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Prologue

This paper is written in TEX eplain, and compiled using pdf.tex. This was done so that links and

colors would be available without the restrictions of LaTex.

There are some symbols used here which are not universally standard. The most common are the

following:

X4Y

for the set complement of a subset Y of a set X ,

A ≡ B

for the statement: A is defined to be B ,

φ
x

for the value of a function φ at one of its arguments x ,

φ and φ , respectively,

for the domain and range, respectively, of a function φ ,

⇀
φ

S ≡ {φx : x∈S}

for the image of a subset S of the domain of a function φ ,

φ X ↪→Y

for a function from a set X into a set Y ,

N

for the set of natural numbers 1, 2, 3. . . ,

←→
a,b

for the line determined by two distinct points a and b of a projective space,

n ≡ {1,2,. . .n}

for the set of the first n positive integers,

X
Y

for the family of all functions from a set Y to a set X and

Y
X !

for the family of all bijections from X onto Y .

We also use a few non-standard terms. As a ‘‘singleton’’ refers of a set with exactly one element, a

doubleton shall be a set with exactly two elements, a tripleton shall be a set with exactly three elements

and a quadrupleton shall be a set with exactly four elements.

Some of the material in these papers appeared originally in http://vixra.org/abs/1306.0233 , and several

mistakes in that paper have been rectified here.

The author can be reached at KellyMack@Proton.Com .
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1. Introduction

(1.1) Purpose In the monograph The Projective Line as a Meridian we dealt with the structure

of a meridian, or one-dimensional projective space. What makes one meridian different from another is its

group of homographies. Here our attention is focused on this family of homographies and its structure. In

the case of the circle meridian – the meridian of which the associated field is the field of real numbers – this

structure is closely related to the geometry of a circular hyperbola in euclidan 3-space . Furthermore, this

example provides considerable motivation for the general theory.

Before we commence however, we shall review a part of what was covered in the previous mongograph

about meridians.

(1.2) Definitions of a Meridian A meridian M is a set of cardinality at least 4 , with a group

G of permutations, called homographies, such that the following three conditons are satisfied:

(∀ {a,b,c}⊂M and {x,y,z}⊂M tripletons)(∃ ! φ∈G) φ
a= x , φ

b= y and φ
c= z , (1)

(∀ {a,b,c}⊂M a tripleton)(∃ ! φ∈G) φ
a= b , φ

b= c and φ◦φ◦φ◦φ= ιM (2)

and (∀ φ∈G : (∃ {a,b}⊂M a doubleton) φ
a= b and φ

b= a) φ◦φ= ιM (3)

(where ιM is the identity function on M). The set G is said to be a meridian group of permutations of

the set M .

A meridian family M of involutions on a set M is a family of self-inverse permutations of M for

which the following three conditions hold:1

(∀ {a,b}⊂M a doubleton)(∀ {c,d}⊂M4{a,b} a doubleton)(∃ ! φ∈M) φ
a= c and φ

b= d , (4)

(∀ {a,b}⊂M) {φ∈M :φ
a= b} is a libra (5)

and (∀ {α,β}⊂M) α◦β◦α∈M . (6)

If M is a meridian with group of homographies G , then the family of self-inverse permutations in G is

a meridian family of involutions. Conversely, if M is a meridian family of involutions on a set M , then the

smallest group of permutations containingM as a subset, is a group of homographies relative to which M is

a meridian.

(1.3) Homographies We shall say that φ∈G is pure rotation if it has no fixed points, a

translation if it has exactly one fixed point and a dilation if it has two fixed points. In some meridians

there are no pure rotations, but there are always translations and dilations.

An involution φ equals its own inverse. An involution can never be a translation: it is either a dilation

or a pure rotation. Each homography which is not an involution is the composition of two distinct involutions.

What is more, for any θ∈G , we have

θ is an involution < > (∃ {a,b}⊂M a doubleton) θ
a= b and θ

b= a , (1)

θ is a translation < > (∃ {π,σ}⊂M dilations with a single common fixed point) θ=π◦σ , (2)

1 Being a libra in condition (5) means that (∀ {α,β,α}∈M) α◦β◦γ is in M .
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θ is a dilation < > θ is not a translation and either θ is an involution or

(∃ π∈M a dilation and σ∈M which agree on two points) θ=π◦σ , (3)

θ is a pure rotation < > either θ is an involution with no fixed point or

(∃ π∈M a dilation and σ∈M which agree on no point) θ=π◦σ (4)

and G = {π◦σ : {π,σ}⊂M and π is a dilation} . (5)

We shall write the function φ of (1.2.1) as

a
x

b
y

c
z . (6)

(1.4) Harmony Let M be a meridian with families G of homographies and M of involutions.

Two disjoint doubletons {a,b}⊂M and {c,d}⊂M are said to be harmonic pairs if there exists a function

φ∈G such that the equalities in (1.2.2) hold and that φ
d= a . This is equivalent to each of the following

conditions:

(∃ φ∈M) φ
a= b, φ

c= c and φ
d= d (1)

and

(∃ φ∈G a translation) φ
a= b ,φ

b= c and φ
d= d . (2)

For any tripleton {a,b,c} , there is exactly one point d∈M such that the sets {a,b} and {c,d} are

harmonic pairs. The symmetry induced by this fourth point d is at the heart of a considerable part of

mathematics, and so we shall introduce notation to express it:

a
c
−↓b ≡d . (3)

(1.5) Meridian Quinary Operator If {a,b} and {c,d} are as in (1.2.4), and if e is any element

of L, there is a unique element a
c
e
d

b of M such that the element of M which takes a to b and c to d, also

takes e to a
c
e
d

b . This defines the meridian quinary operator on M .

We note that, if {a,b,c}⊂M is a tripleton, then the unique fourth point d such that {a,b} and {c,d} are

harmonic pairs is just

a
c
−↓b = a

b
c
b

a . (1)

(1.6) Meridian Fields For any tripleton {0,1,∞}⊂M , the meridian quinary operator may be

used to construct a field F≡M4{∞}: we define
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(∀ {x,y}⊂F) x+y≡ ∞
x
0
y
∞ and x·y≡ ∞

x
1
y
0 (if {0,∞}=6 {x,y}) . (1)

Such a field F will be called a field of the meridian M . Any two fields of M are isomorphic as fields.

We recall that the characteristic of a field is the least positive integer n such that n·x=0 for some

x =6 0 , if there is such an n. If there is not such an n , the field is said to be of characteristic zero. We define

the characteristic of a meridian to be the characteristic of any one of its fields.

Having determined such a field, one can describe the homographies of M in terms of quadruples

{a,b,c,d}⊂M such that a·d =6 b·c . For such a quadruple we define

(
a b
c d

)
a b
c d

x ≡

{
a·x+b
c·x+d if x∈F and c·x+d =6 0;

b
d if x =∞ and d =6 0;

∞ otherwise.

(2)

Is convenient to use this ‘‘matrix’’ notation since the matrix of compositions of homographies corresponds

to the matrix product of the corresponding matrices.2

If any meridian field is isomorphic to the field of real numbers, we say that M is a circular meridian.3

If any meridian field is isomorphic to the field of complex numbers, we say that the meridian is a spherical

meridian.

(1.7) Meridian Isomorphisms and Automorphisms If M is a meridian with homography group

G and Ḿ another meridian with homography group Ǵ , a bijection φ M ↪→ Ḿ is said to be a meridian

isomorphism if

G= {φ−1◦θ◦φ : θ∈Ǵ } . (1)

Condition (1) is equivalent to

M= {φ−1◦θ◦φ : θ∈Ḿ } (2)

where M and Ḿ , respectively, are the meridian families of involutions on M and Ḿ , respectively.

If M and Ḿ are identical, a meridian isomorphism is called a meridian automorphism. Every

homography of a meridian is an automorphism, but the converse is not always true, as in the case of spherical

meridians, where complex conjugation extends to an automorphism of M which is not a homography.

(1.8) Wurf Meridians and Cross Ratios Let M be a meridian, and let

W≡{´
`
a,b,c,d`

´
∈M×M×M×M : #{a,b,c,d}≥3} .

Let W be the family of equivalence classes of M where the equivalence relation ∼ is given by

(∀ {a,b,c,d}∈W and {w,x,y,z}∈W)

(1)

2 Two such ‘‘matrices’’ define the same homography if, and only if, one is a non-0 multiple of the other.
3 One reason that the term “circular” is here associated with the real field is that, in this case, the set M

may be associated in a topological way with the circle. Furthermore, regarding M as a circle gives insight

into M , as is illustrated in (1.9) infra.
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{a,b,c,d}∼{w,x,y,z} < > (∃ φ∈G) ´
`
φ
a,φb,φc,φd`

´
= ´

`
w,x,y,z`

´
.

We call the elements of W wurfs.4

Let {∞,0,1} be a tripleton in M. Then the ordered triple ´
`
∞,0,1`

´
induces a function

κ W3´
`
a,b,c,d`

´
↪→ a

∞
b
0

c
1

d∈M . (2)

Such a function is called a cross ratio. It can be computed using the field operations of the field determined

by ∞, 0 and 1 . Its value for each ´
`
a,b,c,d`

´
∈W is given by

κ
´
`
a,b,c,d`

´

=
(a-c)·(b-d)

(b-c)·(a-d)
. (3)

One virtue of cross ratios κ is that they may be used to test whether a bijective function φ M ↪→M is

a homography or not:

φ∈G < > (∀ ´
`
a,b,c,d`

´
∈W) κ

´
`
φ
a,φb,φc,φd`

´

=κ
´
`
a,b,c,d`

´

 . (4)

Cross ratios are constant on each wurf and so induce bijections from W onto M: we shall write L for

the family of all such. For each φ∈L , the set

{φ−1◦θ◦φ : θ∈G} (5)

is independent on the choice of φ . Then family of (5) satisfies axioms (1.2.1) through (1.2.3) and so confers

on W eligibility for the title of meridian. Each of the functions in L is then a meridian isomorphism.

If a field of the meridian M does not have characteristic 3 , then the meridian W has six special elements:

a= {´
`
a,b,c,d`

´
: a = d or b = c} , (6)

b= {´
`
a,b,c,d`

´
: b = d or a = c} , (7)

c= {´
`
a,b,c,d`

´
: c = d or a = b} , (8)

á = {´
`
a,b,c,d`

´
: {a,d} and {c,d} are harmonic pairs} , (9)

b́ = {´
`
a,b,c,d`

´
: {b,d} and {a,c} are harmonic pairs} (10)

and ć = {´
`
a,b,c,d`

´
: {c,d} and {a,b} are harmonic pairs} . (11)

Relative to the quinary operator on W, these six are related as follows:

a
c
ć
c
b = ć , a

b
b́
b
c = b́ and b

a
á
a
c = á

If the characteristic of M is 3 , then {a,b,c} is still a tripleton, but á = b́ = ć .

(1.9) Example: Circle Meridian Let P be 2-dimensional euclidean space. For each line L in P

we shall add a point ∞L to L not in P. We do this in such a way that points ∞L1
 and ∞L2

 are equal

if, and only if, the lines L1 and L2 are parallel. The set ∞P of all these ‘‘points at infinity’’ is called the

line at infinity and its union with P will be denoted by

4 The term ‘‘wurf’’, or more properly ‘‘Wurf’’, was introduced by Karl von Staudt in his mid-eighteenth century

work providing a synthetic foundation of projective geometry.
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P . (1)

By a line in P , we shall mean either ∞P or L∪{∞
L} , where L is a line in P .

Let C be a circle in P . Let x and y be elements of C. By
←→
x,y we shall mean the line through x and y.

If p is any point in P4C, and x is any point in C, then the line
←→
p,x, unless it is tangent to C, intersects C

at exactly one other point: we write

p
C

x (2)

for this other point. In the case of tangency, we define the value of (2) to be just x. It is evident that each

such function p
C

thus defined is an involution on C. In fact, it can be shown that the family

M
C ≡ {p

C
: p∈P4C} (3)

is a meridian family of involutions. Relative to this family, C is said to be a circle meridian.

Fig. 1: Circle Meridian Involution

Each circle meridian is isomorphic to every other circle meridian as a meridian.5

In the following figure is illustrated a harmonic pair of pairs {a,c} and {b,d} in the circle meridian:

5 The same constructions which have here been adopted for a circle can be adduced for an ellipse, or even for

a hyperbola or parabola in P, if one includes the relevant points in ∞P . Each meridian obtained in this

manner is isomorphic to a circle meridian.
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Fig. 2: Harmonic Pairs on the Circle

In the next figure the quinary operator is illustrated for the circle meridian:

Fig. 3: Quinary Operator on the Circle Meridian

a
c
e
d

b

The meridian automorphisms of a circle are just the homographies of that circle.

(1.10) Example: Line Meridian Let L be any line in P such that L∩P=6 ø . Let C be a circle

in P tangent to L at some point p, and let o be any point on C distinct from p . For each point x of C let

ω
x be the intersection point of the two lines L and

←→
o,x, where

←→
o,o is defined to be the line tangent to C

at o .6 The mapping ω C ↪→L thus created is a bijection. The the family

L ≡ {ω◦φ◦ω−1 :φ∈M
C} (1)

is a meridian family of involutions for L . Although this definition seems to be dependent on the choice of

6 This mapping is the 2-dimensional avatar of the so-called stereographic projection of a sphere onto a tangent

plane.
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C , it actually is not, and we can describe L directly in terms of the geometry of P .

Fig. 4: Meridian Isomorphism from a Circle onto a Line

pω
xL

x

oC

Fig. 5: Quinary Operator on the Line Meridian

If {a,b,c,d}⊂P is a quadrupleton such that no three of its elements are collinear, we say that it generates

a complete quadrilateral, the sides of which are
←→
a,b ,

←→
a,c ,

←→
a,d ,

←→
b,c ,

←→
b,d and

←→
c,d . It can be shown that

for such a complete quadrilateral

(
←→
c,d∧L) = (

←→
a,d∧L)

(
←→
a,c∧L)

(
←→
a,b∧L)

(
←→
b,d∧L)

(
←→
d,c∧L) , (2)

where, for two distinct lines U and V , U∧V is defined to be the point of which the singleton is U4V . Thus,

to compute z≡ u
w
y
x

v for {u,v,w,x,y}⊂L with u, v and w distinct, we may proceed as follows: Take r∈P to

be any point not on L . Let s∈P be any point of P4L such that r∈6 ←→w,s . Let

10



a≡(
←→
u,r∧←→w,s) , b≡(

←→
v,r∧←→w,s) , c≡(

←→
x,a∧←→v,r ) and d≡(

←→
y,b∧←→u,r ) . (3)

Then (2) implies that

z = u
w
y
x

v = (
←→
c,d∧L) . (4)

(1.11) Example: Sphere Meridian Let E denote three dimensional Euclidian space. As in P

we associate to each line L a point ∞L not in E in such a way that, for two lines L1 and L2, the points

∞L1
 and ∞L2

 are equal if, and only if, the two lines are parallel. The set

∞E ≡ {∞L : L is a line in E} (1)

is called the plane at infinity. We denote

E ≡ E∪∞E (2)

and call E a three dimensional real projective space. A subset X of ∞E is a line at infinity if

(∃P a plane in E) X = {∞
L : L is a line in P} . (3)

By a line in E , we shall mean either a line at infinity or L∪{∞
L} , where L is a line in E . By a plane

in E , we shall mean either the plane at infinity or a set of the form N∪{∞
L : L is a line in N} , where N

is a plane in E .

Let now S be a sphere in E. Let L be any line in E not tangent to S, which intersects S. Then there are

two intersection points p and q. If P is the tangent plane at p and Q is the tangent plane at q, then P∩Q

is called the line dual to L relative to the sphere S. Given any two lines L and M in E which do not

intersect, and any point x∈6 (L∪M), there exists exactly one line

← →
(L,M;x) (4)

which passes through x and intersects both L and M. If L is as above, and x is any point on S, the line
← →
(L,P∩Q;x) intersects S at another point

S;L
x (5)

(where S;L
x is defined to be x if x is on L). The family

M
S ≡ { S;L : L a line in P with #(L∩ S) = 2} (6)

is a meridian family of involutions of S. The meridian S, relative to this family, will be called a sphere

meridian.7

A plane which intersects S at more than one point, intersects S in a circle. The harmonic pairs of S are

just the pairs which are on such a circle and harmonic relative to that circle.

7 When an ordered basis ´
`
0,∞,1`

´
for S is chosen with 0 and ∞ at opposite ends of a diameter of S and 1

equidistant from 0 and ∞ , S is sometimes called a Riemann Sphere.
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Given any point p of E not on S , the involution of S obtained by taking lines through p which intersect

S is not a homography of S, but it is a meridian automorphism.
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2. The Idea of a Libra

(2.1) Purpose In The Projective Line as a Meridian we introduced the idea of a libra, lay-

ing out its first properties and promising later to explain how its name derives from a set of scales.

Fig. 6: Scales

In this section we shall fulfill this promise.

(2.2) Scales Suppose that we have a pair of scales suspended from the ends of a beam. Suppose

that on each scale there are three equidistant places on which we can place weights taken from a set L: we

shall identify these places on one scale by ♠ , ♣ and F ; and on the other scale by ♥♥♥♥♥♥♥ , � and z . Suppose

that if we picked up one of the scales, and without turning it, set it down on the other — then the order of

the places in clockwise direction would be

♠ ,♥♥♥♥♥♥♥ ,♣ ,� ,F and z . (1)

We shall write Σ for the set {♠ ,♥♥♥♥♥♥♥ ,♣ ,� ,F ,z} . Thus, a clockwise rotation of both scales by an angle

of 2π/3 would be equivalent to applying the permutation

σ ≡ {´
`
♠,♣`

´
,´
`
♥♥♥♥♥♥♥,�`

´
,´
`
♣,F`

´
,´
`
�,z`

´
,´
`
F,♠`

´
,´
`
z,♥♥♥♥♥♥♥ `

´
} . (2)

to the set Σ .

In placing a load on the scales we are defining a function from Σ to L . Certain loads will leave the

scales in equilibrium: we shall write E for the family of such loads. Such a subfamily of L
Σ

will be called an

equilibrium family for L provided that the following three postulates are fulfilled:
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(∀ θ∈L
Σ
) θ∈E < > θ◦σ∈E , (3)

(∀ θ {♠,♥♥♥♥♥♥♥,♣,�,F} ↪→L)(∃ ! x∈L) θ∪{´
`
z,x`

´
}∈E (4)

and (∀ θ {♠,♥♥♥♥♥♥♥,♣,�} ↪→L)(∀ {x,y}⊂L) θ∪{´
`
F,x`

´
,´
`
z,x`

´
}∈E < > θ∪{´

`
F,y`

´
,´
`
z,y`

´
}∈E . (5)

The effect of (3) is that rotating both scales by the same angle does not affect whether a load is in equilibrium.

The effect of (4) is that, if five of the places on the scales are loaded, then there is exactly one choice for the

sixth place which will puts the scales into equilibrium. The effect of (5) is that if a load is in equilibrium and

two adjacent (in the sense of (1)) places have the same element of L , then the load will still be in equilibrium

if both these places are given a different equal value.

(2.3) Associated Trinary Libra Operator Let E be a family of equilibria for a set L . The

associated libra trinary operator

b,,c L×L×L3´
`
x,y,z`

´
↪→bx,y,zc∈L

is defined by

(∀ {x,y,z}⊂L) {´
`
♠,x`

´
,´
`
♥♥♥♥♥♥♥,y`

´
,´
`
♣,z`

´
,´
`
�,z`

´
,´
`
F,z`

´
,´
`
z,bx,y,zc`

´
}∈E . (1)

The postulates (2.2.3), (2.2.4) and (2.2.5) imply each of the following properties:

(∀ {x,y}⊂L) bx,y,yc= x = by,y,xc (2)

(∀ {a,b,c,d,e}⊂L) bba,b,cc,d,ec= ba,b,bc,d,ecc . (3)

and (∀ {a,b,c,d,e}⊂L) ba,bd,c,bc,ec= ba,b,bc,d,ecc . (4)

(2.4) Trinary Libra Operator Let L be any set and b,,c L×L×L3´
`
x,y,z`

´
↪→bx,y,zc∈L any

trinary operator on L for which

(∀ {x,y}⊂L) bx,y,yc= x = by,y,xc (1)

and

(∀ {a,b,c,d,e}⊂L) bba,b,cc,d,ec= ba,b,bc,d,ecc (2)

hold. Then b,,c is said to be a libra trinary operator on L .

For such an operator we may define the family

E ≡ {θ∈L
Σ

: bbθ
♠,θ♥♥♥♥♥♥♥,θ♣c,θ�, θFc= θ

z} . (3)

One can show that such a family is a family of equilibrium for the set L and that the associated trinary libra

operator is just b,,c . We shall say that L is a libra relative to E and relative to b,,c .

The various compositions of libra operators with libra operators, in view of (2.3.1), (2.3.2) and (2.3.3),

may be greatly simplified: we define

ba,b,c,d,ec ≡ bba,b,cc,d,ec = ba,bd,c,bc,ec = ba,b,bc,d,ecc . (4)

Each composition of libra operators may be converted to a form
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ba1,a2,ba3,a4,b. . . ban-2,an-1,anc. . . ccc (5)

for n an odd positive integer. We shall at times adopt the abbreviation

ba1,a2,. . . ,anc (6)

for (5).

(2.5) Libra Groups Let L be a libra relative to a libra trinary operator b,,c , and let e be any

element of L . We define

(∀ {x,y}⊂L) x·y ≡ bx,e,yc . (1)

It is not difficult to show that · is a group binary operation for which e is the identity element and

(∀ x∈L) x−1 = be,x,ec . (2)

We shall say that · is the libra group operator determined by the element e of L .

Now let · be any binary group operation on a set G and define

(∀ {x,y,z}⊂G) bx,y,zc ≡ x·y−1·z . (3)

Then b,,c is a trinary libra operator for G . Furthermore, if e denotes the identity of G , then · is the libra

group operator determined by e .

Thus there is a close connection between libra operators and group operators. For this reason we say

that a libra family E of equilibrium is abelian if each permutation of Σ which sends red elements to red

elements and black elements to black elements, preserves equilibrium loads. We say that a libra trinary

operator is abelian provided that

(∀ {x,y,z}⊂G) bx,y,zc= bz,y,xc . (4)

It is not difficult to show that a libra family of equilibrium is abelian, if and only if its associated libra

operator is abelian, if and only if the associated group operators are all abelian, if and only if one of the

associated group operators is abelian.

