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Abstract

Background: Extracting sequential patterns, in which an event α
happens before another event β with high probability, from a time-stamped
event database is an important task in data science. In cohort studies,
which are frequently conducted on data in such databases, it is essential
to find a matching between the chosen cases and the control candidates to
identify the causality when the control candidates that cases can match
are different. The hidden causality is investigated by observing several
statistical indicators in the returned matched results.
Methods: We present an efficient exact matching method that matches
each case with exactly K controls such that a control candidate can be
matched with at most one case, where K is an input constant.
Results: Our experiment results show that the method is fast and memory
efficient, even though the database contains a large number of events.
Moreover, the quality of matchings found is high, i.e., a control candidate
is matched with all matchable cases with roughly equal probability when
multiple matchings are performed. We posit that to obtain stable statistical
results, K should be set to be around, but not larger than, the maximum
matching ratio, which is the largest integer L. Then each case can be
matched with exactly K controls rather than a fixed constant as proposed
in previous studies. In addition, to ensure that the results are stable,
several such matchings should be performed to find the average, instead
of performing the matching just once.

∗Corresponding Author
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1 Introduction

Finding association rules in which two events, α and β, will happen together
with high probability, is one of the most important problems in data mining.
Most approaches are based on the Apriori algorithm [2, 15, 23] and its variations,
which can be applied in traditional market management [2, 15], as well as in
medical research [18, 24]. When data is time relevant, the basic association
rule can not fully express the relation between events. A sequential pattern, in
which an event α has a high probability of being followed by an event β, is a
generalization over the association rule. Such a pattern not only represents the
association between events, but also shows the order of their occurrence [18, 23].

1.1 Data Source

It has been shown that a good medical record database can provide a great deal
of useful information to help researchers find underlying sequential patterns,
i.e., causal relations, between diseases [4]. In this paper, we use Taiwan’s
National Health Insurance Research Database (NHIR Database or NHIRD) [1]
as the data source. Every resident in Taiwan must register with the National
Health Insurance (NHI) program, which covers more than 95% of the medical
treatments provided nation-wide. NHIRD stores the claim records of all patients
who have received treatment. A claim record contains detailed information,
such as disease diagnosis records as ICD-9 codes, the drugs prescribed, and
any surgical procedures performed. That is, the event sets are heterogeneous.
Basically, a record can be treated as a three-tuple, (P , E, D), comprised of
the person P , the corresponding event E, and the record date D. NHIRD also
contains personal data, such as demographic and financial information about
each person. Traditionally, medical studies have used the NHIRD records to
identify potential risk factors of particular diseases [5, 17, 27] by determining
the causality between events in NHIRD. The corresponding sequential pattern
may span different event sets, e.g., from medical treatment to disease diagnosis,
or from particular drugs used to another disease diagnosis.

1.2 Cases and Controls

To determine a plausible causality in a time-stamped events database, it is often
necessary to conduct a randomized controlled trial. The first step is to identify
the study cases. Given two events, α and β, we want to check whether the
occurrence probability of event β is affected by event α happening previously
among all persons in NHIRD. In this case, α is the control variable, which
separates all individuals in NHIRD into two groups; Gα, those with α; and G¬α,
those without α. For an individual h in group Gα, the first occurrence day of
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β ¬β Row sum
α s t s+ t
¬α u v u+ v

Col. Sum s+ u t+ v N

Table 1: The four groups of a matching.

the event α is called the α index day. If we consider the β index day of an
individual h, there are three possible cases: 1) the β index day is earlier than the
α index day; 2) the β index day is later than the α index day; or 3) the event β
is not included in h’s record. Note that the third case is a special instance of
the second case; that is, the β index day is infinity. We are interested in cases
where α leads to β being more likely to happen in the future. Therefore, if the β
index day is earlier than the α index day, i.e., the first case, then this sequence is
meaningless. Consequently, we only focus on the second and third cases whose α
index dates are earlier than their corresponding β index dates. These two cases
form the study cases. All persons in group G¬α are the control candidates.

In a cohort study, to determine meaningful causality with litter statistical
bias, each study case must be matched with K different control candidates,
where K is a given integer [25]. The output matching needs to satisfy some
quality criteria in terms of randomness. That is, a control candidate has roughly
equal chance of being matched with any of the matchable study cases. Based on
some pre-determined constraints, a case can only be matched with a subset of
persons in G¬α. For example, the individuals in G¬α can be matched with a case
of the same birth year and gender. Further constraints are possible depending
on the reason event pairs α and β are checked for. The constant K is called the
matching ratio. To obtain a matching, a control candidate can be matched to a
study case whose α index day is later than his β index day. Note that in our
definition, a control candidate with no β can be matched with all study cases.
If there are 100 study cases and K = 10, then each study case can be matched
with 10 control candidates such that a control candidate can be matched with
at most one case. Hence, there will be 1,000 matched controls if the matching
is successful. The set of matched control candidates is called the control group.
In some studies, if a case does not have K matched candidates, it is dropped
to avoid the situation where a few difficult-to-match cases cause the study to
fail. The goal of matching is to find as many controls on non-dropped cases as
possible [10]. Some matching methods assign a propensity score to each matched
pair [20]. The goal is to return a matching with the best total score. In practice,
the verification of where an event actually happens, (called phenotyping), may
require extra computation [14]. It also necessary to consider excluding cases of
persons with α who have some pre-existing or co-existing conditions, i.e., when
α is a disease, its comorbidities should be considered [20]. These are interesting
practical issues, but they are beyond the scope of this study.
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β ¬β Row sum
α s t s+ t
¬α ∼ a · u ∼ a · v ∼ a · (u+ v)

