>>=) ::M a → (a → M b) → M b, in the laws above we use the reversed bind

(=<<), which is consistent with the direction of function composition and more readable when we

program in a style that uses composition. When we use bind with λ-abstractions, it is more natural

to write m >>= λx → f x. In this report we use the former more than the latter, thus the choice of

notation. We also define m1 << m2 = const m1 =<< m2. Note that (>>) has typeM a → M b → M b.
More operators we find useful are given in Figure 1. Right-to-left Kleisli composition, denoted

by (<=<), composes two monadic operations a → M b and b → M c into an operation a → M c.
Operators (⟨$⟩) and (⟨•⟩) are monadic counterparts of function application and composition: (⟨$⟩)

applies a pure function to a monad, while (⟨•⟩) composes a pure function after a monadic function.

Author’s address: Shin-Cheng Mu, Institute of Information Science, Academia Sinica, Taiwan, scm@iis.sinica.edu.tw.

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

2 Shin-Cheng Mu

(<=<) :: (b → M c) → (a → M b) → a → M c
(f <=< g) x = f =<< g x

(⟨$⟩) :: (a → b) → M a → M b
f ⟨$⟩ m = (return · f) =<< m

(⟨•⟩) :: (b → c) → (a → M b) → (a → M c)
f ⟨•⟩ g = (return · f) <=< g

Fig. 1. Some monadic operators we find handy for this paper.

We now introduce a collections of properties that allows us to rotate an expression that involves

two operators and three operands. These properties will be handy when we need to move paren-

thesis around in expressions. To begin with, the following properties show that (⟨$⟩) and (⟨•⟩) share

properties similar to pure function application and composition:

(f ⟨•⟩ g) x = f ⟨$⟩ g x , (4)

f ⟨$⟩ (g ⟨$⟩ m) = (f · g) ⟨$⟩ m , (5)

f ⟨•⟩ (g ⟨•⟩ h) = (f · g) ⟨•⟩ h . (6)

We also have the following law that allows us to rotate an expression that uses (⟨•⟩) and (·):

f ⟨•⟩ (g · h) = (f ⟨•⟩ g) · h . (7)

Note that g in (7) must be a function returning a monad. Furthermore, (8) and (9) relate (=<<) and
(⟨$⟩), both operators applying functions to monads, while (10) and (11) relate (<=<) and (⟨•⟩), both

operators composing functions on monads:

f =<< (g ⟨$⟩ m) = (f · g) =<< m , (8)

f ⟨$⟩ (g =<< m) = (f ⟨•⟩ g) =<< m , (9)

f <=< (g ⟨•⟩ h) = (f · g) <=< h , (10)

f ⟨•⟩ (g <=< h) = (f ⟨•⟩ g) <=< h . (11)

Having these properties is one of the advantages of writing (=<<) and (<=<) backwards. All the
properties above can be proved by expanding definitions, and it is a good warming-up exercise

proving some of them. Some of them are proved in Appendix A.

None of these operators and properties are strictly necessary: they can all be reduced to return,
(=<<), and λ-abstractions. As is often the case when designing notations, having more operators

allows ideas to be expressed concisely in a higher level of abstraction, at the expense of having

more properties to memorise. It is personal preference where the balance should be. Properties (4)

through (11) may look like a lot of properties to remember. In practice, we find it usually sufficient

to let us be guided by types. For example, when we have f ⟨$⟩ g x and want to bring f and g together,
by their types we can figure out the resulting expression should be (f ⟨•⟩ g) x.

Non-determinism Monad. Non-determinism is the only effect we use in this report. We assume

two operators ∅ and (8): the former denotes failure, while m 8 n denotes that the computation may

yield either m or n. As pointed out by Gibbons and Hinze [2011], for proofs and derivations, what

matters is not how a monad is implemented but what properties its operators satisfy. What laws ∅

and (8) should satisfy, however, can be a tricky issue. As discussed by Kiselyov [2015], it eventually

comes down to what we use the monad for. It is usually expected that (a, (8), ∅) be a monoid. That

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 3

is, (8) is associative, with ∅ as its zero:

(m 8 n) 8 k = m 8 (n 8 k) ,

∅ 8 m = m = m 8 ∅ .