(2.6) Example: Affine Space Let V be a vector space. Define

b,,c V×V×V3´
`
x,y,z`

´
↪→ x−y+z∈V , (1)

which is a trinary libra operator on V . From a geometric point of view, bx,y,zc is the unique element of V

such that x , y , z and bx,y,zc are adjacent vertices of a parallelogram.

(2.7) Definition Let L be a libra relative to a libra trinary operator b,,c . For {a,b}⊂L , we define

the function

aπb L3x ↪→ba,x,bc∈L . (1)

If a = b , or if L is abelian, then aπb is an involution and called an inner involution of the libra L .

(2.8) Obverse Libras Let b,,c be a libra trinary operator on a libra L. The obverse of b,,c is the
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trinary operator d,,e defined by

(∀ {a,b,c}⊂L) da,b,ce ≡ bc,b,ac . (1)

In terms of the scales, a load θ is in equilibrium relative to obverse libra operator if, and only if,

θ◦{´
`
♥♥♥♥♥♥♥ ,z`

´
,´
`
♣ ,F`

´
} (2)

is in equilibrium relative to the original libra operator. Thus for the obverse libra operator, the places on

the scales are oriented in the opposite direction.
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3. Libra Aggregates of Translates

(3.1) Balanced Subsets of a Libra A subset B of a libra L is said to be balanced in L if,

whenever {x,y,z}⊂B , then bx,y,zc is in B . Thus a balanced set B is a libra relative to the restriction of the

trinary libra operator to B×B×B . Let B be a balanced subset of L . We introduce the notation

br,s,Bc≡{br,s,bc : b∈b}, br,B,sc≡{r,b,s : b∈B} and bB,r,sc≡{bb,r,sc : b∈b} . (1)

We call br,s,Bc a left translate of B and bB,r,sc a right translate of B . Sets of the form br,B,sc will

be called, simply, translates of B .8 The families of all left translates, right translates and translates of B,

respectively, will be written

B , B and B , (2)

respectively. We adopt the notation

B ≡ B ∪ B . (3)

The elements of B will be called linear translations of B and those of B 4 B skew translations of

B .

(3.2) Theorem Let B be a balanced subset of a libra L . Then

(∀ b∈B) B = bb,B,bc , (1)

B ⊂ B , (2)

and a translate of a translate of B is again a translate of B . (3)

Proof. That bb,B,bc⊂B for b∈B is trivial. Let {x,b}⊂B . Since B is balanced, we have bb,B,bc∈B . Thus

x
by (2.3.2) bb,b,xc by (2.3.2) bbb,b,xc,b,bc by (2.3.4) bb,bb,x,bc,bc∈bb,B,bc ,

which implies that B⊂bb,B,bc . Hence (1) holds.

For {r,s}⊂L and b∈B ,

br,s,Bc by (1) br,sbb,B,bcc by (2.3.3) bbr,s,bc,B,bc

and

bB,r,sc by (1) bbb,B,bc,r,sc by (2.3.3) bb,B,bb,r,scc

which implies (2).

For {r,s,t,u}⊂L we have, for any b∈B ,

br,bt,B,uc,sc by (1) br,bt,bb,B,bc,uc,sc by (2.3.4) br,bbt,b,Bc,b,uc,sc by (2.3.4)

bbr,u,bc,bt,b,Bc,sc by (2.3.4) bbr,u,bc,B,bb,t,scc

which implies (3). Q.E.D.

8 We see in the following Theorem (2.2) that left and right translates are in fact translates in this sense.
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(3.3) Definitions By a homogeneous aggregate of translates, or more simply, aggregate,

we shall mean a family T of balanced sets, such that each element of T is a translate of each other element

of T , and such that each translate of a member of T is again a member of T . It follows from Theorem

(3.2) that the translates of any balanced set comprise an aggregate and that an aggregate is the family of

translates of any one of its members:

(∀ T an aggregate)(∀T∈T ) T = T . (1)

The family of all singletons is evidently a homogeneous aggregate of translates. We shall call it the

point aggregate of L .

(3.4) Definition We shall say that a balanced set B is normal if each right translate of B is also

a left translate of B .

(3.5) Lemma The following statements hold in any libra L:

(∀ {a,b,c}⊂L)(∃ ! x∈L) a = bx,b,cc , (1)

(∀ {a,b,c}⊂L)(∃ ! x∈L) a = bb,x,cc , (2)

(∀ {a,b,c}⊂L)(∃ ! x∈L) a = bb,c,xc , (3)

(∀B⊂L balanced)(∀ {b,y}⊂L: b∈B) bb,B,yc= bB,b,yc (4)

and (∀B⊂L balanced)(∀ {b,y}⊂L: b∈B) by,b,Bc= by,B,bc . (5)

Proof. [
(1)

>] If x satisfies a = bx,b,cc , then

ba,c,bc= bbx,b,cc,c,bc by (2.3.3) bx,b,bc,c,bcc by (2.3.2)
x

so there is only one element x of L for which a = bx,b,cc . That x≡ba,c,bc satisfies (1) follows from direct

computation.

[
(2)

>] If x satisfies a = bb,x,cc , then

bc,a,bc= bc,bb,x,cc,bc by (2.3.4) bc,c,x,b,bc by (2.3.2)
x

and so x is unique. That x = bc,a,bc satisfies (2) follows from direct computation.

[
(3)

>] Follows from an argument analogous to that used in showing (1).

[
(4)

>] For c∈B

bb,c,yc by (2.3.2) bb,bb,b,cc,yc by (2.3.4) bbb,c,bc,b,yc which is in bB,b,yc

and bc,b,yc by (2.3.2) bbb,b,cc,b,yc by (2.3.4) bb,bb,c,bc,yc which is in bb,B,yc

which implies (4).

[
(5)

>] Follows by an argument analogous to that used in showing (4). Q.E.D.

(3.6) Theorem Let Be be a balanced subset of a libra L and let T be the smallest aggregate of

which B is a member. Then the following statements are pairwise equivalent.

B is normal, (1)

each left translate of B is a right translate, (2)
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T is a partition of L , (3)

B = T , (4)

B = T (5)

and (∀A∈T ) A is normal. (6)

Proof. [(1) >(2)] Suppose that (1) holds, let {x,y}⊂L and b∈B . From (1) follows that there exists {r,s}⊂L

such that

bbb,y,xc,b,Bc= bB,r,sc . (7)

We have

bb,bB,x,yc,bc by (2.3.4) bbb,y,xc,B,bc by (3.2.1) bbb,y,xc,bb,B,bc,bc by (2.3.4)

(8)

bbb,y,xc,b,bB,b,bcc by (2.3.2) bbb,y,xc,b,Bc by (7) bB,r,sc

and so

bB,x,yc by (2.3.2) bbb,b,bB,x,ycc,b,bc by (2.3.4) bb,bb,bB,x,yc,bc,bc by (8)

bb,bB,r,sc,bc by (2.3.4) bbb,s,r,c,B,bc by (3.2.1) bbb,s,rc,bb,B,bc,bc by (2.3.4)

bbb,s,rc,b,bb,b,Bcc by (2.3.2) bbb,s,rc,b,Bc .

It follows that (2) holds.

[(2) >(3)] Suppose that (2) holds and assume that (3) does not. There would exist {A,C}⊂T such

that A =6 C and A∩C =6 ø . We could choose {u,v}⊂L such that B = bu,A,vc and let D≡bu,C,vc . Then B =6 D

and B∩C = ø . Choose b from B∩D and d∈D such that d∈6 B . Since D = bd,b,Bc is a left translate of B,

(2) would imply that there exists {r,t}⊂L such that D = bB,r,tc . Thus

d∈D = bB,r,tc by (2.3.2) bB,br,b,bc,tc by (2.3.4) bB,b,bb,r,tcc and b∈D = bB,b,br,r,tcc .

Thus we could choose {m,n}⊂B such that d = bm,b,bb,r,tcc and b = bn,b,bb,r,tcc . Then

bb,r,tc by (2.3.2) bbb,n,nc,br,b,bc,tc by (2.3.4) bbb,n,nc,bbb,r,tcc by (2.3.3) bb,n,bn,b,bb,r,tccc= bb,n,bc

which would imply that

d = bm,b,bb,r,tcc= bm,b,bb,n,bcc

whence would follow that d is in B. This would be absurd, so we have demonstrated that (3) holds.

[(3) >(4)] Suppose that (3) holds. Since B is a sub-family of T and B is also a partition, they must

be identical partitions of L . Thus, (4) holds.

[(4) >(5)] Suppose that (4) holds. For a∈T and b∈B, it follows from (4) that there exists {x,y}⊂L

such that bb,A,bc= bx,y,Bc . Thus

A
by (2.3.2) bbb,b,Ac,b,bc by (2.3.4) bb,bb,A,bc,bc= bb,bx,y,Bc,bc by (2.3.4)

bbb,B,yc,x,bc by (3.5.4) bbB,b,yc,x,bc by (2.3.4) bB,b,by,x,ycc by (2.3.2)

bbb,b,Bc,b,by,x,bcc by (2.3.4) bb,bb,B,bc,by,x,bcc by (3.2.1) and by (3.5.4) bB,b,by,x,bcc .
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which establishes (5).

[(5) >(6)] Suppose that (5) holds. For A∈T it follows from (5) that A is a right translate of B, whence

follows that B is a right translate of A. Suppose that we had shown that each right translate of A is a left

translate of B . Then A itself would be a left translate of B, and so B would be a left translate of B . Thus,

to show that A is normal, it will suffice to show that, for {x,y}⊂L , bA,x,yc must be a left translate of B.

To this end we let b be any element of B and apply (5) to obtain {r,s}⊂L such that bbb,y,xc,A,bc= bB,r,sc .

Then

bA,x,yc by (2.3.2) bbb,b,bA,x,ycc,b,bc by (2.3.4) bb,bb,bA,x,yc,bc,bc by (2.3.4)

bb,bbb,y,xc,A,bc,bc= bb,bB,r,sc,sc by (2.3.4) bbb,s,rc,B,bc by (3.5.4) bbb,s,rc,b,Bc

which establishes (6).

That (6) implies (1) is trivial. Q.E.D.

(3.7) Normal Aggregates We shall say that a homogeneous aggregate of balanced sets is normal

provided that all of its elements are normal balanced sets. From Theorem (3.6) follows that an aggregate is

normal if, and only if, any one of its elements is normal.

Consequently, for a group G and a subgroup B, the aggregate of translates of B is normal if, and only

if, B is a normal subgroup of G .
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4. Function Libras and Representations

(4.1) Function Libras Just as permutation groups comprise the most important class of examples

of abstract groups, function libras comprise the most important class of exambles of abstract libras. If X

and Y are sets of equal cardinality, then the family YX ! of all bijections from X onto Y is a libra relative to

the libra trinary operator

(∀ {f,g,h}⊂Y
X !) bbf,g,hcc ≡ f◦g−1◦h . (1)

A balanced subfamily of the libra YX ! is said to be a function libra from X to Y .

(4.2) Libra Isomorphisms A libra homomorphism φ L ↪→ Ĺ from one libra L onto another

libra Ĺ is a function such that

(∀ {x,y,z}⊂L) bφ
x,φy,φzć =φ

bx,y,zc
 (1)

or, equivalently, if E denotes the equilibrium family of L, such that

(∀ θ∈L
S
) θ∈E < > φ◦θ∈E´ . (2)

If a libra homomorphism is a bijection, we say that it is a libra isomorphism.

(4.3) Libra Multipliers By a left multiplier of a libra L we shall mean a function ψ L ↪→L

such that

(∀ {x,y,z}⊂L) ψ
bx,y,zc

= bψ
x,y,zc . (1)

If ψ is a left multiplier and {a,x}⊂L , then

ψ
x = ψ

ba,a,xc
= bψ

a,a,xc . (2)

It follows from (2.3.3) that

(∀ {b,a}⊂L) L3x ↪→bb,a,xc∈L is a left multiplier (3)

and so it is a consequence of (2) that

the left multipliers of L are just the functions of (3). (4)

A right multiplier of a libra L is a function ω L ↪→L such that

(∀ {x,y,z}⊂L) ψ
bx,y,zc

= bx,y,ψ
zc . (5)

As with left multipliers one can show that the family of right multipliers is just the family

{L3x ↪→bx,a,bc∈L : {a,b}⊂L} . (6)

(4.4) Libra Representations A libra homomorphism ρ from a libra L into a function libra (of

bijections) from a set X onto a set Y will be called a representation of L . We adopt the notation
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ρ ≡ X , ρ ≡ Y (1)

and

(∀ x∈ ρ ) ρx ≡ ρ
x . (2)

An injective representation is said to be faithful. If

(∀ ´
`
x,y`

´
∈ ρ×ρ )(∃ a∈L) ρa

x= y , (3)

we say that ρ is homogeneous.

For ´
`
x,y`

´
∈ ρ×ρ , we shall frequently use the notation

[x ρ y] ≡ {a∈ ρ : ρa

x= y} . (4)

and

Tρ ≡ {[x
ρ y] : ´

`
x,y`

´
∈ ρ×ρ } . (5)

Let R denote the family of right multipliers of a libra L . For x∈L, let

ρx R3φ ↪→φ
x∈L . (6)

For {t,y}⊂L and ω∈R such that ω
y= t , we have

(∀ s∈L) ω
s=ω

bs,y,yc
= bs,y,ω

yc= bs,y,tc

whence follows that

(∀ s∈L) (ρy
−1t)s= bs,y,tc . (7)

From (7) follows that, for {x,y,z}⊂L and φ∈R

bbρx,ρy,ρzcc
φ= ρx◦ρy

−1ρz
φ= (ρy

−1ρz
φ)x= bx,y,ρz

φc= bx,y,φ
zc=φ

bx,y,zc
= ρbx,y,zc

φ .

This means that

ρ is a faithful representation of L on the pair of sets R and L . (8)

This result (8) is an avatar for libras of Cayley’s Theorem stating that each group is isomorphic to a group

of permutations of itself.

(4.5) Theorem Let ρ be a homogeneous representation of a libra L . Then Tρ is an aggregate of

balanced sets.

Furthermore, the following statements are equivalent:

Tρ is normal , (1)

and (∀ {a,b}⊂L) ρa = ρb < >(∃ x∈ ρ) ρa

x= ρb

x . (2)

Proof. Let T be an element of Tρ . Then there exists ´
`
x,y`

´
∈ ρ×ρ for which T = [x ρ y] . For {a,b}⊂L and

u∈ ρ such that ρb

u= y
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(∀ c∈Tρ) ρba,c,bc
u= ρa◦ρc

−1ρb

u= ρa

x ===⇒ ba,T,bc= [u ρ ρa

x] . (3)

Let S be another element of Tρ and let ´
`
w,z`

´
∈ ρ×ρ such that S = [w ρ z] . Let d∈L be such that ρd

w= y

and choose e∈L such that ρe

x= z . Replacing T in (3) with S, a with d, and b with e, we obtain

bd,S,ec = [x ρ y] = T .

It follows that Tρ is an aggregate.

[(1) >(2)] Suppose that (1) holds. For {a,b}⊂L and {t,x}⊂ ρ suppose that ρa

x= ρb

x . Since Tρ
is normal, there exists {r,s}⊂L such that br,s,[t ρ ρa

t]c= [x ρ ρa

x] . Since a is in [x ρ ρa

x] , there exists

c∈ [t ρ ρa

t] such that a = br,s,cc . Consequently

ρa

t= ρbr,s,cc
t= ρr◦ρs

−1ρc

t= ρr◦ρs
−1ρa

t . (4)

Since b is in [t ρ ρa

t] , there exists d∈ [t ρ ρa

t] such that b = br,s,dc . Thus

ρb

t= ρbr,s,dc
t= ρr◦ρs

−1ρd

t= ρr◦ρs
−1ρa

t by (4)
ρa

t .

This establishes (2).

[(2) >(1)] Let B be an element of Tρ . There exists ´
`
x,y`

´
∈ ρ×ρ such that B = [x ρ y] . Let R be any

right translate of B. There exists {r,q}⊂L such that R = bB,r,qc . Since all the elements of B agree at x , it

follows from (2) that they agree on ρr◦ρq
−1x as well — let u∈ ρ be this common value and let v≡ρr

−1u .

Since ρ is a homogeneous representation, there exists s∈L such that ρs

v= y .For all a∈B

ρbbs,r,ac,r,qc
x= ρs◦ρr

−1◦ρa◦ρr
−1◦ρq

x= ρs◦ρr
−1u= y .

It follows that B is normal. Q.E.D.

(4.6) Definition We shall say that a homogeneous representation is normal if either of the

conditions (1) or (2) of Theorem (4.5) hold

(4.7) Theorem Let ρ be a normal homogeneous representation of a libra. Let {x,m}⊂ ρ ,

{r,s,t}⊂ ρ , {a,b,c,u,v,w}⊂L and suppose

r = ρa

x= ρu

m , s = ρb

x= ρv

m and t = ρc

x= ρw

m . (1)

Then

ρba,b,cc
x= ρbu,v,wc

m . (2)

Proof. Let {d,e}⊂L be such that ρe

x= ρd

m . Then

ρba,e,dc
m= r = ρu

m , ρbb,e,dc
m= s = ρv

m and ρbc,e,dc
m= t = ρw

m .

Since ρ is normal, it follows from (4.5.2) that ρba,e,dc= ρu , ρbb,e,dc= ρv and ρbc,e,dc= ρw . Thus

ρbu,v,wc
m= ρbba,e,dc,bb,c,dc,bc,e,dcc

m= ρba,e,d,d,e,b,c,e,dc
m= ρba,b,c,e,dc

m= ρba,b,cc
x

which establishes (2). Q.E.D.

(4.8) Definition Let ρ be a normal homogeneous representation of a libra L . for {r,s,t}⊂ ρ we

define
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br,s,tcρ ≡ ρba,b,cc
x (∀ x∈ ρ and {a,b,c}⊂L: ´

`
r,s,t`

´
= ´

`
ρa

x,ρb

x,ρc

x`
´
) . (1)

In view of Theorem (4.7) , b,,cρ is a well-defined libra operation on ρ . We shall call it the repesentation

libra operator induced on ρ by ρ .

(4.9) Theorem Let ρ be a faithful normal homogeneous representation of L . Then, for each
´
`
x,y`

´
∈ ρ×ρ , the set [x ρ y] is a singleton. In particular

(∀ x∈ ρ) L3a ↪→ ρa

x∈ ρ is a bijection. (1)

Proof. Let ´
`
x,y`

´
∈ ρ . Assume that there were distinct elements a and b of [x ρ y] . Since ρ is faithful, there

would exist w∈ ρ such that ρa

w=6 ρb

w . Since a would be in [x ρ y]∩ [w ρ ρa

w] , it would follow from

(3.6.3) that [x ρ y] = [w ρ ρa

w] . Hence b would be in [w ρ ρa

w] , which would be absurd. Q.E.D.

(4.10) Example: Line and Circle Let L be a line in the real projective plane P , and let C

be a circle in P . Each point p of L4C induces a permutation p
C

of C as in Figure (1). This family of

permutations is a libra, and so induces a libra operator on L . The function p
C

is actually a faithful normal

homogeneous representation. That condition (4.5.2) holds is illustrated in the following figure:

Fig. 7: Libra on the Line Induced by a Circle

The representation libra operator induced on C by the representation p
C

is illustrated by the figure below:

Fig. 8: Libra on the Circle Induced by a Line

(4.11) Definitions, Notation and Discussion In the sequel we shall often be concerned with

representations which are not normal, and we shall treat these specifically in the next section. For this we
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shall need some definitions.

We recall that the obverse of a libra trinary operator b,,c on a libra L is the trinary operator defined by

(∀ {a,b,c}⊂L) da,b,ce ≡ bc,b,ac . (1)

If ρ is a representation of L, the obverse ~ρ of ρ is the representation of L defined by

(∀ x∈L) ~ρx ≡ ρx
−1 . (2)

The obverse representation is a representation of L relative to the obverse operator d,,e — not relative to the

libra operator b,,c .9

The symmetrization of L is the set L×L equipped with the symmetrization operator b ,, c defined

by

(∀ {´
`
a,z`

´
,´
`
b,y`

´
,´
`
c,x`

´
}⊂L×L) b ´

`
a,z`

´
,´
`
b,y`

´
,´
`
c,x`

´
c ≡ ´

`
ba,b,cc,dz,y,xe`

´
. (3)

The symmetrization of the representation ρ is the representation ↔ρ defined by

(∀ ´
`
x,y`

´
∈ ρ×ρ )(∀ ´

`
a,b`

´
∈L×L) ↔ρ ´

`
a,b`

´

´
`
x,y`

´

 ≡ ´
`
~ρb

y,ρa

x`
´

. (4)

Two representations ρ and θ will be said to be equivalent if there exist bijections µ ρ ↪→ θ and

ν ρ ↪→ θ such that

(∀ a∈L) θa = ν◦ρa◦µ−1 : vid.

ρ
ρa - ρ

?

µ a∈L

?

ν

θ
θa - θ

. (5)

9 They are the same of course when L is abelian.
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5. Cartesian Aggregates of Balanced Subsets of a Libra

(5.1) Columns and Rows of an Aggregate Let T be an aggregate of balanced subsets of a

libra L . By a row of T we shall mean a sub-family R of T such that each element of R is a right translate

of each other element of R and such that each right translate of an element of R is again an element of R .

By a column of T we shall mean a sub-family C of T such that each element of C is a left translate of each

other element of C and such that each left translate of an element of C is again an element of C . We shall

write
T  for the family of all rows of T and

T  for the family of all columns of T .

(5.2) Theorem For {a,b}⊂L , ´
`
X ,Y`

´
∈

T × T  and ´
`
X,Y`

´
∈X×Y

{ba,W,bc : W∈Y}= ba,Y,bc , (1)

and {ba,W,bc : W∈X}= ba,X,bc . (2)

Proof. For {r,s}⊂L

ba,bY,r,sc,bc= bba,s,rc,Y,bc= ba,s,r,a,a,Y,bc= bba,s,rc,a,ba,Y,bcc

whence follows that {ba,W,bc : W∈Y}⊂ ba,Y,bc . For {t,u}⊂L

bt,u,ba,Y,bcc= ba,a,t,u,a,Y,bc= ba,bu,t,ac,a,Y,bc= ba,bY,a,bu,t,acc,bc

which implies that ba,Y,bc ⊂{ba,W,bc : W∈Y} . It follows that (1) holds.