Col. Sum ∼ s+ a · u ∼ t+ a · v N
′

Table 2: The four groups of another matching with a matching ratio that is a
times larger than that of the matching in Table 1.

1.3 Causality Inference

In the following example, we calculate how the occurrence of α affects the chances
of β happening later. After matching, we obtain a study group and a control
group, each of which we divide into two parts based on whether the individuals
have event β or not. In Table 1, the number of persons in the four subgroups,
α→ β, α→ ¬β, ¬α→ β and ¬α→ ¬β is denoted by s, t, u and v respectively;
and the total number of persons in Gα and G¬α is denoted by s+ t and u+ v
respectively. Let N = s+ t+ u+ v. For each group, we calculate the occurrence
rate of β. In the study group, the risk factor R1 is defined as s/(s+ t); and in
the control group, the risk factor R2 is defined as u/(u+ v). The Relative Risk
factor, RR factor [22], which is defined as R1/R2 = s(u+ v)/u(s+ t), is used to
measure the relative risk of having β with and without α occurring previously.
RR will be roughly equal to 1 if α does not affect the probability of β occurring
later. If RR is much larger than 1 (R1 >> R2), then α will have a positive
influence on the probability of β occurring later. Conversely, if RR is much less
than 1 (R1 << R2), α will have a negative influence on the probability of β
occurring later. Other statistical indicators, such as the Odds Ratio (OR), may
be used instead of RR[22]. Another important statistical indicator is called the
p-value, which determines whether the statistical conclusion is meaningful or
significant. The calculation of the p-value is based on Fisher’s exact test [7],
where

p-value(s, t, u, v) =
(s+ t)!(u+ v)!(s+ u)!(t+ v)!

N !s!t!u!v!
. (1)

In the test, when the column sum and row sum are given and assuming each
case happens in a random manner, the probability that a random distribution
will generates the specific observed result can be calculated. When the p-value
is less than a threshold, say 0.001, it is regarded as statistically significant, or
unlikely to happen at random. Other measurements for statistical significance
can also be used, e.g., the Z-value [28] or the tail probability [19].

1.4 Research Issues

In the above process, the matching ratio K is a constant. Intuitively, when K is
small, the matching result will be unstable because the percentage of matched
control cases over all control candidates is very small. Hence, setting K as
large as possible can reduce the statistical bias. However when K is larger,
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the matching result is often over-estimated as the control group is similar to
the whole population (from which G¬α is drawn), rather than the study group.
Furthermore if K is too large, it may not be possible to find any matching.
The following issue may also arise if K too large. Let K

′
/K = a be a value

> 1. Given s, t, u and v, let RR(s, t, u, v) be its RR factor. Assume we find
another matching in the same study and control group with the matching ratio
K

′
. In this scenario, it is expected that the group’s matched results will be

similar to those listed in Table 2 when the value of a is not too large. Then,
the p-value of the matching found with the matching ratio, K

′
tends to be

smaller than the case where K is the matching ratio assuming the same RR
value is observed, because p-value(s, t, u, v) > p-value(s, t, a · u, a · v) though
RR(s, t, u, v) = RR(s, t, a ·u, a ·v). To derive a meaningful result, it is important
to determine a suitable matching ratio.

Various methods can be used to solve the above matching problem, e.g.,
“Simple Match” [16] in SAS, “MatchIt” [12, 13] in R and “Optmatch” [11] in
R. However when K is large, these methods require a substantial amount of
time or memory for computation. When K is large, some methods based on
simple approaches, such as “Simple Match”, fail to obtain a matching even
though such a matching exists. It has been suggested that K should be set at
4 or 5 [?, 26], but some methods [11, 12, 13, 16] are based on simple greedy
algorithms. As a result, if the matching is only performed once with a small
value of K, the result may not be stable in the sense that different matchings
may yield different RR values, as shown by our experiment results. To obtain a
reliable result, it is better to match multiple times, and then take an average
of all the outcomes. Hence, the randomness quality of the derived matching
needs to be high. However, when the input size is large, some packages are too
resource consuming to compute even once. To resolve the above problems, we
propose an efficient matching algorithm with a high quality of randomness. We
also introduce a method to determine the best value of K.

The remainder of this paper is organized as follows. In Section 2, we describe
the notations and methodology; and in Section 3, we compare the performance
of the proposed algorithm with that of existing algorithms. Section 4 contains
our concluding remarks.

