

 TR-IIS-18-003

Safe and shorter path planning for autonomous
mobile robots by multi-objective island-based
parallel genetic algorithm with dominating pool

	

 Yau-Zen Chang, Kao-Ting Hung, and Jing-Sin Liu

Mar. 23, 2018(update) || Technical Report No. TR-IIS-18-003

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2018/tr18.html

Safe and shorter path planning for autonomous mobile robots
by multi-objective island-based parallel genetic algorithm with

dominating pool

Yau-Zen Changb, Kao-Ting Hunga, b, and Jing-Sin Liua
aInstitute of Information Science, Academia Sinica, Nangkang, Taipei, Taiwan 115, ROC

bDepartment of Mechanical Engineering, Chang Gung University, Tao-Yuan, Taiwan 333, ROC

zen@mail.cgu.edu.tw, kattin@st.cgu.edu.tw, liu@iis.sinica.edu.tw

Abstract—This paper studies the application of evolutionary multi-objective
optimization to path planning for mobile robots to move smoothly and safely along a
shorter curvature-constrained path in completely known, planar static
environments. The cost of travel is bi-objective: a new intrinsic cost of obstacle
avoidance, which is designed as a weighted penetration depth to vertices of
polygonal obstacles, and a length cost. The path is composed of a pre-specified
number of control points, which are points of smooth turning, connected by three
sub-paths composed of cubic spiral segments, where the intermediate configurations
(locations and orientations) of these control points are design variables, subject to
path smoothness constraint. We develop a Pareto-based evolutionary
multi-objective optimization using island-based parallel genetic algorithm (IPGA)
with nonsmoothness handling, aiming for searching smooth and shorter
collision-free paths. To highlight the relative merit of IPGA in robustness to
variations of environments, a comparative study on path planning performance
based on simulations is conducted with two popular evolutionary multi-objective
optimizers NSGA-II, SPEA-2 in terms of success rate in multiple runs and the
shortest path length whenever a collision-free path can be successfully found.
Results are presented for planar simulated rectangular environments composed of
three distinct types of obstacles: polygons, walls as well as the combination of both.
Our comparative study based on simulations shows that IPGA is more robust in all
testing environments, while NSGA-II and SPEA-2 has a better distributed
approximation to Pareto-front but sometimes the performance degrades greatly to
be able to find a feasible path, especially in the environments containing wall-like
obstacles.

I. INTRODUCTION

Global or local path planning of autonomous mobile robots is concerned with

efficiently planning a safe path between two locations in an obstacle-rich environment.

Path planning problem can be formulated as a problem of optimization of some criteria,

such as energy consumption, travel distance, travel time, subject to geometric (e.g.

obstacle avoidance) and physical/motion constraints (e.g. velocity and acceleration limits).

It has been studied by numerical methods, such as potential field method [1], which

heavily rely on the computation of the distance from the robot to the surrounding

obstacles. These methods sometimes cannot be implemented efficiently in a complex

environment consisting of many obstacles of varying geometry, due to (i) obstacles may

require mathematically tractable modeling [2], for example [3] used Bump surface to

approximate arbitrarily-shaped obstacles; (ii) these methods lack flexibility to rapidly

respond to changes in environments. This stimulates the interests in developing

evolutionary search or metaheuristic methods, in particular genetic algorithm (GA) [4, 5],

[38] that are able to adaptively search a large design space, for the 2D path planning

problems in robotics [6-8]. Although nondeterministic nature and slowness of

evolutionary path planning approaches are drawbacks to real-time operation due to

reliability and efficiency concerning, it still can be implemented in virtually any

environments. Moreover, GA allows multiple paths to be generated in a single run [9],

which are necessary in the event that a specific path cannot be traversed so that

alternative paths must be replanned. These GA-generated paths provide a range of useful

paths that deserve further development for a variety of practical application needs.

For ease of implementation, the turning constraint, i.e. smoothness or

curvature-continuity of the tracked path by a mobile robot is essentially important [10],

usually unaccounted for in many researches [38]. Nonsmooth motions may cause

slippage of wheels which degrades the robot’s dead reckoning ability. When no

orientation is considered, there have been some works applying the genetic algorithms to

plan a path for a point robot to traverse along a series of collision-free connected line

segments linking initial position and target position [11-17]. A path in this case is

encoded as a set of intermediate nodes between the start and the target in a static, known

2D grid environment, where both free space and obstacles are discretizes as a collection

of grids of equal size. Some of these evolutionary planners contain many specially

designed (“path repair”) operators tailored for the path planning problem (e.g. [13]),

which are essential for obtaining good paths under evolution. These path planning

problem-specific operators aimed for getting a solution seem too many in number, and

are not generally applicable.

In reality, the path planner of a mobile robot must not only be able to generate a

collision-free path but also a path that meets other criteria, such as path smoothness,

minimum length or minimum energy. This yields an evolutionary multi-objective

optimization [18-22] formulation to path planning problem with the advantage that

multiple tradeoff solutions can be obtained in a single run. Fujimura [23] used

Pareto-optimality [18] to plan the paths with minimizing path length and energy

consumption. [24] integrated a fuzzy tournament selection into a multi-objective

evolutionary path planner that minimizes the piecewise linear path length, some measure

of variations in path segment slopes. [25] integrated a probabilistic graph construction

algorithm with an evolutionary multi-objective optimizer for piecewise linear path

planning of a mobile robot. [26] implemented the Pareto-based GA with elitist

replacement strategy to resolve the offline point-point path planning problem in a grid

environment in a more satisfactory manner. According to our recent works on smooth

cubic spiral path planning via evolutionary search [27-29], we explore that the advantage

of using parallel genetic algorithm based on the island model (abbreviated as IPGA) in

the generation of multiple smooth collision-fee paths of mobile robots, which are

modeled as a unicycle. Specifically, a three island PGA is used and the path is composed

of a pre-specified number of cubic spiral segments, which inherently encodes the

curvature-continuity constraint into the candidate paths.

Robustness to a variety of environments and variation in start and goal configurations is

a desirable feature of mobile robot path planning algorithms. In this paper, an

evolutionary path planner for mobile robots based on IPGA with dominating pool

(IPGADP), aiming for improvement of the performance of IPGA revealed in our past

work, is developed to plan a multi-segment cubic spiral path through a pre-specified,

ordered set of control points. These control points are the control variables to be searched

with a tradeoff in the traversal cost, where avoidance of static obstacles and path length

are in a dilemma, i.e. a two-objective optimization problem. Additionally, a new intrinsic

cost incorporating penetration depth of obstacles is designed to assist discrimination of

which paths are closer to collision-free. The non-dominated sorting genetic algorithm

(NSGA-II) [20, 21] and strength-Pareto evolutionary algorithm (SPEA-2) [22], both are

popular Pareto-based approaches in multi-objective evolutionary algorithms (MOEAs),

are implemented for a comparative study of performance gain in terms of success rate

(the number of successful runs in multiple runs that find at least a smooth collision-free

path) and shortest path ever successfully found. Three distinct types of obstacles:

polygons, walls and their combinations are tested.

Furthermore, path planning in the dynamic environments is indeed a challenging

problem. Many other researches solved the dynamical problems with the numerical

methods [30] and evolutionary methods [31, 32], [39]. These researches solve the path

planning problem with complicated mathematical computations and the planned paths are

non-smooth since they are composed of piece-wise line segments. In this paper, we

present an evolutionary path planning approach to plan a collection of smooth paths for a

mobile robot with cubic spiral segments in not only static but also dynamic environments.

The remainder of the paper is organized as follows. Section II briefly reviews the cubic

spiral method and introduce a new penetration-depth based intrinsic cost for obstacle

avoidance. The path planning algorithms for static environments based on evolutionary

multi-objective optimization with non-smoothness handling, including the proposed

IPGADP, IPGA, NSGA-II, and SPEA-2, are presented in Section III. Section III also

reveals the procedures that describe how these planners plan the paths within dynamic

environments. Comparisons and simulations are presented in Section IV. Finally we

make a conclusion in Section V.

