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Abstract—This paper studies the application of evolutionary multi-objective 
optimization to path planning for mobile robots to move smoothly and safely along a 
shorter curvature-constrained path in completely known, planar static 
environments. The cost of travel is bi-objective: a new intrinsic cost of obstacle 
avoidance, which is designed as a weighted penetration depth to vertices of 
polygonal obstacles, and a length cost. The path is composed of a pre-specified 
number of control points, which are points of smooth turning, connected by three 
sub-paths composed of cubic spiral segments, where the intermediate configurations 
(locations and orientations) of these control points are design variables, subject to 
path smoothness constraint. We develop a Pareto-based evolutionary 
multi-objective optimization using island-based parallel genetic algorithm (IPGA) 
with nonsmoothness handling, aiming for searching smooth and shorter 
collision-free paths. To highlight the relative merit of IPGA in robustness to 
variations of environments, a comparative study on path planning performance 
based on simulations is conducted with two popular evolutionary multi-objective 
optimizers NSGA-II, SPEA-2 in terms of success rate in multiple runs and the 
shortest path length whenever a collision-free path can be successfully found. 
Results are presented for planar simulated rectangular environments composed of 
three distinct types of obstacles: polygons, walls as well as the combination of both. 
Our comparative study based on simulations shows that IPGA is more robust in all 
testing environments, while NSGA-II and SPEA-2 has a better distributed 
approximation to Pareto-front but sometimes the performance degrades greatly to 
be able to find a feasible path, especially in the environments containing wall-like 
obstacles. 
 

I. INTRODUCTION 

Global or local path planning of autonomous mobile robots is concerned with 

efficiently planning a safe path between two locations in an obstacle-rich environment. 



Path planning problem can be formulated as a problem of optimization of some criteria, 

such as energy consumption, travel distance, travel time, subject to geometric (e.g. 

obstacle avoidance) and physical/motion constraints (e.g. velocity and acceleration limits). 

It has been studied by numerical methods, such as potential field method [1], which 

heavily rely on the computation of the distance from the robot to the surrounding 

obstacles. These methods sometimes cannot be implemented efficiently in a complex 

environment consisting of many obstacles of varying geometry, due to (i) obstacles may 

require mathematically tractable modeling [2], for example [3] used Bump surface to 

approximate arbitrarily-shaped obstacles; (ii) these methods lack flexibility to rapidly 

respond to changes in environments. This stimulates the interests in developing 

evolutionary search or metaheuristic methods, in particular genetic algorithm (GA) [4, 5], 

[38] that are able to adaptively search a large design space, for the 2D path planning 

problems in robotics [6-8]. Although nondeterministic nature and slowness of 

evolutionary path planning approaches are drawbacks to real-time operation due to 

reliability and efficiency concerning, it still can be implemented in virtually any 

environments. Moreover, GA allows multiple paths to be generated in a single run [9], 

which are necessary in the event that a specific path cannot be traversed so that 

alternative paths must be replanned. These GA-generated paths provide a range of useful 

paths that deserve further development for a variety of practical application needs. 

For ease of implementation, the turning constraint, i.e. smoothness or 

curvature-continuity of the tracked path by a mobile robot is essentially important [10], 

usually unaccounted for in many researches [38]. Nonsmooth motions may cause 

slippage of wheels which degrades the robot’s dead reckoning ability. When no 



orientation is considered, there have been some works applying the genetic algorithms to 

plan a path for a point robot to traverse along a series of collision-free connected line 

segments linking initial position and target position [11-17]. A path in this case is 

encoded as a set of intermediate nodes between the start and the target in a static, known 

2D grid environment, where both free space and obstacles are discretizes as a collection 

of grids of equal size. Some of these evolutionary planners contain many specially 

designed (“path repair”) operators tailored for the path planning problem (e.g. [13]), 

which are essential for obtaining good paths under evolution. These path planning 

problem-specific operators aimed for getting a solution seem too many in number, and 

are not generally applicable. 

In reality, the path planner of a mobile robot must not only be able to generate a 

collision-free path but also a path that meets other criteria, such as path smoothness, 

minimum length or minimum energy.  This yields an evolutionary multi-objective 

optimization [18-22] formulation to path planning problem with the advantage that 

multiple tradeoff solutions can be obtained in a single run. Fujimura [23] used 

Pareto-optimality [18] to plan the paths with minimizing path length and energy 

consumption. [24] integrated a fuzzy tournament selection into a multi-objective 

evolutionary path planner that minimizes the piecewise linear path length, some measure 

of variations in path segment slopes. [25] integrated a probabilistic graph construction 

algorithm with an evolutionary multi-objective optimizer for piecewise linear path 

planning of a mobile robot. [26] implemented the Pareto-based GA with elitist 

replacement strategy to resolve the offline point-point path planning problem in a grid 

environment in a more satisfactory manner. According to our recent works on smooth 



cubic spiral path planning via evolutionary search [27-29], we explore that the advantage 

of using parallel genetic algorithm based on the island model (abbreviated as IPGA) in 

the generation of multiple smooth collision-fee paths of mobile robots, which are 

modeled as a unicycle. Specifically, a three island PGA is used and the path is composed 

of a pre-specified number of cubic spiral segments, which inherently encodes the 

curvature-continuity constraint into the candidate paths. 

Robustness to a variety of environments and variation in start and goal configurations is 

a desirable feature of mobile robot path planning algorithms. In this paper, an 

evolutionary path planner for mobile robots based on IPGA with dominating pool 

(IPGADP), aiming for improvement of the performance of IPGA revealed in our past 

work, is developed to plan a multi-segment cubic spiral path through a pre-specified, 

ordered set of control points. These control points are the control variables to be searched 

with a tradeoff in the traversal cost, where avoidance of static obstacles and path length 

are in a dilemma, i.e. a two-objective optimization problem. Additionally, a new intrinsic 

cost incorporating penetration depth of obstacles is designed to assist discrimination of 

which paths are closer to collision-free. The non-dominated sorting genetic algorithm 

(NSGA-II) [20, 21] and strength-Pareto evolutionary algorithm (SPEA-2) [22], both are 

popular Pareto-based approaches in multi-objective evolutionary algorithms (MOEAs), 

are implemented for a comparative study of performance gain in terms of success rate 

(the number of successful runs in multiple runs that find at least a smooth collision-free 

path) and shortest path ever successfully found. Three distinct types of obstacles: 

polygons, walls and their combinations are tested. 