2 Methods

We begin by formally defining the matching problem studied in this paper.
Then, we introduce the naive approach used by previous studies; explain how to
transform the matching problem into a graph-theoretical maximum flow problem;
and present our maximum flow problem for the transformed flow problem.
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2.1 Problem Formulation

K-Regular Matching Problem
Input: 1) study cases S, 2) control candidates C, and 3) a matching ratio

K which is a positive integer.
Output: ∀s ∈ S, Matched[s] ⊂ C, |Matched[s]| = K or 0, ∀c ∈ Matched[s],

CanMatch(c, s) is true and Matched[s1]∩ Matched[s2] = ∅ for all
s1, s2 ∈ S

Procedure CanMatch(s, c)

Input : Study case s, Control candidate c
Output : c can be matched with s or not
Generate conditions Q1, Q2, . . . , Qn of s;
if ∃Qi such that c does not satisfy then

return false;
else

return true;
end

A derived matching is called a legal K-regular matching, which is full if
∀s ∈ S |Matched[s]| = K. If it is not full, it is a partial matching. A case s is
dropped if |Matched[s]| = ∅. We will formally define the quality of a K-regular
matching algorithm later. Intuitively, if we run the algorithm multiple times,
then a control candidate should be matched with a matchable case with roughly
equal probability in all of the derived matchings if the quality is high.

The procedure CanMatch checks whether the input pair (s, c) can be matched.
The condition of CanMatch depends on the user’s requirements, for example,
the range of the birth-year, the gender and whether or not the study case s has
been matched already. Note that the α index date of s must be earlier than the
β index date of c.

2.2 A Naive Greedy Matching Algorithm

The most popular method, Simple Match, uses an algorithm similar to Algo-
rithm 1, which comprises two procedures: RandomPermute and CanMatch. The
RandomPermute procedure (Procedure RandomPermute) randomly permutes
the order of the input set.

2.3 Using Graph Maximum Flow

We transform our K-regular matching problem into a variation of the well-known
maximum flow problem in graph theory [8]. We first describe the original max
flow problem and then introduce its variation.
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Algorithm 1: A Naive Greedy matching Algorithm

Input : Study cases S, control candidates C, ∀s ∈ S, c
′ ⊂ C such that s

can match each control in c
′
, matching ratio K.

Output : A K-regular matching
R ⇐ ∅;
for each c ∈ C do

mark c as unselected;
end
for each s ∈ S do

Match[s]⇐ ∅;
end
RC ⇐ RandomPermute(C);
for each c ∈ RC such that c is not selected before do

RS ⇐ RandomPermute(S);
for each s ∈ RS do

if CanMatch(s, c) and |Match[s]| < K then
Match[s] = Match(s) ∪{c};
mark c as selected;
break;

end

end

end
for each s ∈ S do

if Match[s].size < K then
Match[s] = ∅;

end

end
return ∪s∈S Match[s];

Procedure RandomPermute(D)

Input : A list of data D
Output :D in random order
for i = 1 to |D| do

j = UnifromRandom(i, |D|);
swap(Di, Dj);

end
return (D);
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Figure 1: An example of transforming the matching problem into a flow problem.
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2.3.1 Maximum Flow Problem

Definition 2.1. Let G(V,E) be a Directed Acyclic Graph (DAG) with vertex
set V and edge set E. There are two special nodes in G, namely, the source s
and the sink t. The source node does not have an in-going edge and the sink
node does not have an out-going edge. The capacity of an edge (u, v), cu,v, is the
maximum amount of flow that can pass through it. A legal flow F is a mapping
F : E ⇒ R+, where 1) for each edge (u, v) ∈ E, the amount of flow fu,v ≤ cu,v;
and 2) for each node v ∈ V \{s, t},

∑
fu,v =

∑
fv,w. The value of a flow F , |F |,

is defined as
∑
u:(s,u)∈E fs,u.

The residual graph of a legal flow F is the DAG with the capacity in each
edge of F being substrated from its capacity. When the legal flow is a path from
s to t then it is an augmenting path.

The maximum flow problem [8] is defined as follows.

Maximum Flow Problem
Input: A DAG G(V,E) with source s and sink t, and each edge (u, v) has

a capacity value cu,v.
Output: A legal flow F ∗ where |F ∗| is maximum among all legal flows.

The most famous algorithm for solving the maximum flow problem, Ford-
Fulkerson algorithm [8], uses DFS on the residual graph of the current legal
flow F , whose initial value is all zero, found to find an augmenting path P . F
then is added with P and a new residual graph is generated. This procedure
continues until the generated residual graph has no augmenting path. The
time complexity is O(|E||F ∗|), where |E| is the number of edges and |F ∗| is the
value of the maximum flow. Note that either in theory or in practice [9], there
are faster algorithms for solving the maximum flow problem. In practice, the
Ford-Fulkerson algorithm is simple and good enough in terms of time and space
for our application [8].

2.3.2 Problem Transformation

We use the following steps to transform the K-regular matching problem into
the Maximum Flow problem.

