

 TR-IIS-16-002

 Model-Based Anomaly Detection
 on Network Services

Shun-Wen Hsiao, Yeali S. Sun, Meng Chang Chen, Hui Zhang

June 15, 2016 || Technical Report No. TR-IIS-16-002

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2016/tr16.html

Model-Based Anomaly Detection on Network Services

Shun-Wen Hsiao1, Yeali S. Sun
2
, Meng Chang Chen

1
, Hui Zhang3

1 Institute of Information Science, Academia Sinica,

No. 128 Sec. 2, Academia Rd., Taipei 11529, Taiwan

{hsiaom,mcc}@iis.sinica.edu.tw
2 Department of Information Management, National Taiwan University,

No.1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan

sunny@im.ntu.edu.tw
3 School of Computer Science, Carnegie Mellon University,

5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A.

hzhang@cs.cmu.edu

Abstract. The key hypothesis to anomaly detection assumes anomalous behav-

iors are suspicious from a normality point of view. This work provides a new

perspective, network service, to model network activity for detecting anomalies.

Past models often suffer from lacking of model normality verification, only in-

cluding particular behavior aspect, and focusing on individual model. To con-

front them, we propose a framework based on the perspective of multiple net-

work service models. For normality verification, we show how to construct un-

derlying protocol models by static and dynamic approach to guarantee the usa-

bility. For the latter two problems, we show how to construct composite service

model with protocol interaction and correlation. Classes of attacks, such as

worm and botnet, illustrate that our composite model detects the symptom of at-

tack that individual ones cannot. This work provides a promising perspective

from network service and a new construction method for service modeling.

Keywords: Intrusion Detection, Modeling, Computer Network Security, Net-

work Services, Principle Component Analysis.

1 Introduction

One of the important problems of network security is that we may not know what

form of future attack would be. However, a careful study of hostile traffic reveals the

existence of peculiar characteristics that could differentiate it from normal communi-

cations across the network [1]. Therefore, several works focus on defining the notion

of normality in different ways to detect anomaly. Once the definition of normality is

specified, the violation of the normality, or say anomaly, is determined.

The notion of normality is usually provided by a formal model that describes the

normal or expected behavioral operations or properties of a subject that we would like

to protect. A model can be a description of a particular process or an essential or dis-

tinctive attribute or quality of a thing. For an anomaly detection system, the detection

process is a measure that allows obtaining the deviation (or likeness) of a given activi-

ty with regard to the predefined model. For a model, false alarms may be introduced

mainly by incorrect or imprecise modeling, and even unsuitable subject to model.

In the past, user behavior is the initial subject to model, since malicious user is the

main threat of computer system in early days (e.g., mainframe user). User behavior

model [2] is used as a reference to detect abnormal activity and resource usage. How-

ever, user behavior can suddenly change and is usually not well predictable. Hence,

program model then draws the attention because of its relatively fixed behavior.

A program is considered harmful only after executing some unexpected system

calls [3]. There are two research streams to model program behavior by using system

calls: static and dynamic approach. Static model is built by referring to the given

binary or source file of a program. All possible sequence of system calls that the bina-

ry or source file can produce are analyzed statically and recorded in the normal model

(which is usually in a form of state machine [4] or database entry [3]). Any unex-

pected sequence of system calls that are not specified in the static model are viewed

as an attack. Nevertheless, the notion of attack is beyond static analysis of system

calls. For attacks such as brute force attack and stepping stone attack, which do not

cause harm by executing unexpected system calls, are also security threats. Therefore,

dynamic approach of model generating is adopted. Dynamic model is built by refer-

ring to a collection of runtime system call sequences that are produced by programs in

a normal environment [3] or filter out non-normal execution. The accuracy of a dy-

namic model depends on the quality of the collected system call sequences, meaning

how many it cover all possible normal execution sequences. In reality, it is difficult,

through not impossible, to collect them, so that this approach may introduce false

alarm due to not enabling to collect rare-seen normal execution.

Rather focusing on programs, there are works looking into monitoring network ac-

tivities. They are differentiated by different network properties used in constructing

their model. Network traffic is the most well studied subject. Traffic volume with

attack propagation model [5], the variation of traffic entropy [6] [26], and network

contact behavior studies [7] all belong to this category. Usually, statistics is served as

a tool to model the normal usage of header field in network layer, transport layer and

application layer. The outlier of the statistics model is considered as an anomaly, for

example, worm propagation may cause entropy variation. Nevertheless, quantitative

measures can be deliberately disguised by sophisticated attacker [8].

Since a network activity is governed by protocols it uses. Some works [9] - [11]

construct their normal models based on network protocol specifications (e.g., RFCs).

Such model can detect attacks or anomalies going along with protocol standard mis-

uses, such as undefined protocol message (e.g., a TCP packet with SYN and FIN both

set) and undefined protocol process (e.g., login again after successfully login). Let’s

make a metaphor to understand the weakness of this approach. We can view a net-

work activity as composing a paragraph, each sentence is a network protocol execu-

tion, and the grammar serves as network protocol standard. Such approach can only

detect anomalies by "checking syntactic error" of individual sentence (i.e., protocol

execution). The first shortcoming is that, we can make a sentence which is syntacti-

cally error-free but not actually accepted in the real world. We point out that purely

relying on protocol specification is good but may not be practical. A protocol is usual-

ly well designed so that most of the misuses are already defined in specification with

an error handling mechanism. Security expert must further specify which messages or

executions in the specification are considered anomalous. Second, a paragraph is only

meaningful and readable if all the sentences in it are correct and follow a context.

Similarly, we point out that anomalies can be founded by considering viewing a

communication activity as a whole to collectively examine the normality of the entire

underlying protocol executions. Past works only examine the normality of individual

network protocols rather than the entire context communication.