II. PRELIMINARIES

Let  ,, yxq  represents a configuration where (x,y) and θ denotes the position and

orientation, respectively, of the mobile robot. The path followed by a unit-speed mobile

robot starting from the initial configuration  000 ,, yx is governed by integrating the

nonholonomic kinematic constraints,

   
    
    




















s

s

s

dttysy

dttxsx

dtts

00

00

00

sin

cos







 (1)

where x, y and θ represent the function of position in x-axis and y-axis and orientation of

robot through a path, s is the path length, and is set as 0 at the initial point of robot (x0 ,

y0), as Fig. 1 depicted. The  t can be defined in the following paragraph (eqn. 3).

A. Two objectives for path optimization

In this work, the most important objective is the obstacle avoidance, whose cost can be

represented by the intrinsic cost through assuming that the robot is a point to avoid

time-consuming collision detection between rigid objects [33]. The so-called intrinsic

cost means that how many intersections a path intersect with all obstacles, or how many

sampling nodes of path locate outside the boundary of the environment. Thus, paths with

zero intrinsic cost are collision-free and our previous work [27] implements this to

measure the index of collision for a path.

Actually, there have some defects in the previous intrinsic cost function, i.e. only

calculate how many intersections. For example, as top of Fig. 2 shown, the similar paths

(solid and dash lines) go through a thin or large obstacle will always result in the same

cost when we implement the original intrinsic cost definition. Obviously, the solid path is

better than the dash path since the former is much easier to be collision-free. Due to the

above reason, we design a new intrinsic cost function to avoid the unusual situation. As

bottom of Fig. 2 shown (enlarged diagram of circle in top), there are n sampling nodes,

q1-qn, of the path that intersected with an obstacle. For the original intrinsic cost function,

we just consider the number of nodes intersected with obstacles or located outside the

map bounds, in this example, the cost should be n. For the newly designed cost function,

we not only consider the number of intersections but also incorporate the concept of

degree to be collision-free. In [39], the probability of intersection was proposed to tackle

with the changing environment and unvertainites.

In order to preserve the concept of original cost evaluation, we define the intersected

ratio for every path segment. In this work, we sample every cubic spiral segment with the

same number of nodes, i.e. Ns. The intersected ratio for i-th path segment can be defined

as:

Sii Nnr /

where ni represents the number of nodes that intersected with obstacle within i-th segment.

In this example, if we assume that q1-qn locate within the same segment, the intersected

ratio would be n/NS.

Following the previous assumption, we measure the distances from the middle node qm

to all vertexes of the obstacle and select the minimum, md min , to be the degree of being

collision-free. Please note that if the number of intersected nodes is odd, qm would be

unique. Contrarily, if the number is even, we select two median nodes, i.e. qm and qm+1, to

derive two minimum distances, md min and 1
min
md . It implies that the degree would be

average of these two distances. In this example, the new cost would be:

m
S dNn min/  .

Obviously, the evaluation of new cost can easily tell which path in Fig. 2 (a) is better. The

general form of new intrinsic cost function can be defined as:





segN

i
iinew Drf

1

where Nseg represents the number of cubic spiral segment within a path. And the ri and Di

can be defined as:

Sii Nnr /

 
    







 even is if , 2

odd is if ,
1

minmin

min

ii
m

i
m

ii
m

i
ndd

nd
D

where   i
md min represents minimum distance of middle node of i-th segment. In this

research, we will present the comparisons of two different cost definitions employed in

the path planning problem.

The other objective is the length of path should be minimized, and this can be

computed very easily via the following equation (5).

B. Review of Cubic Spiral Method

For smooth path generation, the path is made up of several cubic spiral segments,

which are curvature continuous.

1). Cubic Spiral: By definition, cubic spiral is a set of trajectories that the direction

function θ is a cubic polynomial of curve length l. Its angle, which describes how

much the curve turns from the initial orientation to final orientation, is denoted by

   0  l (2)

From the first equation of (1) and the boundary conditions at s=0 and s=l, we have

(Lemma 2, [31]),

   sls
l

s 
3

6 (3)

If the length of a cubic spiral is 1, its size is given by (Lemma3, [34])

   













 

2/1

0

22
2

3
cos2 dtttD  (4)

Due to similarity of all cubic spirals, the value D(α) can be computed and then

derive the curve’s length l by the following equation (Proposition 8, [34]),

 D

d
l  (5)

where d is the distance of two configurations.

2). Concept of Symmetric Configurations: For an arbitrary configuration q, [q] denotes its

position (x, y), and (q) its direction θ. For a configuration pair (q1, q2), the size d is the

distance between the two points [q1] and [q2], and the angle α is the deflection angle

between the two orientations (q1) and (q2).

In [34], a symmetric mean q of any configuration pair (q1, q2) is a configuration

that leads (q1, q) and (q, q2) are both symmetric pairs. All symmetric means of a

configuration pair (q1, q2) forms a circle if (q1) ≠ (q2) or a line connecting q1 and q2 if

(q1) = (q2) (Proposition 3, [34]). It is noted that the symmetric property is very

important in this method because a cubic spiral can connect two symmetric

configurations.

3). Original cubic spiral path planning method

The cubic spiral method can connect two given configuration q1 and q2 according

to the following steps:

I. If q1 and q2 are symmetric, connect these two configurations with a cubic spiral

directly.

II. Else, connect these two configurations with a specified symmetric mean

i. If (q1) ≠ (q2), the symmetric mean locates on a circle formed by two given

configurations, i.e. non-parallel case.

ii. If (q1) = (q2), the symmetric mean locates on a straight line connected by two

given configurations, i.e. parallel case.

The symmetric mean qSym of two given configurations q1 and q2 can be defined as

the following equation according to the position ratio γ:

Non-parallel case:

If (q1) ≠ (q2), we should define the center of the circle that go through the given

configurations q1 and q2.

     






 


2

,
2

, 12212121 xxcyyyycxx
yxp ccc








 


2
cot 12 

c . Thus the position of symmetric mean [qs] can be defined as:

          121121 sin,cos ryrxq ccs

where β1 and β2 are represent the orientations from pc to q1 and q2 respectively. The

orientation of the symmetric mean can be defined according to the position of

symmetric mean [34].

Parallel case:

If (q1) = (q2) = θ,

       , , 121121   yyyxxxqs

where [q1] = (x1,y1), [q2] = (x2,y2), 










 

12

121tan
xx

yy

III. EVOLUTIONARY CUBIC SPIRAL PATH PLANNING

In this section, the representation of a candidate path for evolutionary algorithms (EAs)

is described firstly. The following paragraph contains the description of different schemes

of evolutionary algorithms (EA). In general, the simple genetic algorithm (SGA) has a

serious problem of premature convergence, i.e. genetic drift. To promoting the diversity

within the population, a variation of scheme, parallel genetic algorithms based on island

model (IPGA), is developed based on the SGA in our previous work [27-29]. Actually,

the IPGA only has an advantage on high success rate when dealing with some test cases

in the past. To improve the IPGA, we propose the IPGA with dominating pool,

abbreviated as IPGADP, with the modification of the role of migrating pool of IPGA

during evolution. Additionally, we also implement the NSGA-II and SPEA-2, both are

the most popular Pareto-based approaches in MOEAs, to this problem for comparison of

algorithm performance.

A. Individual representation: candidate path

A path segment is defined by a continuous mapping C]1,0[: where

))(),(),(()(ssysxsq  denotes robot configuration with s arc length. A path is

composed of a set of path segments connected via a pre-specified number of intermediate

configurations. In this paper, we use cubic spiral as a path segment for a mobile robot,

which is kinematically feasible. For a given start configuration, a cubic spiral can be

defined by the size d and deflected angle α, which has: its length via (5), its curvature

function by (3) and its terminal configuration from equation (1). In addition, when the

size of cubic spiral is negative, we can plan the backward motion of the robot according

to equation (3) and (1), i.e. l should be negative.