Furthermore, path planning in the dynamic environments is indeed a challenging 



problem. Many other researches solved the dynamical problems with the numerical 

methods [30] and evolutionary methods [31, 32], [39]. These researches solve the path 

planning problem with complicated mathematical computations and the planned paths are 

non-smooth since they are composed of piece-wise line segments. In this paper, we 

present an evolutionary path planning approach to plan a collection of smooth paths for a 

mobile robot with cubic spiral segments in not only static but also dynamic environments. 

The remainder of the paper is organized as follows. Section II briefly reviews the cubic 

spiral method and introduce a new penetration-depth based intrinsic cost for obstacle 

avoidance. The path planning algorithms for static environments based on evolutionary 

multi-objective optimization with non-smoothness handling, including the proposed 

IPGADP, IPGA, NSGA-II, and SPEA-2, are presented in Section III. Section III also 

reveals the procedures that describe how these planners plan the paths within dynamic 

environments. Comparisons and simulations are presented in Section IV. Finally we 

make a conclusion in Section V. 

 

II. PRELIMINARIES 

Let  ,, yxq   represents a configuration where (x,y) and θ denotes the position and 

orientation, respectively, of the mobile robot. The path followed by a unit-speed mobile 

robot starting from the initial configuration  000 ,, yx  is governed by integrating the 

nonholonomic kinematic constraints, 
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where x, y and θ represent the function of position in x-axis and y-axis and orientation of 

robot through a path, s is the path length, and is set as 0 at the initial point of robot (x0 , 

y0), as Fig. 1 depicted. The  t  can be defined in the following paragraph (eqn. 3). 

A. Two objectives for path optimization 

In this work, the most important objective is the obstacle avoidance, whose cost can be 

represented by the intrinsic cost through assuming that the robot is a point to avoid 

time-consuming collision detection between rigid objects [33]. The so-called intrinsic 

cost means that how many intersections a path intersect with all obstacles, or how many 

sampling nodes of path locate outside the boundary of the environment. Thus, paths with 

zero intrinsic cost are collision-free and our previous work [27] implements this to 

measure the index of collision for a path.  

Actually, there have some defects in the previous intrinsic cost function, i.e. only 

calculate how many intersections. For example, as top of Fig. 2 shown, the similar paths 

(solid and dash lines) go through a thin or large obstacle will always result in the same 

cost when we implement the original intrinsic cost definition. Obviously, the solid path is 

better than the dash path since the former is much easier to be collision-free. Due to the 

above reason, we design a new intrinsic cost function to avoid the unusual situation. As 

bottom of Fig. 2 shown (enlarged diagram of circle in top), there are n sampling nodes, 

q1-qn, of the path that intersected with an obstacle. For the original intrinsic cost function, 



we just consider the number of nodes intersected with obstacles or located outside the 

map bounds, in this example, the cost should be n. For the newly designed cost function, 

we not only consider the number of intersections but also incorporate the concept of 

degree to be collision-free. In [39], the probability of intersection was proposed to tackle 

with the changing environment and unvertainites. 

In order to preserve the concept of original cost evaluation, we define the intersected 

ratio for every path segment. In this work, we sample every cubic spiral segment with the 

same number of nodes, i.e. Ns. The intersected ratio for i-th path segment can be defined 

as: 

Sii Nnr /  

where ni represents the number of nodes that intersected with obstacle within i-th segment. 

In this example, if we assume that q1-qn locate within the same segment, the intersected 

ratio would be n/NS.  

Following the previous assumption, we measure the distances from the middle node qm 

to all vertexes of the obstacle and select the minimum, md min , to be the degree of being 

collision-free. Please note that if the number of intersected nodes is odd, qm would be 

unique. Contrarily, if the number is even, we select two median nodes, i.e. qm and qm+1, to 

derive two minimum distances, md min  and 1
min
md . It implies that the degree would be 

average of these two distances. In this example, the new cost would be: 

m
S dNn min/  . 

Obviously, the evaluation of new cost can easily tell which path in Fig. 2 (a) is better. The 

general form of new intrinsic cost function can be defined as: 
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where Nseg represents the number of cubic spiral segment within a path. And the ri and Di 
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where   i
md  min  represents minimum distance of middle node of i-th segment. In this 

research, we will present the comparisons of two different cost definitions employed in 

the path planning problem. 

The other objective is the length of path should be minimized, and this can be 

computed very easily via the following equation (5).  

B. Review of Cubic Spiral Method 

For smooth path generation, the path is made up of several cubic spiral segments, 

which are curvature continuous. 

1). Cubic Spiral: By definition, cubic spiral is a set of trajectories that the direction 

function θ is a cubic polynomial of curve length l. Its angle, which describes how 

much the curve turns from the initial orientation to final orientation, is denoted by 

   0  l                            (2) 

From the first equation of (1) and the boundary conditions at s=0 and s=l, we have 

(Lemma 2, [31]), 
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3

6                      (3) 



If the length of a cubic spiral is 1, its size is given by (Lemma3, [34])  
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Due to similarity of all cubic spirals, the value D(α) can be computed and then 

derive the curve’s length l by the following equation (Proposition 8, [34]), 

 D

d
l                                 (5) 

where d is the distance of two configurations. 

2). Concept of Symmetric Configurations: For an arbitrary configuration q, [q] denotes its 

position (x, y), and (q) its direction θ. For a configuration pair (q1, q2), the size d is the 

distance between the two points [q1] and [q2], and the angle α is the deflection angle 

between the two orientations (q1) and (q2).  

In [34], a symmetric mean q of any configuration pair (q1, q2) is a configuration 

that leads (q1, q) and (q, q2) are both symmetric pairs. All symmetric means of a 

configuration pair (q1, q2) forms a circle if (q1) ≠ (q2) or a line connecting q1 and q2 if 

(q1) = (q2) (Proposition 3, [34]). It is noted that the symmetric property is very 

important in this method because a cubic spiral can connect two symmetric 

configurations.  

3). Original cubic spiral path planning method 

The cubic spiral method can connect two given configuration q1 and q2 according 

to the following steps: 

I. If q1 and q2 are symmetric, connect these two configurations with a cubic spiral 

directly. 

II. Else, connect these two configurations with a specified symmetric mean 



i. If (q1) ≠ (q2), the symmetric mean locates on a circle formed by two given 

configurations, i.e. non-parallel case. 

ii. If (q1) = (q2), the symmetric mean locates on a straight line connected by two 

given configurations, i.e. parallel case. 