It is also assumed that monadic bind distributes into (8) from the end, while ∅ is a right zero for

(=<<):

f =<< (m1 8 m2) = (f =<< m1) 8 (f =<< m2) , (12)

f =<< ∅ = ∅ . (13)

For our purpose in this section, we also assume that (8) is commutative (m 8 n = n 8 m) and

idempotent (m 8 m = m). Implementation of such non-determinism monads have been studied by

Fischer et al. [2011].

Here are some induced laws about how (⟨$⟩) interacts with return and non-determinism operators:

f ⟨$⟩ return x = return (f x) , (14)

f ⟨$⟩ ∅ = ∅ , (15)

f ⟨$⟩ (m1 8 m2) = (f ⟨$⟩ m1) 8 (f ⟨$⟩ m2) . (16)

3 PERMUTATION AND INSERTION
As a warm-up example, the function perm non-deterministically computes a permutation of its

input, using an auxiliary function insert that inserts an element to an arbitrary position in a list:

perm :: [a] → M [a]
perm [] = return []

perm (x : xs) = insert x =<< perm xs ,

insert :: a → [a] → M [a]
insert x [] = return [x]
insert x (y : xs) = return (x : y : xs) 8 ((y:) ⟨$⟩ insert x xs) .

For example, possible results of perm [0, 1, 2] include [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 0, 1],
and [2, 1, 0].

Determinism. The following lemma presents properties under which permuting the input list

does not change the result of a foldr :

Lemma 3.1. Given (⊙) :: a → b → b. If x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z) for all x, y :: a and z :: b, we have

foldr (⊙) z ⟨•⟩ perm = return · foldr (⊙) z .

Since perm is defined in terms of insert, proof of Lemma 3.1 naturally depends on a lemma about

a related property of insert:

Lemma 3.2. Given (⊙) :: a → b → b, we have

foldr (⊙) z ⟨•⟩ insert x = return · foldr (⊙) z · (x:) ,

provided that x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z) for all x, y :: a and z :: b.

Proof. Prove foldr (⊙) z ⟨$⟩ insert x xs = return (foldr (⊙) z (x : xs)). Induction on xs.
Case xs := []:

foldr (⊙) z ⟨$⟩ insert x []

= { definition of insert }

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

4 Shin-Cheng Mu

foldr (⊙) z ⟨$⟩ return [x]
= { by (14) }

return (foldr (⊙) z [x]) .

Case xs := y : xs:

foldr (⊙) z ⟨$⟩ insert x (y : xs)
= { definition of insert }
foldr (⊙) z ⟨$⟩ (return (x : y : xs) 8 ((y:) ⟨$⟩ insert x xs))
= { by (16), (14), and (5) }

return (foldr (⊙) z (x : y : xs)) 8 ((foldr (⊙) z · (y:)) ⟨$⟩ insert x xs) .

Focus on the second branch of (8):

(foldr (⊙) z · (y:)) ⟨$⟩ insert x xs
= { definition of foldr }
((y⊙) · foldr (⊙) z) ⟨$⟩ insert x xs
= { by (5) }

(y⊙) ⟨$⟩ (foldr (⊙) z ⟨$⟩ insert x xs)
= { induction }

(y⊙) ⟨$⟩ return (foldr (⊙) z (x : xs))
= { by (14) }

return (y ⊙ foldr (⊙) z (x : xs))
= { definition of foldr }
return (y ⊙ (x ⊙ foldr (⊙) z xs))
= { since x ⊙ (y ⊙ z) = y ⊙ (x ⊙ z) }
return (foldr (⊙) z (x : y : xs)) .

Thus we have

(foldr (⊙) z ⟨•⟩ insert x) (y : xs)
= { calculation above }

return (foldr (⊙) z (x : y : xs)) 8 return (foldr (⊙) z (x : y : xs))
= { idempotence of (8) }
return (foldr (⊙) z (x : y : xs)) .