In this paper, a path is composed by three set of subpaths that are evolvable, each is

composed by several cubic spiral segments: subpaths S, G, M (depicted in Fig.3). The

subpath S is composed of cubic spiral segments, planned forwardly from START through

a prespecified number of intermediate configurations. Similarly, the subpath G is planned

backwardly from GOAL. Finally, S and G are connected by two cubic spiral segments

defined via a symmetric mean [34], i.e. subpath M. This composing strategy can make

sure that the path is connecting the given start and goal configurations. If we define the

subpaths S and G by N cubic spiral segments, i.e. N control points, the chromosome

would consist of 2N+1 genes (the size and deflected angle for each cubic spiral segment

in S and G, and the position ratio of symmetric mean for the subpath M). The

composition of genes for a single chromosome θ is the ordered list, excluding the given

START and GOAL configurations

θ = [d1 α1; d2 α2; …; dN αN ; γSym], N: even number (6)

For the ease of programming, N is set as an even number so that the two subpaths S, G

have equal number of segments (N/2).

Due to the natural characteristic, the cubic spiral would be a spiral curve when the

deflected angle is larger than a specific value. The above situation would result in a

non-smooth path when we connect the subpaths S and G by M since we can’t assure that

the deflected angle between last nodes at subpaths S and G is smaller than the specific

value, as shown by dot circle of Fig. 4 in which the shown path consists of 6 control

points. It implies that the candidate path would be a smooth or non-smooth path. It also

leads this work to a constraint-handling optimization problem.

B. Specifically Subgoals Manipulated Operator

A specifically manipulated operator for infeasible path is designed to increase the

efficiency of searching the collision-free paths. For the mobile robot path planning

problem, it is important to consider how to elaborate an infeasible path into a more

acceptable path. To this aim, we further design a local path refinement operator, subgoals

manipulation operator, operating on the infeasible paths segments that cross the obstacles

in order to accelerate the evolution to find out the collision-free paths. The operator

locally manipulates those nodes in a predefined neighborhood, so that this local

refinement of path shape occurs in the sub-regions. Here the manipulation is primarily

based on the mutation operator. Fig.4 shows the diagram of this operator. The second

path segment of original path (solid path) crosses an obstacle, and the operator randomly

shifts the configuration of Node 2 to a new neighboring location to obtain new path

(dashed path), very possibly becoming collision-free.

In this work, all schemes of MOEAs are incorporated with this operator. The number of

manipulations for each run is defined as 10% of populations/subpopulations, and the

infeasible paths with lower intrinsic cost will be selected firstly.

C. The Island-based Parallel Genetic Algorithms (IPGA) [27-29]

In the evolutionary algorithms, the conflict between speedup of convergence rate and

avoidance of local minimum is embodied in the selective pressure and population

diversity. With a single population, as in the SGA, the selective pressure and population

diversity oppose with each other. By IPGAs, it is possible to raise selective pressure in

some subpopulations and concurrently to augment the population diversity in other

subpopulations. Performance of the IPGA is affected by four factors: number of migrants,

migration interval and the selection and replacement strategy of individuals. In this work,

the migration between different subpopulations is activated every predefined generation.

The following paragraphs briefly describe the detail of the IPGA.

1). Fitness Definition: Rank-based Assignment & Pareto Ranking

For the IPGA, we apply the fast non-dominance sorting method proposed by [21] to

rank the individuals in a population. Higher ranks will be given higher indices. The

solutions of highest rank are termed as Pareto-frontier.

2). Selection

The roulette-wheel selection operator is employed. For faster convergence, elitism is

used to retain some preferred individuals at each generation. In general, evolutionary

searching can be accelerated with the preservation of elitisms, and the preserved elitisms

have great pressure to influence the evolutionary results. One of the most popular criteria

to select representative solutions from the Pareto-frontier is the min-max method [36].

The main idea of this method is to select a point within the two ends of Pareto-frontier

that the maximum deviation of objectives is minimized. In reality, in order to increase the

stability of searching, we preserve at most two solutions with the min-max method at

each generation. Besides, in order to cover the whole frontier, we also prefer to preserve

the solutions with extreme values along every dimension.

3). Genetic Operation: Crossover and Mutation

The crossover is implemented in IPGA as a linear interpolation between two

chromosomes, also called arithmetic crossover [37]. The following equation shows the

interpolation operation between two distinct chromosomes:

 
 







11122

12111

1'

1'




,

where γ1 is a randomly generated real number between 0 and 1. Please note that γ1 is

different in different genes.

Mutation is a mechanism introduced to explore new searching directions. Assuming

θmax and θmin be the bounds of candidate solutions, the resultant descendant generated by

the mutation operation will be:

 minmax2min'   ,

where θ stands for a chromosome in a population, γ2 is a random number between 0 and

1.

4). Migrating policy

 For the migration during evolution, there exists a common pool to mix the migrated

chromosomes (to the pool) from each island. Actually, these migrated individuals are

selected based on their ranks and the immigrated individuals (to islands) from common

pool are selected randomly.

5). Constraint handling

In this work, the constraint is very difficult to be reflected in the design space, thus we

only can make a boolean discrimination for every individuals. This will results in two

categories of population at every generation, i.e. constraint satisfied and non-satisfied

solutions. For the proposed IPGA, we generate the child population according to selection

based on two rankings: first is ranking for total populations, second is ranking only for

constraint satisfied solutions. Actually, the purpose of first ranking is to make the

evolution to preserve the diversity of searching. In our implementation, these two

rankings have the same probabilities to be used to select children.

D. Non-dominated sorting genetic algorithm (NSGA-II)

The original non-dominated sorting genetic algorithm (NSGA) was proposed by Deb

in 1995 [20]. Unfortunately, there had some criticisms like high computation

complexity, lack of elitism and need to specify a parameter for sharing function. At

2002 [21], the authors alleviated all the above difficulties and proposed a new approach

termed as NSGA-II. NSGA-II adopt a fast non-dominated sorting approach to reduce

the computed complexity resulted by the sorting. On the other hand, NSGA-II replaces

the sharing function with a crowded comparison operator to improve searching

efficiency. In order to preserve the elitisms, NSGA-II needs to generate a new child

population through selection, crossover and mutation, finally combine with the parents.

Since the size of combined population would be twice of population size, it is needed

to be extracted to an elitist population according to the sorting and crowded

comparison operator. This mechanism also assures that the elitisms would be preserved

during evolution. The crowded comparison operator guides the evolution to find out

the uniformly spread-out Pareto-frontier through the computation of crowding distance.

Here the crowding distance tries to estimate the density of solutions surrounding a

specific solution. The crowding distance is defined as the average distance of two

neighbors of the specific solution along every objective. They also proposed a

constraint handling approach for NSGA-II, termed as Constrained NSGA-II. Actually,

this approach is modified from original NSGA-II for the dominance checking between

two individuals. Please note that the checking procedure considers the constraint. In

detail, there are three cases when checking dominance: two individuals are constraint

satisfied solutions, two solutions are both constraint non-satisfied, and one is constraint

satisfied and the other is not. The first and third cases are easy to define the dominance.

The second needs to compute the critical values of constraint violation for two

individuals and check the dominance according to these two values. As we mentioned

in Section III.C.4), we only can discriminate that the individual is constraint satisfied

or not. Actually, NSGA-II dramatically improves the capability to find out real

Pareto-frontier of the given artificial problem no matter it involves with constraint or

not.