There are several works [12] - [14] which derive specific legitimate network prop-

erties (commonly referred as behavior signature) by analyzing network activities and

show they can detect certain attacks. These models are constructed by security experts

with their experiences to known and popular attacks. The security experts extract and

generalize the behavior of similar attacks and build a common model. Usually, find-

ing such high quality and useful models is difficult and time-consuming. Such model

is suitable for well-studied attacks or attacks having popular behavior patterns.

We now consider that a more robust network-based approach is needed and desired.

Hence, we provide another perspective to model normal network activity that past

works neglect before. Past normal models often suffer from three problems that limit

their detection capability: lacking of model normality verification, only including

particular behavior aspect, and focusing on individual model. To confront these prob-

lems, we propose a framework based on multiple network service models (and their

underlying protocol models) to provide another viewpoint to reveal anomalies hidden

in the network. For normality verification, we show how underlying protocol models

are constructed by combining both static and dynamic approach to guarantee the nor-

mality that they describe. Also, the procedure of model construction is specified with-

out human tricks. And for the latter two problems, we propose a method to construct

composite model by using multiple service and protocol models as a whole to de-

scribe the model of network activity. Like the metaphor of composing a paragraph,

we can expect that more anomalies can be revealed by such composite approach.

Classes of attacks, such as worm, fingerprinting and botnet, are shown as examples

to illustrate that the composite model detects symptoms of attacks that individual

model cannot. This work provides a promising perspective from network service and

a new approach to combine models together as a whole for anomaly detection.

The rest of the paper is organized as follows. The next section gives an overview of

our approach. In Section 3, we present the construction of underlying protocol model

using both protocol specification and real world traffic trace. In Section 4, we provide

the method for connecting multiple protocol models to a service model as well as the

method for correlating multiple services models to detect anomalies. In Section 5, we

demonstrate the detection capability by real world attacks. Then, we discuss some

issues of our works. In Section 7, the related work briefly overviews different ap-

proaches taken in the past. Finally, we conclude our work in the last section.

2 System Overview

This section provides an overview and the concept of our approach to generate net-

work-based anomaly detection models based on multiple network services with their

underlying protocols.

There are two stages of model construction: protocol model construction and com-

posite service model construction. In the first stage, the input is the protocol specifica-

tion and a collection of real world network traffic trace (raw packets), and the output

is the normal protocol model. Our construction approach takes the advantages of both

static and dynamic approach to reduce the incorrectness and imprecision problem of

modeling. We also tackle the issue of model normality verification in this stage.

In the second stage, a network service model is composed by multiple protocol

models with two types of interaction model. Together they can describe the normal

model of a service operation. Besides, we also observe that in the runtime a network

activity is accomplished by several network services. Especially for an attack, multi-

ple network services could be involved to collaboratively accomplish an entire attack,

such as host probing, vulnerability probing, service vulnerability exploitation, control

and command channel establishment, file transferring. Hence, in addition to single

service model, we further introduce correlation model combining multiple service

models to describe a complex network activity. The correlation model specifies which

instances of the service should be correlated in the runtime to reveal anomalies. Fig. 1

depicts the relationships between each model in the second stage.

Once we obtain the models, we examine our anomaly detection system by launch-

ing attacks collected from the Internet in a controlled environment. Then, we identify

the deviated network behavior from our models. A deviation can be an undefined

process of the model or an abnormal property of service execution. The deviated

behavior is further extracted with the status of its related models. Afterwards, they are

used to describe an attack scenario, called attack symptom. An attack symptom may

consist of a deviation from sole protocol model or it can be a complex execution se-

quence from multiple service models and their correlation models.

We point out some concepts of our approach in the following subsections, and the

detail of notation, model construction and anomaly detection is in Section 3 and 4.

Layer 4

Layer 7

L4 Protocol Model

L7 Protocol Model

time

Time-Based
Correlation

Location-Based
Correlation

Cross-Layer
Interaction
Model

(a) A service model is composed by multiple protocol models with interaction model.

(b) A network activity is composed by multiple service models with correlation model.

Service Model = Protocol Model+ + Interaction Model

Composite Service Model = Service model+ + Correlation Model

+

Type I

Layer 7

Cross-Session
Interaction
Model

+

Type II
L7 Protocol
Model A

L7 Protocol
Model B

Layer 4

IPA IPB IPC

Service Instance A

Service Instance C

Service Instance B

Fig. 1. The proposed composite service model scheme.

2.1 Protocol Model Construction

Protocol Specification and Finite State Machine. Due to several successful past

works [9], [15] and the characteristics of network protocol asymmetry; we choose

finite state machine (FSM) as a tool to model a network protocol. Each state of the

FSM represents a temporal status of protocol execution, such as waiting for

acknowledge, or sending packets. Events in the FSM could be a network event (e.g.,

receiving network messages) or a host event (e.g., timeout). The definition of states,

events, and transitions of the FSM are statically based on the written documents, i.e.,

protocol specification and open source implementations. Certain specification, such as

TCP RFC [16], provides an execution state diagram (the figure 6 in [16]) for

reference. At this point, we can build a complete view of protocol execution as

precisely as possible. If one state (in the document) has more than one semantic

meaning, it should be clearly separated. Take TCP for example, at ESTABLISHED

state, its connection could be either "just completing three way handshake" or "just

finishing data transfer", which should be separated in the FSM. In our system we set

counter of ACK to differentiate them. Similarly, one message having different

meanings should be identified as different events. A protocol FSM is then populated.