The proof of (2) is analogous to that of (1). Q.E.D.

(5.3) Notation Elements a and b of L produce bijections as follows

a◦T b T 3B ↪→ba,B,bc∈T (1)

and a T b
T  3X ↪→{ba,X,bc : X∈X}∈

T  . (2)

(5.4) Theorem For b∈L and {r,s,t}⊂L

(s◦T b)−1 = b◦T s (1)

and

br,s,tc◦T b = bbr◦T b,s◦T b,t◦T bcc . (2)

Proof. For X∈T
b◦T s

s◦T b
X= bc,bs,X,cc,sc= bc,c,X,s,sc= X

which proves (1) and

(r◦T b)◦(s◦T b)−1◦(t◦T b)
X= (r◦T b)◦(b◦T s)

bt,X,bc
= r◦T b

bb,bt,X,bc,sc
=

br,bb,bt,X,bc,sc,bc= br,bb,b,X,t,sc,bc= br,s,t,X,b,b,bc= bbr,s,tc,X,bc= (br,s,tc◦T b)
X

which proves (2) . Q.E.D.

26



(5.5) Notation For a∈L we define

a◦T ≡ a◦T a and a
T ≡ a T a . (1)

(5.6) Theorem For {a,b,c}⊂L

ba,b,cc T = bba T
,b

T
,c
T cc . (1)

Proof. For X∈T

a
T ◦b T −1◦c T

 X
= a

T ◦b T −1◦c T
 bbc,b,ac,ba,b,cc,Xc

= a
T ◦b T −1◦c T

 bc,b,a,c,b,a,Xc
=

a
T ◦b T −1 bc,X,a,b,c,a,b,c,cc

= a
T ◦b T −1 bc,X,a,b,c,a,bc

= a
T  bb,b,a,c,b,a,X,c,bc

=

a
T  ba,c,b,a,X,c,bc

= ba,b,c,X,a,b,c,a,ac = bba,b,cc,X,ba,b,ccc = ba,b,cc T
 X

 .

Q.E.D.

(5.7) Discussion and Notation The analogue of Theorem (5.6) for ◦T does not hold and, in

fact, a necessary and sufficient condition for ba,b,cc◦T to equal a◦T ◦b◦T −1◦c◦T is for ba,b,cc to equal bc,b,ac .

It follows that in general, {a◦T : a∈L} may not be a balanced set of the libra of permutations of T. It is a

simple computation to show that

(∀ {a,b,m,n,r,s}⊂L) (a◦T b)◦(m◦T n)−1◦(r◦T s) = ba,m,rc◦T bb,n,sc . (1)

It follows that {x◦T y : {x,y}⊂L} is balanced. Since it contains {a◦T : a∈L} as a subset, one may ask if it is

the smallest balanced set containing this subset. We shall return to this question in Section (9) infra.

For {a,b,m,n}⊂L we shall adopt the notation ba,m◦T n,bc for (a◦T b)◦(n◦T m) :

ba,m◦T n,bc T3A ↪→{ba,m,x,n,bc : x∈A}∈T . (2)

For {a,b,c,d,r,s,t,y}⊂L and A∈T , the computation

ba,b◦T c,dc◦br,s◦T t,uc
A= ba,b◦T c,dc

br,s,A,t,uc
= ba,b,r,s,A,t,u,c,dc

shows that

ba,b◦T c,dc◦br,s◦T t,uc= bba,b,rc,t◦T s,bu,c,dcc= ba,bs,r,bc◦T bc,u,tc,dc . (3)

We shall adopt the notation

Libra
T  ≡ {a◦T b : {a,b}⊂L} and Group

T  ≡ {ba,b◦T c,dc : {a,b,c,d}⊂L} . (4)

Theorem (5.6) implies that Libra
T  is a libra. Furthermore, Group

T  is a group since equality (3) implies

that ba,a◦T a,ac is an identity for each a∈L and that, for all {a,b,c,d}⊂L ,

ba,b◦T c,dc−1 = bb,a◦T d,cc . (5)

(5.8) Definitions Let ρ be a faithful representation of a libra L . We shall say that this represen-
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tation is cartesian if, for any pair of doubletons {x,r}⊂ ρ and {y,s}⊂ ρ ,

(∃ a∈L) ρa

x= y and ρa

r=6 s . (1)

In particular, a cartesian representation is homogeneous.

Theorem (5.4) says that, for each b∈L , the function L3a ↪→ a◦T b∈T T ! is a representation of L .

Theorem (5.6) says that the function sending each a∈L to the restriction of a
T

to
T  , is a representation

of L . We shall call this latter the left T -inner representation of L and denote it by

λ
T
. (2)

(5.9) Theorem Let ρ be a cartesian representation of a libra L . Then ρ is equivalent to the left

Tρ-inner representation. More precisely, for

µ ρ3x ↪→{[x ρ y] : y∈ ρ } and ν ρ 3y ↪→{[x ρ y] : x∈ ρ} (1)

then

(∀ a∈L) a
T

= ν◦ρa◦µ−1 : vid.

ρ
ρa - ρ

?

µ a∈L

?

ν

Tρ a
T
- Tρ

. (2)

Proof. We first show that, for each x∈ ρ , µ
x is in

Tρ . Let y be in ρ and {a,b}⊂L . For k≡ρa◦ρb
−1y ,

ba,b,[x ρ y]c= {ba,b,tc : ρt

x= y}= {w∈L : ρb◦ρa
−1◦ρw

x= y}= [x ρ k] .

Let s be another element of ρ . Let u be in [x ρ y] and, exploiting the fact that ρ is cartesian, find v∈L such

that ρv

x= s . That ρu

x= y implies that, for all t∈L such that ρt

x= y ,

ρv◦ρu
−1◦ρt

x= ρv

x= s

whence follows that bu,v,[x ρ y]c= [x ρ s] . Consequently µ
x is an element of

Tρ .

That ν
y is an element of

Tρ follows from an analogous argument. Q.E.D.

(5.10) Theorem Let ρ be as in Theorem (5.9). Then

(∀ {a,b}⊂L distinct)(∃T∈Tρ) a∈T and b∈6 T (1)

and

(∀T∈Tρ)(∀ {a,b}⊂L) ba,T,bc= T < > {a,b}⊂T . (2)

Proof. [
(1)

>] Since ρ is faithful, there exists x∈ ρ such that ρa

x=6 ρb

x . If y≡ρa

x , then a∈ [x ρ y] but

b∈6 [x ρ y] .

[
(2)

>] For {a,b}⊂L it is trivial that ba,T,bc= T . We shall establish the reverse implication. Suppose
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that br,T,sc= T for T∈Tρ and {r,s}⊂L . Then br,t,sc= u for {t,u}⊂T and so r = bu,s,tc, whence follows that

r must be in T if s is in T. Similarly, s must be in T if r is in T . Thus we may assume that neither r nor s

is in T . Then we could choose ´
`
x,y`

´
∈ ρ×ρ such that T = [x ρ y] . Let m≡ρr

x and y≡ρs
−1y . Since ρ is

cartesian, there would exist t∈L such that ρt

x= y and ρt

n=6 m . Then t would be in T and so in br,T,sc
as well. Thus t = br,w,sc for w∈T , and so w = bs,t,rc . Consequently

y = ρw

x= ρs◦ρt
−1◦ρr

x= ρs◦ρt
−1m=6 ρs

n= y

which would be absurd. Q.E.D.

(5.11) Definition We shall say that an aggregate T is cartesian if both the conditions of Theorem

(5.10) are satisfied:

(∀ {a,b}⊂L a doubleton)(∃T∈T ) a∈T and b∈6 T (1)

and (∀T∈T )(∀ {a,b}⊂L) T = ba,T,bc < > {a,b}⊂T . (2)

(5.12) Theorem Let T be a cartesian aggregate on a libra L . Then

(∀ {a,b,c,d}⊂L) ´
`
a,b`

´
= ´

`
c,d`

´
< > a◦T b = c◦T d . (1)

Proof. There holds

a◦T b = c◦T d < > (∀X∈T ) ba,X,bc= bc,X,dc < >

(∀X∈T ) X = bb,b,X,a,ac= bb,ba,X,bc,ac= bb,bc,X,dc,ac= bb,d,X,c,ac < >

(∀X∈T , x∈S) X = bb,d,x,X,x,c,ac by (5.10.2)
< > (∀X∈T , x∈X) {bb,d,xc,bx,c,ac}⊂X . (2)

If a =6 c , then (3.3.1) implies that there exists C∈T such that c∈C and a∈6 C . If a◦T b = c◦T d , then (2)

would imply that were y∈C such that bc,c,ac= y , which would in turn imply that a = c which is in C.

That would be absurd, whence follows that a◦T b =6 c◦T d . An analogous argument shows that if b =6 c , then

a◦T b =6 c◦T d . Q.E.D.

(5.13) Theorem The following statements, regarding an aggregate of balanced subsets of a libra

L, are pairwise equivalent:

(∀B∈T)(∀ {x,y}⊂L) bx,B,yc= B < > {x,y}⊂B , (1)

(∃B∈T)(∀ {x,y}⊂L) bx,B,yc= B < > {x,y}⊂B , (2)

(∃B∈T) B ∩ B = {B} (3)

and (∀B∈T) B ∩ B = {B} . (4)

Proof [(1) >(2)] Trivial.

[(2) >(3)] Suppose that (2) holds for B∈T. Suppose that br,s,Bc= bB,t,uc for {r,s,t,u}∈L and let b

be an element of B . Letting x≡br,s,bc and y = bb,t,uc

bx,b,Bc= br,s,b,b,Bc= br,s,Bc= bB,t,uc= bB,b,yc .

Thus

B = bb,x,x,b,Bc= bb,x,bx,b,Bcc= bb,x,bB,b,ycc= bb,x,bbb,B,bc,b,ycc=
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bb,x,b,B,b,b,yc= bbb,x,bc,B,yc .

From (2) follows that {y,bb,x,bc}⊂B .. Consequently br,s,Bc= bx,b,Bc= B, and so B ∪ B = {B} .Hence

(3) holds.

[(3) >(4)] Suppose that (3) holds for B∈T and that C is any other element of T. There there exists

{x,y}⊂L such that C = bx,B,yc . Suppose that br,s,Cc= bC,t,uc for {r,s,t,u}⊂L . Then

bB,br,s,xc,xc= by,y,B,x,s,r,xc= by,br,s,bx,B,ycc,xc= by,br,s,Cc,xc=

by,bC,u,tc,xc= by,bbx,B,yc,u,tc,xc= by,t,u,y,B,x,xc= by,by,u,tc,Bc .

It follows from (3) that bB,br,s,x,c,xc= B. Thus

C = bx,B,yc= bx,bB,br,s,xc,xc,yc= bx,x,r,s,x,B,yc= br,s,bx,B,ycc= br,s,Cc .

This implies (4).

[(4) >(1)] Suppose that (4) holds and let B be any element of T. Suppose that B = bx,B,yc for {x,y}⊂L .

For b∈B

bb,x,Bc= bb,x,bx,B,ycc= bbb,x,xc,B,yc= bbb,x,xc,bb,B,bc,yc= bb,x,x,b,B,b,yc= bB,b,yc .

From (4) follows that bb,x,Bc= B . Hence bb,x,bc= d for some d∈B , whence x = bb,d,bc∈B . It follows that

B = bb,x,Bc= bB,b,yc which implies that y = bb,b,yc∈bB,b,yc= B . This means that (1) holds. QED

(5.14) Notation If two sets R and S have a singleton for their intersection, we shall denote the

element of the singleton by R∧S :

{R∧S} = R∩S . (1)

(5.15) Theorem Let T be a cartesian aggregate on the libra L , let {A,B}⊂
T  and let

{C,D}⊂
T  . Then

A∧C exists (1)

and

A∧C=B∧D < > ´
`
A,C`

´
= ´

`
B,D`

´
. (2)

Proof. [
(1)

>] Let A be in A and C be in C . Since T is an aggregate of balanced sets, there exists {x,y}⊂L

such that bx,A,yc= C . For any a∈A

C = bx,A,yc= bx,ba,A,ac,yc= bbx,a,Ac,a,yc

which implies

bC,y,ac= bx,a,Ac

whence follows that A∩C=6 ø . That A∩C is a singleton follows from (5.13.4), which establishes (1).

[
(2)

>] Let A≡A∧C=B∧D . Then A is in A and B and so A =A=B . Similarly A = C=D . Thus
´
`
A,C`

´
= ´

`
B,D`

´
. The reverse implication of (2) is trivial. Q.E.D.

(5.16) Theorem Let T be a cartesian aggregate on the libra L . Then the left T -inner represen-

tation is cartesian.
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Proof. Let {x,y}⊂L be a doubleton. Choose B∈T such that x∈B and y∈6 B . Then

x
T  B

= bx,B,xc = B ,

but for b∈B

y
T  B

= u
T  by,b,Bc

= by,by,b,Bc,yc = bby,B,bc,y,yc = by,B,bc = by,b,Bc .

Since y is in by,b,Bc but not in B, we know that by,b,Bc=6 B . It follows from Theorem (5.13.4) that

B =6 by,b,Bc . Consequently x
T

=6 y
T

and so the representation is faithful.

Let A and B be distinct elements of
T  and C and D distinct elements of

T  . Choose a from

A∧B such that is not in B∧D . Then a
T A= C but a

T B=6 D . Q.E.D.

(5.17) Discussion Theorems (5.9) and (5.16) imply that the cartesian aggregates of a libra L

correspond exactly to the equivalence classes of cartesian representations of L . Along with the diagram of

(5.9.1) we have its obverse:

(∀ a∈L)

ρ
ρa - ρ

?

µ a∈L

?

ν

Tρ a
T
- Tρ

and

ρ ~ρa� ρ

?

µ a∈L

?

ν

Tρ a
T

� Tρ

. (1)

Each column C of T intersects each row R of T in exactly one element:

{C∧R}= C ∩R . (2)

Thus ∧ may be viewed as a bijection from
T × T  onto T . The operator◦T is actually a representation

of the symmetrization libra L×L of L , and it is equivalent to the symmetrization ↔ρ of the representation ρ:

(∀ ´
`
a,b`

´
∈L×L)

ρ×ρ
↔ρ ´

`
a,b`

´ - ρ×ρ

?

µ×ν

?

µ×ν

Tρ× Tρ Tρ× Tρ

?

∧

?

∧

T a◦T b - T

(3)

(where µ×ν
´
`
x,y`

´

≡´
`
µ
x,νy`

´
). It is a corollary to Theorem (5.12) that

the symmetrization representation ↔ρ is faithful. (4)

The cardinality of
T  is the same as the cardinality of

T  : we define the dimension of T to be

that cardinal number. Thus the cardinality of T is the square of its dimension.
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For a∈L we define the diagonal of T determined by a to be

a ≡ {A∈T : a∈A}] . (5)

The cardinality of such a diagonal is the same as the dimension of T .

A diagonal a can be used to give form to an aggregate in the sense that it associates to each column

a row, and vice versa. A column C is a partition of L and so has exactly one element contained in a :

this is the element C∧ a . We have the bijections

T 3C ↪→ C∧ a ∈
T  and

T 3R ↪→ R∧ a ∈
T  . (6)

If {Ai : i∈N} is a well ordering of a , then the aggregate T may be visualized as the elements of a matrix:

A1 A1 ∧ A2 . . . A1 ∧ An . . .

A2 ∧ A1 A2 . . . A2 ∧ An . . .

...
...

. . .
...

An ∧ An An ∧ A2 . . . An . . .

...
...

...
. . .


(7)

Once an aggregate is visualized as a matrix, one can depict the actions of the operators x◦T y and x◦T
for {x,y}⊂L . Let for instance B be an element of T and b an element of B . Then x is in bx,b,Bc and y in

bB,b,yc and so

...
...

...
...

...
. . . bB,b,yc . . . B . . .
...

...
...

...
...

. . . x◦T y
B . . . bx,b,Bc . . .

...
...

...
...

...


and



...
...

...
...

...
. . . bB,b,xc . . . B . . .
...

...
...

...
...

. . . x◦T B . . . bx,b,Bc . . .
...

...
...

...
...


. (8)

In the case x = a , there exists {i,j}⊂N such that bB,b,ac= Ai and ba,b,Bc= Aj and so the second matrix of

(8) becomes 

...
...

...
...

...
. . . Ai . . . B . . .
...

...
...

...
...

. . . a◦T B . . . Aj . . .
...

...
...

...
...


. (9)

We say then that B and a◦T B are symmetric relative to a . More formally, two elements B and C of

T are symmetric relative to the diagonal of T determined by a if C = ba,B,ac .

We shall say that B and C in T are skew provided that

B =6 C and C =6 B . (10)

We shall say that B and C in T are a-skew provided that they are skew and that they are not symmetric

relative to a .
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(5.18) Theorem Let x be in a libra L and let T be a cartesian aggregate for L . Then

(∀ {A,B}⊂T ) x◦T A= B < > x∈( A ∧ B )∩ ( B ∧ A ) (1)

and (∀A∈T ) x◦T A= A < > x∈A < > x
T  A

= A . (2)

Proof. [
(1)

===⇒] Suppose that x◦T A= B for {A,B}⊂T . Let a be an element of A . Then

B = x◦T A= bx,A,xc= bx,ba,A,ac,xc= bbx,a,Ac,a,xc ===⇒ bx,a,Ac= bB,x,ac . (3)

Thus

x = bx,a,ac∈bx,a,Ac by (1)
A ∧ B . (4)

Now let b be an element of B . Then

A=x◦T ◦x◦T A= x◦T B= bx,B,xc= bx,b,B,b,xc= bbx,b,Bc,b,xc ===⇒ bA,x,bc= bx,b,Bc .

This implies that x = bx,b,bc∈bx,b,Bc= B ∧ A which, with (4) yields x∈( A ∧ B )∩ ( B ∧ A ) .

[
(1)
⇐== ] Suppose that x is in ( A ∧ B )∩ ( B ∧ A ) . Let a be in A and b in B . Then x is in A ∧ B

which implies that bx,a,Ac= bB,b,xc . That x is in B ∧ A implies that bA,a,xc= bx,b,Bc. Hence

bB,b,bx,a,xcc= bbB,b,xc,a,xc= bbx,a,Ac,a,xc= bx,a,bA,a,xcc= bx,a,bx,b,Bcc= bbx,a,c,b,Bc .

The only right translate of B which is also a left translate of B is B itself. Thus

B = bB,b,bx,a,xcc ===⇒ (∃ {c,d}⊂B) c = bd,b,bx,a,acc ===⇒ bx,a,xc= bb,d,cc∈B .

Consequently

x◦T A= bx,A,xc⊂B ===⇒ bx,a,xc= bb,d,cc∈B

which establishes (1).

When A = B we have ( A ∧ B )∩ ( B ∧ A ) = A∩A = A . Thus the first < > of (2) is a special case

of (1). For x in X

x
T  A

= bx,A,xc = A .

Suppose, on the other hand, that x
T  A

= A , and let a be any element of A . Evidently x∈bx,a,Ac and

so

x = bx,x,xc∈bx,bx,a,Ac,xc= bx,A,a,x,xc= bx,a,a,A,ac= bx,a,Ac .

Thus bx,bx,a,Ac,xc= x◦T bx,a,Ac
 is both a right translate and a left translate of A , whence follows it must

be A . Hence x∈bx,a,Ac= A . This finishes the proof of the second ‘‘ < >’’ of (2). Q.E.D.

(5.19) Notation Let X be in
T ∪ T  and let x be in L . Since X is a partition of L, we

may define

x∧X ≡ Y for x∈Y and Y∈X . (1)

(5.20) Theorem Let T be a cartesian aggregate for a libra L and let {a,b}⊂L . Then a T b agrees
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with a
T

on
T  and agrees with b

T
on

T  .

Proof. For T∈T and t∈T

{ba,bm,t,Tc,ac : m∈L}= {ba,T,bt,m,acc : m∈L}= {ba,T,nc : n∈L}=

{ba,T,bt,m,bcc : m∈L}= {ba,bm,t,Tc,bc : m∈L}= a T b
 T



and

{bb,bT,t,mc,bc : m∈L}= {bbb,m,tc,t,bc : m∈L}= {bn,T,bc : n∈L}=

{bba,m,tc,T,bc : m∈L}= {ba,bT,t,mc,bc : m∈L}= a T b
 T

 .

Q.E.D.
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6. Libra Incidence

(6.1) Incidence Relations A function libra from one set X to another Y is sometimes subject to

a curious involution when there exists what is called an “incidence relation between X and Y”.

Let m be any non-void graph.10 We introduce the notation

(∀ ´
`
A,B`

´
∈ m×m ) A

o
≡{y∈ m : (∀ a∈A) ´

`
a,y`

´
⊂m} and B

o
≡{x∈ m : (∀ b∈B) ´

`
x,b`

´
⊂m} , (1)

A
oo
≡(A

o
)
o

and B
oo
≡ (B

o
)
o

, (2)

A
ooo
≡(A

oo
)
o

and B
ooo
≡ (B

oo
)
o

. (3)

It is evident that, if Á ⊂A⊂ m and B́ ⊂B⊂ m , then

A
o
⊂Á

o
and B

o
⊂B́

o
(4)

and so

(∀A⊂ m and B⊂ m ) A
ooo

= A
o

and B
ooo

= B
o

. (5)

For A⊂ m and B⊂ m we say that A
oo

is the span of A and that B
oo

is the span of B relative to the

graph m . When dealing with singletons {s} for s∈ m ∪ m we will at times employ the notation

s� ≡ {s}
o

, s�o ≡ {s}
oo

and s�oo ≡ {s}
oo

. (6)

The notation

xmy (7)

will be taken to have the same meaning as ´
`
x,y`

´
∈m .