E. Improved Strength Pareto Evolutionary Algorithm (SPEA-2)

The original strength Pareto evolutionary algorithm (SPEA) was proposed in 1995. An

additional archive and a regular population were evolved under the proposed steps. The

main idea of this algorithm is the strength Pareto ranking. The authors proposed a special

fitness assignment strategy for an individual that considers not only how many

individuals it dominates and it is dominated by. Actually, there are three potential

weaknesses which can be addressed as fitness assignment, density estimation, and archive

truncation. In 2001 [22], the authors proposed an improved version of SPEA (SPEA-2)

that revised the above disadvantages. SPEA-2 assigns the fitness for individuals with

minor modification of original idea and the density information. Furthermore, the size of

archive is fixed and the clustering technique retains the characteristic of the Pareto front

without losing the boundaries of it for the archive. On the other hand, the recombination

and mutation operators are applied to the mating pool that is formed via binary

tournament selection on the archive and finally forms the new regular population.

F. IPGA with dominating pool (IPGADP)

According to our past works, the proposed IPGA indeed had high success rates on

planning a feasible path than the other MOEAs. Nevertheless, the found paths sometimes

have poor quality in the length of criterion and it might be resulted by the preservation of

only four solutions within the Pareto-front. On the other hand, NSGA-II and SPEA-2

have the better performance in this aspect but they do have heavier computations than the

IPGA due to entire preservation of population, crowding distance computation in

NSGA-II, and clustering computation in SPEA-2. For avoiding the heavy computation,

IPGA with dominating pool (IPGADP) is proposed to optimize the path planning

problem more efficiently. The following paragraphs will introduce the details of

IPGADP.

1). Basic scheme of IPGADP

The IPGADP is a modification of the IPGA with the alternation of the function of

migrating pool. In IPGA, the migrating pool is used to make each identical island to have

the chance to communicate with each other and the evolutions are proceeded at each

island independently. In IPGADP, the pool plays a dominating role in evolving the

subpopulations at each island. Specifically, the new subpopulations are mainly bred from

the dominating pool and their original subpopulations instead of evolving at its own

island and communicating with the migrating pool. In this work, the chromosome is

selected to be recombined and mutated with higher probability from the pool than from

the original subpopulations (0.8 and 0.2 respectively).

2). Dominating pool

The purpose of the IPGADP is to determine the global Pareto-optimal front as

behaviors of NSGA-II [21] and SPEA-2 [22] but without a heavy computation. For the

IPGADP, a dominating pool is assigned to gradually locate the global Pareto-optimal

solutions of the given problem during the optimization. Specifically, the dominating pool

will alter its size and locate the global Pareto-optimal front when the subpopulations

breed the local Pareto-optimal solutions. As mentioned in [21], a book-keeping strategy is

implemented to efficiently define a non-dominated set from a group of solutions. The

dominating pool is depicted as Pdp and the local Pareto-optimal solution at each island is

represented as s. For each local Pareto-optimal chromosome, the procedure of altering on

the pool Pdp can be shown as follows,

For each chromosome si within the subpopulation

If Pdp is null, includes si into Pdp
Else,

For each chromosome si’ within the pool Pdp
If si.Cost dominates si’.Cost, then removes si’ from Pdp

End For
 If si.Cost is not dominated by any si’.Cost, then includes si into Pdp

End For

where .Cost represents the objective function values of the chromosome. As the former

description, the dominating pool will gradually collect the found trade-off solutions

during the optimization. Furthermore, the dominating pool should be limited within a

predefined number of sampling points since the growing procedure will be

time-consuming if the number of elements within the front is large. Based on the

crowding distance computation [21], the size of the pool is limited within a predefined

number of chromosomes. Basically, the assignment of the crowding distance is calculated

according to the normalized distances of the neighbors next to a specific point within

objective space. For a chromosome si, the crowding distance can be defined as the sum of

the normalized distances between the neighbors along all dimensions, just like the

following description,

For a sorted group si (i = 1, 2, …, n) of the dominating pool pg

If i = 1 and n, then CrowdDistsi .

If i = 2, 3, …, n-1, then 









m

j jjn

jiji

i
CostsCosts

CostsCosts
CrowdDists

1 1

11

..

..
.

End For

where si.CrowdDist represents the crowding distance of a chromosome si, m stands for

the number of the objective, si.Costj means the j-th objective function value of si. The size

of pdp can be limited by sorting the group according to their crowding distance and

eliminating those with small distances. Obviously, the end points of growing front will be

selected since they have the extremely large crowding distances with respect to other

points. Please note that the size of dominating pool is half number of total populations in

this work.

3). Genetic operators

In IPGADP, the binary tournament selection is used to select the parent chromosomes

from those identical subpopulations or dominating pool to breed new children. For the

subpopulation, the fast non-dominated sorting [21] assigns ranks for every chromosomes

and the selection is proceeded based on this ranking (better solutions have more chance to

be selected). Additionally, the chromosomes within the dominating pool will be assigned

the corresponding crowding distances [21] and this can be used to be the basis of

selection operator (sparse solutions have more chance to be selected). Finally, the

crossover and mutation operator is the same with NSGA-II.

4). Constraint handling

Different with IPGA, the constraint handling of the IPGADP is the same with NSGA-II,

i.e. constraints are considered in dominance checking as describing in Section III.D.

5). Pseudo code of IPGADP

The following pseudo code describes the procedure of the IPGADP.

τ = 0. // τ: the generation count
Initialize)(iP . //)(iP : subpopulation at generation τ at i-th island

Initialize Pdp. // Pdp: dominating pool (it is null at initialization)
While (termination condition is not satisfied) do

For i = 1 to the number of islands
Non-dominated sorting on)(iP and derives  )(inds Pf .

Adopt the book-keeping strategy (Section III.F.2) to check the
local front in)(iP to alter the dominating pool Pdp.

Crowding distance computation (Section III.F.2) on Pdp and
derives  dpcdc Pf .

While size of)1(iP < size of)(iP do

If random number < 0.8, select father 1i from Pdp based on

 dpcdc Pf ; otherwise, select father 1i from)(iP based on

 )(inds Pf .

If random number < 0.8, select mother 2i from Pdp based on

 dpcdc Pf ; otherwise, select mother 2i from)(iP based on

 )(inds Pf .

Perform genetic operations on parents 1i and 2i to generate

children '1i and '2i according to crossover rate)(ic and

mutation rate)(im .

Put '1i and '2i into)1(iP .

End While
End For

1  .
End While
Report the dominating pool Pdp as the result.

For the path planning problem in this work, the subgoal manipulated operator is

embedded before the breeding of next subpopulation. The crossover and mutation rates

c and m of each identical island can be defined

G. Intrinsic cost for known moving obstacles

As there exist moving (translating, rotating or their combination) obstacles in the

environment, it is assumed that the motion trajectory of each obstacle is completely

known. The determination of intrinsic cost of a path in dynamic environment is detailed

as follows:

Step1: A given candidate path is sampled to obtain a collection of sampling points

 iq . By (1), the passing time sequence  it is derived for a mobile robot moving

with unit-speed when it traverses the sampling points  iq along the path. Note that

different path length will yield different time sequence and thus different traveling

time.

Step2: For the time sequence it , compute the locations of all moving obstacles with

completely known motion.

Step3: One by one check all sampled path points  iq or equivalently the time

instants it whether the robot crossed any dynamic obstacles at some time instants.

Sum the intrinsic costs for intersecting moving obstacles at those time instants of

collision   ici tt  . This sum is the intrinsic cost of the given path resulting from

moving obstacles.

Step4: For static obstacles, the intrinsic cost of the given path is computed as usual.

Step5: The total sum of intrinsic costs computed in Step3,
Step4 is the intrinsic cost of the candidate path mentioned before. Note that at a given

instant it , the robot moving along a path can encounter at most one obstacle. An

essential difference between intrinsic cost calculation of static and dynamic obstacles is

as follows. If the robot encountered a specific moving obstacle denoted as o at multiple

time instants

     o
cioobstacleeachforci

o
ci ttt  ,

where  denotes the direct sum, the intrinsic cost for that obstacle will be the sum of

intrinsic costs calculated at all time instants o
cit of collision that robot crossed the

obstacle o .