Execution Path. Network traffic traces are collected in campus network in terms of

raw packets. Packets under same communication context (i.e., the same IP address

pair, the same protocol number, and the same port number pair) are classified in

advanced. The classified packets are then replayed, and populate the events defined in

the corresponding FSM to trigger the transition of the FSM. Each instance can plot an

execution path in its protocol FSM, and an execution path is considered as the

behavior of the protocol execution. By repeating this, we can gather a large amount of

execution paths for different protocols to represent the usage of these protocols in our

collected traces.

State Vector (SV) and Principle Component Analysis (PCA). Since we have no

idea how the usage of a protocol would be like (e.g., all instances traverse only few

paths or all go to different paths in the FSM), we take principle component analysis

(PCA) as a tool to analyze the behavior of collected execution paths for building

protocol model. We introduce the concept of state vector (SV) to transform an

execution path (which is a sequence of state transition) to a state vector (which is an

indexed vector with each element is either 1 or 0, and each element maps to a specific

state in its FSM). The coded state vector can be used by PCA for cluster analysis.

Execution paths (or say state vectors) with similar state transition are considered

having similar execution behavior, and they are clustered into same groups by PCA.

Then, we extract the characteristics of each behavior cluster (also in terms of state

vector) to represent different types of protocol usage. In order to guarantee the

accuracy of the model, we extract high enough state vectors in each cluster to build

the protocol model (see Section 3 for details). The extracted state vectors then

transformed back to execution paths and we form the model of protocol by overlaying

these execution paths on the protocol FSM. With these steps, we can first understand

how many behavior clusters are there in these mixed executions paths, and what they

are. Second, we extract behavior characteristics from each cluster instead of from all

execution paths, which is more considerable for describing rare-seen behavior. Third,

we combine static and dynamic approach for a better description of the protocol

model. Semantic meanings of the state from static specification can be preserved, and

this model can also reflect the major protocol usage in the real world. Usually, the

final protocol model is a subset of the original FSM obtained from the specification.

Certain states and paths are discarded by the PCA under a guaranteed coverage rate.

Although it reduces the complexity of the final model, yet it introduces false alarms.

(As the metaphor we mentioned, in this stage we can check to see if the sentences are

syntactic-correct and meaningful.)

2.2 Composite Service Model Construction

Session and Connection. We define a session as an instance of transport layer

protocol execution (e.g., TCP connection), and a connection as an instance of

application layer protocol execution (e.g., HTTP session). Although sessions and

connections are the basis of the network service, yet they are low level activities and

do not interact with each others.

Service Model and Interaction Model. We introduce a more complex concept

named network service model, which is defined as a set of protocol models with an

interaction model for accomplishing a network task. For example, FTP service is not

merely executed by one single session. It may include one control session (usually at

port 21), more than one data sessions (usually at port 20), as well as all their

underlying TCP connections. To relate all these instances in a single service model,

we identify two types of interaction models to describe the relationship: cross-session

and cross-layer. First, a cross-session interaction model relates two or more sessions

by referring to protocol specification. For example, in the FTP specification, the

service data sessions are spawned by the control session (with PORT and PASV

command). We can easily specify and relate them by packet content inspection

technique. Take VoIP application as another example, Real-time Transport Protocol

(RTP) carries media stream controlled by Session Initiation Protocol (SIP), and their

instances will be related into one service. Second, a cross-layer interaction model

relates two instances at different layers (i.e., transport layer and application layer).

This idea inherits the design of network protocol stack. An execution of network

service should not focus merely at one layer. Viewing them as a whole provides more

information to describe the execution of a network service simultaneously at both

layers. We point out that the service model can provide another perspective to

collectively examine the execution of network service rather than individual protocols.

The normality of individual instance does not imply the normality of them as a whole.

Correlation Model. Besides, we also observe that in the runtime a network activity is

accomplished by several network services. For an attack, multiple network services

could be involved to collaboratively accomplish the entire attack. However, their

relationship may not obvious from the understanding of protocol and service

operation logic. We then further identify two correlation models for correlating

service instances into a composite one. Correlation models are built according to two

other dimensions: time and (cyberspace) location. Research works also notice the

importance of finding time-related [17] [18] and location-related [13] [19]

relationship of different traffic flows for traffic analysis. Service instances that are

executed under certain time constrain are possibly related. We demonstrate two time-

related correlation models: execution time and execution duration. The (cyberspace)

location in this paper does not indicate only IP address. The port number, protocol,

and the role of service (e.g., client, server, and peer) can be served as a basis for the

location model. The information can identify different location of a service instance.

Once we obtain the instance of composite service, we than can detect anomalous

behavior by using these instances. (As the metaphor we mentioned, from thousands of

fragmentary sentences, we now understand which of them are actually in the same

paragraph and they should be aligned together for checking its context.)

2.3 Anomaly Detection and Attack Symptom

Anomalies. For anomaly detection, network traffic is collected in terms of packets

and they are used to detect anomalies to check against the models we constructed.

Similar to protocol model construction, packets under same communication context

(i.e., the same IP address pair, the same protocol number, and the same port number

pair) are classified in advanced. Each instance is then transformed to an execution

path. For a protocol model, anomalies are found if the execution path cannot

successfully traverse the normal protocol model (an FSM) from the initial state to one

of the final states (i.e., complete a normal execution). For a service model, anomalies

may be found if the execution paths in it violate the interaction models.

Take cross-layer interaction model for example in Fig. 2, if we view the execution

of the service as a whole, the execution of the application layer protocol should be

embraced by its execution of transport layer protocol (e.g., TCP in Fig. 2). The execu-

tion must be handover at TCP ESTAB (established) state; otherwise such execution is

considered as an anomaly. Not only we examine the normality of individual protocols,

we also check the interaction between them as a whole. For cross-session interaction

model, we take similar approach of checking handover state for two or more applica-

tion layer protocols. The handover states are determined at model construction stage

by referring to the collected network traffic traces. For correlation models, in addition

to anomalies found by checking handover state, we can also detect anomalies by unu-

sual time or (cyberspace) location behavior. For example, compromised host that

shows abnormal role change can be found, such role change method is usually used

by worm attacker or botnet.