The symmetric mean qSym of two given configurations q1 and q2 can be defined as 

the following equation according to the position ratio γ: 

Non-parallel case: 

If (q1) ≠ (q2), we should define the center of the circle that go through the given 

configurations q1 and q2. 
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          121121 sin,cos ryrxq ccs  

where β1 and β2 are represent the orientations from pc to q1 and q2 respectively. The 

orientation of the symmetric mean can be defined according to the position of 

symmetric mean [34]. 

Parallel case: 

If (q1) = (q2) = θ, 
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III. EVOLUTIONARY CUBIC SPIRAL PATH PLANNING 

In this section, the representation of a candidate path for evolutionary algorithms (EAs) 

is described firstly. The following paragraph contains the description of different schemes 

of evolutionary algorithms (EA). In general, the simple genetic algorithm (SGA) has a 

serious problem of premature convergence, i.e. genetic drift. To promoting the diversity 

within the population, a variation of scheme, parallel genetic algorithms based on island 

model (IPGA), is developed based on the SGA in our previous work [27-29]. Actually, 

the IPGA only has an advantage on high success rate when dealing with some test cases 

in the past. To improve the IPGA, we propose the IPGA with dominating pool, 

abbreviated as IPGADP, with the modification of the role of migrating pool of IPGA 

during evolution. Additionally, we also implement the NSGA-II and SPEA-2, both are 

the most popular Pareto-based approaches in MOEAs, to this problem for comparison of 

algorithm performance. 

A. Individual representation: candidate path 

A path segment is defined by a continuous mapping C]1,0[:  where 

))(),(),(()( ssysxsq  denotes robot configuration with s arc length. A path is 

composed of a set of path segments connected via a pre-specified number of intermediate 

configurations. In this paper, we use cubic spiral as a path segment for a mobile robot, 

which is kinematically feasible. For a given start configuration, a cubic spiral can be 

defined by the size d and deflected angle α, which has: its length via (5), its curvature 

function by (3) and its terminal configuration from equation (1). In addition, when the 

size of cubic spiral is negative, we can plan the backward motion of the robot according 

to equation (3) and (1), i.e. l should be negative.  



In this paper, a path is composed by three set of subpaths that are evolvable, each is 

composed by several cubic spiral segments: subpaths S, G, M ( depicted in Fig.3). The 

subpath S is composed of cubic spiral segments, planned forwardly from START through 

a prespecified number of intermediate configurations. Similarly, the subpath G is planned 

backwardly from GOAL. Finally, S and G are connected by two cubic spiral segments 

defined via a symmetric mean [34], i.e. subpath M. This composing strategy can make 

sure that the path is connecting the given start and goal configurations. If we define the 

subpaths S and G by N cubic spiral segments, i.e. N control points, the chromosome 

would consist of 2N+1 genes (the size and deflected angle for each cubic spiral segment 

in S and G, and the position ratio of symmetric mean for the subpath M). The 

composition of genes for a single chromosome θ is the ordered list, excluding the given 

START and GOAL configurations 

θ = [d1 α1; d2 α2; …; dN αN ; γSym], N: even number        (6) 

For the ease of programming, N is set as an even number so that the two subpaths S, G 

have equal number of segments (N/2).  

Due to the natural characteristic, the cubic spiral would be a spiral curve when the 

deflected angle is larger than a specific value. The above situation would result in a 

non-smooth path when we connect the subpaths S and G by M since we can’t assure that 

the deflected angle between last nodes at subpaths S and G is smaller than the specific 

value, as shown by dot circle of Fig. 4 in which the shown path consists of 6 control 

points.  It implies that the candidate path would be a smooth or non-smooth path. It also 

leads this work to a constraint-handling optimization problem. 



B. Specifically Subgoals Manipulated Operator 

A specifically manipulated operator for infeasible path is designed to increase the 

efficiency of searching the collision-free paths. For the mobile robot path planning 

problem, it is important to consider how to elaborate an infeasible path into a more 

acceptable path. To this aim, we further design a local path refinement operator, subgoals 

manipulation operator, operating on the infeasible paths segments that cross the obstacles 

in order to accelerate the evolution to find out the collision-free paths. The operator 

locally manipulates those nodes in a predefined neighborhood, so that this local 

refinement of path shape occurs in the sub-regions. Here the manipulation is primarily 

based on the mutation operator. Fig.4 shows the diagram of this operator. The second 

path segment of original path (solid path) crosses an obstacle, and the operator randomly 

shifts the configuration of Node 2 to a new neighboring location to obtain new path 

(dashed path), very possibly becoming collision-free. 

In this work, all schemes of MOEAs are incorporated with this operator. The number of 

manipulations for each run is defined as 10% of populations/subpopulations, and the 

infeasible paths with lower intrinsic cost will be selected firstly. 

 

C. The Island-based Parallel Genetic Algorithms (IPGA) [27-29] 

In the evolutionary algorithms, the conflict between speedup of convergence rate and 

avoidance of local minimum is embodied in the selective pressure and population 

diversity. With a single population, as in the SGA, the selective pressure and population 

diversity oppose with each other. By IPGAs, it is possible to raise selective pressure in 

some subpopulations and concurrently to augment the population diversity in other 



subpopulations. Performance of the IPGA is affected by four factors: number of migrants, 

migration interval and the selection and replacement strategy of individuals. In this work, 

the migration between different subpopulations is activated every predefined generation. 

The following paragraphs briefly describe the detail of the IPGA. 

1). Fitness Definition: Rank-based Assignment & Pareto Ranking  

For the IPGA, we apply the fast non-dominance sorting method proposed by [21] to 

rank the individuals in a population. Higher ranks will be given higher indices. The 

solutions of highest rank are termed as Pareto-frontier. 

2). Selection 

The roulette-wheel selection operator is employed. For faster convergence, elitism is 

used to retain some preferred individuals at each generation. In general, evolutionary 

searching can be accelerated with the preservation of elitisms, and the preserved elitisms 

have great pressure to influence the evolutionary results. One of the most popular criteria 

to select representative solutions from the Pareto-frontier is the min-max method [36]. 

The main idea of this method is to select a point within the two ends of Pareto-frontier 

that the maximum deviation of objectives is minimized. In reality, in order to increase the 

stability of searching, we preserve at most two solutions with the min-max method at 

each generation. Besides, in order to cover the whole frontier, we also prefer to preserve 

the solutions with extreme values along every dimension. 

3). Genetic Operation: Crossover and Mutation 

The crossover is implemented in IPGA as a linear interpolation between two 

chromosomes, also called arithmetic crossover [37]. The following equation shows the 



interpolation operation between two distinct chromosomes: 
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where γ1 is a randomly generated real number between 0 and 1. Please note that γ1 is 

different in different genes. 