IV. EXPERIMENTAL RESULTS

In this section, simulations in either static or dynamic environments are performed for

empirical comparison of various schemes to make clear which scheme performs better.

NSGA-II and SPEA-2 indeed perform better result in searching the real Pareto front of

the given artificial problems. In this research, these two famous evolutionary techniques

will be implemented to the path planning problem and compared to the proposed PGA. In

our simulations, the implementation of path planner equipped with NSGA-II totally

follows the description of [21], including the setting of parameters of crossover rate,

mutation rate, and distribution indices for crossover and mutation operators. Since the

original SPEA-2 didn’t tackle the constraint handling, we implement the dominance

checking method of NSGA-II to consider the constraint of the path planning problem.

Furthermore, the crossover and mutation operators are the same with NSGA-II for ease of

comparison.

 Section IV.A and IV.B are tested for static environments (Fig.5 and Fig.8) and

Section IV.C is tested for dynamic cases (Fig.9). We assume that the environment is

rectangular and all information of obstacles, including its shapes, vertices, moving

velocities, rotating speeds, and etc., is completely known. The initialization of elements

of candidate path in evolution respects the following predefined range:

size d: [diagonal distance of map/ (N*2), diagonal distance of map/ (N/2)];

deflected orientation α: [–π, π];

position ratio of symmetric mean γ: [0.2, 0.8]

A. Comparison of different intrinsic cost functions with simple genetic algorithm (SGA)

In this research, we propose a new intrinsic cost function to avoid the unexpected

circumstances like Section II.A mentioned. Two intrinsic cost functions are employed by

SGA. The parameters definition of SGA and comparison results can be tabulated as Table

1. Each environment is proceeded with 20 independent runs and the initial population are

all the same. For every single run, the evolution would be ceased until the first

collision-free path is found or the maximum generations are reached. For ease of

observation, the best 10 individuals of each run are extracted. The number of intersected

nodes and sum of minimum distance (depicted as Section II.A) of these 200 individuals

can be defined. Fig. 6 illustrates the distribution of these two values of the extracted

individuals for Environment-2. Actually, there are three performance indices being

considered: The success rate represents number of runs the evolution can find out at least

one collision-free path before 50 generations. Averages and standard deviations

computed along the above two values’ dimension. We can discover that the new intrinsic

cost evaluation can make the evolution perform well in success rate. Although the

average and STD along number of intersections are quite close in two cost definition for

three testing maps, the new cost has great improvement when we consider the last

performance index. It implies that the new cost evaluation help the evolution to have

more chance to find the collision-free paths.

B. Comparison for IPGA with different migration intervals, NSGA-II, SPEA-2, and

proposed IPGADP

In this section, IPGA with different migration intervals, NSGA-II, SPEA-2 and

IPGADP are implemented to solve this problem. Before implementation, NSGA-II and

SPEA-2 are tested with two testing functions proposed by the original papers. First one is

a bi-objective function without constraints but with large design space (100 design

variables) and the other is also a bi-objective function but it tackles with constraints and

two design variables. These two problems are solved according to the descriptions of the

papers and Fig. 7 demonstrates the final optimal fronts of two cases by two different

techniques. It’s observed that these two have similar performances on problems either

with or without constraints. Due to the NSGA-II need to define a population size that is

multiple of 4 (due to tournament selection), we increase the size to 120.

In this work, there are four indices (S, Lbest, Lworst, A±σ) being considered for

algorithm performance: the success rate (S) represents the number of specific runs that

find out at least one feasible path after 20 independent runs. The best (Lbest) and worst

(Lworst) path means the path with minimum and maximum length within those constraint

satisfied paths in every single run after 20 runs. The average length (A) and standard

deviation (σ) are derived from all success runs after 20 independent runs. Following the

results of Section IV.A, two intrinsic cost evaluations would be tackled separately in

different schemes of MOEAs, i.e. each identical scheme with two cost evaluations was

proceeded with 20 independent runs. Table 2 reveals that the new intrinsic cost function

also help the multi-objective evolution make better performance indices than the old cost

evaluation for all environments and all schemes of MOEAs. Especially for the SPEA-2,

the performance of SPEA-2 is the poorest when we compare with the other schemes on

dealing with the old cost definition.

For the migration intervals of IPGA, the IPGA with 5 migrating intervals (denoted as

IPGA-5) has better result than the others, especially in the average length and STD of

best paths. Although the IPGA-1 and IPGA-5 have close indices in average length and

STD in Environment-3, the success rate of IPGA-5 are dramatically better than IPGA-1.

Altogether, less of migrating intervals of IPGA scheme might invoke the convergence of

the population too quickly (genetic drift). It is obvious that NSGA-II and SPEA-2

perform better result in different environments (Environment-1 and 2). On the contrary,

IPGA-5 exhibits more stable performance in all maps. For the IPGADP, it indeed has our

attention on its performance of path planning problem especially all performance indices

are dramatically better than the other MOEAs.

For advanced comparison, we designed another three obstructed environments mixed

with wall-like and polygonal (Fig. 8) obstacles to test IPGA-5, NSGA-II, SPEA-2, and

IPGADP with new intrinsic cost function. Table 3 summarizes this comparison. Actually,

NSGA-II and SPEA-2 indeed have similar performance. For the IPGA, the success rates

for each map are still more stable than the others except IPGADP. In these three maps,

the IPGADP still performs better than the other MOEAs. Although IPGADP has similar

success rate with the others in Environment-5, the average length and corresponding STD

of found paths are shorter and more stable than the other three schemes.

C. Comparison of different MOEAs in dynamic environments

Table 4 reveals the comparison result of different scheme of MOEAs implemented to

plan paths in dynamic environments based on different intrinsic cost definition. For the

different intrinsic cost functions, the first two dynamic testing maps have similar success

rates except the average feasible length of paths, i.e. the planned paths are shorter when

we implement the new intrinsic cost. For the third environment, new cost definition

dramatically improves the success rate of planning.

Among these testing environments, the IPGADP has the better performance than the

others perform especially in the third case. The difficulty of third environment might be

two rotating wall-like obstacles located in the neighbours of START and GOAL. Even

though the difficulty might make the other MOEAs have poor performance, IPGADP still

has good success rate and average length of found paths.

D. Summary of simulations

Before summary of the proposed simulations, we proposed some observations about

the previous comparisons. Fig. 10 illustrates the Pareto-fronts of four approaches (IPGA,

NSGA-II, SPEA-2, and IPGADP) from one of 20 runs at some particular generations (1,

40, 80, …, and 200) within Environment-5. The Pareto-frontiers obviously evolve to the

left-bottom parts of objective space. Actually, NSGA-II has good capability to search for

the real Pareto-frontier resulted by the tackled problem. Fig. 10 also illustrates that the

final populations of NSGA-II, SPEA-2, and IPGADP forms the Pareto-front more

diversely than IPGA. Furthermore, we can discover that different fitness assignment

strategies would result in different evolutions especially the SPEA-2 has entirely different

strategy with IPGA, NSGA-II, and IPGADP (they implemented the fast non-dominated

sorting [21]). As Fig. 11 depicts, two special cases of ranking results demonstrate that the

strength Pareto ranking assigns individuals within the same rank but with large variance.

Fig. 12 illustrates a ranking example with 500 randomly generated paths in static

Environment-1, and it looks very similar to the case of Fig. 11(b). Fig. 13 also shows the

evolutionary histories of planned path with these approaches from one of 20 runs within

Environment-6. For ease of observation, we only illustrate the paths at particular

generations. Please note that the best path at a generation should be the one that is both

collision-free and with minimum length if there have feasible paths. If no collision-free

path is found, the individual with minimum intrinsic cost within the Pareto-front would

be the best. As you can see, the path is evolved to avoid the obstacles under the evolution.