The graph m⊂ m×m will be said to be an incidence relation from m to m if

(∀ ´
`
x,y`

´
∈ m×m ) {x}= x�o and {y}= y�o . (8)

A necessary and sufficient condition for a graph m to be an incidence relation is that both

(∀ {x,y}⊂ m a doubleton)(∃ z∈ m ) ´
`
x,z`

´
∈m and ´

`
y,z`

´
∈6 m (9)

and (∀ {x,y}⊂ m a doubleton)(∃ z∈ m ) ´
`
z,x`

´
∈m and ´

`
z,y`

´
∈6 m . (10)

A direct consequence of (9) is that, for an incidence relation m ,

m o
= ø = m

o
. (11)

For a doubleton {a,b} either in m or in m , we adopt the notation

←→
a,b ≡ {a,b}

oo
. (12)

If

10 By a graph we mean here a ‘‘relation’’ or a subset of a cartesian product of sets.
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(∀ {x,y}⊂ m )(∃ z∈ m ) xmz and ymz , (13)

and (∀ {x,y}⊂ m )(∃ z∈ m ) zmx and zmy , (14)

we shall say that m is a properly linear incidence relation. An incidence relation m is properly linear if,

and only if

(∀ {a,b}⊂ m a doubleton)
←→
a,b =6 m (15)

and (∀ {a,b}⊂ m a doubleton)
←→
a,b =6 m . (16)

We shall call the function (2
m
∪2m )3X ↪→X

o
∈(2

m
∪2m ) the exclusive set function associated

with m .

(6.2) Libra Twining Relation Let b,,c be a libra trinary operation on a libra L . The libra

twining relation is the graph

L
m ≡ {´

`
x,y`

´
∈L×L : bx,y,xc= y and x =6 y} . (1)

In this context we shall replace the associated exclusive set function symbols A
o

and x�, respectively, by

A
•

and x����• , (2)

respectively.

If the libra twining relation is properly linear, we shall say that L is a properly linear libra.

(6.3) Theorem Let B be a balanced subset of a libra L and let A be a non-void subset of L . Then

B∩A
•

is balanced if, and only if, it is abelian.

Proof. For {a,b,c}⊂B∩A
•

and i∈A

bi,ba,b,cc,ic= bi,c,b,a,ic= bi,c,i,i,b,i,i,a,ic= bbi,c,ic,bi,b,ic,bi,a,icc= bc,b,ac

which implies that ba,b,cc is in i
����•

precisely if ba,b,cc= bc,b,ac . Q.E.D.

(6.4) Theorem Let L be a libra and let A and B be balanced span subsets of L . Then

A = B
•

< > B = A
•

. (1)

Furthermore, if (1) holds, then

A∪B is balanced. (2)

Proof. Suppose that A = B
•

. Then A
•

= B
••

. Since B is a span, it follows that B = B
••

. Hence B = A
•

.

That B = A
•

implies A = B
•

follows from an analogous argument.

We now suppose that A = B
•

. Let {x,y,z}⊂A∪B . If {x,y,z}⊂A or {x,y,z}⊂B , then bx,y,zc would be

in A∪B since both A and B are balanced. Thus, without loss of generality, we can and shall suppose that

{x,y}⊂A and z∈B . We need to show that {bx,y,zc,bx,z,yc,bz,x,yc}⊂A∪B — but since z is in A
•

we see

that all three are the same. We see
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ba,bx,y,zc,ac= ba,z,by,x,zcc= ba,z,ba,x,ycc= ba,z,a,x,yc=

ba,a,z,x,yc= ba,a,x,z,yc= ba,a,x,y,zc= bx,y,zc .

It follows that bx,y,zc is in A
•

= B⊂(A∪B) . It follows that A∪B is balanced.Q.E.D.

(6.5) Theorem Let A and B be spans and such that A = B
•

. Then

(∀ ´
`
a,b`

´
∈A×B) B = ba,b,Ac . (1)

Proof. From (6.4) follows that A∪B is abelian. Let {á ,á´} be in A. We have

bá´,ba,b,á c,á´c= bá´,á ,b,a,á´c= bá´,á ,a,a,b,a,á´c= bá´,á ,a,ba,b,ac,á´c= ba,á ,á´,b,á´c=

bá´,á ,a,a,b,a,á´c= bá´,á ,a,ba,b,ac,á´c= ba,á ,bc= ba,á ,b,á ,á c= ba,bá ,b,á c,á c= ba,b,á c .

This shows that ba,b,Ac is a subset A
•
: thus

ba,b,Ac⊂B . (2)

On the other hand,

b = ba,b,ac∈ba,b,Ac

which implies

B⊂ba,b,Ac .

This, with (2), implies that B = ba,b,Ac .Q.E.D.

(6.6) Definition We shall say that a libra L is a canopy if there exists a∈L such that

(∀B⊂L balanced: a����•⊂B) B = L . (1)

(6.7) Theorem If a libra L is a canopy, then

(∀ c∈L)(∀B⊂L balanced: c����•⊂B) B = L . (1)

Proof. Let a∈L be such that (6.6.1) holds. Let c be in L and let B be any balanced set in L for which

c����•⊂B . If x is an element of a����• , then

bbx,a,bc,b,bx,a,bcc= bbx,a,xc,a,bc= ba,a,bc= b ===⇒ bx,a,bc∈b
����•

===⇒ bx,a,bc∈B ===⇒ x∈bB,b,ac .

It follows that a����•⊂bB,b,ac , whence follows that L = bB,b,ac , which implies that L = B . Q.E.D.

(6.8) Theorem Let L be a canopy libra and let {u,v}⊂L . Then there exists n∈N odd and

{x1,. . . ,xn}⊂u����• such that

bx1,. . . ,xnc= v . (1)

Proof. Let a be as in (6.6.1). Since no proper balanced subset of L contains a����• as a subset, and since

{bt1,. . . ,tnc : n∈N is odd and {t1,. . . ,tn}⊂a����•}

is a balanced subset of L containing a����• , there exists n∈N odd and
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{t1,. . . ,tn}⊂a����• (2)

such that

bt1,. . . ,tnc= ba,u,vc . (3)

For i = 1,. . . ,n and xi≡bu,a,tic

bx1,. . . ,xnc= bbu,a,t1c,bu,a,t2c,bu,a,t3c,. . . ,bu,a,tncc=

bu,a,t1,t2,a,u,u,a,t3,. . . ,u,a,tnc= bu,a,t1,t2t,. . . tnc= bu,a,ba,u,vcc= v .

Moreover, for each i

bu,xi,uc= bu,bu,a,tic,uc= bu,ti,a,u,uc= bu,ti,ac
by (2) bu,a,tic= xi

and so {x1,. . . ,xn}⊂u����• . This with (3) proves (1). Q.E.D.

(6.9) Theorem Let L be a canopy libra. Then
L
m is an incidence relation.

Proof. Assume that
L
m were not an incidence relation. Then there would exist a doubleton {a,b}⊂L such

that b∈a����• . Since L is a canopy libra, there would exist c∈(L∩b
����•
). Since L is a canopy libra, there would

exist n∈N odd and {x1,. . . ,xn}⊂a����• such that c = bx1,. . . ,xnc . But then

bb,c,bc= bb,bx1,. . . ,xnc,bc= bb,xn,. . . ,x1,bc= bb,xn,b,b,. . . ,b,b,1,bc=

bbb,xn,bc,. . . bb,x1,bcc= bx1,. . . ,xnc= c

which would be absurd. Q.E.D.
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7. A Quadric Surface

(7.1) Purpose In this section we shall introduce an example which illustrates the concepts

introduced in Sections (4), (5) and (6), and which provides motivation for much of the sequel.

(7.2) Real Projective Space Within that three-dimensional space E in which we seem to live,

parallel lines seem to run together towards a point which we sometimes describe as lying “at infinity”. We

shall denote the set of all such ‘‘virtual’’ points by

∞E . (1)

From each virtual point p emanates a maximal family of mutually parallel lines in E . We may change

intuition to a logical system by defining

E ≡ E∪∞E . (2)

If L is a line in E , we shall write the virtual point towards which it tends as

∞L (3)

There is a natural topology on E of which the restriction to E is the euclidean topology of E , and

relative to which, E is an open subset of E .11 For any subset A of E , we shall write

A (4)

for the topological closure of A in E . By a line in E we shall mean either L for a line L in E , or P∩∞E
for a plane P in E . We shall say that ∞E is the plane at infinity and that any line of E which lies entirely

in the plane at infinity to be a line at infinity. By a plane in E , we shall either mean the plane at infinity

or P , for P a plane in E . The set E is called real projective space. We shall refer to the family of lines

in E as

Elines (5)

and the family of planes in E as

Eplanes . (6)

By a projective subset of E , we shall mean either a point, a line or a plane in E . The smallest

projective set containing a given set A as a subset, will be written

` a
A . (7)

If {a1,. . . ,an} is a finite subset of E , we shall sometimes employ the notation

11 To describe a basic open neighborhood of a point ∞L of ∞E , we consider any elliptic hyperpoloid H

of E such that the line L passes through both sheets. An elliptic hyperboloid H separates E4H into two

components: one of these contains complete lines and the other does not — we shall call the inside of H

the component which does not contain complete lines and denote it by H́ . Let F denote the family of lines

K which intersect both sheets of H. Then
⋃

K∈F
∞K∪ (K∩ H́ ) is a basic neighborhood of ∞L .
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← →
a1,. . . ,an ≡

` a{a1,. . . ,an} . (8)

Thus, for two distinct points a and b of E ,
←→
a,b denotes the line in E determined by a and b.

The reason for adding virtual points to the space in which we live is the wonderful symmetry thereby

achieved:

(1) every pair of distinct points determines a line – every pair of distinct planes determines a line;

(2) each disjoint point and line determines a plane – each line and each plane not containing that line

determine a point;

(3) each intersecting pair of distinct lines determines both a point and a plane.

These simple observations (1) through (3) lie on the surface of a deeper and more curious symmetry

induced by the so-called “polar mappings”. A bijection φ E ↪→Eplanes is said to be a polar mapping

provided

(∀ {x,y}⊂E) x∈φ
y < > y∈φ

x (9)

and that

Poles
φ ≡ {x∈E : x∈φ

x} (10)

is non-void. The elements of the set Poles
φ are called the poles of φ .

By an automorphism of E we shall mean a permutation of E which maps lines onto lines. The

conjugate of an automorphism θ is the function

θ* Eplanes3P ↪→{x∈E : θ
x∈P}∈Eplanes . (11)

We say that two subsets A and B of E are qualitatively the same provided that there exists an automor-

phism θ of E such that12

⇀
θ
A= B (12)

and that two polar mappings α and β are qualitatively the same provided that

θ*◦α◦θ=β . (13)

It turns out that two polar mappings are qualitatively the same if, and only if, their sets of poles are

qualitatively the same.

The set of poles of a polar mapping is called a quadric surface, or sometimes just a quadric. The

condition of being qualitatively the same is an equivalence relation on the family of all quadrics, and relative

to that equivalence relation there are exactly two classes. We shall call one class spheroidal and one class

toroidal.

(7.3) Spheroidal Quadric Surfaces Spheroidal quadric surfaces are those of which their inter-

sections with E are either ellipsoids, elliptic paraboloids or elliptic hyperboloids of two sheets. Spheroidal

quadrics coming from ellipsoids of course do not intersect ∞E , spheroidal quadrics coming from elliptic

paraboloids are tangent to ∞E and spheroidal quadrics coming from elliptic hyperboloids of two sheets

intersect ∞E on a closed curve.

12 We recall that
⇀
θ
A≡{θx : x∈A} .
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Let S be a spheroidal quadric surface. Let σ denote the polar mapping of which

S =Poles
σ . (1)

For any point x∈S, σ
x is the plane in E tangent to S at x. Obviously S separates its complement in E into

two connected components, of which one contains complete lines: we call that component the outside of S

— the other component is the inside of S .13 If x is a point outside S, then there exists a cone with vertex S

of which the lines are tangent to S — the points of tangency comprise the intersection of a plane σ
x with

S . If x is a point inside S, then σ
x is the locus of all points y such that x∈σ

y .

By a spheroidal polar mapping we shall mean a polar mapping of which the quadric surface of poles

is a spheroidal quadric surface.

(7.4) Toroidal Quadric Surfaces Toroidal quadric surfaces are those of which their intersections

with E are either hyperbolic paraboloids or elliptic hyperboloids of one sheet. Toroidal quadrics coming

from hyperbolic paraboloids are tangent to ∞E , while those coming from elliptic hyperboloids intersect

∞E at a closed curve. The complement of a toroidal quadric has two components, both of which contain

complete lines, and these components are qualitatively the same. We shall call these disjoint components

the halves of real projective space relative to the toroidal quadric surface.

Probably the simplest example is a circular hyperboloid T .14

Fig. 9: Section of a Toroidal Quadric (from a circular hyperboloid)

As distinct from spheroidal quadrics, which contain no lines, toroidal quadrics are unions of lines. In

fact, any three lines which are pairwise disjoint are contained in a unique toroidal quadric. For three such

lines K, M and N , we shall show how such a quadric Quadric
K,M,N

 is constructed.

Construction. Each element m of M is on exactly one plane containing K. The intersection of that plane

with N is a singleton n
m,K,M

 . Then⋃
x∈M

← →
m,n

m,K,M
 = Quadric

K,M,N
 . (1)

13 Evidently the concepts of outside and inside extend to general spheroidal quadric surfaces. The toroidal

quadric surfaces do not have an outside and an inside.
14 Sometimes called a hyperboloid of revolution, since it can be formed by rotating a hyperbola around the

principal axis which does not intersect the hyperbola.
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The family of lines in (1) is called a regulus and each such line is called a rule of the regulus. If we take

any three distinct lines Ḱ , Ḿ and Ń from this regulus, then these lines are pairwise disjoint and

Quadric
K,M,N

=Quadric
Ḱ ,Ḿ ,Ń .

 (2)

Furthermore, the regulus obtained from the analogous construction using Ḱ , Ḿ and Ń , is disjoint from

the other regulus and the union of the two reguli comprises all the lines in the quadric. For the example of

Figure (9), we illustrate these two reguli as follows:

Fig. 10: Elements of the Two Reguli of a Toroidal Quadric

If we write T and T for the two reguli of a toroidal quadric surface T , then, for each M∈T and N∈ T,

M∩N is a singleton in T — we shall denote this singleton by M∧N . It is evident from Figure (10) that there

is a natural topology on each of the reguli such that each one of them is homeomorphic to the circle. The

bijection

T × T 3´
`
M,N`

´
↪→M∧N∈T (3)

is actually a homeomorphism, and so T is homeomorphic to a torus.15

Let τ denote the polar mapping satisfying

T =Poles
τ . (4)

For x∈T , τ
x is the plane tangent to T at x . This plane contains two lines lying in T: one τ

x a member

of T and one τ
x a member of T . Thus

(∀ x∈T) τ
x =

` a
τ

x∪ τ x . (5)

15 It is for this reason that we call such quadric surfaces toroidal.
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Fig. 11: Rules through a Point

τ
x

x

τ
x

For x∈E4T , τ
x is the plane of E of which the intersection with T is the set of all points t∈T such

that
←→
t,x is tangent to T . We define

L ≡ E4T . (6)

Related to the restriction of τ to L is the mapping

•
τ L3x ↪→ •

τx∈T
T

(7)

where,

(∀ ´
`
x,t`

´
∈L×T)

←→
x,t ∩T = {t,•τx

t} . (8)

Fig. 12: Involutions of T

•
τx

t

t

x

Thus, for each x∈L and t∈T,
•
τx

t is the point other than t on the line
←→
x,t . Of course

•
τx

t= t if the line
←→
x,t is tangent to T. The connection between τ and

•
τ comes from the fact that, for each x∈L and t∈T,
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{(τ
xt)∧(τ

x•
τx

t),(τ xt)∧(τ
x•

τx
t)}⊂τx . (9)

For each x∈L , we shall write τ x to the restriction of
⇀

(
•
τx) to the regulus T , thus,

(∀ ´
`
x,L`

´
∈L× T) τ x

L= {•τx
t : t∈L} . (10)

For x∈L and L in T , the image τ x
L is a line in T and is the intersection of T with the rest of the

plane determined by x and L ,

(∀ x∈L) τ x T 3L ↪→((` a
({x}∪L) 4L)∩T)∈T . (11)

Fig. 13: The Function τ

x

τ x
L

L

It is a remarkable but true fact that the range τ of τ is a balanced subset of the function libra T
T
! .

Since the function L3x ↪→ τ x∈ τ is a bijection, we can define a libra operator b,,c on L to be the unique

libra operator on L such that

(∀ ´
`
x,y,z`

´
∈L×L×L) τ bx,y,zc = bb τ x, τ y, τ zcc . (12)

In the construction of the preceding paragraph, the reguli T and T could have been interchanged to

obtain a function τ such that

(∀ x∈L) τ x T 3L ↪→((` a
({x}∪L) 4L)∩T)∈ T . (13)

The libra operator on L which would have in this way been induced, is just the obverse d,,e of the libra

operator b,,c.
By a toroidal polar mapping we shall mean a polar mapping of which the quadric surface of poles is

a toroidal quadric surface.

(7.5) The Libra Operator on L For any subset A of E , we define the trace Â of A to be just

Â ≡ A∩L . (1)

Thus we may speak of line traces and plane traces.

Let b,,c be the libra operator on L as defined in (7.4.12). The balanced subsets of L are the singletons,

the line traces and the plane traces P̂ for the planes P tangent to T .
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We recall the libra twining relation of (6.2):

L
m ≡ {´

`
x,y`

´
∈L×L : bx,y,xc= y and x =6 y} (2)

and the associated operators

(∀ x∈L) x����• = {y∈L4{x} : bx,y,xc= y} (3)

and

(∀A⊂L) A
•

=
⋂

a∈A
a����• . (4)

We recall that a subset A of L is said to be a span if

A = A
••

. (5)

It is not difficult to check that

{x����• : x∈L} = {τ̂
x : x∈L} (6)

which is the family of plane traces P̂ , where P is a plane in E not tangent to T . It follows that, for any line

trace K̂ of a line K⊂6 T , K̂
•

is the intersection of the plane traces τ̂
x , for x in K . Thus

(∀K∈Elines4 (T ∪ T)) K̂
•

is a line trace. (7)

Relative to T , we may separate the lines in E into four types: those which are subsets of T , those which

intersect T in two points (incident), those which are tangent to T (accident) and those which are disjoint

from T (excident) . The following figure illustrates the situation for each of the last three:

Fig. 14: Incident, Excident and Accident Line Traces and their Duals

We note that an accident line trace and its dual are on a common plane trace of a plane tangent to T.

Line traces, besides being spans, are balanced. It follows from Theorem (6.3) that line traces have

an abelian libra structure. The corresponding libra groups are quite familiar: the groups corresponding to

incidental line traces are all isomorphic to the multiplicative group of real numbers; the groups corresponding

to excidental lines are all isomorphic to the group of complex numbers of unit modulus and the groups
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corresponding to accidental line traces are all isomorphic to the additive group of real numbers.

Let B be the trace of a plane tangent to T at a point q . For each element b∈B , it is evident that
•
τb

q= q and that

(∀ x∈L) τ x
τ q= τ

q < > x∈B . (8)

It follows that B is balanced in L . It is abelian as well. The set B
•

is void, and so

B
••

= L (9)

Fig. 15: A Plane B Tangent to T at a Point q Showing the Lines τ
q and τ

q

(7.6) Normal Simplices A simplex in E is a quadrupleton S = {p,q,r,s} such that, for each x∈S,

x is not in the smallest projective subset of E containing S4{x} .

Let φ E ↪→Eplanes be any bijection such that (7.2.9) holds. If L is a line in E and P a plane in E , then

we shall say that L and P are normal relative to φ provided that L⊂6 P and there exists p∈L such that

φ
p= P . If S is a simplex such that, for each x∈S, (S4{x})⊂φ

x , then we shall say that S is a φ-normal

simplex.

Suppose that W is any plane in E and that w≡φ−1W . For any x in W , φ
x intersects W in a line

L . For any y∈L , φ
y intersects L in a singleton {z} . Evidently {w,x,y,z} is a φ-normal simplex. We have

shown that

(∀w∈E)(∃ {x,y,z}⊂φ
w) {w,x,y,z} is a φ-normal simplex. (1)

Now suppose that φ is a toroidal polar mapping τ , and that {w,x,y,z} is a simplex, normal with respect

to φ . We shall show:

w = bx,y,zc . (2)

Proof. If x equaled bx,y,zc , then bx,z,zc= bx,y,zc and so

y = bz,z,y,x,xc= bz,bx,y,zc,xc= bz,bx,z,zc,xc= bz,z,z,x,xc= z
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which would be absurd. A similar argument shows that bx,y,zc=6 z . If bx,y,zc equaled y , then, since

bx,y,zc= bx,y,x,x,zc= by,x,zc ,

we would have by,x,xc= y = by,x,zc and so

x = bx,y,y,x,xc= bx,y,by,x,xcc= bx,yby,x,zcc= bx,y,y,x,zc= z

which would be absurd. We have thus far shown that

bx,y,zc∈6 {x,y,z} . (3)

We have

bx,bx,y,zc,xc= bx,z,y,x,xc= bx,z,y,z,zc= bx,bz,y,zc,zc= bx,y,zc ,

by,bx,y,zc,yc= by,z,y,x,yc= bx,x,y,x,x,z,x,x,y,x,yc= bx,bx,y,xc,bx,z,xc,bx,y,xc,yc= bx,y,z,y,yc= bx,y,zc

and bz,bx,y,zc,zc= bz,z,y,x,zc= bx,x,y,x,zc= bx,bx,y,xc,zc= bx,y,zc

which taken together, along with (3), implies that

bx,y,zc∈x����•∩ y����•∩ z����• = τ
x∩ τy∩ τz = {w} .

It follows that bx,y,zc= w . Q.E.D.

(7.7) Meridian Conic Sections Consider a plane in E which is not tangent to T . That plane is

the image τ
p for some point p∈L . We shall write C for the intersection of that plane with T , and P for

the trace of that plane. The union of the lines
←→
p,c for c∈C is a cone K and C is a conic section of that cone.