Mutation is a mechanism introduced to explore new searching directions. Assuming 

θmax and θmin be the bounds of candidate solutions, the resultant descendant generated by 

the mutation operation will be: 

 minmax2min'   , 

where θ stands for a chromosome in a population, γ2 is a random number between 0 and 

1.  

4). Migrating policy 

  For the migration during evolution, there exists a common pool to mix the migrated 

chromosomes (to the pool) from each island. Actually, these migrated individuals are 

selected based on their ranks and the immigrated individuals (to islands) from common 

pool are selected randomly.  

5). Constraint handling 

In this work, the constraint is very difficult to be reflected in the design space, thus we 

only can make a boolean discrimination for every individuals. This will results in two 

categories of population at every generation, i.e. constraint satisfied and non-satisfied 

solutions. For the proposed IPGA, we generate the child population according to selection 

based on two rankings: first is ranking for total populations, second is ranking only for 

constraint satisfied solutions. Actually, the purpose of first ranking is to make the 



evolution to preserve the diversity of searching. In our implementation, these two 

rankings have the same probabilities to be used to select children. 

 



D. Non-dominated sorting genetic algorithm (NSGA-II)  

The original non-dominated sorting genetic algorithm (NSGA) was proposed by Deb 

in 1995 [20]. Unfortunately, there had some criticisms like high computation 

complexity, lack of elitism and need to specify a parameter for sharing function. At 

2002 [21], the authors alleviated all the above difficulties and proposed a new approach 

termed as NSGA-II. NSGA-II adopt a fast non-dominated sorting approach to reduce 

the computed complexity resulted by the sorting. On the other hand, NSGA-II replaces 

the sharing function with a crowded comparison operator to improve searching 

efficiency. In order to preserve the elitisms, NSGA-II needs to generate a new child 

population through selection, crossover and mutation, finally combine with the parents. 

Since the size of combined population would be twice of population size, it is needed 

to be extracted to an elitist population according to the sorting and crowded 

comparison operator. This mechanism also assures that the elitisms would be preserved 

during evolution. The crowded comparison operator guides the evolution to find out 

the uniformly spread-out Pareto-frontier through the computation of crowding distance. 

Here the crowding distance tries to estimate the density of solutions surrounding a 

specific solution. The crowding distance is defined as the average distance of two 

neighbors of the specific solution along every objective. They also proposed a 

constraint handling approach for NSGA-II, termed as Constrained NSGA-II. Actually, 

this approach is modified from original NSGA-II for the dominance checking between 

two individuals. Please note that the checking procedure considers the constraint. In 

detail, there are three cases when checking dominance: two individuals are constraint 

satisfied solutions, two solutions are both constraint non-satisfied, and one is constraint 



satisfied and the other is not. The first and third cases are easy to define the dominance. 

The second needs to compute the critical values of constraint violation for two 

individuals and check the dominance according to these two values. As we mentioned 

in Section III.C.4), we only can discriminate that the individual is constraint satisfied 

or not. Actually, NSGA-II dramatically improves the capability to find out real 

Pareto-frontier of the given artificial problem no matter it involves with constraint or 

not. 

E. Improved Strength Pareto Evolutionary Algorithm (SPEA-2) 

The original strength Pareto evolutionary algorithm (SPEA) was proposed in 1995. An 

additional archive and a regular population were evolved under the proposed steps. The 

main idea of this algorithm is the strength Pareto ranking. The authors proposed a special 

fitness assignment strategy for an individual that considers not only how many 

individuals it dominates and it is dominated by. Actually, there are three potential 

weaknesses which can be addressed as fitness assignment, density estimation, and archive 

truncation. In 2001 [22], the authors proposed an improved version of SPEA (SPEA-2) 

that revised the above disadvantages. SPEA-2 assigns the fitness for individuals with 

minor modification of original idea and the density information. Furthermore, the size of 

archive is fixed and the clustering technique retains the characteristic of the Pareto front 

without losing the boundaries of it for the archive. On the other hand, the recombination 

and mutation operators are applied to the mating pool that is formed via binary 

tournament selection on the archive and finally forms the new regular population. 

F. IPGA with dominating pool (IPGADP) 

According to our past works, the proposed IPGA indeed had high success rates on 



planning a feasible path than the other MOEAs. Nevertheless, the found paths sometimes 

have poor quality in the length of criterion and it might be resulted by the preservation of 

only four solutions within the Pareto-front. On the other hand, NSGA-II and SPEA-2 

have the better performance in this aspect but they do have heavier computations than the 

IPGA due to entire preservation of population, crowding distance computation in 

NSGA-II, and clustering computation in SPEA-2. For avoiding the heavy computation, 

IPGA with dominating pool (IPGADP) is proposed to optimize the path planning 

problem more efficiently. The following paragraphs will introduce the details of 

IPGADP. 

1). Basic scheme of IPGADP 

The IPGADP is a modification of the IPGA with the alternation of the function of 

migrating pool. In IPGA, the migrating pool is used to make each identical island to have 

the chance to communicate with each other and the evolutions are proceeded at each 

island independently. In IPGADP, the pool plays a dominating role in evolving the 

subpopulations at each island. Specifically, the new subpopulations are mainly bred from 

the dominating pool and their original subpopulations instead of evolving at its own 

island and communicating with the migrating pool. In this work, the chromosome is 

selected to be recombined and mutated with higher probability from the pool than from 

the original subpopulations (0.8 and 0.2 respectively). 