Fig.14 illustrates the planning results in another two static and larger environments with

more obstacles. For the more challenging dynamic environment, Fig. 15 demonstrates a

collision-free path planned by the multi-objective evolutionary planner IPGADP in a

dynamic environment. There are two rotating wall-like obstacle, four moving polygonal

obstacles, and two static large scale wall-like obstacles in this environment.

In all simulations of completely known environments with either static or moving

obstacles, the evolutionary path planner based on IPGA, NSGA-II, SPEA-2, and

IPGADP successfully generates a smooth, safe and shorter path for mobile robots without

complicated mathematical computation. The population size of this research is quite

small, thus we might increase the size to derive a better results when we implement these

approaches. On the other hand, since the SPEA-2 and NSGA-II both have higher

computation complexity due to the sorting of combined/merged populations, IPGADP

would solve the problem more efficiently.

V. CONCLUSION

In this paper, IPGA with a dominating pool (IPGADP) are recommended to efficiently

and more successfully solve a bi-objective optimization problem formulating to exploring

potential feasible paths for a mobile robot with considering two objectives, the intrinsic

cost and length of a path either in static or dynamic environments. On the contrary, the

NSGA-II and SPEA-2 perform better in searching the real Pareto-front for the

encountered problems. These proposed approaches are effective and flexible to generate a

collection of collision-free paths to smoothly and safely move a mobile robot from a start

configuration to a goal configuration in an obstructed environment. Here the cubic spiral

segments are used to compose a smoothly directed planar curve. Actually, the special

manipulator and preservation strategy of elitisms, as justified by simulations, effectively

improve the evolutionary search capability. Furthermore, the intrinsic cost function that

considers the degree to be collision-free can dramatically improve the evolution that

concerns with the collision of a path. In this work, we successfully implement the

evolutionary search to plan a smooth path composed of a prescribed number of cubic

spiral segments in completely known rectangular environments with static as well as

polygonal and wall-like obstacles.

REFERENCES

[1] J.C. Latombe, Robot motion planning, Kluwer Academic Publisher, New York, 1991.

[2] J. Minguez, L. Montano and J. Santos-victor, “Abstracting vehicle shape and

kinematics constraints from obstacle avoidance methods,” Autonomous Robots, Vol.

20, pp.43-59, 2006.

[3] P.N. Azariadis and N.A. Aspragathos, Obstacle representation by Bump-surfaces for

optimal motion planning, Robotics and Autonomous Systems, Vol.51, pp.129-150,

2005.

[4] D.E. Goldberg, Genetic Algorithms in Search, optimization, and Machine Learning,

Addison-Wesley, 1989.

[5] M.F. Man, K.S. Tang, and S. Kwong, “Genetic algorithms: concepts and applications,”

IEEE Transaction on Industrial Electronics, Vol.43, No.5, pp.519-533, 1996.

[6] K. Sugihara and J. Smith, Genetic algorithms for adaptive motion planning of an

autonomous mobile robot, IEEE International Conference on Computational

Intelligence in Robotics and Automation, pp.138-146, 1997.

[7] Y. Davidor, Genetic Algorithms and Robotics, World Scientific, Singapore, 1991.

[8] I.K. Nikolos, K.P. Valavanis, N.C. Tsourveloudis, and A.N. Kostaras, “Evolutionary

algorithm based offline/online path planner for UAV navigation,” IEEE Transactions

on Systems, Man, and Cybernetics- Part B: Cybernetics, Vol.33, No.6, pp.898-912,

2003.

[9] C. Hocaoglu and A.C. Sanderson, “Planning multiple paths with evolutionary

speciation,” IEEE Transactions on Evolutionary Computation, Vol.5, No.3, pp

169-191, 2001.

[10] A. Scheuer and Th. Fraichard, “Continuous-curvature path planning for car-like

vehicles,” 1997 IEEE/RSJ International Conference on Intelligent Robots and

Systems, pp.997-1003, 1997.

[11] P. Wide and H. Schellwat, “Implementation of a genetic algorithm for routing an

autonomous robot,” Robotica, Vol. 15, pp 207-211, 1997.

[12] M. Gemeinder, and M. Gerke, “GA-based path planning for mobile robot systems

employing an active search algorithm,” Applied Soft Computing, Vol.3, pp.149-158,

2003.

[13] J. Xiao, Z. Michalewicz, L. Zhang, and K. Trojanowski, “Adaptive Evolutionary

Planner/Navigator for Mobile Robots,” IEEE Transactions on Evolutionary

Computation, Vol.1, No.1, pp 18-28, 1997.

[14] A. C. Nearchou, “Path planning of a mobile robot using genetic heuristics,”

Robotica, Vol.16, pp 575-588, 1998.

[15] K. Sugihara and J. Smith, Genetic algorithms for adaptive motion planning of an

autonomous mobile robot, IEEE International Conference on Computational

Intelligence in Robotics and Automation, pp.138-146, 1997.

[16] J. Tu and S.X. Yang, Genetic algorithm based path planning for a mobile robot,

2003 IEEE International Conference on Control and Automation, pp.1221-1226,

2003.

[17] Y. Wang, D. Mulvaney and J. Sillitoe, Genetic-based mobile robot path planning

using vertex heuristics, 2006 IEEE International Conference on Cybernetics and

Intelligent Systems, pp.463-468, 2006.

[18] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary algorithms in

multiobjective optimization,” Evolutionary Computing, Vol.3, No.1, 1995, pp. 1-16.

[19] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms, West Sussex,

England, John Wiley & Sons, 2001.

[20] N. Srinivas and K. Deb, “Multi-objective function optimization using

non-dominated sorting genetic algorithm,” Evolutionary Computation, Vol. 2, pp.

221-248, 1995.

[21] K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, “A fast and elitist multi-objective

genetic algorithm: NSGA-II,” IEEE Transaction on Evolutionary Computation, Vol.

6, No. 2, pp. 181-197, 2002.

[22] E. Zitzler, M. Laumanns, and L. Thile, “SPEA2: Improving the Strength Pareto

Evolutionary Algorithm,” Computer Engineering and Communication Networks Lab

(TLK), Swiss Federal Institute of Technology Zurich, Technical Report 103, May,

2001.

[23] K. Fujimura, “Path planning with multiple objectives,” IEEE Robotics and

Automation Magazine, pp.33-38, March 1996.

[24] G. Dozier, S. McCullough, A. Homeifar, E. Tunstel and L. Moore, “Multiobjective

evolutionary path planning via fuzzy tournament selection,” IEEE World Congress on

Computational Intelligence, pp.684-689, 1998.

[25] V.A. Spais and L.P. Petrou, Multiobjective moton planning for a nonholonomic

vehicle, 2003 IEEE Congress on Evolutionary Computation, pp.2058-2065, 2003.

[26] O. Castillo, L. Trujillo and P. Melin, “Multiple objective genetic algorithms for

path-planning optimization in autonomous mobile robots,” Soft Computing, Vol.11,

No. 3, pp.269-279, 2007.

[27] K.T. Hung, J.S. Liu, and Y.Z. Chang, and Yau-Zen Chang, "Generation of multiple

cubic spiral paths for obstacle avoidance of a car-like mobile robot using evolutionary

search," The 3rd International Conference on Autonomous Robots and Agents,

Palmerston North, New Zealand, Dec. 12-14, 2006.

[28] K.T. Hung, J.S. Liu, and Y.Z. Chang, "A comparative study of smooth path planning

for a mobile robot by evolutionary multi-objective optimization," 2007 IEEE

International Symposium on Computational Intelligence in Robotics and Automation,

Jacksonville, Florida, USA, Jun. 20-23, 2007.

[29] J.S. Liu, K.T. Hung, and Y.Z. Chang, "Offline smooth mobile robot path planning in

dynamic environments using evolutionary multi-objective optimization," 2008 IEEE

SMC International Conference on Distributed Human-Machine Systems, Athens,

Greece, Mar. 9-12, 2008.