The set C has a meridian structure as given in (1.9) and is a circular meridian relative to this structure. The

family of functions

{C3c ↪→ •
τx

c∈C : x∈P} (1)

is the meridian family of involutions for C . The function γ C3c ↪→ τ
c∈ T is a bijection and so induces

a meridian structure on T . Similarly the function γ C3c ↪→ τ
c∈T is a bijection and so induces a

meridian structure on T . Evidently γ ◦(γ )−1 is a meridian isomorphism from T onto T . It can be

described precisely as

T 3J ↪→ τ
J∧C

∈T or, more succinctly, τ p . (2)

It is not difficult to show that all meridian isomorphisms from T onto T arise in this way: that

{ τ x : x∈L} is the family of meridian isomorphisms from T onto T . (3)

One consequence of (3) is that

{φC,x C3c ↪→ (( τ x
τ c)∧C)∈C : x∈L} is the group of homographies of C . (4)

It is in fact possible to describe the various types of meridian homographies in terms of the geometry of

E. Recall that K is the cone with vertex p containing C . The cone K separates E into two components —

we shall call R that component containing the inside of C and D the component containing the outside of

C . The function φC,p is the identity of G and
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{φC,x : x∈K4{p}} is the family of translations of C , (5)

{φC,x : x∈R} is the family of pure rotations of C (6)

and {φC,x : x∈D} is the family of dilations of C . (7)

Now let x be any element of L . Since φC,x is a homography of C , it follows from (1.3.5) that there exist

involutions φC,a and φC,b of C such that

φC,x =φC,a◦φC,b . (8)

That φC,a and φC,b are involutions means that {a,b}⊂P . It follows from (7) that

ba,p,bc= x . (9)

Using the construction of (7.6) one can obtain a φp-normal simplex {p,b,r,s}⊂L . We note that by that

construction the points r and s must be in P . It follows from (7.6.2) that b = bp,r,sc . It now follows from

(8) that

x = ba,p,bp,r,scc= ba,r,sc . (10)

Since {a,r,s}⊂P , we have shown that

L is a canopy libra (11)

in the sense of (6.6).

(7.8) A Cartesian Aggregate of Balanced Sets Let τ be a toroidal polar mapping and let T

be its set of poles. For each subset A of E , we shall denote

A* ≡ {P∩L : P∈Eplanes and A⊂P} . (1)

It follows from (7.7.10) that the traces of planes which are not tangent to T cannot be balanced in

L . However planes tangent to T are balanced. In fact the set

T ≡ {L∩ (τ
t) : t∈T} (2)

constitutes an aggregate of balanced sets. For any line J in T , the we have

J*∈
T  (3)

and in fact the function T3J ↪→ J*∈
T  is a bijection. Similarly

T 3K ↪→K*∈
T is a bijection. (4)

Condition (5.11.1) in the present context is that, given any doubleton {a,b}⊂L , there is a plane P

tangent to T such that a∈P and b∈6 P . Condition (5.11.2) is that, given any plane trace P in T and any

set {a,b}⊂L such that ba,P,bc= P , both a and b must be in P . It can be shown that both these conditions

are fulfilled, and so
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T is a cartesion aggregate of balanced sets. (5)

Let a and b be any two elements of L and P any element of T . Then the plane P is tangent to T at a point

p : τ
p= P . Then, if ṕ is any point in P, we have

ba,ṕ ,Pc =L∩ ` a{a}∪ τ
p : (6)

the trace of the plane determined by a and the line in T which lies in P . Similarly,

bP,ṕ ,ac =L∩ ` a{a}∪ τ
p : (7)

the trace of the plane determined by a and the line in T which lies in P . Furthermore

a◦T b
P = ba,P,bc = L∩

` a
(τ

•
τa

p)∪ (τ
•
τb

p) . (8)

and, in particular,

a◦T P = ba,P,ac = L∩ τ
•
τa

p . (9)

If J is any line in T , then

a T b
J*= ( τ a

J)* (10)

and, if K is any line in T ,

a T b
K*= ( τ b

K)* . (11)

In particular

(∀ J∈ T) a
T J*= ( τ a

J)* . (12)

To more readily illustrate the structure of L induced by a diagonal, we suppose that T is generated by

taking a circle C in euclidian space, taking a line L tangent to C lying in a vertical plane tangent to C at the

point of tangency of L, and such that L makes an angle of π/4 with the plane determined by C . We then

move the line continuously around the circle maintaining the angle and the property that the line continues

to lie in a vertical tangent plane. The locus of the points on these lines is as indicated by the following figure.

We write P for the plane determined by the circle C .16

16 Alternatively we could construct an orthogonal rectangular coordinate system ´
`
x,y,z `

´
, denote by C the set

{t∈E : z
t= 0 and x

t2 + y
t2 = 1} .

and denote by T the quadric surface of which the intersection with E is

{t∈E :x
t2 + y

t2 = 1 + z
t2} .
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Fig. 16: Section of a Quadric from a Circle

Two plane traces in T are skew if their line of intersection is not contained in T .

Let p be the point in ∞E such that each line in E through p is a vertical line. Then τ
p is just P,

which is also p����• . The diagonal p determined by p is then the family of all those vertical planes which

are tangent to C , hence p is in one to one correspondence with the points of C .

Suppose that A is an element of T not contained in the diagonal p . Then A intersects C in two

points a1 and a2 . The plane trace symmetric to A with respect to p is just the trace of the other plane in

T which passes through a1 and a2 . Thus two plane traces A and B are p-skew if their line of intersection

is not contained in T and is not contained in P (i.e. τ
p).

(7.9) Representations The function τ is a cartesian representation of L from the set T to

the set T : in fact this representation was used to define the libra operator on L . The function τ is the

obverse representation of τ .

The left T-inner representation λ of L is of course equivalent to τ . The equivalence between the two

is shown by the following equality:

(∀ ´
`
a,J`

´
∈L× T) ( τ a

J)* =λa
J* . (1)

We now turn to a natural representation of the symmetrization of the libra operator b,,c on L . We

consider the set L×L with the libra operator

(∀ ´
`
´
`
x,y,z`

´
,´
`
a,b,c`

´
`
´
∈L×L) b ´

`
x,a`

´
,´
`
y,b`

´
,´
`
z,c`

´
c= ´

`
bx,y,zc,da,b,ce`

´
= ´

`
bx,y,zc,bc,b,ac`

´
. (2)

We define δ L×L ↪→T
T

by, for all ´
`
a,b`

´
∈L×L ,

(∀ x∈T) δ´
`
a,b`

´

x ≡ ( τ a
x)∧( τ b

x) . (3)
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Fig. 17: Symmetrization Representation

ba

x

τ b
x

τ a
x

δ´
`
a,b`

´

x

This representation is equivalent to the symmetrization of the representation τ , and so also equivalent to

the symmetrization of the T -inner representation λ of L . As we know from (5.17.3), this latter representation

is equivalent to the representation

L×L3´
`
x,a`

´
↪→ x◦T a∈T T . (4)

The family {x◦T : x∈L} is a subfamily of the range {x◦T a : {x,a}⊂L} of the above representation. For a general

meridian, one may ask the question: is {x◦T a : {x,a}⊂L} the smallest balanced subset of the function libra

T T ! containing {x◦T : x∈L} ? In the present context, that question is equivalent to whether or not

{δ´
`
x,à

´
: ´
`
x,a`

´
⊂L} is the smallest balanced set containing {δ´

`
x,x`

´
: ´
`
x,x`

´
⊂L}= (

•
τ) ? (5)

We shall defer the answer to (9.7) infra.
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8. Meridian Libras

(8.1) Discussion The group of homographies of a meridian is a function libra L . In this section

we characterize which libras appear in this way and investigate their properties.

(8.2) Notation Let T be a homogeneous aggregate of balanced subsets of a libra L. For A⊂T
and {a,b}⊂L we define

ba,A,bc ≡ {ba,A,bc : A∈A} . (1)

(8.3) Theorem Let T be a cartesian aggregate of balanced subsets of a libra L such that T has

dimension at least 4 . Suppose that there exists a∈L such that

(∀B∈T ) B∩ a����• is balanced and has more than one element (1)

and (∀ {B,D}⊂T : D and B are a-skew) B∩D∩ a����• is a singleton. (2)

Let

Ma

 T  ≡ {(a T
)−1◦x T

: x∈a����•} . (3)

Then Ma

 T  is a meridian family of involutions on
T  .

Proof. For {x,a}⊂L such that bx,a,xc= a

((a
T

)−1◦x T
)◦((a T

)−1◦x T
) = (a

T
)−1◦(x T ◦(a T

)−1◦x T
)

by (5.6)
(a

T
)−1◦(bx,a,xc) T = (a

T
)−1◦a T

which shows that (a
T

)−1◦x T
is an involution.

Suppose that {A,B ,D,E}⊂
T satisfies {A,E}∩ {B ,D}= ø . If

ba,A∧a
T E,ac=B∧a

T D ,

then (5.15) would imply that E=D , which would be absurd. It follows that A∧a
T E and B∧a

T D are

distinct and skew, and so (2) implies that

(∃ j∈L) (A∧a
T E)∩ (B∧a

T D)∩ a����• = {j} .

Thus (a
T

)−1◦j T sends A to E and B to D . If any other φ∈Ma

 T  did the same, since

φ= (a
T

)−1◦k T
,

we would have k in

(A∧a
T E)∩ (B∧a

T D)∩ a����• ,

whence k = j and φ= (a
T

)−1◦j T . This establishes (1.2.4).

Let P and Q be in
T . Suppose that {β,γ,δ}⊂Ma

 T  is such that β
P= γ

P= δ
P=Q . By

(3) there exists {b,c,d}⊂a����• such that

(a
T

)−1◦b T
=β , (a

T
)−1◦c T = γ and (a

T
)−1◦d T

= δ .

Let P be the element of P which contains a and let Q be in Q . Let R≡ Q ∧ P . Then

Q =Q=β
P= (a

T
)−1◦b T  P

= (a
T

)−1 bb,P,bc
= ba,bb,P,bc,ac =
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ba,b,bP,b,acc = bP,b,ac = bP,bb,a,bc,bc = bP,a,bc

which implies that

bP,a,bc∈ Q ∩ P ===⇒ bP,a,bc= Q ∧ P = R .

Thus b = ba,a,bc∈bP,a,bc= R . Similarly, c and d are in R as well. Hence {b,c,d}⊂R∩ a����•. In view of (1)

this implies that bb,c,dc is in R∩ a����• . From (6.3) it follows that

bb,c,dc= bd,c,bc . (4)

Now

((a
T

)−1◦b T
)◦((a T

)−1◦c T )◦((a T
)−1◦d T

)
P= ((a

T
)−1◦b T

)◦((a T
)−1◦c T )◦((a T

)−1◦d T
)
 P

=

ba,bb,ba,bc,ba,bd,P,dc,ac,cc,ac,bc,ac = bbba,b,ac,c,ba,d,ac,a,P,a,ba,d,ac,c,ba,b,accc =

bb,c,d,a,P,a,d,c,bc = ba,babb,c,dc,ac,P,babd,c,bc,ac,ac by (4) ba,bb,c,dc,P,bb,c,dc,ac =

(a
T

)−1◦ba,b,cc T
 P

= (a
T

)−1◦ba,b,cc T
P

which establishes (1.2.5).

Let β and γ be inMa

 T  . Choose {b,c}⊂a����• such that β= (a
T

)−1◦b T
and γ= (a

T
)−1◦c T . Then

β◦γ−1◦β= (a
T

)−1◦b T ◦(c T )−1◦a T ◦(a T
)−1◦b T

= (a
T

)−1◦b T ◦(c T )−1◦b T
= (a

T
)−1◦bb,c,bc T . (5)

Furthermore

ba,bb,c,bc,ac= ba,b,a,ba,c,ac,ba.b,acc= bb,c,bc

which implies that bb,c,bc∈a����• . This, with (5), establishes (1.2.6). Q.E.D.

(8.4) Remarks Consider the toroid function libra L of Section (7) . The B of (8.3.1) is the trace

of a plane tangent to T and the a����• of (8.3.1) is the trace of some plane not tangent to T . Thus, in this case,

(8.3.1) states that the intersection of two such plane traces has more than one element. In reality, it is a line

trace.

The B and D of (8.3.2) are the traces of two planes tangent to T such that a◦T B=6 D . It follows that

the line trace B∩D is not contained in the plane trace a����• , and so the intersection of the two is indeed a

point.

(8.5) Definition and Remarks A cartesian aggregate of balanced sets satisfying (8.3.1) and

(8.3.2), and of dimension at least 4 , will be called a meridian aggregate. Thus
T  is a meridian with

meridian family of involutions Ma
 T  . We define

Ga

 T  (1)

to be the group of homographies of this meridian.

Evidently
T  is a meridian as well, relative to the meridian family of involutions

{a T ◦(x T
)−1 : x∈a����•} . (2)
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We define

Ma

 T  and Ga

 T  (3)

analogously.

(8.6) Remarks Consider the toroid function libra L , the quadric T , the element a∈L and the

circle C of (7.7.7) . The mapping C3t ↪→ ( τ t)
*∈

T  is a meridian isomorphism.

(8.7) Theorem Let T be a meridian aggregate of balanced subsets of a libra L. Then, for all b∈L

(∀B∈T ) B∩ b
����•

is balanced and has more than one element (1)

and (∀ {B,C}⊂T b-skew) B∩C∩b
����•

is a singleton. (2)

Fig. 18: A Tangent Plane and a Span Plane

If a and Ma

 T  are as in (8.3.1), then

Ma

 T = {(b T
)−1◦x T

: x∈b
����•
} . (3)

Furthermore, if L is a properly linear libra, then

Gb

 T = {(b T
)−1◦x T

: x∈L} . (4)

Proof. [
(1)

>] Let B be in T . Let a be as in (8.3) and let b be in L . From (8.3.1) we know that there exists

a doubleton {r,s}∈ba,b,Bc ∩ a����• : let x≡bb,a,rc and y≡bb,a,sc. Evidently {x,y}⊂B and x =6 y. We have

bb,x,bc= bb,b,a,r,bc= bba,r,ac,a,bc= ba,a,bc= b (5)

and so x is in b
����•

.Similarly, y is in b
����•

as well. We have shown that B∩b
����•

has more than one element.

Let x, y and z be any elements of B∩b
����•

. Evidently {ba,b,xc,ba,b,yc,ba,b,zc} is a subset of ba,b,Bc ∩ x����•

and so (8.3.1) implies that there exists u∈ba,b,Bc such that u = bba,b,xc,ba,b,yc,ba,b,zcc . Let w∈B be such

that u = ba,b,wc . We have
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bx,y,zc= bb,a,a,b,x,y,b,a,a,b,zc= bb,a,ba,b,xc,ba,b,yc,ba,b,zcc= bb,a,uc= w

which shows that B∩ b
����•

is balanced. It follows that (1) holds.

[
(2)

>] Let now B and C be in T and be b-skew. Thenba,b,Bc and ba,b,Cc are ba,b,bc-skew: i.e. they

are a-skew. By (8.3.2), ba,b,Bc ∩ ba,b,Cc ∩ a����• is a singleton. Hence the intersection of B = bb,a,ba,b,Bcc,
C = bb,a,ba,b,Ccc and b

����•
= bb,a,ac

����•
is a singleton. This establishes (2).

[
(3)

>] Let φ be any element ofMa . There there exists y∈a����• such that φ= (a
T

)−1◦y T
. Let x≡bb,a,yc.

As above we see that x is in b
����•

and, since

φ= (b
T

)−1◦(b T ◦(a T
)−1◦y T

) = (b
T

)−1◦x T
,

it follows that Ma

 T ⊂{(b T
)−1◦x T

: x∈b
����•
} . The reverse inclusion follows by a similar argument.

[
(4)

>] Since Mb is a meridian, it follows from (1.3.5) that

Gb⊂{(b
T

)−1◦x T
: x∈L} (6)

Suppose now that L is a properly linear libra and that x is any element of L . Let {A,B ,C } be any

tripleton in
T . By (1.2.2), there exists φ∈Mb such that

φ
A= (b

T
)−1◦x T A , φ

B = (b
T

)−1◦x T B  and φ
C = (b

T
)−1◦x T C  . (7)

By (1.3.5), there exists {y,z}∈b
����•

such that ((b T
)−1◦y T )◦((b T

)−1◦z T )=φ . Since L is a proper line libra,

there exists p∈L such that {x,by,b,zc}⊂p����• From (7) follows

(b
T

)−1◦by,b,zc T
A= (b

T
)−1◦by,b,zc T

A , (b
T

)−1◦by,b,zc T
B = (b

T
)−1◦x T B 

and

(b
T

)−1◦by,b,zc T
C = (b

T
)−1◦x T C 

whence follows that

(p
T

)−1◦by,b,zc T
A= (b

T
)−1◦by,b,zc T

A , (p
T

)−1◦by,b,zc T
B = (p

T
)−1◦x T B 

and

(p
T

)−1◦by,b,zc T
C = (p

T
)−1◦x T C  .

From (1.2.2) follows that (p
T

)−1◦by,b,zc T = (p
T

)−1◦x T
. Consequently

(b
T

)−1◦x T
= (b

T
)−1◦by,b,zc T = ((b T

)−1◦y T )◦((b T
)−1◦z T )

which implies that x is in Gb . Q.E.D.

(8.8) Notation and Definition It is a consequence of Theorem (8.7) that the sets Ma

 T 
are independent of a . Consequently we shall denote this family of involutions of

T simply by

M
 T  . (1)

and the function libra Ga by

G
 T  . (2)

For each p∈L , we know from (1.3.5) that
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G
 T = {((p T

)−1◦r T )◦((p T
)−1◦s T ) : {r,x}⊂p����•}

whence follows that

(∀ p∈L) {br,p,sc : {r,s}⊂p����•} is a libra isomorphic with the libra G . (3)

We know from (8.7.4) that

L = {br,p,sc : {r,s}⊂p����•} for each p∈L if L is a properly linear libra L : (4)

whether the hypothesis that L be properly linear be a necessary condition to ensure this set equality, is not

known to the author at this time.

We shall say that L is a meridian libra if it has a meridian aggregate and the equality of (4) holds.

(8.9) Theorem Let M be a meridian with meridian family M of involutions and group G group

of homographies. Let L be the function libra G with libra operation

(∀ α,β,γ) bbα,β,γcc=α◦β−1◦γ .

Let ι denote the identity mapping on the set G , which also may be regarded as a representation of L from

the set M to the set M . Let T be abbreviation for the aggregate Tι as defined in (4.4.5). Then

ι is equivalent to the left inner representation of L , (1)

T is a meridian aggregate (2)

and L is a properly linear libra. (3)

Thus L is a meridian libra with meridian aggregate T .

Proof. [(1)] Define the bijections

µ
T 3 m ι n ↪→ n∈M and ν

T 3 m ι n ↪→m∈M .

Then, for α∈G and m∈M,

ν◦α T ◦µ−1m= ν◦α T  m ι n
= ν

 αm ι α−1m =α
m= ια

m
which establishes the equivalence.

[(2)] We first show that T is a cartesian aggregate, which, by the definition of this term, follows

once we have shown that ι is a cartesian representation. Let then {x,r} and {y,s} be doubleton subsets of

M . By (1.2.1) there exists φ∈G such that φ
x= y and φ

r= s . By (5.8.1) it follows that ι is a cartesian

representation.

Next we show that (8.3.1) and (8.3.2) hold. Let then ι be the element a of L of (8.3.1) and (8.3.2). Then

the element B of (8.3.1) is a family of the form {φ∈G :φ
u= v} , where {u,v} is a subset of M . The set ι���

�•

is just M . Since M has at least four elements, there exists a doubleton {r,s}⊂M4{u,v} . By (1.2.4), there

exists {α,β}⊂M such that

α
u= v , α

r= r , β
u= v and β

r= s .

Thus α and β are distinct elements of B . Than B is balanced follows from (1.2.5). This establishes (8.3.1).

Now let D be an element of T such that D and B are ι-skew. Then there exists {m,n}⊂M such that

D = {φ∈G :φ
m= n} . That B and D are ι-skew just means that ´

`
u,v`

´
=6 ´

`
m,n`

´
. It follows from (1.2.4) that
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there exists a unique element ψ∈M such that ψ
u= v and ψ

m= n . This establishes (8.3.2).

[(3)] Let θ be any element of L. We shall first show that

θ
����•
∩M=6 ø . (4)

In view of the Jordon canonical form, we may choose a tripleton {0,1,∞} of elements of M relative to which

either

(∃ a∈M) θ=
(

a 0

0 1

)
a 0

0 1
(5)

or

(∃ a∈M) θ=
(

a 1

0 a

)
a 1

0 a (6)

where notation is as in (1.6).

If (5) holds, we define

ψ ≡
(
1 0

0 1

)
1 0

0 1

and check that (
a 0

0 1

)
a 0

0 1
◦
(
0 1

1 0

)
0 1

1 0
◦
(

a 0

0 1

)
a 0

0 1
=
(
0 a
a 0

)
0 a
a 0

= a
(
0 1

1 0

)
0 1

1 0
=
(
0 1

1 0

)
0 1

1 0

which means that ψ is in θ
����•
∩M . If (6) holds, we define

ψ ≡
(
1 0

0 1

)
1 0

0 1

and check that (
a 1

0 a

)
a 1

0 a ◦
(
1 0

0 1

)
1 0

0 1
◦
(

a 1

0 a

)
a 1

0 a =

(
a2 0

0 a2

)
a2 0

0 a2
= a2

(
1 0

0 1

)
1 0

0 1
=
(
1 0

0 1

)
1 0

0 1

which means that ψ is in θ
����•
∩M . We have established (5).

Now suppose that {α,β}⊂L . From (5) follows that there exists some χ in (α−1◦β)
����•
∩M . Letting

γ≡α◦χ , we compute

bbγ,α,γcc= bbα◦χ,α,α◦χcc=α◦χ◦α−1◦α◦χ=α◦χ◦χ=α

which implies that γ is in α����• . Furthermore

bbγ,β,γcc= bbα◦χ,β,α◦χcc=α◦χ◦β−1◦α◦χ=α◦bbχ,α−1◦β,χcc=α◦α−1◦β=β .

Thus γ is in both α����• and β
����•

, which proves that L is a properly linear libra. Q.E.D.

(8.10) Definition, Notation and Discussion Let L be a meridian libra with a meridian aggregate

T of balanced subsets of L . It being somewhat cumbersome to deal with M
 T  and G

 T  , we

shall at times deal with a representation ρ of L equivalent to the left T -inner representation. Such a

representation will be said to be characteristic. We shall reserve µ
T  ↪→ ρ and ν

T  ↪→ ρ to

represent the bijections such that

(∀ a∈L) ρa = ν◦a T ◦µ−1 . (1)
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In this case we shall write M for ρ and N for ρ . We shall write G for the family of homographies of the

meridian M and M for the family of meridian involutions of M .

For a given a∈L it is sometimes expedient to form the representation

a
ρ ≡ρa

−1◦ρ (2)

of L which has the property that M =
a
ρ =

a
ρ . We shall say that

a
ρ is the a-representation founded on

ρ . In this case we shall sometimes denote one element of M by ∞, write F for M4{∞} , and then choose

two distinct elements 0 and 1 in F . We shall use the field operations of addition and multiplication defined

in F as in (1.6). Such a choice of 0 , 1 and ∞ will be called a choice of a basis for M . Adopting the

terminology of (1.6.2), for {a,b,c,d}⊂F and x∈M , we have

(
a b
c d

)
a b
c d

x ≡

{
a·x+b
c·x+d if x∈F and c·x+d =6 0;

b
d if x =∞ and d =6 0;

∞ otherwise.