□

Proof of Lemma 3.1 then follows:

Proof. Prove that foldr (⊙) z ⟨$⟩ perm xs = return (foldr (⊙) z xs). Induction on xs.
Case xs := []:

foldr (⊙) z ⟨$⟩ perm []

= { definitions of perm }

foldr (⊙) z ⟨$⟩ return []

= { by (14) }

return (foldr (⊙) z []) .

Case xs := x : xs:

foldr (⊙) z ⟨$⟩ perm (x : xs)
= { definition of perm }

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 5

foldr (⊙) z ⟨$⟩ (insert x =<< perm xs)
= { by (9) }

(foldr (⊙) z ⟨•⟩ insert x) =<< perm xs
= { Lemma 3.2 }

(return · foldr (⊙) z · (x:)) =<< perm xs
= { definitions of foldr and (⟨$⟩) }

((x⊙) · foldr (⊙) z) ⟨$⟩ perm xs
= { by (5) }

(x⊙) ⟨$⟩ (foldr (⊙) z ⟨$⟩ perm xs)
= { induction }

(x⊙) ⟨$⟩ (return (foldr (⊙) z xs))
= { by (14) }

return (x ⊙ foldr (⊙) z xs)
= { definition of foldr }
return (foldr (⊙) z (x : xs)) .

□

Map, Filter, and Permutation. It is not hard for one to formulate the following relationship between

map and perm, which is also based on a related property relating map and insert:1

Lemma 3.3. perm ·map f = map f ⟨•⟩ perm.

Lemma 3.4. insert (f x) ·map f = map f ⟨•⟩ insert x.

The lemma is true becausemap f is a pure computation — in reasoning about monadic programs

it is helpful, and sometimes essential, to identify its pure segments, because these are the parts

more properties are applicable. Note that the composition (·) on the lefthand side is turned into (⟨•⟩)

once we move map f leftwards.

We prove only Lemma 3.4.

Proof. Prove by induction on xs that map f ⟨$⟩ insert x xs = insert (f x) (map f xs) for all xs.
We present only the inductive case xs := y : xs:

map f ⟨$⟩ insert x (y : xs)
= { definition of insert }
map f ⟨$⟩ (return (x : y : xs) 8 ((y:) ⟨$⟩ insert x xs))
= { by (16) and (14) }

return (map f (x : y : xs)) 8 (map f ⟨$⟩ ((y:) ⟨$⟩ insert x xs)) .

For the second branch we reason:

map f ⟨$⟩ ((y:) ⟨$⟩ insert x xs)
= { by (5) }

(map f · (y:)) ⟨$⟩ insert x xs
= { definition of map }

((f y:) ·map f) ⟨$⟩ insert x xs
= { by (5) }

(f y:) ⟨$⟩ (map f ⟨$⟩ insert x xs)

1
Lemma 3.3 and 3.4 are in fact free theorems of perm and insert [Voigtländer 2009]. They serve as good exercises, nevertheless.

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

6 Shin-Cheng Mu

= { induction }

(f y:) ⟨$⟩ insert (f x) (map f xs) .

Thus we have

map f ⟨$⟩ insert x (y : xs)
= { calculation above }

return (f x : f y :map f xs) 8 ((f y:) ⟨$⟩ (insert (f x) (map f xs)))
= { definitions of insert and map }

insert (f x) (map f (y : xs)) .

□

One may have noticed that the style of proof is familiar: replace return x by [x] and (8) by
(++), the proof is more-or-less what one would do for a list version of insert. This is exactly the

point: the style of proofs we use to do for pure programs still works for monadic programs, as

long as the monad satisfies the demanded laws, be it a list, a more advanced implementation of

non-determinism, or a monad having other effects.

A similar property relating perm and filter can be formulated.

Lemma 3.5. perm · filter p = filter p ⟨•⟩ perm.

Its proof is routine and omitted. Finally, in a number of occasions it helps to know that xs is a
result of perm xs. The proof is also routine and omitted.