[30] A. Farinelli and L. Iocchi. Planning Trajectories in Dynamic Environments Using a

Gradient Method, RoboCup 2003, LNAI 3020, pp. 320-331, 2004.

[31] R. Smierzchalski and Z. Michalewicz. Path Planning in Dynamic Environments,

Computational Intelligence, Vol. 8, pp 135-153, 2005.

[32] H. Q. Min, J. H. Zhu, and X. J. Zheng. Obstacle Avoidance with Multi-Objective

Optimization by PSO in Dynamic Environment, Proceedings of the Fourth

International Conference on Machine Learning and Cybernetics, Aug. 18-21, 2005.

[33] K. Konolige, “A gradient method for real-time robot control,” IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp.639-646, 2000.

[34] Y.J. Kanayama, B.I. Hartman, “Smooth local path planning for autonomous

vehicles,” International Journal of Robotic Research, Vol.16, No.3, pp 263-283,

1997.

[35] T.C. Liang, J.S. Liu, G.T. Hung, and Y.Z. Chang, "Practical and flexible path

planning for car-like mobile robot using maximal-curvature cubic spiral," Robotics

and Autonomous System, Vol. 52, pp. 312-335, 2005.

[36] A.D. Belegundu and T.R. Chandrupatla, Optimization Concepts and Applications in

Engineering, New Jersey, Prentice Hall, 1999.

[37] H.K. Lam, F.H. Leung, P.K.S. Tam, “Design and stability analysis of fuzzy

model-based nonlinear controller for nonlinear systems using genetic algorithm”

IEEE Transactions on System, Man and Cybernetics, Part B, Vol. 33, pp. 250-257,

2003.

[38] V. Pshikhopov. Path Planning for Vehicles Operating in Uncertain 2D

Environments. Butterworth-Heinemann, 2017.

[39] A. Pongpunwattana & R. Rysdyk. Evolution-based dynamic path planning for

autonomous vehicles. In Innovations in Intelligent Machines-1 (pp. 113-145).

Springer, Berlin, Heidelberg, 2007.

Fig. 1 Schematic illustration of path representation of the mobile robot

x

y

θ

(x , y)

Fig.. 2 Illustration of similaar paths inteersected witth a thin obs

stacle

F

Fig. 3 A pathh is compossed by threee subpaths, each is com

M

mposed by cubic spiral

segments: ssubpaths S, G,

Figg. 4 Examplle of a non-ssmooth (connstraint nonn-satisfied) ppath (with 6

6 control pooints)

Fig. 5 The subgoals manipulation operator

START

GOAL

Node 2

Node 1

Node 3

Node 4

new Node 2

Static Environment-1 (map size: 600*300)

Static Environment-2 (map size: 600*300)

Static Environment-3 (map size: 600*500)

Fig. 6 Three testing static environments

Start

Goal

Start Goal

Start

Goal

Fig. 6 Distribution of number of intersections and sum of minimum distance for 200 extracted

individuals in Environment-2

0 5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

120

140

160

Number of intersection

M
in

im
u

m
 d

is
ta

n
ce

Multiple Fences environment (Environment-2)

New intrinsic cost
Old intrinsic cost

(a)

(b)

Fig. 7 Evolutionary optimal front by NSGA-II and SPEA-2 on two test functions:

(a) Test function without constraints but with one hundred design variables and two objectives (ZDT6,

evolving with both 100 individuals per population and 106 function evaluations) [21]

(b) Test function with constraints, two design variables, and two objectives (TNK, evolving with both

100 individuals per population and 200 generations) [20]

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f
1

f 2

Solve the problem without constraint (ZDT6)

Optimal front
NSGA2
SPEA2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

f
1

f 2

Solve the problem with constraint (TNK)

NSGA2
SPEA2

Static Environment-4 Static Environment-5

Static Environment-6

Fig. 8 Another three testing environments (map size: 600*600)

Start

Goal
Start Goal

OB6

Start Goal

Dynamic Environment-1 (map size: 600*300)

Dynamic Environment-2 (map size: 600*600) Dynamic Environment-3 (map size: 600*600)

Fig. 9. Three testing dynamic environments. (Dynamic Environment-1 consists of four vertically

moving polygonal obstacles. Dynamic Environment-2 consists of four translating obstacles. Dynamic

Environment-3 consists of two translating and two rotating obstacles. The mobile robot and each

horizontally or vertically translating obstacle have a speed of 1unit/sec, and 1unit/sec in x and y

directions for diagonally translating obstacle. The rotating obstacle has an angular rate of 100/ deg/sec.)

Start Goal

OB1

OB2OB3

OB4

Start

Goal

OB1

OB2

OB3

OB4

Start

Goal

OB1

OB2
OB3

OB4

Fig. 10 Partial monitoring of Pareto-fronts for IPGA, NSGA-II, SPEA-2, and IPGADP (Environment-5)

1000 1100 1200 1300 1400 1500 1600 1700 1800
20

40

60

80

100

120

140

160

180

200

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 1-st generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

850 900 950 1000 1050 1100 1150 1200 1250 1300 1350
0

10

20

30

40

50

60

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 40-th generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

850 900 950 1000
0

20

40

60

80

100

120

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 80-th generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

840 860 880 900 920 940 960 980
0

10

20

30

40

50

60

70

80

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 120-th generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

840 850 860 870 880 890 900 910 920 930 940
0

10

20

30

40

50

60

70

80

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 160-th generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

840 850 860 870 880 890 900 910 920 930 940
0

10

20

30

40

50

60

70

80

Length Cost

In
tr

in
si

c
C

o
st

Preservation history of the 200-th generation

IPGA (Island-1)
IPGA (Island-2)
IPGA (Island-3)
NSGA-II
SPEA-2
IPGADP

(a)

(b)

Fig. 11 Two special cases of ranking result by ordinary Pareto ranking (our method and NSGA-II,

depicted as solid and dash line) and strength Pareto ranking (SPEA-2, depicted as numbers)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f
1

f 2 0

0

0

0

53

44

31

16

90

85

67

43

112

110

100

75

122

119

112

95

Rank-5
Rank-4
Rank-3
Rank-2
Pareto-front

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

f
1

f 2

0 0 0 0

16 45 45 55

43 68 87
93

76 102
113

116

106 120 125 126

Rank-5
Rank-4
Rank-3
Rank-2
Pareto-front

Fig. 12 Distribution of objective space on Environment-1 with 500 randomly generated paths

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Length

In
tr

in
si

c
co

st

Fig. 13 Evolutionary history of the best path in Environment-6

Start GoalOB1 OB2

OB3

OB4

OB5

OB6

OB7

OB8

1

1

25
25

200

1

25

25

50

50

200

1

1

25

50

50

200

200

1

25
25

50

200

 Solve by IPGA

 Solve by NSGA-2

 Solve by SPEA-2

 Solve by IPGADP

 Best of initial

Fig. 14 Two larger static environments solved by IPGADP

(The path is composed of 12 segments of cubic spiral in these two cases)

Start

Goal

Start

Goal

Fig. 14 Another dynamic case that used to demonstrate the path planned by IPGADP

Start

Goal

OB1

OB2

OB3

OB4

OB5
OB6

OB7

OB8

Start

Goal

OB1

OB2
OB3

OB4

OB5
OB6

OB7

OB8

t=93sec

Start

Goal

OB1

OB2

OB3

OB4
OB5

OB6

OB7

OB8

t=198sec

Start

Goal

OB1

OB2

OB3

OB4

OB5
OB6

OB7

OB8

t=405sec

Start

Goal

OB1

OB2OB3

OB4

OB5
OB6

OB7

OB8

t=474sec

Start

Goal

OB1

OB2

OB3

OB4

OB5
OB6

OB7

OB8

t=538sec

Start

Goal

OB1

OB2OB3

OB4

OB5
OB6

OB7

OB8

t=623sec

Start

Goal

OB1

OB2

OB3

OB4

OB5
OB6

OB7

OB8

t=703sec

Start

Goal

OB1

OB2

OB3

OB4
OB5

OB6

OB7

OB8

t=766sec

Start

Goal

OB1

OB2

OB3OB4 OB5
OB6

OB7

OB8

t=796sec

Start

Goal

OB1

OB2

OB3
OB4 OB5

OB6

OB7

OB8

t=866sec

Start

Goal

OB1

OB2

OB3

OB4

OB5
OB6

OB7

OB8

t=1e+003sec

Table 1 Comparison of different intrinsic cost function with simple genetic algorithm