(3)

From Theorem (8.7) we know that M is a meridian where

{a
ρx : x∈a����•}=M , the family of meridian involutions of M (4)

and

{a
ρx : x∈L}=G , the family of homographies of M . (5)

(8.11) Remarks In the case where L =L as in (7.5), we take for ρ the function

τ L ↪→ T
T

. (1)

Thus in this case

M = ρ = T and N = ρ = T . (2)

If C≡a����•∩T , and

γ T 3K ↪→K∧C∈C , (3)

then

L3a ↪→ γ◦a◦γ−1∈C
C

(4)

is a characteristic representation of L of which the range is the set of homographies of the circle meridian.

(8.12) Theorem Let L be a meridian libra with meridian aggregate T . Let ρ be a characteristic

representation of L , and let
a
ρ be a corresponding a-representation. Then

(∀ {a,b,c}⊂M and {u,v,w}∈M tripletons)(∃ ! x∈L)
a
ρx

a= u ,
a
ρx

b= v and
a
ρx

c= w , (1)

(∀ {a,b,c}⊂M and {r,s,t}∈N tripletons)(∃ ! x∈L) ρx

a= r , ρx

s= v and ρx

c= t , (2)
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(∀ {A,B ,C }⊂
T  and {U,V,W}⊂

T  tripletons)(∃ ! x∈L)

(3)
x
T A=U , x

T B =V and x
T C =W

and (∀ {A,B,C}⊂T pairwise skew) A∩B∩C is a singleton. (4)

Proof. [
(1)

>] Follows from (1.2.1) applied to (8.7).

[
(2)

>] Let bu,v,wc≡br,s,tc and apply (1).

[
(3)

>] Follows from the fact that ρ and the left inner representation are equivalent.

[
(4)

>] Let A , B and C in T be pairwise skew. Then A , B and C are pairwise distinct, as are

A , B and C . By (3) there is a unique x∈L such that

x
T  A

= A , x
T  B

= B and x
T  C

= C .

By Theorem (5.18.2), this implies that x∈A∩B∩C . For any y∈A∩B∩C it would also hold that

y
T  A

= A , y
T  B

= B and y
T  C

= C ,

whence follows that y must be x . Q.E.D.

(8.13) Lemma Let L be a meridian libra with meridian aggregate T . Let
a
ρ be an a-representation

for a∈L. Let b∈L be distinct from a . Then there exists a choice of basis and {q,r}⊂F such that, if

A ≡{
(

e rd
qd e

)
e rd

qd e
: {e,d}⊂F and e2 =6 qrd2} and B ≡{

(
e rd

qd e

)
e rd

qd e
: {e,d}⊂F and e2 =6 qrd2} ,

then

(∀ {u,v}⊂A a doubleton) {u,v}
•

= B , (1)

(∀ {g,h}⊂B a doubleton) {g,h}
•

= A (2)

and A
•

= B and B
•

= A . (3)

Furthermore, these choices can be made such that

a
ρb =

(
1 r
q 1

)
1 r
q 1

if b∈6 a����• and
a
ρb =

(
0 r
q 0

)
0 r
q 0

if b∈a����• (4)

Proof. Suppose first that b∈a����•. Let 0 be any element of M and set ∞≡ρb

0 . Let 1 be any third element

distinct from 0 and ∞ and define q≡1 and r≡ a
ρb

1 .

[
(4)

>] Now suppose that b∈6 a����• . It follows from (1.3.5) that there exists π∈M with fixed points and

σ∈M such that
a
ρb =φ◦σ . Let 0 and ∞ be the fixed points of π and let 1 be any third element of M distinct

from 0 and ∞ . Then π=
(
1 0

0 1

)
1 0

0 1
. Since σ is self-inverse, there exist {i,j,k}⊂F such that σ=

(
i j

k i

)
i j

k i
. Then

a
ρb =π◦σ=

(
1 0

0 1

)
1 0

0 1
◦
(

i j

k i

)
i j

k i
=

(
i j

k i

)
i j

k i
.

The hypothesis that b∈6 a����• insures that i cannot by 0 . We let q≡ k
i and r≡

j
i . It is now evident that (4)

holds.
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[
(1)

>] Whenever {u,v}⊂A , direct calculation shows that

B⊂{u,v}
•

. (5)

Let {u,v}⊂A be a doubleton and choose{d,e,s,t}⊂F of cardinality 4 such that

a
ρu =

(
e rd

qd e

)
e rd

qd e
and e2 =6 qrd2 (6)

and

a
ρu =

(
t rs
qs t

)
t rs
qs t

and t2 =6 qrs2 . (7)

Let p be a member of {u,v}
•

and choose {w,x,y,z}⊂M such that

a
ρp =

(
w x
y z

)
w x
y z and wz =6 xy . (8)

Then

bu,p,uc= p < >

(
e rd

qd e

)
e rd

qd e
◦
(

w x
y z

)
w x
y z

−1 =
(

w x
y z

)
w x
y z ◦

(
e rd

qd e

)
e rd

qd e
−1

< >

(9)(
ez rdy rdw ex

qdz ey ew qdx

)
ez rdy rdw ex

qdz ey ew qdx
=

(
ew qdx rdw+ex

qdz+ey ez rdy

)
ew qdx rdw+ex

qdz+ey ez rdy
.

Equality (9) implies that the matrix

[
ez rdy rdw ex
qdz dy ew qdx

]
is a non-0 multiple k of the matrix[

ew qdx (rdw ex)
(qdz dy) ez rdy

]
. If k= 1 , then

rdw rdy = ew+qdx (10)

and, if k =6 1 , then

rdw ex = 0= qdz ey and ez rdy = ew qdx . (11)

If e = 0 , then (11) and (6) imply that w = 0= z and ry = qx: thus

a
ρp =

(
w x
y z

)
w x
y z =

(
0

ry
q

y 0

)
0

ry
q

y 0

=

(
0 ry

qy 0

)
0 ry

qy 0
=

(
e rd

qd e

)
e rd

qd e
=

a
ρu . (12)

If e =6 0 , then (11) and (6) imply

x = r d
e w , y = q d

e z , z = r d
e y+w q d

e x ===⇒ z = r q (de)2 z+w q r(de)2 w ===⇒

(1 d2

e2
r q) z = (1 d2

e2
q r) w

by (6)
z = w ===⇒ x = r d y ===⇒

a
ρp =

 w r (de) w

q (de) w w

w r (de) w

q (de) w w
=

(
e r d

q d e

)
e r d

q d e
=

a
ρu . (13)

Since u is not in {u,v}
•

and p is , it follows from (12) and (13) that (11) cannot hold. It follows that
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(10) must hold, and so

e(z+w) = d(qx+ry) (14)

holds. An analogous argument, using v instead of u, yields

t(z+w) = s(qx+ry) . (15)

From (14) and (15) follows that either

z+w = 0= qx+ry (16)

or

e
t = d

s . (17)

If (17) held, then

a
ρu =

(
e rd

qd e

)
e rd

qd e
=

 dt
s rd

qd dt
s

dt
s rd

qd dt
s

=

(
t rs
qs t

)
t rs
qs t

=
a
ρv

which would be absurd since
a
ρ is faithful. It follows that (16) holds and so(

w x
y z

)
w x
y z =

(
w

ry
q

y w

)
w

ry
q

y w
=
( qw ry

qy qw

)qw ry
qy qw ,

which in turn implies that p is in B . thus {u,v}
•
⊂B . This, with (5), establishes (1).

[
(2)

>] Whenever {g,h}⊂B , direct calculations shows that

A⊂{g,h}
•

. (18)

Let {g,h}⊂B be a doubleton and choose {d,e,s,t}⊂F of cardinality 4 such that(
e -rd

qd e

)
e -rd

qd e
and e2 =6 qrd2 , (19)

(
d -rd
qs t

)
d -rd
qs t

and t2 =6 qrs2 . (20)

Let p be a member of {g,h}
•

and choose {w,x,y,z}⊂M such that

a
ρp =

(
w x
y z

)
w x
y z and wz =6 xy . (21)

Then

bg,p,gc= p < >

(
e rd

qd e

)
e rd

qd e
◦
(

w x
y z

)
w x
y z

−1 =
(

w x
y z

)
w x
y z ◦

(
e rd

qd e

)
e rd

qd e
−1

< >

(
ez+rdy ex rdw

qdz+ey qdx ew

)
ez+rdy ex rdw

qdz+ey qdx ew
=

(
qdx+ew ex rdw

qdz+ey ez rdy

)
qdx+ew ex rdw

qdz+ey ez rdy
. (22)

Equality (22) implies that the matrix

[
ez + rdy ex rdw
qdz + ey qdx ew

]
is a non-0 multiple k of the matrix
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[
qdx+ ew ex rdw
qdz + ey ez rdy

]
. If k = 1 , then

ez+rdy = qdx+ew (23)

and if k =6 1 , then

ez rdw = 0= qdz+ey and ez+rdy = qdx ew . (24)

If e = 0 , then (24) and (19) imply that w = 0= z and ry = qx: thus

a
ρp =

(
w x
y z

)
w x
y z =

(
0

ry
q

y 0

)
0

ry
q

y 0

=

(
e rd

qd e

)
e rd

qd e
=

a
ρg . (25)

If e =6 0 , then (24) and (19) imply that

x = r(de)w , y = q(de)z , z = (de)y w q(de)x===⇒z = rq(de)2z w+qr(de)2w===⇒

(1 (de)2rq)z = (1 (de)2rq)w
by (19)

>z = w===⇒x = rdy===⇒

a
ρp =

 w r(de)w

q(de)w w

w r(de)w

q(de)w w
=

(
e rd

qd e

)
e rd

qd e
=

a
ρg . (26)

Since u is not in {u,v}
•

and p is, it follows from (25) and (26) that (24) cannot hold. Thus (23) must hold,

and so

e(z w) = d(qx ry) (27)

holds. An analogous argument, using h instead of g, yields

t(z w) = s(qx ry) . (28)

From (27) and (28) follows that either

z w = 0= qx ry (29)

or

e
t = d

s . (30)

If (30) held, then

a
ρg =

(
e rd

qd e

)
e rd

qd e
=

 dt
s rd

qd dt
s

dt
s rd

qd dt
s

=

(
t rs
qs t

)
t rs
qs t

=
a
ρh

which would be absurd since
a
ρ is faithful. It follows that (29) holds and so

a
ρp =

(
w x
y z

)
w x
y z =

(
w

ry
q

y w

)
w

ry
q

y w
=
( qw ry

qy qw

)qw ry
qy qw ,

which in turn implies that p is in B . Thus {g,h}
•
⊂A . This, with (18), establishes (2).

[Y3
>] That A⊂A

•
follows from direct computation. Let g be in A

•
. Since and b are in A, it follows
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that g is in {a,b}
•

, which by (1) is just B . Hence A
•

=∞ . That B
•

= T can be shown analogously. Q.E.D.

(8.14) Theorem Let L be a meridian libra with meridian aggregate T . Let a and b be distinct

elements of L. Then

{a,b}
•

has at least three elements, (1)

{a,b}
•

is balanced, (2)

(∀ {x,y}⊂{a,b}
•

a doubleton) {a,b}
•

= {x,y}
••

(3)

and (∀ {c,d}⊂{a,b}
••

a doubleton) {c,d}
•

= {a,b}
•

. (4)

Proof. [
(1)

>] Let 0 , 1 , ∞ , A , B , q and r be as in Lemma (8.13). Then both
a
ρa =

(
1 0

0 1

)
1 0

0 1
and

a
ρb are in

A , and are distinct. It follows from (8.13.1) that

{a,b}
•

= B . (5)

We may and shall presume that 1=6 qr =6 1 . It follows that
(
1 0

0 1

)
1 0

0 1
,
(

1 r
q 1

)
1 r
q 1

and
(

1 r
q 1

)
1 r
q 1

are pairwise

distinct elements of B . This, with (5), establishes (1).

[
(2)

>] Follows from (5) and direct computation.

[
(3)

>] Let x and y be distinct elements of {a,b}
•
. Then

{a,b}
• by (8.13.1)

B ===⇒ {a,b}
••

=B
• by (8.13.3)

A
by (8.13.2) {x,y}

•

which is (3).

[
(4)

>] In (3) we now replace x and y by c and d then replace a and b by x and y: this yields {c,d}
•

= {x,y}
••

.

Hence {c,d}
•

= {a,b}
•

, which is (4). Q.E.D.

(8.15) Definition and Notation For distinct a and b in a meridian libra L we shall denote the

set {a,b}
••

by
←→
a,b and refer to it as a line trace. We adopt the notation

Llines≡{
←→
a,b : {a,b}⊂L is a doubleton} . (1)

(8.16) Remark For the libra L of (8.1), the concept of a line trace introduced in (8.15) agrees

with that already defined for L in (7.5).

(8.17) Theorem Let T be a meridian aggregate of a libra L and let K be an element of Llines . Then

K
•

is in Llines , (1)

K
••

= K , (2)

K∩K
•

= ø , (3)

K∪K
•

is balanced (4)

and (∀ {x,y}⊂K a doubleton)
←→
x,y = K . (5)
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Proof. [
(1)

>] Let {a,b}⊂L be a doubleton such that {a,b}
••

= K . By (8.13.1) and (8.13.3) there exist

distinct x and y in {a,b}
•

such that {a,b}
••

= {x,y}
•

. Thus

←→
x,y = {x,y}

••
= {a,b}

•••
= K

•

which establishes (1).

[
(2)

>] That (2) holds follows from (6.1.5) .

[
(3)

>] If a were an element of K∩K
•

, there would be another element b of K and we could apply (8.13)

to obtain disjoint line traces A = K and B = K
••

, which would be absurd.

[
(4)

>] That (4) holds follows from (6.3).

[
(5)

>] Let x and y be distinct elements of K. Then

K
by (2)

K
•• by (8.13.4)

> {x,y}
•

= K
•

===⇒ ←→
x,y = {x,y}

••
= K

•• by (8.13.2)
K ,

which establishes (5). Q.E.D.

(8.18) Theorem Let L be a meridian libra with meridian aggregate T . Let a be an element of L

and B an element of T . Then

(B∩ a����•)∈Llines (1)

and a∈B < >(B∩ a����•)
•
⊂B . (2)

Proof. There are two cases to consider: either B = [0
a
ρ

0 ] for some 0∈M , or B = [0
a
ρ ∞ ] for distinct 0 and

∞ in M .

[Case I: B = [0
a
ρ

0 ] for some 0∈M] Choose 1 and ∞ in M distinct from each other and from 0 , and let

F≡M4{∞} . Since
a
ρa =

(
1 0

0 1

)
1 0

0 1
, it follows that

{a
ρx : x∈(B∩ a����•)}= {

(
1 0

r 1

)
1 0

r 1
: r∈F} . (3)

Let {u,v}⊂(B∩ a����•) satisgy
a
ρu =

(
1 0

0 1

)
1 0

0 1
and

a
ρv =

(
1 0

1 1

)
1 0

1 1
. For {w,x,y,z}⊂F we have

bba
ρu,
(

w x
y z

)
w x
y z ,

a
ρucc=

(
z x
y w

)
z x
y w

which implies that

bba
ρu,
(

w x
y z

)
w x
y z ,

a
ρucc=

(
w x
y z

)
w x
y z < > (∃ k∈F4{0})

( z x x
z+y x w x+w

)z x x
z+y x w x+w = k·

(
w x
y z

)
w x
y z

which implies that

{u,v}
•

= {t∈L : (∃ r∈F)
a
ρt =

(
1 0

r 1

)
1 0

r 1
} . (4)

It follows from (3) and (4) that
←→
u,v = B∩ a����• . Furthermore, a is in B and, from (4),

(B∩ a����•)
•

= {u,v}
•
⊂ [0

a
ρ

0 ] = B .

Thus (1) and (2) hold for case I.

[Case II: B = [0
a
ρ ∞ ] for 0 and M distinct] Choose 1 from M distinct from 0 and ∞ and let F≡M4{∞} .
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Then

{a
ρx : x∈(B∩ a����•)}= {

(
0 r
1 0

)
0 r
1 0

: r∈F} . (5)

Let {u,v}⊂(B∩ a����•) satisfy
a
ρu =

(
0 1

1 0

)
0 1

1 0
and

a
ρv =

(
0 1

0 0

)
0 1

0 0
. For {w,x,y,z}⊂F we have

ba
ρu,
(

w x
y z

)
w x
y z ,

a
ρuc=

(
w x
y z

)
w x
y z < > (∃ k∈F4{0})

( w y
x z

)w y
x z = k·

(
w x
y z

)
w x
y z

and

ba
ρv,
(

w x
y z

)
w x
y z ,

a
ρvc=

(
w x
y z

)
w x
y z < > (∃ k∈F4{0})

( w y
x z

)w y
x z = k·

(
w x
y z

)
w x
y z

which implies that

{u,v}
•

= {t∈L : (∃ r∈F)
a
ρt =

(
1 0

0 r

)
1 0

0 r } . (6)

It follows from (3) and (4) that
←→
u,v = B∩ a����• . Furthermore a is not in B but is in(B∩ a����•)

•
. Thus (1) and (2)

hold for case II. Q.E.D.

(8.19) Remark Let L≡L as in Sectiom (7). Then (8.18.1) means that the intersection of the plane

trace of a plane tangent to the quadric T with the plane trace of a plane not tangent to T is a line trace.

(8.20) Corollary Let L be a meridian libra with meridian aggregate T . Let K be an element of

Llines and let A be an element of T . If K∩A has at least two elements, then K⊂A.

Proof. Let a be in K
•

and let {b,c}⊂K∩A be a doubleton. From (8.18.1) follows that A∩ a����• is in Llines

and, from (8.17.5) follows that K =
←→
b,c = A∩ a����• . Q.E.D.

(8.21) Corollary Let L be a meridian libra with meridian aggregate T . Let A be an element of

T . Then A
•

= ø .

Proof. Assume that a were in a����• . It would follow that A∩ a����• = A , and so (8.18.1) would imply that A is in

Llines . From (8.12.3) would follow that a∈6 A . Let b be in A . Then ba,b,Ac would contain a and so would

not be A. From (6.3) would follow that A would be abelian. For {c,d}⊂A we would have

bd,ba,b,cc,dc= bbd,c,bc,a,dc= bbb,c,dc,a,dc= bb,c,d,d,ac= bb,c,ac= ba,b,cc

which would mean that d∈ba,b,Ac
•

. This would imply that A⊂ba,b,Ac
•

. Since left translates are pairwise

disjoint, it would follow that A would have to be ba,b,Ac , which would be absurd. Q.E.D.

(8.22) Theorem Let L be a meridian libra with meridian aggregate T . Let A and B be distinct

skew elements of T . Then

A∩B is in Llines (1)

and (A∩B)
•

= ( A ∧ B )∩ ( B ∧ A ) . (2)

Proof. Let a be in A . There exist ∞∈M and n∈N such that A = [∞
a
ρ

n] . We have ρa

∞= n and so

a
ρa

∞= (ρa
−1◦ρa)

∞= (ρa
−1)

n=∞ ===⇒ A = [∞
a
ρ ∞ ] .
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There exists {0,1}⊂M such that B = [0 ρ
1] . Since A and b are skew, neither 0 nor 1 can be ∞ . We have

(∀ x∈A∩B)(∃ r∈F)
a
ρx =

(
r 1

0 1

)
r 1

0 1
. (3)

Let r and s in L satisfy

a
ρr =

(
r 1

0 1

)
r 1

0 1
and

a
ρs =

(
1 1

0 1

)
1 1

0 1
.

Simple calculations show that a necessary and sufficient condition for x∈L to be in r���
�•∩ s���

�• is for there to

exist u∈F such that

a
ρx =

(
1 u
1 0

)
1 u
1 0

. (4)

Thus
←→
r,s = {x∈L : (∃ r∈F)

a
ρx =

(
r 1

0 1

)
r 1

0 1
} and

(
←→
r,s )

•
= {x∈L : (∃ u∈F)

a
ρx =

(
1 u
1 0

)
1 u
1 0

} . (5)

The first of these two equalities implies that
←→
r,s = A∩B and is in Llines . The set of all x∈L satisfying (5)

is just

[∞
a
ρ

1]∩ [0
a
ρ ∞] = ( A ∧ B )∩ ( B ∧ A ) .

From this last and equation (5) follows that

(A∩B)
•

= ( A ∧ B )∩ ( B ∧ A ) .

Q.E.D.

(8.23) Remarks Let L≡L as in (8.1) and let P and Q be two planes tangent to the quadric

T . Then the traces of P and Q are skew if the line P∩Q of intersection is not tangent to T .

The plane P contains a line P1 from the regulus T and a line P2 from the regulus T . Similarly, the

plane Q contains a line Q1 from the regulus T and a line Q2 from the regulus T . The content of (8.22.2)

is that the line dual to P∩Q relative to T is just the intersection of the plane containing the lines P1 and

Q2 with the plane containing the lines P2 and Q1 .

(8.24) Corollary Let L be a meridian libra with meridian aggregate T . Let A and B be skew

elements of T . Then

{x∈L : B = bx,A,xc}= (A∩B)
o

. (1)

Proof. This follows from (5.18.1) and (8.22.2). Q.E.D.

(8.25) Theorem Let L be a meridian libra with meridian aggregate T . Let K be in Llines . Then

the four following statements are pairwise equaivalent:

(∃A∈T ) K∪K
•
⊂A , (1)

(∃A∈T ) K⊂A and K
•
∩A =6 ø , (2)

(∃ ! B∈T ) K⊂B (3)
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and (∃A∈T ) {E∈T : K∩E = ø}= {D∈( A ∪ A ) : D =6 A} . (4)

If these four statements hold, then

(∀ n∈K) K∩n����• = ø . (5)

Proof. [(1)===⇒(2)] Trivial.