Lemma 3.6. For all xs we have that perm xs = return xs 8 m for some m.

4 SPARK AGGREGATION
Spark [Zaharia et al. 2012] is a popular platform for scalable distributed data-parallel computation

based on a flexible programming environment with high-level APIs, considered by many as the

successor of MapReduce. In a typical Spark program, data is partitioned and stored distributively

on read-only Resilient Distributed Datasets (RDDs) — we can think of it as a list of lists, where

each sub-list is potentially stored on a remote node. On an RDD one can apply operations, called

combinators, such as map, reduce, and aggregate. The aggregate combinator, for example, takes

user-defined functions (⊗) and (⊕): (⊗) accumulates a sub-result for each data partition while (⊕)

merges sub-results across different partitions.

Programming in Spark, however, can be tricky. Since sub-results are computed across partitions

concurrently, the order of their applications varies on different executions. Aggregation in Spark is

therefore inherently non-deterministic. An example from Chen et al. [2017] showed that computing

the integral of x73 from x = −2 to x = 2, which should be 0, using a function in the Spark machine

learning library, yields results ranging from −8192.0 to 12288.0 in different runs. It is thus desirable

to find out conditions, which Spark’s documentation does not specify formally, under which a

Spark computation yields deterministic outcomes.

4.1 List Homomorphism
Since a Spark aggregation is typically used to computes a list homomorphism [Bird 1987], we digress

a little in this section to give a brief review and present some results that we will use. A function

h :: List a → b is called a list homomorphism if there exists z :: b, k :: a → b, and (⊕) :: b → b → b
such that:

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 7

h [] = z
h [x] = k x
h (xs ++ ys) = h xs ⊕ h ys .

That h is such a list homomorphism is denoted by h = hom (⊕) k z. Note that the properties above
implicitly demand that (⊕) be associative with z as its identity element.

Lemma 4.1 and 4.2 below are about when a computation defined in terms of foldr is actually a

list homomorphism. In Lemma 4.2, img f denotes the image of a function f .

Lemma 4.1. h = hom (⊕) (h · wrap) z if and only if foldr (⊕) z · map h = h · concat, where
wrap x = [x].

Lemma 4.2. Let (⊕) :: b → b → b be associative on img (foldr (⊗) z) with z as its identity, where
(⊗) :: a → b → b. We have foldr (⊗) z = hom (⊕) (⊗z) z if and only if x ⊗ (y ⊕ w) = (x ⊗ y) ⊕ w
for all x :: a and y,w ∈ img (foldr (⊗) z).

Notice, in Lemma 4.2, that (⊗z) = foldr (⊗) z · wrap. Proofs of both lemmas are interesting

exercises, albeit being a bit off-topic. They are recorded in Appendix A.

4.2 Formalisation and Results
Distributed collections of data are represented by Resilient Distributed Datasets (RDDs) in Spark.

Informally, an RDD is a collection of data entries; these data entries are further divided into

partitions stored on different machines. Abstractly, an RDD can be seen as a list of lists:

type Partition a = [a] ,
type RDD a = [Partition a] ,

where each Partition may be stored in a different machine.

While Spark provides a collection of combinators (functions on RDDs that are designed to be

composed to form larger programs), in this report we focus on a particular one, aggregate. It
can be seen as a parallel implementation foldr . The combinator processes an RDD in two levels:

each partition is first processed locally on one machine by foldr (⊗) z. The sub-results are then
communicated and combined — this second step can be think of as another foldr with (⊕).2

Spark programmers like to assume that their programs are deterministic. To exploit concurrency,

however, the sub-results from each machine might be processed in arbitrary order and the result

could be non-deterministic. The following is our characterisation of aggregate, where we use perm
to model the fact that sub-results from each machine are processed in unknown order:

aggregate :: b → (a → b → b) → (b → b → b) → RDD a → M b
aggregate z (⊗) (⊕) = foldr (⊕) z ⟨•⟩ (perm ·map (foldr (⊗) z)) .