Attack Symptom. The anomalies found by protocol models, interaction models and

correlation models are then extracted to build the attack symptom. The anomalies are

usually in a form of state machine transition that is not specified in normal FSM or an

abnormal property of the execution. The entire service execution (including normal

and non-normal) are extracted and aligned with time. Fig. 3 shows an example of an

attack symptom (plotted with its underlying protocol FSMs), and it describes an

attack scenario – Blaster attack does not normally accomplish the execution of

Remote Procedure Call (RPC) service and its underlying TCP. The attack does not

normally traverse the RPC FSM to the one of the final states; instead it handovers the

execution back to TCP at a non-handover state. Such anomaly, called forced session

termination, can only be revealed by viewing RPC and TCP as a whole. We

demonstrate more examples in Section 5.

3 Protocol Model Construction and Verification

3.1 The Static Protocol Model and Specification

As we mentioned, once we obtain the protocol specification (possibly a RFC or open

source code), the temporal protocol execution status and network/host events are

extracted as the states and events of its protocol FSM. A protocol FSM can be denot-

ed as Pi = <Σi, Si, inti, δi, Fi>, where Σi is the event occurred of the protocol; Si is a

finite, non-empty set of protocol execution state; inti is an initial state of the protocol

which is an element of Si; δi is the state-transition function: δi: Si × Σi → Si; Fi is the

set of final states which is a subset of Si. Each event of the FSM usually maps to a

specific value of header field or a binary/text string in the packet payload. Each state

of the FSM represents a temporal status of protocol execution. In this step, we manu-

ally construct the model for different protocols in a customized BNF (Backus–Naur

Form). Currently, the model of TCP, UDP, ICMP, HTTP, FTP, RPC, SIP, and TFTP

are constructed in our system.

(a) The cross-layer interaction model.

(b) The cross-session interaction model.

time
PL7

TCP

time
PL7-1

PL7-2

The execution handover to PL7.

At this point, TCP should be at state ESTAB.

The execution of TCP

continues at state ESTAB.

The execution of PL7 start

from its initial state.

The PL7 should be at its final

state and handover to TCP.

The execution switch between PL7-1. and PL7-2.

The handover state should be follow the operation of PL7-1 and PL7-2.

Fig. 2. The example of anomaly found by interaction model.

There is a benefit for modeling protocol rather than program. There might be doz-

ens of HTTP servers and clients implemented in the real world; however they are the

variants of the reference model from HTTP specification. No matter how program-

mers implement their servers and clients, the observed behavior of the HTTP protocol

should align with the reference model. Although we can expect that the protocol be-

havior of different implementations may not be exactly the same (proven by [20], [21]

or some embedded light weight server/client), yet ideally all of them should still fol-

low (part of) the reference model to accomplish a protocol execution. That is, each

implementation should be a subset of the specification. For the reason of efficiency,

we model the protocol rather than individual programs.

3.2 The Dynamic Protocol Model and PCA

The model from previous step only serves as a reference that how an execution could

be (from the perspective of the specification). Similar to static approach on program

behavior [4], such model does not consider the real world usage of a protocol. It may

introduce false positive if we take such model for anomaly detection, because allowed

execution does not guarantee attack or anomaly free. Hence, we modify the static

model by the dynamic approach with real world network traces. If we directly adopt

dynamic approach without the static model, the constructed model would be complex

as the exact DFA (deterministic finite automaton) in [17], which has high accuracy of

describing a behavior but it may lost the human readable information.

Raw IP packets are collected from network as data set D and are classified based

on header fields: IP address pair, protocol number, and TCP/UDP port number pair.

Protocol events are specified based on the element of Σi of the corresponding protocol

FSM Pi. According to state transition function δi: Si × Σi → Si and observed protocol

events in D, we output the execution path as a sequence of state transition <t1, t2, ...,

tk>, where all transitions belong to δi, and for each transition tk: sk,x × ek,y → sk,z, we

have sk-1,z = sk,x when k > 1, and s1,x is the initial state inti.

As we mentioned, we analyze the behavior of protocol execution by using state

vector rather than execution path. (Because we consider state vector is more suitable

to characterize the protocol execution behavior. See next sub-section for more details.)

We then transform an execution path to a state vector. In this step, multiple execution

ESTAB
C_FIN

W1

BIND

TCP
ESTAB

RPC
START

e: RPC_BIND e: TCP_CLOSE

TCP

RPC

Forced Session Termination

State Correlation

e: Triggered Event

START

LISTEN

FINAL
e: TCP_ESTAB

CLOSE

…

…
…

…

…

TIME
WAIT

CLOSELISTEN
State Correlation Matrix

… Forced Session Termination

TCP … <ESTAB, TCP_ESTAB>
<C_FIN_W1, TCP_CLOSE>

RPC … <BIND, RPC_BIND>

Fig. 3. Attack symptom: Forced Session Termination.

paths might map to the same state vector, and we consider their behaviors are similar.

For Pi, the state vector is a vector having |Si| elements and the value of its element is

either 1 or 0. Each element maps to a specific state of Si and the value indicates if the

state is reached (1) or not reached (0) by the corresponding execution path.