Infor. SGA (SOP)*
Cost definition New Old

Environment-1 (8 Control Points)
Success rate (/20 Runs) 6 1

Average # of intersections ± SD of
top 10 solutions in each run

19.5
±39.1

20.4
±31.2

Average minimum distance ± SD
of top 10 solutions in each run

11.7
±22.6

27.6
±56.2

Environment-2 (8 Control Points)
Success rate (/20 Runs) 8 9

Average # of intersections ± SD of
top 10 solutions in each run

13.3
±13

10.3
±6.1

Average minimum distance ± SD
of top 10 solutions in each run

13.2
±16.7

44.8
±36.

Environment-3 (6 Control Points)
Success rate (/20 Runs) 14 1

Average # of intersections ± SD of
top 10 solutions in each run

4.6
±7.2

7.3
±4.6

Average minimum distance ± SD
of top 10 solutions in each run

14
±27

63.6
±37.8

*The parameters of SGA are defined as: population size 90, maximum generation 50, crossover and

mutation rates 0.85/0.1, number of manipulation on infeasible paths 10% of papulation.

Table 2 Comparison results of different schemes of MOEA

Infor. IPGA-1*1 IPGA-3*1 IPGA-5*1 NSGA-II*2 SPEA-2*2 IPGADP*3

Cost
definition

New Old New Old New Old New Old New Old New Old

Environment-1 (8 Control Points)
S 11 8 9 9 9 8 17 14 2 0 16 11

Lbest 733.9 731 733 732 736.2 750.3 767.4 739.5 750.4 0 723.7 735.5
Lworst 943.4 1002.7 1038.3 1119.7 866.4 925.3 883.4 891.5 851.6 0 773.6 922.7

A
±σ

813.8
±80

843
±109

833.6
±100.8

844.1
±122.5

789.7
±54.3

801.8
±73.7

806.4
±26.4

817.6
±82.6

801
±71.6

0
739.9
±12

789.2
±79.1

Environment-2 (8 Control Points)
S 15 11 14 14 12 11 4 1 16 0 19 2

Lbest 734 738.8 728.3 754.3 735.6 735.3 747.5 904.3 74.6 0 737.2 784.1
Lworst 1097.6 875.6 954.8 894 857.9 934.6 857.4 904.3 895.8 0 869.3 846.1

A
±σ

810.8
±104

777.5
±38

778.3
±55

800.8
±43.3

773
±34.8

814.2
±75.2

802.5
±53.1

904.3
±0

807.5
±42.7

0
790.9
±31.8

815.1
±43.9

Environment-3 (6 Control Points)
S 13 2 19 8 19 8 15 7 16 0 20 19

Lbest 772 805.4 781.5 787.7 778.2 779.2 782.4 777.4 782 0 781.4 783.6
Lworst 849.2 807.9 1497.1 1023.2 882 815.8 947.3 814.2 970.9 0 800.1 886.5

A
±σ

800.2
±20

806.6
±1.8

882.9
±185.3

836.6
±79.6

804.3
±22.7

793.6
±13

835.2
±52.3

789.4
±12.1

820.5
±49

0
793.1
±5.3

803.6
±24.9

*1 Each IPGA has three islands, 40 subpopulations at each island, maximum generation 200, number

of manipulation on infeasible paths 10% of papulation, number of migrations 10% of subpopulation

at each island, and the migration intervals 1, 3, and 5. Three sets of crossover/mutation rate at each

island are 0.85/0.1, 0.1/0.9, and 0.4/0.3.

*2 NSGA-II and SPEA-2 both have 120 populations, maximum generation 200, and the number of

manipulations on infeasible paths 10% of population. The crossover and mutation probabilities are

0.9 and 1/Nd (where Nd is the number of genes) respectively. Distribution indices for crossover and

mutation operator are defined as 20c and 20m .

*3 The IPGADP have three islands, 40 subpopulations at each island, the size of dominating pool 60,

maximum generation 200, and the number of manipulation on infeasible paths 10% of

subpopulation at each island. Three sets of crossover/mutation rate at each island are 0.85/0.1,

0.1/0.9, and 0.4/0.3. Distribution indices for crossover and mutation operator are defined as 20c

and 20m .

Table 3 Parameter definition and result of comparison between IPGA-5, NSGA-II, SPEA-2, and

IPGADP for mixed environments

Infor. IPGA-5 NSGA-II SPEA-2 IPGADP
Environment-4 with more multiple polygonal

wall-like obstacles
(8 Control Points)

S 19 19 16 20
Lbest 934.9 914.8 909.6 916.3
Lworst 1027.6 1001.8 1022.6 996

A
±σ

971.2
±30.7

950.6
±20.9

951.8
±32.4

941.7
±17.3

Environment-5 with more wall-like obstacles
(8 Control Points)

S 14 13 14 13
Lbest 922.5 925.6 922.5 932.3
Lworst 1238.1 1193.2 1238.1 1126.4

A
±σ

1028.4
±101.1

1020.2
±81.1

1028.4
±101.1

975.9
±57.5

Environment-6 (8 Control Points)
S 20 12 12 20

Lbest 833.9 840.5 834.9 825.2
Lworst 991.7 1080 1002.8 929

A
±σ

898.9
±53.7

940
±69.9

926.8
±50.6

848.2
±25.1

* Parameter definitions of different MOEAs are the same with previous comparison.

All simulations are accomplished with new intrinsic cost function.

Table 4 Parameter definition and result of comparison between IPGA-5, NSGA-II, SPEA-2, and

IPGADP for dynamic environments with different intrinsic cost function

Infor. IPGA-5 NSGA-II SPEA-2 IPGADP
Cost

Definition
New Old New Old New Old New Old

Dynamic Environment-1 with four moving polygonal obstacles
(6 Control Points)

S 20 20 20 20 20 20 20 20
Lbest 680.2 689.9 612 609.1 615.4 611.6 607.6 607.2
Lworst 907.4 908.1 757 915.6 683.3 724.6 667.6 904.3

A
±σ

739.31
±47.37

752.2
±48.9

645. 7
±38.4

657.2
±66.3

642.4
±21.8

670.5
±39.9

625.7
±23.7

645.1
±76

Dynamic Environment-2 with four wall-like obstacles
(6 Control Points)

S 20 20 20 20 19 20 20 20
Lbest 851.9 860.1 850.4 853.4 849.6 850.7 849.1 849.1
Lworst 1078.2 1079.3 924.9 1029.9 998.5 1066.7 852.3 851.5

A
±σ

926.6
±71.3

959
±89.7

875.1
±20.7

879
±48.5

880.1
±40.9

873.9
±47.6

849.7
±0.7

849.8
±0.7

Dynamic Environment-3 with two moving and two rotating obstacles
(6 Control Points)

S 13 2 10 6 13 7 20 6
Lbest 907.8 941.2 903 913.9 910.8 923.7 901.3 908.6
Lworst 1105.9 958 1003.9 1119.1 1051.2 1007.3 933.2 1020

A
±σ

995.6
±63.5

949.6
±11.9

937.7
±29.3

972.3
±75.7

952.4
±38.9

950.7
±31

912.6
±7.3

939.7
±40.3

* Parameter definitions of different MOEAs are the same with previous comparison except maximum

generation 50.