1. We first build a DAG G with a source and sink, and assign capacity K
to all edges from the source to the case nodes, and capacity 1 to all other
edges, as described in Procedure GenerateGraph.

2. Find a maximum flow F ∗ in G.

3. Convert a flow into a K-regular matching by keeping only the case nodes
with the flow values K from the source as described in procedure Flow-
ToMatching.

Node S and Node C denote the source node and sink node in the flow network
respectively. Figure 1a shows the original matching problem in the case-control
study, and Figure 1b shows the transformed max-flow problem.
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Procedure GenerateGraph(Node source, Nodes S, Nodes C, Node sink,
Matching Ratio K)

Input : Nodes source, S, C, sink
Output : Graph (V,E)
V⇐ {source, sink} ∪ S ∪ C;
E⇐ ∅;
for each study case si ∈ S do

add an edge (source, si) to E with the capacity K.
end
for each control case cj ∈ C do

add an edge (cj , sink) to E with the capacity 1.
end
for each (si, cj) pair in {si} × {cj} do

if CanMatch(si, cj) then
add an edge (si, cj) to E with the capacity 1

end

end

Note that to generate a matching with a high randomness quality, we pre-
process the input graph to randomly shuffle it as shown in Algorithm 3.

Algorithm 2: Flow(S, C, K)

Input : Study cases S, control candidates C, Matching ratio K
Output : Max flow F of the input flow network defined by S, C and K
G⇐GenerateGraph(source, S, C, sink, K);
i⇐ 0;
for i from 1 to |S| do

while there is an augmenting path P from source to si to sink do
update the flow network by subtracting the least capacity used in
edges of P ;

end

end

In the Procedure GenerateGraph, if we run the RandomPermute procedure
for both set S and set C before we generate the edge set, the output graph of
Procedure GenerateGraph becomes a random shuffled graph. In this case, for any
deterministic flow algorithm, we can get a random matching by randomly shuffling
the input graph. The matching method “optmatch” is different from what is
described in Algorithm 3. This method does not contain any randomness. When
the given matching ratio is less than the maximum matching ratio, “optmatch”
always finds a maximum matching by the min-cost flow method. However,
“optmatch” uses a deterministic method, so the matching result is always the
same without randomness. The steps of the procedure are shown in Algorithm 3.
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Algorithm 3: Flow1(S, C, K) Max Flow with Random Graph Shuffling

Input : Study cases S, Control candidates C, Matching Ratio K
Output : A K-regular matching
RS ⇐ RandomPermute(S);
RC ⇐ RandomPermute(C);
F⇐ Flow(RS, RC, K); // Algorithm 2

return FlowToMatching(F);

Procedure FlowToMatching(S, E, F , K)

Input : Study cases S, Edge sets E, A legal flow F , and Matching Ratio
K

Output : Matching R transformed from F
for each s ∈ S do

if fsource,s < K then
remove the flow from source to S;

end

end
for each s ∈ S do

Match[s] ← ∅;
end
for each s ∈ S do

for each edge (s, c) ∈ E do
Match[s] = Match[s] ∪{c};

end

end
return R;
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Using the graph generated by Procedure GenerateGraph, we successfully
transformed the matching problem into a maximum matching problem. If every
edge (S, si) in the resulting flow is saturated, the flow represents a matching
with matching ratio K. If some of the edges (S, si) in the resulting flow are not
saturated, we cannot find a matching with matching ratio K. In this case, the
maximum possible matching ratio without any dropped study case will be less
than K.

2.4 The Proposed Matching Algorithm

The approach discussed in Section 2.3 is limited in terms of the quality of
randomness. We will consider this issue with the experiment results in Section 3.
Here, we describe our algorithm in details.

Algorithm 4: Flow2(S, C, K) /* Our Matching Algorithm */

Input : Study case S, control candidates C and matching ratio K
Output : A K-regular matching
begin

E ⇐ GenerateGraph(source, S, C, sink, K);
path ⇐ ∅;
while RDFS(source, path) do

// There is still a path from source to sink, pick a

random one

update the flow network by subtracting the least capacity used in
edges of path;

path ⇐ ∅;

end
return FlowToMatching(F);

end

2.4.1 Adding a random augmenting flow

In Algorithm 4, the matching algorithm is implemented with a Random Depth-
First Search (RDFS) function that finds an augmenting path at random. For
a directed edge e, (ex, ey), ex and ey represent the head and tail of the edge
respectively; while ce, cex,ey , denotes the current capacity of the edge. In RDFS,
the RandomChooseEdge function randomly selects an edge according to the
current available capacity. For example, in Figure 1a, if the matching ratio is K,
then at the beginning of the matching, each edge (S, si) has capacity cS,si = K.
Hence, the probability that edge (S, si) will be chosen as the out-edge of node
S in the RDFS is equal to cS,si/

∑
∀i cS,si = K/(Kn) = 1/n; i.e., the current

capacity of edge (S, si) over the total capacity of all out-of S edges. If edge
(S, s1) has been chosen once, the probability that it will be chosen in the next
round becomes cS,si/

∑
∀i cS,si = (K − 1)/(nK − 1).