It is clear from the types that foldr (⊗) z and foldr (⊕) z are pure computations, and non-

determinism is introduced solely by perm.

Deterministic Aggregation. We are interested in finding out conditions under which aggregate
produces deterministic outcomes.

Theorem 4.3. Given (⊗) :: a → b → b and (⊕) :: b → b → b, where (⊕) is associative and
commutative, we have:

aggregate z (⊗) (⊕) = return · foldr (⊕) z ·map (foldr (⊗) z) .

2
In fact, the actual Spark aggregation (and that modelled in Chen et al. [2017]) are like foldl. For convenience in our proofs

we see all list operations the other way round and use foldr . This is not a fundamental difference.

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

8 Shin-Cheng Mu

Proof. We reason:

aggregate z (⊗) (⊕)
= { definition of aggregate }
foldr (⊕) z ⟨•⟩ (perm ·map (foldr (⊗) z))
= { by (7) }

(foldr (⊕) z ⟨•⟩ perm) ·map (foldr (⊗) z)
= { Lemma 3.1, since (⊕) is associative and commutative }

return · foldr (⊕) z ·map (foldr (⊗) z) .

□

The following corollary summaries the results and present conditions under which aggregate
computes a homomorphism.

Corollary 4.4. aggregate z (⊗) (⊕) = return · hom (⊕) (⊗z) z · concat, provided that (⊕) is
associative, commutative, and has z as identity, and that x ⊗ (y ⊕ w) = (x ⊗ y) ⊕ w for all x :: a and
y,w ∈ img (foldr (⊗) z).

Proof. We reason:

aggregate z (⊗) (⊕)
= { Theorem 4.3 }

return · foldr (⊕) z ·map (foldr (⊗) z)
= { foldr (⊗) z = hom (⊕) (⊗z) z by Lemma 4.2; Lemma 4.1 }

return · hom (⊕) (⊗z) z · concat .

□

Determinism Implies Homomorphism. The final part of the report deals with an opposite question:

what can we infer if we know that aggregate is deterministic? To answer that, however, we need to

assume two more properties:

m1 8 m2 = return x ⇒ m1 = m2 = return x. (17)

return x1 = return x2 ⇒ x1 = x2. (18)

Property (17) can be seen as the other direction of idempotency of (8), while (18) states that return
is injective.

The following lemma can be understood this way: when aggregate z (⊗) (⊕), which could

be non-deterministic, can be performed by a deterministic function, the operator (⊕) should be

insensitive to ordering:

Lemma 4.5. If aggregate z (⊗) (⊕) = return · foldr (⊗) z · concat, and perm xss = return yss 8 m
for some m, we have

foldr (⊗) z (concat xss) =
foldr (⊕) z (map (foldr (⊗) z) xss) =
foldr (⊕) z (map (foldr (⊗) z) yss) .

Proof. We reason:

return · foldr (⊗) z · concat $ xss
= { assumption }

aggregate z (⊗) (⊕) $ xss

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 9

= { definition of aggregate, Lemma 3.3, and (6) }

(foldr (⊕) z ·map (foldr (⊗) z)) ⟨$⟩ perm xss
= { assumption: perm xss = return yss 8 m, by (16) and (14) }

(return · foldr (⊕) z ·map (foldr (⊗) z) $ yss) 8
((foldr (⊕) z ·map (foldr (⊗) z)) ⟨$⟩ m) .

Thus by (17) and (18), foldr (⊗) z ·concat $xss equals foldr (⊕) z ·map (foldr (⊗) z)$yss. The former

also equals foldr (⊕) z ·map (foldr (⊗) z) $ xss because, by Lemma 3.6, perm xss = return xss 8 m
for some m. □

Based on Lemma 4.5, the following theorem explicitly states that (⊕) should be associative,

commutative, and has z as its identity in restricted domain.

Theorem 4.6. If aggregate z (⊗) (⊕) = return · foldr (⊗) z · concat, we have that (⊕), when
restricted to values in img (foldr (⊗) z), is associative, commutative, and has z as its identity.