After collecting a set of state vector, we analyze the usage of protocol to build the

normal model of this protocol. Briefly, the Principle Component Analysis can output

a set of component from a set of features or variables. Let the state in Si of Pi be the

variables we analyze. We input n state vectors (having |Si| elements or say |Si| features)

to PCA. PCA outputs another |Si| principle components and each of them is the linear

polynomials of the original variables. For example, let |Si| = 3 and the state vector is

<X1, X2, X3>, by analyzing n state vectors, PCA outputs the result: <PC1, PC2, PC3>

where PC1 = α*X1+β*X2+γ*X3. For a state vector instance <1, 0, 1>, its PC1 value

would be (α*1 + β*0 + γ*1). The variance of PC1 of all the n instances, VPC1, is the

largest (i.e., VPC1 ≧ VPC2 ≧ VPC3). And PC1 can be viewed as the most important

characteristic to describe these n instances. (It is because that a variable with small

variance is relatively difficult to distinguish between data points.) And we can expect

Xi is an important component if it has significant factor to affect the value of PC1.

The PCA can also classify different behavior in our case. Since Xi are binary varia-

bles (either 1 or 0), the number of possible value of PC1 (and also PC2 and PC3) is

limited to 2
|Si|

. In the previous example, they are 0, α, β, γ, (α+β), (α+γ), (β+γ), and

(α+β+γ). Hence, we can simply classify these n state vectors into 2
|Si|

 classes by using

PC1. (The value of VPC1, VPC2 and VPC3 should be considered to decide how to perform

classification. If VPC1 is large enough to distinguish the characteristic of different

protocol behavior, using PC1 is good enough; otherwise we should consider using

PC1 and PC2 to classify these n state vectors. See next sub-section for more details.)

We note that, in real word, certain protocol states are mutually exclusive, so that the

total number of possible classes might be less than 2
|Si|

. Another case occurs when, for

example, there is a very small γ in PC1, so that the PC1 value of <1, 1, 0> and <1, 1,

1> are quit close to (α+β). Since γ is small and X3 is considered insignificant, we say

<1, 1, 0> and <1, 1, 1> are similar behavior and are classified in the same class.

Once we classify these state vectors into different classes, we then designate one or

more representative state vectors (RSV) in each class as references to model the nor-

LISTEN

SYN

SENT

SIM

SYN

RCVD

HALF

ESTAB

ERR

NS S

ERR

NS F

ESTAB

RENEW

ERR

RE F

S FIN

W1

C FIN

W1

CLOS

ING

C LAST

ACK

S LAST

ACK

ERR

S F

TIME

WAIT

CLOSE

ERR

TW

Non-Synchronized State (NS) Synchronized State (S)

all other events

RST

RST

C:SYN

C:SYN

S:SYN

C:SYN-ACK

C:ACK

C:ACK

S:SYN-ACK

S:ACK

S:SYN-ACK

FIN

FIN-ACK

C:FIN

S:FIN

S:FIN-ACK

C:FIN-ACK

S:FIN

C:FIN

C:ACK

S:ACK

C:ACK
S:ACK

SYN

SYN

ACK

ACK

ACK

ACK

C: sent from client

S: sent from server

LISTEN

SYN

SENT

SYN

RCVD

ESTAB

S FIN

W1

C FIN

W1

C LAST

ACK

S LAST

ACK

TIME

WAIT

CLOSE

RST

C:SYN

C:SYN

C:ACK

S:SYN-ACK

TIMEOUT

C:FIN

S:FIN

S:FIN-ACK

C:FIN-ACK

C:ACK

S:ACK
ACK

ACK

ACK
RST

(a) TCP model built based on RFC 793. (b) TCP normal model built by using dynamic approach.

all other events

C: sent from client

S: sent from server

Non-Synchronized State Synchronized State

Fig. 4. The TCP FSMs built from different sources.

mal usage of this class. State vectors in the same class are considered having similar

execution behavior, and they can only be differentiated by states that are considered

relatively insignificant. For each class, we first rank the state vectors by the number of

execution path instances it presents. (As we mentioned, a state vector may represent

multiple execution paths in the original data set). When we take the number of execu-

tion path into account, we can then make the judgment whether a state vector is a

RSV or not in a class, or even we need to split the class into two sub-classes since the

behavior in it is considered quite different. For each class, we examine the element of

state vector one by one. If the values of PCi of all state vectors in a class are the same

(all zeros or ones), then this element of RSV is assigned with this value. If the value

of PCi of all state vectors are not the same (having both 0 and 1, such as PC3 of <1, 1,

0> and <1, 1, 1>), we split this class into two sub-class if the none of each part domi-

nates the execution paths count (say exceeding r% of the total count, we set it to 95%

in our experiment) and continue checking next PCi of each sub-class. Otherwise, if

one of the parts has dominant count, we simply take its value as RSV's value and

discard the state vectors less than 1 - r%. Iteratively, each (sub-)class has one RSV to

present it usage. We then collect all selected RSVs of each (sub-)class and find out

their corresponding execution paths in data set. The states and the transitions of these

execution paths are then used to construct the normal model of Pi. As we can expect,

the states and transitions from RSVs are less than Si and δi. However, these subset of

states and subset of transitions represent the normal usage of protocol. Since some of

the allowed execution paths are not seen in the real world and might even be an

anomaly. We denote the normal protocol FSM as P
*
i = <Σ

*
i, S

*
i, inti, δ

*
i, F

*
i>, where

Σ
*
i is the subset of Σi, which contains only events are considered normal. S

*
i, δ

*
i and

F
*
i are the subset of

*
i, δi and Fi, respectively. Without special notice, we simply use

Pi to represent the normal model in the following sections.

There is an important reason why we classify behavior before RSV selection. In

this step, we would like to model the different behavior. If we select state vectors

(according to their execution path count) without classification, state vectors that have

small execution path count could possibly be discarded from the model. However, the

aggregation of them may create a class of protocol execution that cannot be neglect.