[(2)===⇒(3)] Suppose that (2) holds and that a is in K
•
∩A . Then K⊂(a����•∩A) and so by Theorem

(8.18.1), K equals a����•∩A . If ba,A,ac were not A , they obviously would form a skew pair and so Theo-

rem (8.22.1) would imply that K = A∩ ba,A,ac , which would imply that a∈(K∩K
•
) , which would violate

(8.17.3). It follows that A = ba,A,ac . Thus, if B were any element of T distinct from A for which B⊂K , then

B and A would be a-skew, and so Theorem (8.7.2) would imply that A∩B∩ a����• were a singleton, which would

be absurd. It follows that (3) holds.

[(3)===⇒(4) and (1)] Suppose that (3) holds. Let 0 , 1 , ∞ , q and r be as in Lemma (8.13). Since a

is in B and
a
ρa is the identity mapping, there exists m∈M such that B = [m

a
ρ

m] . If m were in F , then

for {d,e}⊂M such that e2 =6 qrd2 ,

(
e rd

qd e

)
e rd

qd e

m= m . This were absurd, so m must be ∞ . It follows that

q = 0=6 r . That

{D∈( B ∧ B ) : D =6 B}⊂{E∈T : K∩E = ø}

follows from the fact that B and B are partitions of L . Let E∈T be disjoint from K and assume that E

were neither B nor B . Then there would exist {j,k}⊂F such that E = [j
a
ρ

k] . but 1 (
k j

r )r

(
k j

r )q 1

1 (
k j

r )r

(
k j

r )q 1

j=

(
1 k j
0 1

)
1 k j
0 1

j= k ===⇒ K∩E =6 ø

which would be absurd. It follows that (4) holds. From Lemma (8.10) follows that the image by
a
ρ of anything

in K
•

is of the form

(
e dr
0 e

)
e dr
0 e

and so it is evidently in [∞
a
ρ ∞ ] = B . Thus (1) holds.

[(4)===⇒(3)] Trivial.

[(1)===⇒(5)] Suppose that (1) holds. Since A and A are partitions of L , it is trivial that

{D∈ A ∩ A : D =6 A}⊂{E∈T : K∩E = ø} . (6)

Suppose that B∈T is neither a left nor a right translate of A . Let a be an element of K
•

. Since a is in A , it

follows that A = ba,Ak,ac which implies that A and B are not a-skew. By (8.7.2) we know that a����•∩A∩B is

a singleton. But a����•∩A = K , which implies that K∩B is a singleton. Thus the set containment symbol in

(6) can be replaced by an equals symbol. Hence (5) holds. Q.E.D.

(8.26) Definition We shall say that a line trace which satisfies (8.25.3) is accident. If a line

trace is a subset of more than one element of T , we shall say that it is incident. If a line trace is neither

accident nor incident, we shall say that it is excident.
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An Accident Line Trace K with K
o

Showing Rules of their Plane

(8.27) Theorem Let L be a meridian libra with meridian aggregate T . Let K be a line trace.

The following five statements are pairwise equivalent:

K is incident , (1)

#{A∈T : K⊂A}= 2 , (2)

(∃ {A,B}⊂T ) K = A∩B , (3)

K
•

is incident (4)

and (∃ {A,B}⊂T skew) K = {x∈L : bx,A,xc= B .} (5)

Proof. [(1) < >(2)] Suppose that (1) holds. Assume that there existed a tripleton {A,B,C}⊂T of which K

were a subset of each element. Then A would be a partition of L of which no element but A were a superset of

K . Consequently neither B nor C could be in A , whence would follow that A could neither equal B nor

C . Similarly, B could not be C . Since
T  is a meridian, it would follow from (1.2.1) that there would

exist exactly one element x of L such that x
T  A

= A , x
T  B

= B and x
T  C

= C . Evidently

any element of K could be taken for x in these three equalities and by (8.11.1), K would have at least three

distinct elements. This would be absurd, which establishes (2). That (2) implies (1) is trivial.

[(2)===⇒(3)] Suppose that (2) holds and that A and B are the elements of T of which K is a subset. From

Theorem (8.18.1) follows that A∩B is a line trace and so, by (8.11.4), it must be K. Thus (3) holds.

[(1) < >(4)] Suppose again that (1) holds and let {A,B}⊂T be a doubleton of which K is a subset of

each element. From Theorem (8.18) we know that

K
•

= ( A ∩ B )∩ ( B ∧ A ) .

This implies that K is a subset of both A ∩ B and B ∩ A and so (4) holds. Since K = K
••

, we also

have that (4) implies (1).

[(1)===⇒(4)] Suppose that (1) holds and that A and B are the elements of T each of which K is a

subset. Assume that there existed C∈T such that K∩C = ø and K
•
⊂6 C . Let a be in K

•
. We saw above

that ba,A,ac= B and so the pair A and C would be a-skew. It follows from Theorem (8.7.2) that a����•∩A∩C

would be a singleton. But a����•∩A is a superset of K and so by (8.18.1) is precisely K . Thus the singleton
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a����•∩A∩C would be a subset of K, which would be absurd. We have shown that

{C∈T : K∩C = ø}⊂{D∈T : K
•
⊂D} . (6)

On the other hand, if D∈T and (K
•
∪K)⊂D , then Theorem (8.25.2) would imply that K were accident. It

follows that the containment symbol in (6) may be replaced by the equality symbol. This establishes (5)

[(4) < >(5)] From Theorem (5.18.2) and Theorem (8.22.2) follows that, for any skew A and B in T ,

{x∈L : bx,A,xc= B}= ( A ∧ B )∩ ( B ∧ A ) = (A∩B)
•

.

Thus (5) is equivalent to the statement that K = (A∩B)
•

for some {A,B}⊂T . If K
•

is incident, then

K
•

= A∩B for some {A,B}⊂T by (3), which in turn implies that K = K
••

= (A∩B)
•

. On the other hand,

if (5) holds, then K
•

= (A∩B)
••

= A∩B and so K
•

is incident. Q.E.D.

An Incident Line Trace K with K
•

(8.28) Discussion Let K be an incident line trace. Then K
•

is incident too and so there are precisely

two elements A and B of T which are supersets of K
•

: in fact we have K
•

= A∩B . Let C≡ A ∧ B and

D≡ B ∧ A . Then C and D are the two elements of T which are supersets of K : K = C∩D . Thus the

incident line traces are the intersections of the skew pairs of T .

(8.29) Theorem Let T be a meridian aggregate of a properly linear libra L . For K a line trace,

the following are pairwise equivalent statements:

K is excident , (1)

K
•

is excident , (2)

(∀A∈T ) K∩A =6 ø (3)

and (∀A∈T ) K∩A is a singleton. (4)
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Proof. [(1) < >(2)] Suppose that (1) holds. From (8.25.1) follows that K
•

cannote be accident. From

(8.27.3) we know that K
•

cannot be incident. Thus (2) holds. That (2) implies (1) follows from interchanging

the roles of K and K
•

.

[(3)===⇒(1)] Suppose that (3) holds. That K cannot be accident follows from (8.25.4). Than K cannot

be incident follows from (8.27.4). Thus (1) holds.

[(3)===⇒(4)] Suppose that (1) holds. Let a and b be distinct points of K . Let 0 be any element of M

and let ∞≡ a
ρb

0 . Then there exists {r,s,l}⊂F such that
a
ρb =

(
r l
s 0

)
r l
s 0

. It follows that

K
•

= {x∈L : (∃ {p,q}⊂F)
a
ρx =

( p q
qs pr p

)p q
qs pr p } .

From this follows that

K = K
••

= {x∈L : (∃ {w,z}⊂F)
a
ρx =

(
w z
sz w rz

)
w z
sz w rz } .

Let A be any element of T . Then there exists {m,n}⊂M such that A = [m
a
ρ

n] . Evidently a is in [m
a
ρ

n]

whenever m = n . If any other k∈K were in [m
a
ρ

n] for m = n , then all of K would be as well, and so K

would not be excident. Thus we may and shall presume that m =6 n . If m =∞ , we set z≡ l and w≡ l+rn to

obtain x∈ [m
a
ρ

n] . If n =∞ , we set w≡ l and z≡ m to obtain x∈ [m
a
ρ

n] . If neither m nor n is ∞ , we set

z≡m n and w≡sm rn l to obtain x∈ [m
a
ρ

n] . It follows that (4) holds.

[(4)===⇒(3)] Trivial. Q.E.D.

An Excident Line Trace K with K
•

(8.30) Theorem Let L be a meridian libra with meridian aggregate T . Let a be in L and b be

in a����• . Then

b
����•
∩ a����• is a line trace , (1)

(∀ c∈(b
����•
∩ a����•)) c����•∩ b

����•
∩ a����• is a singleton {d} and b = bc,a,dc , (2)

70



if
←→
a,b is incident, (∃ c∈(b

����•
∩ a����•))(∃ d∈(c���

�•∩b
����•
∩ a����•))

←→
a,c and

←→
c,d are incident and b = bc,a,dc (3)

and

if
←→
a,bis excident, (∃ c∈(b

����•
∩ a����•))(∃ d∈(c���

�•∩b
����•
∩ a����•))

←→
a,c is incident,

←→
c,d is excident and b = bc,a,dc . (4)

Proof. Let 0 be a point in M not fixed by
a
ρb . Let ∞≡ a

ρb

0 and choose 1∈M distinct from 0 and ∞ . Then

here exists e∈M such that

a
ρb =

(
0 1

e 0

)
0 1

e 0
. (5)

It follows that

{a
ρx : x∈(a����•∩b

����•
)}= {

( x y
ey x

)x y
ey x : {x,y}⊂F} . (6)

This implies that

b
����•
∩ a����• =

←→
c,d where

a
ρc =

(
1 0

0 1

)
1 0

0 1
and

(
0 1

e 0

)
0 1

e 0

which establishes (1). That (2) holds now follows from direct calculation.

If
←→
a,b is incident, then it is a subset of two elements A and B of T and so in particular {a,b}⊂A∩B :

there exists m and 1 in M distinct such that
a
ρb

1= 1 and
a
ρb

m= m . Thus

a
ρb =

(
0 1

1 0

)
0 1

1 0
,

a
ρc =

(
1 0

0 1

)
1 0

0 1
and

a
ρd =

(
0 1

e 0

)
0 1

e 0
.

Evidently
←→
a,c ⊂([0

a
ρ

0 ]∩ [∞
a
ρ ∞ ]) and so

←→
a,c is incident. In addition

←→
c,d ⊂ [1

a
ρ

1 ]∩ [ 1

a
ρ

1 ] , which

implies that
←→
c,d is incident. Thus (3) holds.

If
←→
a,b is excident, then it has no superset in T . In particular, the equation t =

a
ρb

t=
1

et has no solution

for t . From equation (2) we know that
a
ρc is of the form

( x y
ey x

)x y
ey x and

a
ρd is of the form

(
r s
es r

)
r s
es r . The

equation
a
ρd

t=
a
ρc

t resolves into et2 = 1 . Hence the line trace
←→
c,d is excident as well. If we choose c to

be such that
a
ρc =

(
1 0

0 1

)
1 0

0 1
, then evidently

←→
a,c ⊂([0

a
ρ

0 ]∩ [∞
a
ρ ∞ ]) and so

←→
a,c is incident. This establishes

(4). QED

(8.31) Theorem Let L be a meridian libra with meridian aggregate T . Let K be a line trace and

let a be an element of K . Then

K∩ a����• =6 ø < > K is not accident. (1)

Proof. [===⇒] This follows from (8.25.5).

[⇐== ] Let b∈K be distinct from a and assume that K were not accident. If b were in a����• , we would

be done, so we shall presume that b is not in a• . By Lemma (8.10) there would exist an a-representation
a
ρ , a choice of basis, and {q,r}⊂F such that

K = {
(

e rd
qd e

)
e rd

qd e
: {e,d}⊂F} and

a
ρb =

(
1 r
q 1

)
1 r
q 1

.

Evidently an element of K is in a����• if and only if it is of the form
(

0 r
q 0

)
0 r
q 0

. For this it is necessary and sufficient

that q =6 0=6 r . But one easily checks that
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q = 0 ===⇒ K⊂ [∞
a
ρ ∞ ] and r = 0 ===⇒ K⊂ [0

a
ρ

0 ]

both of which would be absurd, since we have assumed K not to be accident. Q.E.D.

(8.32) Remarks Let L be as in (8.1), let K be a line in E and let M be its dual line
⋂

x∈K
τ
x .

Then K̂ is incident if K intersects T in two separate points. Theorem (8.27.4) states that, if this is true,

then M̂ is also incident. Theorem (8.27.4) states that K̂ is incident if and only if K is the intersection of two

planes tangent to T of which the intersection is not a line contained in T .

The line trace K̂ is excident if K is disjoint from T . Theorem (8.29.2) states that, if this is true, then

M̂ is also excident. It follows from (8.29.3) that K̂ is excident if, and only if, K intersects each tangent plane

to T in a point not in T .

The line trace K̂ is accident if K is tangent to T at a single point. Since for incident K̂ , M̂ is also

incident, and for excident K̂ , M̂ is also excident, it follows logically that if K̂ is accident, then M̂ must also

be accident. Theorem (8.31) states that K̂ is accident if, and only if, there exists a plane in E not tangent

to T of which the intersection with K is void.

(8.33) Theorem Let L be a meridian libra with meridian aggregate T . Let a and b be distinct

elements of L. Then
←→
a,b is excident < >(∃ {c,d}⊂a����•)

←→
a,c is incident,

←→
c,d is excident, and b = bc,a,dc , (1)

←→
a,b is incident < >(∃ {c,d}⊂a����•)

←→
a,c and

←→
c,d are incident and b = bc,a,dc (2)

and
←→
a,b is accident < >(∃ {c,d}⊂a����•)

←→
a,c is incident,

←→
c,d is excident and b = bc,a,dc . (3)

Proof. Suppose first that b is in a����• . If
←→
a,b were accident, then Thereom (8.25.5) would imply that

b∈(a����•∩
←→
a,b) = ø : an absurdity. Thus

←→
a,b is either excident or incident, and so (2) and (3) follow from

Theorem (8.30.4) and (8.30.3).

For the remainder of this proof we shall presume that b is not in a����• . Suppose that
←→
a,b is incident. Then

←→
a,b is contained in two distince elements of T , which means that

a
ρa and

a
ρb agre on two distinct elements of

M . This means that
a
ρb has two fixed points, and so is a dilation. By (1.2.3) there exist {π,σ} M agreeing

on two distinct points of M and such that π is a dilation and such that
a
ρb =π◦σ . Choose {c,d}⊂a����• such

that
a
ρc =π and

a
ρd =σ . We have

bba
ρc,

a
ρa,

a
ρdcc=

a
ρc◦

a
ρd =π◦σ=

a
ρb ===⇒ b = bc,a,dc . (4)

Since
a
ρc =π has two fixed points, it agrees with

a
ρa at two points — hence the line trace

←→
a,c is incident.

Since
a
ρc and

a
ρd agree on two distinct points, it follows that

←→
c,d is incident. This establishes (2).

Now suppose that
←→
a,b is excident. This means that a and b are in no common element of T : that

a
ρb

leaves no point fixed, and thus is a pure rotation. By (1.2.4) there exists {π,σ}{M} agreeing on no point

of M , such that π is dilation and such that
a
ρb =π◦σ . Choose {c,d}⊂a����• such that

a
ρc =π and

a
ρd =σ . As

before, it follows that (1) holds and that
←→
a,c is incident. This time however,

←→
c,d is excident since

a
ρc and

a
ρd

agree on no point of M . This establishes (1).

Finally, we suppose that
←→
a,b is accident. This means that a and b are in a single element of T : that

a
ρa and

a
ρb agree on a single point of M so that

a
ρb has exactly one fixed point and is thus a translation. By

(1.2.2) there exist {π,σ}⊂M with a single common fixed point of M such that π and σ are dilations and
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such that
a
ρb =π◦σ . Choose {c,d}⊂a����• such that

a
ρc =π and

a
ρd =σ . As before, it follows that (1) holds and

that
←→
a,c is incident. This time however,

←→
c,d is accident since

a
ρc and

a
ρd agree on a single point of M . This

establishes (3). Q.E.D.

(8.34) Corollary Let L be a meridian libra with meridian aggregate T . Let a be an element of

L. Then

 L = {bx,y,zc : {x,y,z}⊂a����•} . (1)

Proof. By Theorem (8.30) there exist {a,b,c}⊂a����• such that a = bd,b,cc . That (1) holds now follows from

Theorem (8.33). Q.E.D.

(8.35) Purpose The followin two theorems are for use in a later paper.

(8.36) Theorem Let L be a meridian libra with meridian aggregate T . Let A be an element of

T and K and V be lines in E such that (K∪V)⊂A . Then either K∩V =6 ø or

(∃X∈( A ∩ A )) (K
•
∪V

•
)⊂X . (1)

Proof. Let a be any element of K . Where µ is defined as in (8.10.1), we let ∞≡µ
 A

 and F≡M4{∞} . We

have

ρa

∞= ν
a T µ−1∞= ν

a T  A
= ν

 A


and so

[∞
a
ρ ∞ ] = (µ−1∞)∧(µ−1ρa∞

) = A ∧ A = A .

Let b be an element of K distinct from a and let c be an element of V not in K . Then c =6 a and so there

exists some point 0∈F such that 1≡ a
ρc =6 0 . Let s≡ a

ρb

0 and r≡ a
ρb

1 s . It follows that

a
ρc =

(
1 0

0 1

)
1 0

0 1
and

a
ρb =

( r s
0 1

)r s
0 1

.

If r = 1 , then
a
ρa and

a
ρb agree only at the one point ∞ of M , which implies that K is accident. Direct

calculation shows that

{a,b}
•

= {x∈L : (∃ t∈F)
a
ρx =

(
1 t
0 1

)
1 t
0 1

} and K =
←→
a,b = {x∈L : (∃ t∈F)

a
ρx =

(
1 t
0 1

)
1 t
0 1

} . (2)

If r =6 1 , then
a
ρa and

a
ρb agree also at the point

s
1 r and so K is incident with

K = {x∈L : (∃ t∈F)
a
ρx =

(
t+(1 t)r (1 t)s

0 1

)
t+(1 t)r (1 t)s

0 1
} . (3)

Recalling that 1=
a
ρc

0 , we choose q∈F such that
a
ρc =

(
q 1

0 1

)
q 1

0 1
. Let d be an element of V distinct from c

and choose {u,v}⊂F such that
a
ρd =

(u v
0 1

)u v
0 1

. If q = u , arguing as above we find that V is parabolic and that

V =
←→
c,d = {x∈L : (∃ t∈F)

a
ρx =

(
q t
0 1

)
q t
0 1

} . (4)
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If q =6 u , then
a
ρc and

a
ρd agree also at v 1

q u and so V is incident and

←→
c,d = {x∈L : (∃ t∈F)

a
ρx =

(
tq+(1 t)u t+(1 t)v

0 1

)
tq+(1 t)u t+(1 t)v

0 1
} . (5)

We have four cases, which we shall examine in seriatim:

[Case I: ((2) and (4) hold]. In this case (1) holds where X≡A .

[Case II: ((2) and (5) hold]. The element y∈L for which
a
ρy =

(
1 1 u

q u
0 1

)
1 1 u

q u
0 1

is in both K and V .

[Case III: ((3) and (4) hold]. Setting t≡
q r
1 r , we have

(
q t
0 1

)
q t
0 1

=

(
t+(1 t)r (1 t)s

0 1

)
t+(1 t)r (1 t)s

0 1
and so this common

value is in both K and V .

[Case IV: ((3) and (5) hold]. We break this case into two subcases:

[Subcase I:
s

1 r = v 1
q u ] If

a
ρc

v u
q u

 were equal to v u
q u , then

K = [∞
a
ρ ∞ ]∩ [

s
1 r

a
ρ s

1 r] = [∞
a
ρ ∞ ]∩ [v 1

q u

a
ρ v 1

q u] = V

which were absurd. Thus e =6 f where e≡ v 1
q u and f≡ a

ρc

v 1
q u

 . We have

K = [∞
a
ρ ∞ ]∩ [e

a
ρ

e] and V = [∞
a
ρ ∞ ]∩ [e

a
ρ

f ]

which implies

K
•

= [∞
a
ρ

e]∩ [e
a
ρ ∞ ] and V = [∞

a
ρ

f ]∩ [e
a
ρ ∞ ]

which in turn implies (1) for X≡ [e
a
ρ ∞ ] .

[Subcase II:
s

1 r =6 v 1
q u ] Letting e≡ i v+

q u
1 r , we see that e =6 0 . We now define

t2 ≡
u r
1 rs+s v

e and t1 ≡
t2(q u)+u r

q u

and obtain (
t1+(1 t1)r (1 t1)s

0 1

)
t1+(1 t1)r (1 t1)s

0 1
=

(
t2q+(1 t2)u t2+(1 t2)v

0 1

)
t2q+(1 t2)u t2+(1 t2)v

0 1
.

Thus, in this subcase, K and V have a common element. Q.E.D.

(8.37) Theorem Let L be a meridian libra with meridian aggregate T . Let a be an element of L

and let K and V be distinct line traces contained in a����• . Then either K∩V =6 ø or

(∃X∈T ) (K
•
∪V

•
)⊂X . (1)

Proof. The line trace K
•

contaios a and so, by (8.10), there exists a choice {0,1,∞} of basis for M and a

subset {q,r} of F≡M4{∞} such that

{a
ρx : x∈L}= {

( x ry
qy x

)x ry
qy x : x,y∈F and x2 =6 qry2} . (2)

Let c be an lement of K
•

distinct from a and choose {t,u,w,v}⊂F such that
a
ρc =

(
t u
v w

)
t u
v w . Since V = {a,c}

•
,

direct computation shows that, if t =6 w , then
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{a
ρx : x∈V}= {

(
uy+vx (t w)x

(t w)y uy vx

)
uy+vx (t w)x

(t w)y uy vx
: {x,y}⊂F and (uy+vw)2+(t w)2xy =6 0} . (3)

If (uq+vr)2 =6 rq(w t)2 , then there exists d∈L such that

a
ρd =

(
uq+vr r(w t)

q(w t) (qr+vr)

)
uq+vr r(w t)

q(w t) (qr+vr)
.

Direct computation with (2) and (3) show that d is in K∩V . If (uq+vr)2 = rq(w t)2 , we have the following

cases:t =6 w and t = w and, for the first of these two cases, three subcases: q = 0 , r = 0 and qr =6 0 .