12



Procedure RDFS(x, path)

Input : Current node x, Current path from the source vertex to x
Output : Return a source-x path in random, ∅ if there is no path from

source to sink
if x is sink then

return path;
end
for each edge (x, y) do

Visit[y]:=false;
end
while (x,y)=RandomChooseEdge(x) do

if Visit[y]=true then
continue;

else
Visit[y]:=true;

end
path.push((x, y));
if RDFS(y, path) 6= ∅ then

return path;
else

path.pop;
end

end
return false;

Procedure RandomChooseEdge(x)

Input : Node x
Output : An x out-going edge with a non-zero capacity
W =

∑
∀edge(x,u) cx,u;

D ⇐ ∅;
for each edge (x, u) with cx,u 6= 0 do

px,u = cx,u/W ;
D∪{(x, u), px,u};

end
Randomly choose an edge e = (x, u) from D with the probability px,u;
return e;

13



2.4.2 Merging Edges

The main factor that affects the running time of Algorithm 4 is the size of the
edge set. The size of the original graph is O(|S| + |C| + |S||C|). We use the
following edge combining method to reduce the size to O(|S|+ |C|+ |S|r), where
r is the total number of types of control candidates.

In the Procedure GenerateGraph, we check each (s, c) pair individually. Then,
for each pair that passes the CanMatch function, we add one edge to the edge
set of the output graph. The number of edges between S and C is roughly
equal to O(|S||C|). However, if either of the two control cases c1 and c2 have
the same characteristics, which are defined by the applications, any study case
s that can be matched with c1 can be also be matched with c2. That is, we
can group the control cases with the same characteristics together. If there are
only r different characteristics, then after grouping the control cases with the
same characteristics into one node, the edge size between S and C shrinks from
O(|S||C|) to O(|S|r); and the total number of edges in the new graph becomes
O(|S|+ |C|+ |S|r).

2.4.3 Finding the Maximum Matching Ratio

With Algorithm 4, for any given matching ratio K, we can always find a legal
full K-regular matching with the given matching ratio if such a matching exists.
Next, we consider the maximum matching ratio problem, which is defined formally
as follows:

Maximum Matching Ratio Problem
Input: Study cases S, Control cases C
Output: Maximum Matching Ratio K∗ such there is a full legal K∗-regular

matching from S to C

When the given matching ratio K is less than the maximum matching ratio,
all the study cases can be matched with K control cases. That is, no study case
will be dropped. However, when K is larger than the maximum matching ratio,
some study cases will be dropped.

We can use an open binary search algorithm to find the optimal matching
ratio. Using the maximum matching ratio as a starting point, we run Algorithm 4
with different matching ratios close to the maximum matching ratio. Then, by
examining the derived matching ratios, we determine that the optimal ratio is
the one with the lowest standard deviation. Our experiment results show that
this approach achieves a very good randomness quality.

2.4.4 Efficient implementation of RandomChooseEdge

To ensure that Algorithm 4 has a good randomness quality, we use the procedure
RandomChooseEdge to select a random control candidate. The last statement in
RandomChooseEdge takes O(|D|) time and space using a naive linear selection
approach, where D is the number of outgoing edges of the input nodes. To
improve the procedure, we propose two efficient implementations. In the first,
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Figure 2: Original flow network and its reversed flow network.

each node uses a segment tree data structure [6] to store the capacity of each of
its out-going edges. This method requires O(|D| log |D|) pre-processing time and
O(log |D|) time for the selection and deletion of each chosen edge. The second
modification uses the trick of the reversed flow network (shown in Figure 2)
to reverse the direction of each edge in the residual network. In the resulting
graph, the control candidates can be efficiently matched with the study cases
by random selection. Note that in the reversed flow network, only edges from
study cases to the sink node have non-binary capacities. The capacities of all
the other edges are binary, i.e., 0 or 1. All edges with non-zero capacities can be
stored in an array. It then takes O(1) time to randomly select an edge when the
capacity of all edges is binary. Hence, we can select an edge efficiently with a
prescribed probability in Procedure RandomChooseEdge(x).

3 Experiment Results and Discussion

In this section, we present the experiment results and give discussion.

15



Table 3: Summary of the original result of testing event pairs.

Event Pair I Event Pair II Event Pair III
Study Cases 27,073 6,427 5,527
Control cases 135,365 32,135 5,527
Matching Ratio 5 5 1

Table 4: Summary of the basic attributes of testing event pairs.

Event Pair I Event Pair II Event Pair III
Study Case 21,647 6,412 5,192
Control Candidates 463,754 619,902 9,102
Maximum Matching Ratio 11 53 0
Total edge 121,121,658 38,629,676 404,835
Average degree(Study) 5595.31 6024.59 77.97
Average degree(Control) 261.18 62.32 44.48

3.1 Experiment Setting

As a benchmark, we use the following three event pairs from the following
two exist research: 1) Obstructive sleep apnea and depression whose positive
bidirectional relationship has been demonstrated [3]; 2) Statin use and dementia
in patients with stroke whose negative relationship has been discovered 1. The
basic information of these three event pairs are shown in Table 4.