 

2). Dominating pool 

The purpose of the IPGADP is to determine the global Pareto-optimal front as 

behaviors of NSGA-II [21] and SPEA-2 [22] but without a heavy computation. For the 



IPGADP, a dominating pool is assigned to gradually locate the global Pareto-optimal 

solutions of the given problem during the optimization. Specifically, the dominating pool 

will alter its size and locate the global Pareto-optimal front when the subpopulations 

breed the local Pareto-optimal solutions. As mentioned in [21], a book-keeping strategy is 

implemented to efficiently define a non-dominated set from a group of solutions. The 

dominating pool is depicted as Pdp and the local Pareto-optimal solution at each island is 

represented as s. For each local Pareto-optimal chromosome, the procedure of altering on 

the pool Pdp can be shown as follows, 

 
For each chromosome si within the subpopulation 

If Pdp is null, includes si into Pdp 
Else, 

For each chromosome si’ within the pool Pdp 
If si.Cost dominates si’.Cost, then removes si’ from Pdp 

End For 
 If si.Cost is not dominated by any si’.Cost, then includes si into Pdp 

End For 
 

where .Cost represents the objective function values of the chromosome. As the former 

description, the dominating pool will gradually collect the found trade-off solutions 

during the optimization. Furthermore, the dominating pool should be limited within a 

predefined number of sampling points since the growing procedure will be 

time-consuming if the number of elements within the front is large. Based on the 

crowding distance computation [21], the size of the pool is limited within a predefined 

number of chromosomes. Basically, the assignment of the crowding distance is calculated 

according to the normalized distances of the neighbors next to a specific point within 

objective space. For a chromosome si, the crowding distance can be defined as the sum of 

the normalized distances between the neighbors along all dimensions, just like the 

following description, 



 
For a sorted group si (i = 1, 2, …, n) of the dominating pool pg 

If i = 1 and n, then CrowdDistsi .  

If i = 2, 3, …, n-1, then 









m

j jjn

jiji

i
CostsCosts

CostsCosts
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1 1

11

..

..
.  

End For 
 

where si.CrowdDist represents the crowding distance of a chromosome si, m stands for 

the number of the objective, si.Costj means the j-th objective function value of si. The size 

of pdp can be limited by sorting the group according to their crowding distance and 

eliminating those with small distances. Obviously, the end points of growing front will be 

selected since they have the extremely large crowding distances with respect to other 

points. Please note that the size of dominating pool is half number of total populations in 

this work. 

 

3). Genetic operators 

In IPGADP, the binary tournament selection is used to select the parent chromosomes 

from those identical subpopulations or dominating pool to breed new children. For the 

subpopulation, the fast non-dominated sorting [21] assigns ranks for every chromosomes 

and the selection is proceeded based on this ranking (better solutions have more chance to 

be selected). Additionally, the chromosomes within the dominating pool will be assigned 

the corresponding crowding distances [21] and this can be used to be the basis of 

selection operator (sparse solutions have more chance to be selected). Finally, the 

crossover and mutation operator is the same with NSGA-II. 



4). Constraint handling 

Different with IPGA, the constraint handling of the IPGADP is the same with NSGA-II, 

i.e. constraints are considered in dominance checking as describing in Section III.D. 

 

5). Pseudo code of IPGADP 

The following pseudo code describes the procedure of the IPGADP. 

 
τ = 0.    // τ: the generation count 
Initialize )(iP . // )(iP : subpopulation at generation τ at i-th island 

Initialize Pdp. // Pdp: dominating pool (it is null at initialization) 
While (termination condition is not satisfied) do 

For i = 1 to the number of islands 
Non-dominated sorting on )(iP  and derives  )(inds Pf . 

Adopt the book-keeping strategy (Section III.F.2) to check the 
local front in )(iP  to alter the dominating pool Pdp. 

Crowding distance computation (Section III.F.2) on Pdp and 
derives  dpcdc Pf . 

While size of )1( iP  < size of )(iP  do 

If random number < 0.8, select father 1i  from Pdp based on 

 dpcdc Pf ; otherwise, select father 1i  from )(iP  based on 

 )(inds Pf . 

If random number < 0.8, select mother 2i  from Pdp based on 

 dpcdc Pf ; otherwise, select mother 2i  from )(iP  based on 

 )(inds Pf . 

Perform genetic operations on parents 1i  and 2i  to generate 

children '1i  and '2i  according to crossover rate )(ic  and 

mutation rate )(im . 

Put '1i  and '2i  into )1( iP . 

End While 
End For 

1  . 
End While 
Report the dominating pool Pdp as the result. 
 

For the path planning problem in this work, the subgoal manipulated operator is 

embedded before the breeding of next subpopulation. The crossover and mutation rates 

c  and m  of each identical island can be defined  



G. Intrinsic cost for known moving obstacles 

As there exist moving (translating, rotating or their combination) obstacles in the 

environment, it is assumed that the motion trajectory of each obstacle is completely 

known. The determination of intrinsic cost of a path in dynamic environment is detailed 

as follows: 

Step1: A given candidate path is sampled to obtain a collection of sampling points 

 iq . By (1), the passing time sequence  it  is derived for a mobile robot moving 

with unit-speed when it traverses the sampling points  iq  along the path. Note that 

different path length will yield different time sequence and thus different traveling 

time. 

Step2: For the time sequence it , compute the locations of all moving obstacles with 

completely known motion.  

Step3: One by one check all sampled path points  iq  or equivalently the time 

instants it  whether the robot crossed any dynamic obstacles at some time instants. 

Sum the intrinsic costs for intersecting moving obstacles at those time instants of 

collision   ici tt    . This sum is the intrinsic cost of the given path resulting from 

moving obstacles. 

Step4: For static obstacles, the intrinsic cost of the given path is computed as usual. 

Step5: The total sum of intrinsic costs computed in Step3, 
Step4 is the intrinsic cost of the candidate path mentioned before. Note that at a given 

instant it , the robot moving  along a path can encounter at most  one obstacle. An 

essential difference between intrinsic cost calculation of static and dynamic obstacles is 

as follows. If the robot encountered a specific moving obstacle denoted as o  at multiple 

time instants 

     o
cioobstacleeachforci

o
ci ttt        , 

where   denotes the direct sum, the intrinsic cost for that obstacle will be the sum of 

intrinsic costs calculated at all time instants o
cit  of collision that robot crossed the 



obstacle o .  
 

 

IV. EXPERIMENTAL RESULTS 

In this section, simulations in either static or dynamic environments are performed for 

empirical comparison of various schemes to make clear which scheme performs better. 

NSGA-II and SPEA-2 indeed perform better result in searching the real Pareto front of 

the given artificial problems. In this research, these two famous evolutionary techniques 

will be implemented to the path planning problem and compared to the proposed PGA. In 

our simulations, the implementation of path planner equipped with NSGA-II totally 

follows the description of [21], including the setting of parameters of crossover rate, 

mutation rate, and distribution indices for crossover and mutation operators. Since the 

original SPEA-2 didn’t tackle the constraint handling, we implement the dominance 

checking method of NSGA-II to consider the constraint of the path planning problem. 

Furthermore, the crossover and mutation operators are the same with NSGA-II for ease of 

comparison. 