Proof. In the discussion below, let x,y, and w be in img (foldr (⊗) z). That is, there exists xs, ys,
and ws such that x = foldr (⊗) z xs, y = foldr (⊗) z ys, and w = foldr (⊗) z ws.
Identity. We reason:

y
= foldr (⊗) z (concat [xs])
= { perm [xs] = return [xs] 8 ∅, Lemma 4.5 }

foldr (⊕) z (map (foldr (⊗) z) [xs])
= y ⊕ z .

Thus z is a right identity of (⊕). Similarly,

y
= foldr (⊗) z (concat [[], xs])
= { perm [[], xs] = return [[], xs] 8 m, Lemma 4.5 }

foldr (⊕) z (map (foldr (⊗) z) [[], xs])
= z ⊕ (y ⊕ z)
= { z is a right identity of (⊕) }

z ⊕ y .

Thus z is also a left identity of (⊕).

Commutativity. We reason:

x ⊕ y
= { z is a right identity }

x ⊕ (y ⊕ z)
= foldr (⊕) z (map (foldr (⊗) z) [xs, ys])
= { perm [xs, ys] = return [ys, xs] 8 m, Lemma 4.5 }

foldr (⊕) z (map (foldr (⊗) z) [ys, xs])
= y ⊕ (x ⊕ z)
= { z is a right identity }

y ⊕ x .

Associativity. We reason:

x ⊕ (y ⊕ w)
= { z is a right identity }

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

10 Shin-Cheng Mu

x ⊕ (y ⊕ (w ⊕ z))
= foldr (⊕) z (map (foldr (⊗) z) [xs, ys,ws])
= { (⊕) commutative }

foldr (⊕) z (map (foldr (⊗) z) [ws, xs, ys])
= w ⊕ (x ⊕ (y ⊕ z))
= { z is a right identity }

w ⊕ (x ⊕ y)
= { (⊕) commutative }

(x ⊕ y) ⊕ w .

□

Theorem 4.7. If aggregate z (⊗) (⊕) = return · foldr (⊗) z · concat, we have foldr (⊗) z =
hom (⊕) (⊗z) z.

Proof. Apparently foldr (⊗) z [] = z and foldr (⊗) z [x] = x ⊗ z. We are left with proving the

case for concatenation.

foldr (⊗) z (xs ++ ys)
= foldr (⊗) z (concat [xs, ys])
= { Lemma 4.5 }

foldr (⊕) z (map (foldr (⊗) z) [xs, ys])
= foldr (⊗) z xs ⊕ (foldr (⊗) z ys ⊕ z)
= { Theorem 4.6, z is identity }

foldr (⊗) z xs ⊕ foldr (⊗) z ys .

□

Corollary 4.8. Given (⊗) :: a → b → b and (⊕) :: b → b → b. aggregate z (⊗) (⊕) =

return · foldr (⊗) z · concat if and only if (img (foldr (⊗) z), (⊕), z) forms a commutative monoid,
and that foldr (⊗) z = hom (⊕) (⊗z) z.

Proof. A conclusion following from Theorem 4.3, Theorem 4.6, and Theorem 4.7. □

Acknowledgements. In around late 2016, Yu-Fang Chen, Chih-Duo Hong, Ondřej Lengál, Nishant

Sinha and Bow-Yaw Wang invited me into their project formalising Spark. It was what inspired

my interests in reasoning about monads, which led to a number of subsequent work. The initial

proofs of properties of aggregate and other combinators were done by Ondřej Lengál, without using

monads. Affeldt et al. [2019] modelled a hierarchy of monadic effects in Coq. The formalisation was

applied to verify a number of equational proofs of monadic programs, including some of the proofs

in an earlier version of this report. I am solely responsible for any remaining errors, however.

REFERENCES
Reynald Affeldt, David Nowak, and Takafumi Saikawa. 2019. A hierarchy of monadic effects for program verification using

equational reasoning. In Mathematics of Program Construction, Graham Hutton (Ed.). Springer.