In the original study of event pairs I, 27,073 study cases and 135,365 control
cases were found and used with a matching ratio of 5. In our database, there
are 21,647 study cases with 463,754 control candidates, and the total number of
edges is 121,121,658. The average degree of the study cases is 5595.31 and that
of the control candidates is 261.18. The degree distribution of the study cases
and control candidates is shown in Figure 3a and Figure 3b. The maximum
matching ratio of these event pairs is 11.

In the original study of event pairs II, 6,427 study cases and 32,135 control
cases were found and used with a matching ratio of 5. In our database, there
are 6,412 study cases with 619,902 control candidates, and the total number of
edges is 38,629,676. The average degree of the study cases is 6,024.59 and that
of the control candidates is 62.32. The degree distribution of the study cases
and control candidates is shown in Figure 3c and Figure 3d. The maximum
matching ratio of these event pairs is 53.

In the original study of event pairs III, 5,527 study case and 5,527 control
cases were found and used propensity score with a matching ratio of 1. In the

1Data set from Ph.D. Mei-Lien Pan through private communication.
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Table 5: Average execution times (in seconds) of each method.

Matching Ratio
Method Language Algorithm 1 5 10 15 20 25 30
MatchIt R 1 182.81 928.57 1956.58 2890.76 3891.28 4821.20 5924.35
Simple Match SAS 1 1221.00 959.00 894.00 859.00 2350.00 1228.00 1078.00
Simple Match C 1 0.51 0.51 0.51 0.51 0.51 0.51 0.51
Optmatch R 2 8473.28 9132.34 9676.67 9407.05 9605.70 9037.06 8399.11
Flow1 C 1 8.00 7.82 8.00 6.54 6.09 5.64 5.11
Flow2 C 1 6.60 11.91 18.52 20.91 19.10 16.47 13.85

provided data set, there are 5,192 study cases with 9,102 control candidates, and
the total number of edge is 404,835. The average degree of the study cases is
77.97 and that of control candidates is 44.48. The degree distribution of the
study cases and control candidates is shown in Figure 3e and Figure 3f. The
maximum matching ratio of these event pairs is 0.

We test these event 2-sequences with the following five software/programs:
“Simple Match” [16] in SAS, “MatchIt” [12, 13] in R, “Optmatch” [11] in R,
“Simple Match” in C, and our methods in C. “Simple Match” is based on
Algorithm 1. “MatchIt” and “Optmatch” use variations of Algorithm 3 without
randomly shuffling the input graph. For the fourth method, we implemented the
“Simple Match” methods based on Algorithm 1 using C. Our method is based
on Algorithm 4. The experiment assessed the average running time and the
corresponding RR ratio with matching ratios from 1 to 30. For methods with
some randomness in the output, we ran them 100 times and took the average.
The experiments were performed on a Ubuntu 14.04 system with an Intel(R)
Core(TM) i7-3770 CPU 3.40 GHz, and 16 Gbytes RAM.

3.2 Results of the Execution Time and Memory Usage

In order to measure the performance of execution time and memory usage, in
this part of experiments, we choose Event-pair I, which has the most proper
maximum matching ratio as the benchmark.

The average execution times of each method with different matching ratios are
shown in Table 5. The first column shows the name of each method; the second
column shows the basis algorithm of each method; and columns 3 to 9 summarize
the average execution times (in second) of each method with matching ratios of
1, 5, 10, 15, 20, 25 and 30 respectively. Because of software limitations, programs
and packages with software SAS and R are much slower than those programs in
C. For programs in C, the time complexity of “Simple Match” (Algorithm 1) is
O(nm) and that of our method (Algorithm 4) is O(n2m), where n is the number
of nodes and m is the number of edges in the graph. Therefore, it is expected
that Algorithm 1 will be faster than Algorithm 4.
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Figure 3: Edge degree distribution of study cases (EDDS) and control candidates
(EDDC) of all three event pairs.

Table 6: Memory usage of different implementations with matching ratio 1.

Programs/ “Simple” “Optmatch” “MatchIt” “Simple” Flow2 Flow2 with edge merging
Languages (SAS) (R) (R) (C) (C) (C)

Memory usage 1.039 Gb 0.277 Gb 0.232 Gb 0.068 Gb 0.152 Gb 0.070 Gb
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In Table 6, the memory use of “Simple Match (SAS)” is the largest, this is
the language nature of SAS. “Optmatch” and “MatchIt” in R also use more
memory than those methods which implements in C. For methods implement
in C, Flow2 requires more memory than “Simple Match”, but if edge merging
technique is applied, these two methods use almost the same amount of memory.

In Figure 4, the running time of “MatchIt” is almost linear in the matching
ratio, but the execution times of “Optmatch” and our method increase before the
matching ratio reaches the maximum and decrease after it exceeds the maximum.
The result suggests that the time consumption is highest when a matching ratio
close to the maximum matching ratio is chosen. As the C implementation is more
efficient and memory saving, we only make comparisons with C implementations
hereafter.