Hence, we classify behavior before RSV selection.

PC_1

PC_2

-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

PC_1

PC_2

index of state vectors (sorted by PC1 value)

P
C

1
v
a
lu

e

PC1 = 0.0002*SYN_RCDV + 0.4814*S_FIN_W1 + 0.6011*S_LACK + 0.1387*TIME_WAIT

- 0.4814*C_FIN_W1 - 0.3934*C_LACK + 0.0004*RENEW - 0.0029*ERR_NS_S

PC2 = -0.0002*SYN_RCVD - 0.3035*S_FIN_W1 + 0.5133*S_LACK - 0.6942*TIME_WAIT

+ 0.3035*C_FIN_W1 + 0.2847*C_LACK + 0.00008*RENEW - 0.0003*ERR_NS_S

1

2
3

4

5
6

7
8

1. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ S_LAST_ACK → TIME_WAIT → CLOSE

2. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ TIME_WAIT → CLOSE

3. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → S_FIN_W1

→ CLOSE

4. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → TIME_WAIT

→ CLOSE

5. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ C_LAST_ACK → TIME_WAIT → CLOSE

6. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ TIME_WAIT → CLOSE

7. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ TIME_WAIT → CLOSE

8. LISTEN → SYN_SENT → SYN_RCVD → ESTAB → C_FIN_W1

→ CLOSE

Fig. 5. The cluster phenomena of TCP behavior

3.3 PCA Verification Results

From static analysis, we construct a TCP FSM based on the diagram in TCP RFC

specification [16]. There are 19 states and 43 transitions in this static model. For con-

structing the protocol combining dynamic approach, we collect raw packets in cam-

pus network on a core router using Wireshark [22]. The total packet capture length is

200 minutes and it contains 131,499 TCP execution paths. Within these execution

paths, there are only 50 identical state vectors. The state vector with highest execution

path count (75,230) passes the following states: LISTEN, SYN_SENT, SYN_RCVD,

ESTAB, DATA, S_FIN_W1, S_LACK, TIME_WAIT, and CLOSE, which looks like

a standard TCP execution written in the textbook. Due to loops in the FSM, there are

actually 68 types of execution paths of this state vector. The execution path count of

top five state vectors are 75,230, 19,359, 15,074, 14,368, and 3321. All the other

counts of 45 state vectors are less than 1200.

The result of PCA is that PC1 = 0.0002*SYN_RCVD + 0.4814*S_FIN_W1 +

0.6011*S_LACK + 0.1387*TIME_WAIT - 0.4814*C_FIN_W1 - 0.3934*C_LACK +

0.0004*RENEW - 0.0029*ERR_NS_S. The PC1 value of the state vector which has

highest execution path count is 1.2212. The VPC1 is 0.4556 (58.76% of total variance),

VPC2 is 0.2260 (29.14% of total variance), and VPC3 is 0.053 (6.89% of total variance).

We plot all 50 state vectors with their value of PC1 and PC2 in Fig. 5. Although math-

ematically there could be 2
19

 distinct value of PCi, yet we can see that there exists

only 50 distinct state vectors and they can be roughly classified into 5 classes by PC1:

above 1.0, around 0.5, around 0.0, around -0.5, and between -0.5 and -1.0. (Actually,

PC2 also classifies theses state vectors into the exact same 5 classes.) When we take

PC1 and PC2 into account, the aggregate variance would be 87.90% (the total variance

of all PCi is 100%), and we consider it is high enough using PC1 and PC2 to charac-

terize the behavior of TCP. We then perform the algorithm to find RSVs in each class.

In the first class (PC1 value is above 1.0), there are 12 similar state vectors. Out of

19 states, 14 states are all zeros or all ones among these 12 state vectors. While con-

sidering split these 12 state vectors into several sub-classes using the 5 contradictory

states, we find that there is always a dominant count of execution paths (exceed 95%

of total count) for a value of a state, so we do not split this class. For the second class,

there 13 state vectors. For state TIME_WAIT, 43% of the execution paths pass it (i.e.,

the value of this element is 1) and the rest do not. Clearly, we split this class into two

parts. For the fourth and fifth classes, similar situation exists. Finally, we have 8

(sub)-classes and their corresponding RSVs. The 8 RSVs are then used for construct-

ing the final model of TCP which is shown in Fig. 4. The semantic meanings of these

8 TCP behaviors can be restored by studying its execution path (also in Fig. 5). We

feed the original data set to the final TCP protocol model, and it covers 98.47% of the

total execution paths, which indicates the model can describe the behavior character-

istics quite well.

Due to page limit, we only show another one of our supported protocols – HTTP –

here. By using static analysis, the HTTP FSM has 9 states 18 transitions. In a traces

having only HTTP traffic, 96,136 execution paths and 11 state vectors are identified.

Among them, 11 (sub-)classes of HTTP behavior are specified. And the result of

dynamic analysis reduces the FSM to a HTTP normal model with 6 states and 9 tran-

sitions. The final model covers 99.98% of the execution paths in the data set.

4 Service Model Construction and Anomaly Detection

4.1 The Construction of Interaction Model

Once we have the model of individual protocols; we then consider the relationship

between two protocols to see if they collaboratively accomplish a service. Two types

of interaction models are shown in Fig. 1. The cross-layer interaction model is used

by describing the relation between one transport layer protocol, PL4, and one applica-

tion layer protocol, PL7. Inheriting to network protocol stack, the execution of the PL7

should be embraced by its execution of PL4. (See Fig. 2.) We introduce a concept of

handover state to describe the embrace relationship between PL4 and PL7. A handover

state sho in SL4 would continue looping while the execution handovers to its PL7. The

execution of PL7 must start at its initial state intL7 and complete the operation at one of

the final states FL7 of PL7. Then the execution would handover back to PL4 again and

continues state transiting to next state from sho. The ESTAB state of TCP is one of

such handover state. In order to specify how these handover occur, we mark an

“OUT” at state sho indicating the execution can switch out to PL7. The state intL7 is

marked as an “IN” state since it can continue the execution. Similar, all the states in

FL7 are marked as an “OUT” state, and the state sho is also an “IN” state. The hando-

ver information can help us to judge if the execution between PL4 and PL7 follow the

cross-layer interaction model.