Richard S. Bird. 1987. An introduction to the theory of lists. In Logic of Programming and Calculi of Discrete Design, Manfred

Broy (Ed.). Number 36 in NATO ASI Series F. Springer-Verlag, 3–42.

Yu-Fang Chen, Chih-Duo Hong, Ondřej Lengál, Shin-Cheng Mu, Nishant Sinha, and Bow-Yaw Wang. 2017. An executable

sequential specification for Spark aggregation. In International Conference on Networked Systems. Springer-Verlag.
Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. 2011. Purely functional lazy nondeterministic programming.

Journal of Functional Programming 21, 4-5 (September 2011), 413–465.

Jeremy Gibbons and Ralf Hinze. 2011. Just do it: simple monadic equational reasoning. In International Conference on
Functional Programming, Olivier Danvy (Ed.). ACM Press, 2–14.

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 11

Oleg Kiselyov. 2015. Laws of MonadPlus. http://okmij.org/ftp/Computation/monads.html#monadplus.

Janis Voigtländer. 2009. Free theorems involving type constructor classes. In International Conference on Functional
Programming, Andrew Tolmach (Ed.). ACM Press, 173–184.

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy McCauley, Michael J. Franklin, Scott

Shenker, and Ion Stoica. 2012. Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing.

In Networked Systems Design and Implementation, Steven Gribble and Dina Katabi (Eds.). USENIX.

A MISCELLANEOUS PROOFS
Proving (8). f =<< (g ⟨$⟩ m) = (f · g) =<< m.

Proof. We reason:

f =<< (g ⟨$⟩ m)

= { definition of (⟨$⟩) }

f =<< ((return · g) =<< m)

= { monad law (3) }

(λx → f =<< return (g x)) =<< m
= { monad law (1) }

(λx → f (g x)) =<< m
= (f · g) =<< m .

□

Proving (5). f ⟨$⟩ (g ⟨$⟩ m) = (f · g) ⟨$⟩ m.

Proof. We reason:

f ⟨$⟩ (g ⟨$⟩ m)

= { definition of (⟨$⟩) }

(return · f) =<< (g ⟨$⟩ m)

= { by (8) }

(return · f · g) =<< m
= { definition of (⟨$⟩) }

(f · g) ⟨$⟩ m .

□

For the next results we prove a lemma:

(f =<<) · (g=<<) = (((f =<<) · g)=<<) . (19)

(f =<<) · (g=<<)
= { η intro. }

(λm → f =<< (g =<< m))

= { monad law (3) }

(λm → (λy → f =<< g y) =<< m)

= { η reduction }

(((f =<<) · g)=<<) .

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

http://okmij.org/ftp/Computation/monads.html#monadplus

12 Shin-Cheng Mu

Proving (6). f ⟨•⟩ (g ⟨•⟩ m) = (f · g) ⟨•⟩ m.

Proof. We reason:

f ⟨•⟩ (g ⟨•⟩ m)

= { definition of (⟨•⟩) }

((return · f)=<<) · ((return · g)=<<) ·m
= { by (19) }

((((return · f)=<<) · return · g)=<<) ·m
= { monad law (1) }

((return · f · g)=<<) ·m
= { definition of (⟨•⟩) }

(f · g) ⟨•⟩ m .

□

Proving (10). f <=< (g ⟨•⟩ h) = (f · g) <=< h.

Proof. We reason:

f <=< (g ⟨•⟩ h)
= { definitions of (<=<) }

(f =<<) · ((return · g)=<<) · h
= { by (19) }

(((f =<<) · return · g)=<<) · h
= { monad law (1) }

((f · g)=<<) · h
= { definition of (<=<) }

(f · g) <=< h .

□

Proving (11). f ⟨•⟩ (g <=< h) = (f ⟨•⟩ g) <=< h.

Proof. We reason:

f ⟨•⟩ (g <=< h)
= { definitions of (<=<) and (⟨•⟩) }

((return · f)=<<) · (g=<<) · h
= { by (19) }

((((return · f)=<<) · g)=<<) · h
= { definition of (⟨•⟩) }

((f ⟨•⟩ g)=<<) · h
= { definition of (<=<) }

(f ⟨•⟩ g) <=< h .