3.3 Successful Matching Rates

In this experiment, we analyze the dropping ratio, i.e., the percentage of cases
that are dropped under different matching ratios. In Figure 5, the x-axis indicates
the size of the matching; and the y-axis indicates the percentage of matched study
cases that are not dropped, which is called the successful matching rate. Figure 5
(a) shows that when the matching ratio is less than the maximum matching
ratio, “Optmatch” and Flow2 do not drop any cases. The successful matching
rate of “Simple Match (C)” decreases smoothly as the matching ratio increases,
and it starts to decrease before the matching ratio reaches the maximum. When
the matching ratio is larger than the maximum matching ratio, the matching
rates of the three methods are all less than 100%. Flow2 achieves the highest
successful matching rate of the three methods.

Figure 5 (b) compares the successful matching rates of Flow2 and “Simple
Match (C)”. In the execution time experiment, “Simple Match (C)” was much
faster than Flow2, so we compare the successful matching rate in terms of the
number of executed trials. For “Simple Match (C)” we compute the average
matching rate and the maximum matching rate for 100 trials. The results show
that Flow2 still achieves the highest matching rate among all the matching ratios,
even if we compare it with the best result of “Simple Match (C)” in 100 trials.
Although “Simple Match (C)” is faster than Flow2, when the execution time is
fixed, it cannot achieve the successful matching rate of Flow2.

The results of Event Pair II and Event Pair III are shown in Figure 5(c)-(f).
The behavior of all three methods are similar with the results of Event Pair I.

3.4 RR Ratio

In this experiment, we compare the distribution of RR values in “Simple Match
(C)” and Flow2. Figure 6 (a) shows the average RR ratio of “Simple Match (C)”
and Flow2 using different matching ratios after performing the experiment 100
times. Both methods have a similar average RR value when the matching ratio
is less than the maximum matching ratio 11. When the matching ratio is larger
than the maximum matching ratio, the average RR value decreases sharply.
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Figure 5: Successful matching rates of “Optmatch”, “Simple Match” and Flow2.
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Figure 6: Comparison of the R1, R2 and RR values of Algorithm 1 (Simple
Match) and Algorithm 4 (Flow2).
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In Figure 6 (b), we analyze the relationship between the average RR ratio
and the matching ratio. Specifically, we compare the standard deviation of the
RR ratios of “Simple Match (C)” and Flow2 with different matching ratios.
When the matching ratio is 11, i.e., the maximum matching ratio, the average
RR ratio has the minimum standard deviation for Flow2 and a relative smaller
standard deviation for “Simple Match (C)”.

By checking the standard deviations of R1 and R2, we believe the reason
that RR has a smaller standard deviation when the matching ratio is close to
the maximum is as follows. Figure 6 (c) shows the standard deviations of R1

and R2 against different matching ratios. As the maximum matching ratio is
11, no study case will be dropped when the matching ratio is less than 11; thus,
the standard deviation of R1 remains 0. When the matching ratio is larger than
the maximum, the standard deviation of R1 increases and becomes unstable.
On the other hand, the standard deviation of R2 decreases when the matching
ratio increases until it reaches the maximum. After the matching ratio reaches
the maximum, the standard deviation of R2 becomes stable. If the size of the
control group is small, the variation of the group will be large. However, when
the size increases to a certain number, the variations of control group in different
matching trails will become relatively small.

The same behaviors can be observed from event pairs II and III as shown in
Figure 6 (d) through (i).

The result of this experiment shows that if we want to have a high quality
and relatively stable matching result for the average RR value, the matching
ratio should be chosen around the maximum matching ratio. Hence, it is very
important to find out the maximum matching ratio before carrying out the
matching.

3.5 Quality of Randomness

In this experiment, we analyze the quality of the randomness of “Simple Match
(C)” and Flow2 by calculating the entropy of the distribution of the matched
control candidates.

Definition 3.1. For a matching method with a matching ratio of 1 and a
fixed study case s, the method is executed N times and we record the N
control cases, c1, c2, . . ., cN that match with s in the i-th round. Then, the N
control candidates form a control case population. The event set of a control
case population comprises the unique cases over all ci and the corresponding
probability of each event is the occurrence frequency in the N matchings.

If a study case has 100 different control candidates in the control case
population, then it has the maximum possible entropy

∑
− 1

100 log 1
100 according

to the entropy formula [21].

Definition 3.2. The quality of randomness is defined by the relative ratio of
the entropy of the control cases distribution over the maximum possible entropy
value.
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Figure 7: Comparison of “Simple Match (C)” and Flow2’s relative entropy with
matching ratio as 70%, 100% and 110% of maximum matching number in Event
Pair I.
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Figure 8: Comparison of “Simple Match (C)” and Flow2’s relative entropy with
matching ratio as 70%, 100% and 110% of maximum matching number in Event
Pair II.
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We compare the entropy between “Simple Match (C)” and Flow2 with three
different matching ratios: 70%, 100% and 110% of the maximum matching ratio.