The mode of cross-session interaction is similar to cross-layer interaction model. It

describes the relation of two related application protocols, such as SIP and RTP, and

FTP command (TCP port 21) and FTP data (TCP port 20). The relationship may not

as simple as TCP and the application layer protocol. Fig. 2 shows an example that the

execution of PL7-1 and PL7-2 is interleaved and FTP command and data may quite fit

this relationship. The “IN” and “OUT” state could be specified during static analysis

by network expert (although most of the protocol specifications do not discuss such

relationship), and dynamic analysis approach is another alternative. However, the data

collection and techniques for specifying “IN” and “OUT” state by dynamic analysis

may need further studies. In our paper, we simply look into the network traces and

observe the handover situation of two application layer protocols that we consider

they are related.

With the help of handover state, we can conceptually connect two protocol FSMs

as one, and use such model for anomaly detection. In our experiment, we find an

anomalous protocol execution that handovers at non-“IN” or non-“OUT” state.

4.2 The Construction of Correlation Model

We notice that an intrusive activity may involve more than one network services that

may be considered irrelative from the perspective of specification. However, for ex-

ample, attack may use PL7-1 to compromise a vulnerable victim and use PL7-2 to deliv-

er malware. Hence, we introduce two correlation models for correlating two network

services from different perspectives: time-related model and location-related model.

For the time-related model, we define two instances are related if | PL7-1.start_time –

PL7-2.start_time | < TS and | PL7-1.duration – PL7-2.duration | < TD, where TS and TD are

the predefined thresholds. The start_time is a timestamp that a PL7 starts exchanging

the application layer message, and duration is the variable recording the total time

spent while executing PL7.

For the location-related model, we define two instances are related if one of the

following constrains are satisfied: PL7-1.dstIP = PL7-2.dstIP (i.e., these two instances

are running on the same host), or PL7-1.dstPort = PL7-2.dstPort (i.e., these two instanc-

es are connected by others using same destination port; they are probably network

servers and provide same network service), or PL7-1.srcIP = PL7-2.dstIP & PL7-1.dstIP =

PL7-2.srcIP (i.e., these two instances are running between two hosts and each host

initiates one instance; they might provide peer to peer service or one of the service is

spawn by another service).

More rules can be added to describe different relationship model in time and loca-

tion domain. In Section 5, we will also demonstrate how these correlation models are

used to detect anomalies on time and location domain.

4.3 Finding Anomalies

For single protocol FSM, an execution path is considered anomaly if the execution

path does not accepted by its corresponding normal model (i.e., a deviation is found).

Let Pi be the model constructed by static approach, and P
*
i is the normal model con-

structed by our dynamic approach. For an execution path <t1, t2, …, tk, …> of Pi (all tk

are transitions that belong to δi), if there exists a transition tk: sk,x × ek,y → sk,z, where tk

is in δi but not in δ
*
i (i.e., in the specification but not in our normal model), we con-

sider ek,y is an anomaly event, and sk,x and Sk,z are the anomaly states. Such anomaly

states and event will be recorded for constructing attack symptom.

Usually, there are three type of anomaly that causes such anomaly transition: event

that is not unknown or cannot be identified in a packet, event that should not be sent

at current state, and timeout event caused by unknown communication issue.

For finding anomaly with the interaction model, we check if the execution hando-

vers between two protocols at state marked “IN” and “OUT” or not. If two protocol

instances handover from inappropriate state sx to sz via event ey, these states and event

are then used for attack symptom construction. For finding anomaly with correlation

model, we can detect time and location anomalies, for example a host changes its role

from a server to a client of its previous client. Usually, a network server (that does not

run P2P service) does not act like a client. Take this example to be more specifically.

In our experiment we detect such behavior with time and location information as

follow. For two protocol instances, PL7-1 and PL7-2, that are considered time related

(PL7-1.start_time < PL7-2.start_time, PL7-2.start_time - PL7-1.start_time < TS, and | PL7-

2.duration - PL7-1.duration | < TD.), if PL7-1.dstIP = PL7-2.srcIP and PL7-2.dstIP = PL7-

1.srcIP, then we say that the PL7-1.dstIP is the server of first instance and it then be-

comes the client of the second instance. We record the event of PL7-1 and PL7-2 (that

can identify the role of server and client) for constructing attack symptom.

Attacks such as botnet (establishing control and command channels), worm (ex-

ploiting procedure and downloading malware file), and stepping stone (a series of

telnet connections) typically contain several protocol execution instances that have

some sort of time and location relationships between them. We anticipate our ap-

proach can capture these behavior characteristics and use for anomaly detection. More

experiment result on real world attacks are illustrate in Section 5.