□

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

Equational Reasoning for Non-determinism Monad 13

Proof of Lemma 4.1.

Proof. A Ping-pong proof.

Direction (⇒). Let h = hom (⊕) (h · wrap) z, prove foldr (⊕) z (map h xss) = h (concat xss) by
induction on xss.

Case xss := []:

foldr (⊕) z (map h [])

= foldr (⊕) z []
= z
= h (concat []) .

Case xss := xs : xss:

foldr (⊕) z (map h (xs : xss))
= h xs ⊕ foldr (⊕) z (map h xss)
= { induction }

h xs ⊕ h (concat xss)
= { h homomorphism }

h (concat (xs : xss)) .

Direction (⇐). Assuming foldr (⊕) z (map h xss) = h (concat xss), prove that h = hom (⊕) (h ·
wrap) z.

Case empty list:

h []

= h (concat [])
= { assumption }

foldr (⊕) z (map h [])

= z .

Case singleton list: certainly h [x] = h [x].
Case concatentation:

h (xs ++ ys)
= h (concat [xs, ys])
= { assumption }

foldr (⊕) z (map h [xs, ys])
= h xs ⊕ (h ys ⊕ z)
= h xs ⊕ h ys .

□
Proof of Lemma 4.2.

Proof. A Ping-pong proof.

Direction (⇐). We show that foldr (⊗) z = hom (⊕) (⊗z) z, provided that x ⊗ (y ⊕ w) =
(x ⊗ y) ⊕ w.

It is immediate that foldr (⊗) z [] = z around foldr (⊗) z [x] = x ⊗ z. For xs ++ ys, note that

foldr (⊗) z (xs ++ ys) = foldr (⊗) (foldr (⊗) z ys) xs .

The aim is thus to prove that

foldr (⊗) (foldr (⊗) z ys) xs = (foldr (⊗) z xs) ⊕ (foldr (⊗) z ys) .

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

14 Shin-Cheng Mu

We perform an induction on xs. The case when xs := [] trivially holds. For xs := x : xs, we reason:

foldr (⊗) (foldr (⊗) z ys) (x : xs)
= x ⊗ foldr (⊗) (foldr (⊗) z ys) xs
= { induction }

x ⊗ ((foldr (⊗) z xs) ⊕ (foldr (⊗) z ys))
= { assumption: x ⊗ (y ⊕ w) = (x ⊗ y) ⊕ w }

(x ⊗ (foldr (⊗) z xs)) ⊕ (foldr (⊗) z ys)
= (foldr (⊗) z (x : xs)) ⊕ (foldr (⊗) z ys) .

Direction (⇒). Given foldr (⊗) z = hom (⊕) (⊗z) z, prove that x ⊗ (y ⊕ w) = (x ⊗ y) ⊕ w for y
and w in the range of foldr (⊗) z.

Let y = foldr (⊗) z xs and w = foldr (⊗) z ys for some xs and ys. We reason:

x ⊗ (y ⊕ w)
= x ⊗ (foldr (⊗) z xs ⊕ foldr (⊗) z ys)
= { since foldr (⊗) z = hom (⊕) (⊗z) z }
x ⊗ (foldr (⊗) z (xs ++ ys))
= foldr (⊗) z (x : xs ++ ys)
= { since foldr (⊗) z = hom (⊕) (⊗z) z }
foldr (⊗) z (x : xs) ⊕ foldr (⊗) z ys
= (x ⊗ foldr (⊗) z xs) ⊕ foldr (⊗) z ys
= (x ⊗ y) ⊕ w .

□

Technical Report TR-IIS-19-002, Institute of Information Science, Academia Sinica. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Monad and Non-determinism
	3 Permutation and Insertion
	4 Spark Aggregation
	4.1 List Homomorphism
	4.2 Formalisation and Results

	References
	A Miscellaneous Proofs