We start with 70% of maximum matching ratio, 7. In Figure 7 (a), the x-axis
indicates each study case. There are 21,647 study cases. The y-axis represents
the entropy of the distribution of matched control candidates. In the experiment,
we execute “Simple Match (C)” 100 times. By calculating the probability that
a control candidate will be chosen in 100 matches, we can compute its relative
entropy. In Figure 7 (a), the entropy of most of the study cases is around
0.8, which means the quality of randomness of “Simple Match (C)” is not bad.
However, in Figure 7 (d), the entropy of most of the study cases is large than
0.9, which suggests the quality of randomness of Flow2 is better than “Simple
Method (C)”. Note that some study cases have low entropy because they can
only be matched to a very small set of candidates. As the set is relatively small,
the corresponding entropy is also small.

Next, we compare the relative entropy between “Simple Match (C)” and
Flow2 with 100% of maximum matching ratio, 11. In Figure 7 (b), most of
the study cases have relative entropy less than 0.8, which means the quality of
randomness of “Simple Match (C)” becomes worse as matching ratio increases.
On the other hand, in figure 7 (e), the relative entropy of each study cases
remain the same when matching ratio changes from 7 to 11. Now we increase
the matching ratio to 110% of maximum matching ratio, 12, and compare the
relative entropy between “Simple Match (C)” and Flow2. In Figure 7 (c), most
of the study cases has the similar or smaller relative entropy comparing with
Figure 7, which suggests that when matching ratio increases, the relative entropy
of study cases in “Simple Match (c)” decreases consistently. In Figure 7 (f), the
relative entropy of study cases also decreases as the matching ratio increases.
But most of the study cases still have high relative entropy which is close to 1.
That is, when matching ratio is greater than 100% of maximum matching ratio,
the quality of randomness of Flow2 is still good.

In Figure 8, we show the relative entropy of “Simple Method (C)” and Flow2
with Event Pair II using the similar setting as Event Pair I in Figure 7, that is,
70%, 100% and 110% of maximum matching ratio. The conclusion is similar
to Event Pair I. The relative entropy of each study cases in “Simple Methods
(C)” starts to decrease when the value of matching ratio exceeds 70% of the
maximum matching ratio, and consistently decreases as the value of matching
ratio increases. And the relative entropy of each study cases in Flow2 is around
1 even if the value of matching ratio exceeds 110% of the maximum matching
ratio. As a result, it is clearly that Flow2 has better quality of randomness than
“Simple Method(C)” in all cases.

Now we compare the quality of randomness of Flow1 (Algorithm 3) and Flow2
(Algorithm 4). We use the result of Algorithm 1 as the baseline for comparison.
In the matching phase of Algorithm 3, a study case is repeatedly matched
with control candidates until the number of matched controls has reached the
required number of matches. In Algorithm 3, the matching order of study cases
is determined by randomly permuting the vertices of the input graph. The
probability of a study case being successfully matched to the required number of
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Figure 9: Comparison of successful matching rate and cumulative successful
matching rate.

control cases depends to a large extent on the matching order. That is, after the
random permutation, study cases with a smaller index have a higher probability
of matching the required number of control cases than study cases with a larger
index. By contrast, in the reversed flow network with random DFS, a control
candidate has equal probability of being matched with all study cases that it
can be matched with. In Figure 9a, Flow1 has the most successful matching
rate. However, as described above, the distribution of cases successfully matched
by Algorithm 3 is not uniform. The successful matching rate of Algorithm 4
is lower than that of Algorithm 3, but the distribution of successfully matched
study cases is more uniform. Hence, we conclude that the quality of randomness
of Algorithm 4 is better than that of Algorithm 3.

In Figure 9b, the x-axis denotes the matching ratio and the y-axis denotes
the percentage of study cases matched to more than K control cases. When
the matching ratio is set at 15, if we compare the percentage of study cases
whose successful matching number is 15, then Flow1 has a higher successful
matching rate than Flow2. However, if we only count study cases with more
than 10 matched control cases, then Flow2 has a higher successful matching
rate than Flow1. Hence Flow2 tends to match a case with more types of control
candidates when it is run multiple times. In this scenario, Flow2 has a better
quality of randomness than Flow1.

4 Concluding Remarks

In this paper, we present an efficient algorithm with good quality of randomness
to solve the K-regular matching problem. The computation time is much faster
than that of existing programs. Moreover, the successful matching rate of the
algorithm is 100% when the matching ratio is lower then the maximum matching
ratio. When the matching ratio required is larger than the maximum matching
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ratio, the successful matching rate of the proposed algorithm is higher than or
equal to that of other approaches. Moreover, the algorithm has an RR ratio that
is close to that obtained by Algorithm 3, but with a relatively smaller standard
deviation. Hence, our algorithm produces relatively stable matching results. We
have also shown that the randomness quality of our method is similar to that
of “Simple Match (C)”. Finally, the experiment results suggest that to make
the matching results reliable, the size of the matching ratio should be set to be
around the theoretical maximum matching ratio.
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