 Section IV.A and IV.B are tested for static environments (Fig.5 and Fig.8) and 

Section IV.C is tested for dynamic cases (Fig.9). We assume that the environment is 

rectangular and all information of obstacles, including its shapes, vertices, moving 

velocities, rotating speeds, and etc., is completely known. The initialization of elements 

of candidate path in evolution respects the following predefined range: 

size d: [diagonal distance of map/ (N*2), diagonal distance of map/ (N/2)];  

deflected orientation α: [ –π, π];  



position ratio of symmetric mean γ: [0.2, 0.8] 

A. Comparison of different intrinsic cost functions with simple genetic algorithm (SGA) 

In this research, we propose a new intrinsic cost function to avoid the unexpected 

circumstances like Section II.A mentioned. Two intrinsic cost functions are employed by 

SGA. The parameters definition of SGA and comparison results can be tabulated as Table 

1. Each environment is proceeded with 20 independent runs and the initial population are 

all the same. For every single run, the evolution would be ceased until the first 

collision-free path is found or the maximum generations are reached. For ease of 

observation, the best 10 individuals of each run are extracted. The number of intersected 

nodes and sum of minimum distance (depicted as Section II.A) of these 200 individuals 

can be defined. Fig. 6 illustrates the distribution of these two values of the extracted 

individuals for Environment-2. Actually, there are three performance indices being 

considered: The success rate represents number of runs the evolution can find out at least 

one collision-free path before 50 generations. Averages and standard deviations 

computed along the above two values’ dimension. We can discover that the new intrinsic 

cost evaluation can make the evolution perform well in success rate. Although the 

average and STD along number of intersections are quite close in two cost definition for 

three testing maps, the new cost has great improvement when we consider the last 

performance index. It implies that the new cost evaluation help the evolution to have 

more chance to find the collision-free paths. 

 



B. Comparison for IPGA with different migration intervals, NSGA-II, SPEA-2, and 

proposed IPGADP 

In this section, IPGA with different migration intervals, NSGA-II, SPEA-2 and 

IPGADP are implemented to solve this problem. Before implementation, NSGA-II and 

SPEA-2 are tested with two testing functions proposed by the original papers. First one is 

a bi-objective function without constraints but with large design space (100 design 

variables) and the other is also a bi-objective function but it tackles with constraints and 

two design variables. These two problems are solved according to the descriptions of the 

papers and Fig. 7 demonstrates the final optimal fronts of two cases by two different 

techniques. It’s observed that these two have similar performances on problems either 

with or without constraints. Due to the NSGA-II need to define a population size that is 

multiple of 4 (due to tournament selection), we increase the size to 120.  

In this work, there are four indices (S, Lbest, Lworst, A±σ)  being considered for 

algorithm performance: the success rate (S) represents the number of specific runs that 

find out at least one feasible path after 20 independent runs. The best (Lbest) and worst 

(Lworst) path means the path with minimum and maximum length within those constraint 

satisfied paths in every single run after 20 runs. The average length (A) and standard 

deviation (σ) are derived from all success runs after 20 independent runs. Following the 

results of Section IV.A, two intrinsic cost evaluations would be tackled separately in 

different schemes of MOEAs, i.e. each identical scheme with two cost evaluations was 

proceeded with 20 independent runs. Table 2 reveals that the new intrinsic cost function 

also help the multi-objective evolution make better performance indices than the old cost 

evaluation for all environments and all schemes of MOEAs. Especially for the SPEA-2, 



the performance of SPEA-2 is the poorest when we compare with the other schemes on 

dealing with the old cost definition. 

For the migration intervals of IPGA, the IPGA with 5 migrating intervals (denoted as 

IPGA-5) has better result than the others, especially in the average length and STD of 

best paths. Although the IPGA-1 and IPGA-5 have close indices in average length and 

STD in Environment-3, the success rate of IPGA-5 are dramatically better than IPGA-1. 

Altogether, less of migrating intervals of IPGA scheme might invoke the convergence of 

the population too quickly (genetic drift). It is obvious that NSGA-II and SPEA-2 

perform better result in different environments (Environment-1 and 2). On the contrary, 

IPGA-5 exhibits more stable performance in all maps. For the IPGADP, it indeed has our 

attention on its performance of path planning problem especially all performance indices 

are dramatically better than the other MOEAs. 

For advanced comparison, we designed another three obstructed environments mixed 

with wall-like and polygonal (Fig. 8) obstacles to test IPGA-5, NSGA-II, SPEA-2, and 

IPGADP with new intrinsic cost function. Table 3 summarizes this comparison. Actually, 

NSGA-II and SPEA-2 indeed have similar performance. For the IPGA, the success rates 

for each map are still more stable than the others except IPGADP. In these three maps, 

the IPGADP still performs better than the other MOEAs. Although IPGADP has similar 

success rate with the others in Environment-5, the average length and corresponding STD 

of found paths are shorter and more stable than the other three schemes. 

C. Comparison of different MOEAs in dynamic environments 

Table 4 reveals the comparison result of different scheme of MOEAs implemented to 

plan paths in dynamic environments based on different intrinsic cost definition. For the 



different intrinsic cost functions, the first two dynamic testing maps have similar success 

rates except the average feasible length of paths, i.e. the planned paths are shorter when 

we implement the new intrinsic cost. For the third environment, new cost definition 

dramatically improves the success rate of planning.  

Among these testing environments, the IPGADP has the better performance than the 

others perform especially in the third case. The difficulty of third environment might be 

two rotating wall-like obstacles located in the neighbours of START and GOAL. Even 

though the difficulty might make the other MOEAs have poor performance, IPGADP still 

has good success rate and average length of found paths. 

 

D. Summary of simulations 

Before summary of the proposed simulations, we proposed some observations about 

the previous comparisons. Fig. 10 illustrates the Pareto-fronts of four approaches (IPGA, 

NSGA-II, SPEA-2, and IPGADP) from one of 20 runs at some particular generations (1, 

40, 80, …, and 200) within Environment-5. The Pareto-frontiers obviously evolve to the 

left-bottom parts of objective space. Actually, NSGA-II has good capability to search for 

the real Pareto-frontier resulted by the tackled problem. Fig. 10 also illustrates that the 

final populations of NSGA-II, SPEA-2, and IPGADP forms the Pareto-front more 

diversely than IPGA. Furthermore, we can discover that different fitness assignment 

strategies would result in different evolutions especially the SPEA-2 has entirely different 

strategy with IPGA, NSGA-II, and IPGADP (they implemented the fast non-dominated 

sorting [21]). As Fig. 11 depicts, two special cases of ranking results demonstrate that the 

strength Pareto ranking assigns individuals within the same rank but with large variance. 