[Case t =6 w and q = 0 ] Since (uq+vr)2 = rq(w t)2 , we have v = 0 as well. This implies that

a
ρc

∞=∞ ,

whence follows that V
•
[∞

a
ρ ∞ ] . If ć ∈L is such that

a
ρć =

(
1 r
0 1

)
1 r
0 1

, then the fact that q = 0 implies that ć

is in K
•

. From (
1 r
0 1

)
1 r
0 1

∞=∞=
(
1 0

0 1

)
1 0

0 1
=

a
ρa

follows that K⊂ [∞
a
ρ ∞ ] .

[Case t =6 w and r = 0 ] Since (uq+vr)2 = rq(w t)2, it follows that u = 0 . This implies that
a
ρc

0= 0 ,

whence follows that V
•
⊂ [∞

a
ρ ∞ ] . If k∈L is such that

a
ρk =

(
1 0

q 1

)
1 0

q 1
, then the fact that r = 0 implies that k

is in K
•

. Then, since (
1 0

q 1

)
1 0

q 1

0= 0=
(
1 0

0 1

)
1 0

0 1
=

a
ρa ,

it follows that K⊂ [0
a
ρ

0 ] .

[Case t =6 w and rq =6 0 ] From (uq+vr)2 = rq(w t)2 follows that

r
q = (q

uq+vr
w t )2 .

Let e∈L satisfy
a
ρe =

(
0 r
q 0

)
0 r
q 0

. Then equation
a
ρe

x= x for x∈F is the same as the equation x2 = r
q . Thus it

has the solutions

x =±1
q(

uq+vr
w t ) .

In particular we have

e∈ [1q(
uq+vr
w t )

a
ρ 1

q(
uq+vr
w t )] ,

which, since a is there as well, implies that

V
•
⊂ [1q(

uq+vr
w t )

a
ρ 1

q(
uq+vr
w t )] .

On the other hand we have(
t u
v w

)
t u
v w

1
q(

uq+vr
w t )

= 1
q(

uq+vr
w t ) < >

1
q(

uq+vr
w t )+u = (vq

uq+vr
w t )2+w

q
uq+vr
w t < >

v r
q = w

q
uq+vr
w t

t
q

uq+vr
w t u < > v r

q =
uq+vr

q
uq
q
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which last is obviously true. It follows that
a
ρc is in[1q(

uq+vr
w t )

a
ρ 1

q(
uq+vr
w t )] . Since

a
ρa is as well, we have

V
•
⊂ [1q(

uq+vr
w t )

a
ρ 1

q(
uq+vr
w t )] .

[Case t = w] Choose d in L such that
a
ρd =

(
1 0

0 1

)
1 0

0 1
. From (2) we know that d is in K . Direct calculation

shows that d is in c���
�• , and so, since it evidently is in a����• as well, d is in V . Q.E.D.
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9. Product Libras

(9.1) Discussion, Definitions and Notation We here return to that question raised in (8.9.5)

for the circular meridian libra, but which will be investigated here for general meridian libras .

Let L be a properly linear libra. The injection

L3x ↪→ ´
`
x,x`

´
∈L×L

of L into its symmetrization17 libra L×L is only an isomorphism if L is abelian. When L is non-abelian, the

subset {´
`
x,x`

´
: x∈L} is not balanced, but one may consider the intersection of all balanced supersets which

are subsets of L×L . We shall denote that set by

L�L ≡{b ´
`
x1,x1

`
´
,. . . ,´

`
x2k-1,x2k-1

`
´
c : x∈L

2k-1
and k∈N} . (1)

Using the definition of b ,, c , (1) may be simplified to

L�L ≡{´
`
bx1,. . . ,x2k-1c,bx2k-1,. . . ,x1c`´ : x∈L

2k-1
and k∈N} . (2)

Reversing the order of the elements of the sequence in (2), one sees that

L�L ≡ {´
`
x,y`

´
: ´
`
y,x`

´
∈L�L} . (3)

Related to L�L is the subgroup of L
L

! generated by {xπx : x∈L} :18

L~L≡{x1
πx1
◦. . . ◦x2k-1

πx2k-1
: x∈L

2k-1
and k∈N} . (4)

Expanding (4), one obtains

L~L≡{bx1
,. . . ,x2k-1cπbx2k-1

,. . . ,x1c : x∈L
2k-1

and k∈N} . (5)

(9.2) Theorem For any libra L, L�L is a normal balanced subset of L×L.

Proof. For {m,n,l}⊂L

b ´
`
m,n`

´
,´
`
l,l`

´
,L�L c=

{b ´
`
m,n`

´
,´
`
l,l`

´
,´
`
x1,x1

`
´
,. . . ,´

`
x2k-1,x2k-1

`
´
c : x∈L

2k-1
and k∈N}=

{´
`
bm,l,x1,. . . ,x2k-1c,bx2k-1,. . . ,x1,l,mc`´ : x∈L

2k-1
and k∈N}=

{´
`
bm,l,x1,l,m,m,l,. . . ,m,x2k-1,l,m,m,lc, bl,n,n,l,x2k-1,l,n,. . . ,l,n,n,l,x1,l,lc`´ : x∈L

2k-1
and k∈N}=

{´
`
bbm,y1,mc,. . . ,bm,y2k-1,mc,m,lc,bl,n,bn,y2k-1,nc,. . . ,bn,y1,ncc`´ : y∈L

2k-1
and k∈N}=

{´
`
bz1,. . . ,z2k-1,m,lc,bl,n,z2k-1,. . . ,z1c`´ : z∈L

2k-1
and k∈N}=

{b ´
`
x1,x1

`
´
,. . . ,´

`
x2k-1,x2k-1

`
´
,´
`
m,n`

´
,´
`
l,l`

´
c : x∈L

2k-1
and k∈N}=

b L�L,´
`
m,n`

´
,´
`
l,l`

´
c .

17 The symmetrization is defined in (4.11.3).
18 As in (6.1.4), for {a,b}⊂L, aπb L3x ↪→ba,x,bc∈L .
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We have shown that every left coset of L�L is a right coset of L�L . Q.E.D.

(9.3) Theorem If L�L = L×L, then

(∀ {x,y}⊂L)(∃ φ∈L~L) φ
x= y . (1)

Proof. Let m and n be in L . By hypothesis and (9.1.2) there exist k∈N and x∈L
2k-1

such that

´
`
m,n`

´
= ´

`
bx1,. . . ,x2k-1c,bx2k-1,. . . ,x1c`´ .

Consequently

bx1
,. . . ,x2k-1cπbx2k-1

,. . . ,x1c
n= bx1,. . . ,x2k-1,bx2k-1,. . . ,x1c,xk,. . . ,x1c=

bx1,. . . ,x2k-1x1,. . . ,x2k-1,x2k-1,. . . ,x1c= bx1,. . . ,x2k-1c= m .

From (9.1.5) follows that bx1
,. . . ,x2k-1cπbx2k-1

,. . . ,x1c is in L~L . Q.E.D.

(9.4) Lemma Let L be a meridian libra and let {s,x,y}⊂L be such that

sπs
y= x . (1)

Then there exists {r,t}⊂L such that

b ´
`
r,r`

´
,´
`
s,s`

´
,´
`
t,t`

´
c= ´

`
x,y`

´
. (2)

Proof. By (8.33) there exists

{t,r}⊂s� (3)

such that

bt,s,rc= y . (4)

Then

x
by (1) bs,y,sc by (4) bs,bt,s,rc,sc= bs,r,s,t,sc by (3) bs,s,r,s,rc= br,s,tc .

Consequently

´
`
x,y`

´
= ´

`
br,s,tc,bt,s,rc`

´
= b ´

`
r,r`

´
,´
`
s,s`

´
,´
`
t,t`

´
c .

Q.E.D.

(9.5) Theorem Let L be a meridian libra. Then

L�L = L×L < > (∀ {x,y}∈L)(∃ φ∈L~L) φ
x= y . (1)

Proof. In view of (9.3) we need only show that L�L = L×L if the right-hand side of (1) holds. We shall

presume then that the right-hand side of (1) holds and that {m,n}⊂L — and then proceed to show that
´
`
m,n`

´
is in L�L . Towards this end we select φ as in (9.3.1) and then apply (9.1.4) to obtain k∈N and

x∈L
2k-1

such that

n = x1
πx1
◦. . . ◦x2k-1

πx2k-1

m ===⇒ m = x2k-1
πx2k-1

◦. . . ◦x1
πx1

n . (2)
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We define y0≡n, and for each i∈2k-1, we shall abbreviate xi
πxi
◦. . . ◦x2k-1

πx2k-1

m to yi . From Lemma (9.4)

follows that

(∀ i∈2k-1) ´
`
yi,yi-1

`
´
∈L�L . (3)

It follows from (9.1.5) that

(∀ i∈2k-1) ´
`
yi-1‘,yi

`
´
∈L�L . (4)

Since L�L is balance, it follows that

b ´
`
y0,y1

`
´
,´
`
y2,y1

`
´
,´
`
y2,y3

`
´
,. . . ,´

`
y2k-2,y2k-3

`
´
,´
`
y2k-2,y2k-1

`
´
c

is in L�L . Furthermore

b ´
`
y0,y1

`
´
,´
`
y2,y1

`
´
,´
`
y2,y3

`
´
,. . . ,´

`
y2k-2,y2k-3

`
´
,´
`
y2k-2,y2k-1

`
´
c by (9.1.2)

´
`
by0,y2,y2. . . ,y2k-2,y2k-2c,by1,y1,y3,. . . ,y2k-3,y2k-3,y2k-1c`´ = ´

`
y0,y2k-1

`
´

= ´
`
m,n`

´

and so ´
`
n,m`

´
is in L�L. From (9.1.5) follows that ´

`
m,n`

´
is in L�L . Q.E.D.

(9.6) Theorem Let L be as in Section (7) and let U and V be the two connected components, or

halves, of L , as in (7.3). Let a be an element of L . Then

(∀ x∈L) aπa
x∈U < > x∈U and aπa

x∈V < > x∈V . (1)

Proof. Without loss of generality we may presume that a is in U . Suppose that x is in U . If x = a, then

aπa
x= x and so (1) holds trivially. Suppose then that a =6 x. Let S be be closed line segment which lies in

U with endpoints x and a . Since aπa is continuous, ⇀
aπa

S is a closed line segment. Since a = aπa
a is in

⇀
aπa

S , and since a is in U , it follows that ⇀
aπa

S⊂U and so, in particular, (1) holds.

We have effectively shown that ⇀
aπa

U= U . Since aπa is an involution, it follows that ⇀
aπa

V= V as

well. Q.E.D.

(9.7) Example: the Circle or Line Meridian We consider the meridian libra of Section (7),

which is isomorphic with the libra of homographies of the circle meridian (and the line meridian).

Recall that the toroid T separates its complement L in E into two connected components or halves. Let

m be in one half and n be in another. If L�L were the same as L×L , then it would follow from Theorem (9.3)

that there would be some φ∈L~L such that φ
m= n . But φ being a composition of elements aπa , each

of which by Theorem (9.6) would send m to the same half in which it resides, φ could not send m to n . It

follows that, for the meridian libra of the circular meridian

L×L =6 L�L . (1)

We shall see infra that the balanced set L�L has exactly one coset in L×L .

(9.8) Example: the Sphere Meridian Let S be a sphere in euclidian space E as in (1.11). Let

L be the libra of holomorphies of S . Let Let m and n be distinct elements of L . Then
←→
m,n is either incident

or accident, there being no excident lines in this example.

Suppose that
←→
m,n is incident. Then there are two elements 0 and ∞ of M which are fixed by all

members of
←→
m,n . Letting 1 in M be distinct from 0 and ∞ , we have a basis for a field F . Let r≡m

1 and

s≡n
1 . Then
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m =
(
0 r
1 0

)
0 r
1 0

and n =
(
0 s
1 0

)
0 s
1 0

.

Let w∈F be such that w2 = rs . Then

b
(
0 w
1 0

)
0 w
1 0

,n,
(
0 w
1 0

)
0 w
1 0

c=
(
0 w
1 0

)
0 w
1 0

◦
(
0 s
1 0

)
0 s
1 0

◦
(
0 w
1 0

)
0 w
1 0

=

(
0 w2

s 0

)
0 w2

s 0
=
(
0 r
1 0

)
0 r
1 0

= m . (1)

Suppose now that
←→
m,n is accident. There there is exactly one element ∞ fixed by all elements of

←→
m,n . This

time we shall let 0 be any element of M distinct from ∞ , let 1≡m
0 and let s≡n

0 . Then

m =
(
1 1

0 1

)
1 1

0 1
and n =

(
1 s
0 1

)
1 s
0 1

.

For a≡

(
1

1 s
2

0 1

)
1

1 s
2

0 1
,

ba,n,ac=

(
1

1 s
2

0 1

)
1

1 s
2

0 1
◦
(
1 s
0 1

)
1 s
0 1

◦

(
1

1 s
2

0 1

)
1

1 s
2

0 1
=
(
1 1

0 1

)
1 1

0 1
= m . (2)

From (1) and (2) follows that ba,n,ac= m. Theorem (9.5) now implies that

L�L = L×L . (3)

(9.9) Notation and Definitions Let T be a cartesian aggregate of a libra L , and let ρ be any

representation of L equivalent to the left T-inner representation. For b∈ ρ and a∈ ρ we shall write

ρ
b
≡{´

`
x,b`

´
: x∈ ρ} and ρ

a
≡{´

`
a,y`

´
: y∈ ρ } (1)

and say that ρ
b

is a left cross section and that ρ
a

is a right cross section.

A permutation of ρ×ρ which sends left cross sections to right cross sections and which on each left

cross section is equal to some ρx on that cross section, will be said to be left ρ-contrajective. A permutation

of ρ × ρ which sends right cross sections to left cross sections and which on each right cross section is equal

to some ρx on that cross section, will be said to be right ρ-contrajective. A permutation which is both

left and right ρ-contrajective is said to be ρ-contrajective.

A permutation of ρ×ρ which sends left cross sections to left cross sections, and is such that for each

left cross section, there exists {u,v}⊂L it equals ρu
−1◦ρv on that cross section, will be said to be left ρ-

cojective. A permutation of ρ×ρ which sends right cross sections to right cross sections, and is such that

for each right cross section, there exists {u,v}⊂L it equals ρu◦ρv
−1 on that cross section, will be said to be

right ρ-cojective. Permutations which are both left and right ρ-cojective will be said to be ρ-cojective.

(9.10) Theorem Let T be a cartesian aggregate of a libra L , and let ρ be any representation of

L equivalent to the left T -inner representation. Let φ be a ρ-contrajective permutation of ρ×ρ . Then

(∃ {r,s}⊂L) ↔ρbr,sc=φ . (1)

Proof. Define f ρ ↪→ ρ and g ρ ↪→ ρ by
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(∀ x∈ ρ)
⇀
φ

ρ
x

= ρ
f
x and (∀ y∈ ρ )

⇀
φ

 ρ
x

= ρ
g
y . (2)

Define θ ρ×ρ ↪→ ρ×ρ by

(∀ ´
`
x,y`

´
∈ ρ×ρ ) {θ

´
`
x,y`

´

}≡ ρ
f
x∩ ρ g

y . (3)

For ´
`
x,y`

´
∈ ρ×ρ

{φ
´
`
x,y`

´

}=
⇀
φ

ρ
x

∩⇀φ  ρ
y

 by (2) and (3) {θ
´
`
x,y`

´

} . (4)

For b∈ ρ , our hypothesis provides {r,s}⊂L such that φ equals ↔ρ ´

`
r,s̀

´
on ρ

b
: to wit

(∀ x∈ ρ) φ
´
`
x,b`

´

=↔ρ ´

`
r,s̀

´

´
`
x,b`

´

= ´
`
ρs

b,ρr

x`
´

by (2) , (3) and (4)
>

{´
`
ρs

b,ρr

x`
´
}= ρ

f
x∩ ρ g

b= {´
`
g
b,fx`

´
} ===⇒

´
`
ρs

b,ρr

x`
´

= ´
`
g
b,fx`

´
. (5)

A priori the heritage of s and r depended on b∈ ρ , but it follows from (5) that ρr

x does not. Since ρ is

faithful, it follows that r does not. By an argument symmetric and analagous to the preceding, we see that

s is completly determined as well. Thus (1) holds. Q.E.D.

(9.11) Corollary Let T be a cartesian aggregate of a libra L , and let ρ be any representation of

L equivalent to the left T -inner representation. Let γ be any ρ-cojective mapping. Then

(∃ {r,s,u,v}⊂L) ↔ρbr,sc◦↔ρbu,vc= γ . (1)

Proof. Let {u,v}⊂L and define φ≡γ◦(↔ρbu,vc)
−1 . Then φ is ρ-controvariant and so Theorem (9.6) implies

that there exists {r,s}⊂L such that (9.10.1) holds. It follows that (1) holds. Q.E.D.

(9.12) Lemma Let T be a meridian aggregate of a libra L , and let ρ be any representation of L

equivalent to the left T-inner representation. Let φ be in M , where M is as in (8.10). Then

(∀ a∈L)(∃ z∈a����•) φ= ρa
−1◦ρz . (1)

Proof. Let a be an element of L. By the definition of the meridian structure on M, we have

G= {ρa
−1◦ρz : z∈L} .

Thus φ= ρa
−1◦ρz for some z∈L . Since φ is an involution,

ρa
−1◦ρz = (ρa

−1◦ρz)
−1 = ρz

−1◦ρa ===⇒ ρz = ρa◦ρz
−1◦ρa .

Q.E.D.

(9.13) Theorem Let T be a meridian aggregate of a properly linear libra L , and let ρ be any

representation of L equivalent to the left T -inner representation. Let γ be a ρ-cojective mapping and let a

be an element of L . then
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(∃ {b,c,d,e}⊂L) a = bb,a,bc= bc,a,cc= bd,a,dc= be,a,ec and ↔ρba,ac◦↔ρbbe,a,cc,bd,a,bcc= γ . (1)

Proof. By (9.11) there exists {r,s,u,v}⊂L such that

γ=↔ρbr,sc◦↔ρbu,vc . (2)

The mapping ρs
−1◦ρu is in G and so by (1.3), ρs

−1◦ρu is either the identity function, an involution,

or a composition of involutions. In the first case we set e≡a and c≡a . In the second case we set e≡a

and c≡ba,s,uc . In the third case we apply Lemma (9.12) to obtain {c,e}⊂a� such that ρs = ρa
−1◦ρe and

ρu = ρa
−1◦ρc . For each of these cases ρs = ρe

−1◦ρa , which implies

ρs
−1◦ρu = ρa

−1◦ρe◦ρa
−1◦ρc = ρa

−1◦ρbe,a,cc .

Reasoning similarly, we can find {b,d}⊂L such that

a = bb,a,bc= bd,a,dc and ρr◦ρv
−1 = ρa◦ρbd,a,bc

−1 .

For any ´
`
x,y`

´
∈ ρ×ρ

↔ρba,ac◦↔ρbbe,a,cc,bd,a,bcc
´
`
x,y`

´

= ´
`
ρa

−1◦ρbe,a,cc
x,ρa◦ρbd,a,dc

−1y`
´

=

´
`
ρs

−1◦ρu

x, ρr◦ρv

y−1 `
´

=↔ρbr,sc◦↔ρbu,vc
´
`
x,y`

´



which with (2) implies (1). Q.E.D.

(9.14) Corollary Let T be a meridian aggregate of a properly linear libra L , and let ρ be any

representation of L equivalent to the left T -inner representation. Let ψ be a ρ-cojective mapping and let a

be an element of L. Then

(∃ {b,c,d,e}⊂L) a = bb,a,bc= bc,a,cc= bd,a,dc= be,a,ec and ↔ρbbd,a,bc,be,a,ccc◦↔ρba,ac=ψ . (1)

Proof. Let ψ≡γ−1 in Theorem (9.13) and observe that

↔ρbbd,a,bc,be,a,ccc◦↔ρba,ac is the inverse of ↔ρba,ac◦↔ρbbe,a,cc,bd,a,bcc .

Q.E.D.

(9.15) Corollary Let L be any meridian libra with meridian aggregate T . Let a be any element

of L. Then19

Group
T = {bu,a◦T a,vc : {u,v}⊂L} . (1)

Proof. By definition,

Group
T = {(t◦T m)◦(n◦T w) : {t,m,n,w}⊂L} . (2)

In view of (9.14) there exists {u,v}⊂L such that (t◦T m)◦(n◦T w) = (u◦T v)◦(a◦T a) . From (2) follows

Group
T = {(u◦T v)◦(a◦T a) : {u,v}⊂L} by (5.7.2) {bu,a◦T a,uc : {u,v}⊂L} .

Q.E.D.

19 Cf. (5.7).
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(9.16) Example: The Toroid Let T be a toroid as in Section (7). The set T is a disjoint union

of lines or rules in two ways. These two pairwise disjoint families of rules are called reguli, which we denote

T and T . They endow T with a sort of geometry in the sense of Klein’s Erlanger Programm. One can

consider the group G of all permutations φ of T which send rules to rules and such that restricted to any

rule, are meridian isomorphisms. Since the rules in each regulus are pairwise disjoint, and rules in different

reguli intersect in a single point, such a permutation φ must sent all the rules in one regulus T either onto

all the rules of T , or onto all the rules of T : in the first case we shall say the permutation of T is cojective

and, in the second case, contrajective.

The functions x◦T , for x∈L , which permute T by drawing lines through x which intersect T, and

interchanging the two elements of T on such lines, are clearly examples of contrajective permutations of

T . This begs the question: what exactly are the elements of G ? We are in a position to answer that

question:

It follows from (9.6) that

the contrajective permutations of T are precisely the mappings δ´
`
a,b`

´
for {a,b,c}⊂L (1)

as defined in (7.9.3). It follows from (9.9) that

the cojective permutations of T are precisely the mappings δ´
`
a,b`

´
◦c◦T for {a,b,c}⊂L . (2)

Fig. 19: General Cojective Permutation φ of T at a point x of T

c

x

ba

y = c◦T x

τ b
y

τ a
y

φ
x= δ´

`
a,b`

´

c◦T x= δ´
`
a,b`

´

y

The identity mapping on T is clearly cojective. The group G thus has a subgroup consisting of the

covariant permutations of T, and this subgroup has only one coset: the family of contravariant mappings.
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Roy. Beg. 27 (1952), 115 p.

VEBLEN, OSWALD AND JOHN WESLEY YOUNG: Projective Geometry, Vol. I. Boston: Ginn and
Company, 1910.

VON STAUDT, KARL: Geometrie der Lage. Nürnberg: Verlag der Friedr. Korn’schen Buchhandlung, 1847.

89