Fig. 12 illustrates a ranking example with 500 randomly generated paths in static 

Environment-1, and it looks very similar to the case of Fig. 11(b). Fig. 13 also shows the 

evolutionary histories of planned path with these approaches from one of 20 runs within 

Environment-6. For ease of observation, we only illustrate the paths at particular 

generations. Please note that the best path at a generation should be the one that is both 

collision-free and with minimum length if there have feasible paths. If no collision-free 

path is found, the individual with minimum intrinsic cost within the Pareto-front would 

be the best. As you can see, the path is evolved to avoid the obstacles under the evolution. 

Fig.14 illustrates the planning results in another two static and larger environments with 

more obstacles. For the more challenging dynamic environment, Fig. 15 demonstrates a 

collision-free path planned by the multi-objective evolutionary planner IPGADP in a 

dynamic environment. There are two rotating wall-like obstacle, four moving polygonal 

obstacles, and two static large scale wall-like obstacles in this environment. 

In all simulations of completely known environments with either static or moving 

obstacles, the evolutionary path planner based on IPGA, NSGA-II, SPEA-2, and 

IPGADP successfully generates a smooth, safe and shorter path for mobile robots without 

complicated mathematical computation. The population size of this research is quite 

small, thus we might increase the size to derive a better results when we implement these 

approaches. On the other hand, since the SPEA-2 and NSGA-II both have higher 

computation complexity due to the sorting of combined/merged populations, IPGADP 

would solve the problem more efficiently. 

 



V. CONCLUSION 

In this paper, IPGA with a dominating pool (IPGADP) are recommended to efficiently 

and more successfully solve a bi-objective optimization problem formulating to exploring 

potential feasible paths for a mobile robot with considering two objectives, the intrinsic 

cost and length of a path either in static or dynamic environments. On the contrary, the 

NSGA-II and SPEA-2 perform better in searching the real Pareto-front for the 

encountered problems. These proposed approaches are effective and flexible to generate a 

collection of collision-free paths to smoothly and safely move a mobile robot from a start 

configuration to a goal configuration in an obstructed environment. Here the cubic spiral 

segments are used to compose a smoothly directed planar curve. Actually, the special 

manipulator and preservation strategy of elitisms, as justified by simulations, effectively 

improve the evolutionary search capability. Furthermore, the intrinsic cost function that 

considers the degree to be collision-free can dramatically improve the evolution that 

concerns with the collision of a path. In this work, we successfully implement the 

evolutionary search to plan a smooth path composed of a prescribed number of cubic 

spiral segments in completely known rectangular environments with static as well as 

polygonal and wall-like obstacles. 
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Fig. 1 Schematic illustration of path representation of the mobile robot 
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Fig.. 2 Illustration of similaar paths inteersected witth a thin obs
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Figg. 4 Examplle of a non-ssmooth (connstraint nonn-satisfied) ppath (with 6
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Fig. 5 The subgoals manipulation operator 
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Static Environment-1 (map size: 600*300) 

 

Static Environment-2 (map size: 600*300) 

 
Static Environment-3 (map size: 600*500) 

Fig. 6 Three testing static environments 

 

 

 

 

 

Start

Goal

Start Goal

Start

Goal



 
Fig. 6 Distribution of number of intersections and sum of minimum distance for 200 extracted 

individuals in Environment-2 
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Fig. 7 Evolutionary optimal front by NSGA-II and SPEA-2 on two test functions: 

(a) Test function without constraints but with one hundred design variables and two objectives (ZDT6, 

evolving with both 100 individuals per population and 106 function evaluations) [21] 

(b) Test function with constraints, two design variables, and two objectives (TNK, evolving with both 

100 individuals per population and 200 generations) [20] 
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Fig. 8 Another three testing environments (map size: 600*600) 
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Dynamic Environment-1 (map size: 600*300) 

 

Dynamic Environment-2 (map size: 600*600)  Dynamic Environment-3 (map size: 600*600) 

Fig. 9. Three testing dynamic environments. (Dynamic Environment-1 consists of four vertically 

moving polygonal obstacles. Dynamic Environment-2 consists of four translating obstacles. Dynamic 

Environment-3 consists of two translating and two rotating obstacles. The mobile robot and each 

horizontally or vertically translating obstacle have a speed of 1unit/sec, and 1unit/sec in x and y 

directions for diagonally translating obstacle. The rotating obstacle has an angular rate of 100/ deg/sec.) 
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Fig. 10 Partial monitoring of Pareto-fronts for IPGA, NSGA-II, SPEA-2, and IPGADP (Environment-5) 
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Fig. 11 Two special cases of ranking result by ordinary Pareto ranking (our method and NSGA-II, 

depicted as solid and dash line) and strength Pareto ranking (SPEA-2, depicted as numbers) 
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Fig. 12 Distribution of objective space on Environment-1 with 500 randomly generated paths 
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Fig. 13 Evolutionary history of the best path in Environment-6 
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Fig. 14 Two larger static environments solved by IPGADP 

(The path is composed of 12 segments of cubic spiral in these two cases) 
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Fig. 14 Another dynamic case that used to demonstrate the path planned by IPGADP 
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Table 1 Comparison of different intrinsic cost function with simple genetic algorithm 

Infor. SGA (SOP)* 
Cost definition New Old 

Environment-1 (8 Control Points) 
Success rate (/20 Runs) 6 1 

Average # of intersections ± SD of 
top 10 solutions in each run 

19.5 
±39.1 

20.4 
±31.2 

Average minimum distance ± SD 
of top 10 solutions in each run 

11.7 
±22.6 

27.6 
±56.2 

Environment-2 (8 Control Points)
Success rate (/20 Runs) 8 9 

Average # of intersections ± SD of 
top 10 solutions in each run 

13.3 
±13 

10.3 
±6.1 

Average minimum distance ± SD 
of top 10 solutions in each run 

13.2 
±16.7 

44.8 
±36. 

Environment-3 (6 Control Points)
Success rate (/20 Runs) 14 1 

Average # of intersections ± SD of 
top 10 solutions in each run 

4.6 
±7.2 

7.3 
±4.6 

Average minimum distance ± SD 
of top 10 solutions in each run 

14 
±27 

63.6 
±37.8 

*The parameters of SGA are defined as: population size 90, maximum generation 50, crossover and 

mutation rates 0.85/0.1, number of manipulation on infeasible paths 10% of papulation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 2 Comparison results of different schemes of MOEA 

Infor.  IPGA-1*1 IPGA-3*1 IPGA-5*1 NSGA-II*2 SPEA-2*2 IPGADP*3

Cost 
definition 

New Old New Old New Old New Old New Old New Old

Environment-1 (8 Control Points)
S 11 8 9 9 9 8 17 14 2 0 16 11 

Lbest 733.9 731 733 732 736.2 750.3 767.4 739.5 750.4 0 723.7 735.5
Lworst 943.4 1002.7 1038.3 1119.7 866.4 925.3 883.4 891.5 851.6 0 773.6 922.7

A 
±σ 

813.8 
±80 

843 
±109

833.6 
±100.8 

844.1
±122.5

789.7
±54.3

801.8
±73.7

806.4
±26.4

817.6
±82.6

801 
±71.6 

0 
739.9
±12

789.2
±79.1

Environment-2 (8 Control Points)
S 15 11 14 14 12 11 4 1 16 0 19 2 

Lbest 734 738.8 728.3 754.3 735.6 735.3 747.5 904.3 74.6 0 737.2 784.1
Lworst 1097.6 875.6 954.8 894 857.9 934.6 857.4 904.3 895.8 0 869.3 846.1

A 
±σ 

810.8 
±104 

777.5 
±38 

778.3 
±55 

800.8
±43.3

773 
±34.8

814.2
±75.2

802.5
±53.1

904.3
±0 

807.5
±42.7 

0 
790.9
±31.8

815.1
±43.9

Environment-3 (6 Control Points)
S 13 2 19 8 19 8 15 7 16 0 20 19 

Lbest 772 805.4 781.5 787.7 778.2 779.2 782.4 777.4 782 0 781.4 783.6
Lworst 849.2 807.9 1497.1 1023.2 882 815.8 947.3 814.2 970.9 0 800.1 886.5

A 
±σ 

800.2 
±20 

806.6 
±1.8

882.9 
±185.3 

836.6
±79.6

804.3
±22.7

793.6
±13 

835.2
±52.3

789.4
±12.1

820.5 
±49 

0 
793.1
±5.3

803.6
±24.9

*1 Each IPGA has three islands, 40 subpopulations at each island, maximum generation 200, number 

of manipulation on infeasible paths 10% of papulation, number of migrations 10% of subpopulation 

at each island, and the migration intervals 1, 3, and 5. Three sets of crossover/mutation rate at each 

island are 0.85/0.1, 0.1/0.9, and 0.4/0.3. 

*2 NSGA-II and SPEA-2 both have 120 populations, maximum generation 200, and the number of 

manipulations on infeasible paths 10% of population. The crossover and mutation probabilities are 

0.9 and 1/Nd (where Nd is the number of genes) respectively. Distribution indices for crossover and 

mutation operator are defined as 20c  and 20m . 

*3 The IPGADP have three islands, 40 subpopulations at each island, the size of dominating pool 60, 

maximum generation 200, and the number of manipulation on infeasible paths 10% of 

subpopulation at each island. Three sets of crossover/mutation rate at each island are 0.85/0.1, 

0.1/0.9, and 0.4/0.3. Distribution indices for crossover and mutation operator are defined as 20c  

and 20m . 

 

 

 

 

 



 

 

 

 

Table 3 Parameter definition and result of comparison between IPGA-5, NSGA-II, SPEA-2, and 

IPGADP for mixed environments 

Infor. IPGA-5 NSGA-II SPEA-2 IPGADP 
Environment-4 with more multiple polygonal 

wall-like obstacles 
(8 Control Points)

S 19 19 16 20 
Lbest 934.9 914.8 909.6 916.3 
Lworst 1027.6 1001.8 1022.6 996 

A 
±σ 

971.2 
±30.7 

950.6 
±20.9 

951.8 
±32.4 

941.7 
±17.3 

Environment-5 with more wall-like obstacles 
(8 Control Points)

S 14 13 14 13 
Lbest 922.5 925.6 922.5 932.3 
Lworst 1238.1 1193.2 1238.1 1126.4 

A 
±σ 

1028.4 
±101.1 

1020.2 
±81.1 

1028.4 
±101.1 

975.9 
±57.5 

Environment-6 (8 Control Points)
S 20 12 12 20 

Lbest 833.9 840.5 834.9 825.2 
Lworst 991.7 1080 1002.8 929 

A 
±σ 

898.9 
±53.7 

940 
±69.9 

926.8 
±50.6 

848.2 
±25.1 

* Parameter definitions of different MOEAs are the same with previous comparison. 

All simulations are accomplished with new intrinsic cost function. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

Table 4 Parameter definition and result of comparison between IPGA-5, NSGA-II, SPEA-2, and 

IPGADP for dynamic environments with different intrinsic cost function 

Infor. IPGA-5 NSGA-II SPEA-2 IPGADP 
Cost 

Definition 
New Old New Old New Old New Old 

Dynamic Environment-1 with four moving polygonal obstacles 
(6 Control Points)

S 20 20 20 20 20 20 20 20 
Lbest 680.2 689.9 612 609.1 615.4 611.6 607.6 607.2 
Lworst 907.4 908.1 757 915.6 683.3 724.6 667.6 904.3 

A 
±σ 

739.31 
±47.37 

752.2 
±48.9 

645. 7
±38.4

657.2
±66.3

642.4
±21.8

670.5
±39.9

625.7 
±23.7 

645.1 
±76 

Dynamic Environment-2 with four wall-like obstacles 
(6 Control Points)

S 20 20 20 20 19 20 20 20 
Lbest 851.9 860.1 850.4 853.4 849.6 850.7 849.1 849.1 
Lworst 1078.2 1079.3 924.9 1029.9 998.5 1066.7 852.3 851.5 

A 
±σ 

926.6 
±71.3 

959 
±89.7 

875.1
±20.7

879 
±48.5

880.1
±40.9

873.9
±47.6

849.7 
±0.7 

849.8 
±0.7 

Dynamic Environment-3 with two moving and two rotating obstacles 
(6 Control Points)

S 13 2 10 6 13 7 20 6 
Lbest 907.8 941.2 903 913.9 910.8 923.7 901.3 908.6 
Lworst 1105.9 958 1003.9 1119.1 1051.2 1007.3 933.2 1020  

A 
±σ 

995.6 
±63.5 

949.6 
±11.9 

937.7
±29.3

972.3
±75.7

952.4
±38.9

950.7
±31 

912.6 
±7.3 

939.7 
±40.3 

* Parameter definitions of different MOEAs are the same with previous comparison except maximum 

generation 50. 

 

 

 

 