4.4 The Construction of Attack Symptom

The deviations found in the FSM models, interaction models and correlation models

are collected and aligned with the time they occur. The state and event that cause the

deviation are connected together to describe a serious of changes when intrusive ac-

tivity occurs. An attack symptom is also represented in a form of state machine. Each

state of the attack symptom represents a temporal status of intrusive activity. Its event

is created by the change of underlying protocols. The transitions of an attack symp-

tom may lead the status of current protocol executions to an anomaly state. An attack

symptom may contain several events and states of different protocols; hence we rec-

ord the relationship in a correlation matrix R. Let ASj be the attack symptom we cur-

rently focus on. The value of the matrix element Ri,j is either null or a two-tuple value

<state s of Pi or event σ of Pi, a list of <event e of ASj>>, which indicates that the

reach of state m of Pi or the occurrence of event σ would trigger the creation of (one

or more) event e to the attack symptom ASj. This matrix records how attack symptoms

transit based on the state change and event occurrence of underlying FSMs. In Fig. 3.,

an example of Ri,j is <state ”BINDING” of RPC FSM, event “RPC-BINDING” of

attack symptom “Forced session termination”>), which means the reach of state

“BINDING” of RPC will trigger the creation of an event “RPC-BINDING” to the

“Forced session termination” attack symptom.

Although the output of our constructed attack symptom can be used as a reference

to characterize the attack behavior for rule-based intrusion detection system; however,

providing fixed rules may limit the detection capability. Rather we provide several

normal execution models including protocol execution, protocol interaction, and ser-

vice correlation for anomaly detection, which we believe is a promising alternative for

detecting intrusion.

5. Experiment

We collect several real word attacks and replay them in our system to demonstrate the

abnormal behavior captured by our prototype system. Single attacks — Blaster,

Sasser, Code Red, Code Red II, Nimda, Welchia, Slammer — are collected from the

Internet and are used for evaluation, and we also use a well-known attack trace —

DARPA 1999 Intrusion Detection Evaluation Data Set [23] — and a general trace

collected in campus network for false positive analysis. Single attacks are launched in

a private LAN with multiple hosts having unpatched operating systems. Network

packets are monitored and analyzed for detecting any deviations. The campus trace is

collected in the core router of a campus network lasting 7 hours. It is stored in a 378

GB file containing 45 million TCP and UDP flows and 680 million packets.

5.1 Attack Symptom Found by Protocol Model

When examine the protocol execution of Sasser, we find a malicious TCP execution

that is not aligned with our normal TCP model. Sasser would first initiate a TCP con-

nection (at port 445) to its victim. Only six TCP packets are exchanged between them:

SYN, SYN-ACK, ACK, FIN, FIN-ACK, ACK. This TCP instance occurs before

Sasser tries to attack SMB-RPC service, and we make a reasonable guess that it is a

probing connection. Since normal application may not establish a TCP without send-

ing application layer message, our TCP normal model can detect such an anomaly.

We notice that such behavior is allowed in TCP specification, but it is malicious while

considering the TCP operation of real world practice.

Similarly, the HTTP normal model can find that the attack Code Red II sends an

HTTP packet with a non-existing event (a packet with 1 byte “\x00”). Attack Nimda

replies an HTTP error message that does not in our HTTP model, but in the specifica-

tion. For another example, the attack Blaster has an execution path (sending messages

with wrong order) that is not in our RPC normal model while preceding the vulnera-

bility exploitation. Even some fingerprinting tools, such as nmap and nessus, deliber-

ately send packets with abnormal headers or contents (e.g., Sending a TCP packet

with SIN and FIN flags are both set, or sending a HTTP GET message to a HTTP

client) to probe the information of the target. Such behavior can be detected by our

protocol models.

Although we understand that such approach of protocol model checking is not new,

yet we demonstrate that using model built based on static approach (i.e., specification)

may not suitable. With combining dynamic and static approach, we can truly under-

stand the behavior of protocol execution.

5.2 Attack Symptom Found by Service (Interaction) Model

The attack Blaster and it variants Welchia both encounter a problem of forced session

termination. In order to successfully exploit the buffer overflow vulnerability of RPC

service, their attacks would send a packet with a long message trying to overflow the

buffer of RPC service. After receiving such long data, the execution right of the vic-

tim would be taken away by the attacker. The original RPC service hangs there and

cannot response anymore, and the underlying TCP connection would timeout and

sends a RST message to close the TCP session. Hence, the RPC service is forcedly

terminated, which is not follow our cross-layer interaction model, and we consider it

is an abnormal activity. In our normal model of RPC, a RPC instance should hando-

ver back to it TCP at one of the final states, such as RESPONSE.

The attack Sasser has similar attack symptom that runs on SMB-RPC and TCP.

The attack Code Red and Code Red II also have a hanged HTTP that is forced termi-

nated by TCP RST. These attacks all perform similar buffer overflow exploitation.

Since the original service is buffer overflowed, even the attacker can now execute any

program at the victim host, but the compromised service cannot be recovered, so that

the attacker cannot avoid being detected by trying being normal. Such attack symp-

tom is not only occurs in TCP and its application layer protocol. For UDP connection,

the attack Slammer also encounters similar timeout event after the attacker perform a

SQL injection.

All above attacks can be detected by checking the handover state of two protocol

instances. We believe they can reveal more malicious behavior than single protocol

models.

5.3 Attack Symptom Found by Composite (Correlation) Model

In the attacks that we collected, worm-like attack often initiates another channel for

malware downing, such as, Blaster, Nimda, Sasser and Wehchia. Other attacks may

initiate another communication channel back to the attackers, such as most of the

botnet. Although such behavior is not part of service exploitation, yet most of the

attackers want to do more than just service exploitation. They may setup a communi-

cation channel to control the victim to perform further attacks. Basically, this follow-

ing behavior performed by attacker does not align with the design of original service.

For example, a RPC service would not act like a FTP or TFPT client of its pervious

RPC client, but Welchia, Sasser and Blaster do so in order to communicate with the

attacker. The botnet client also establishes C&C channel (control and command chan-

nel) to the bot master to obtain instructions.

For a stepping stone attack, the attacker may connect to a host and then connect to

another host via the first host. In order to hide itself from be detected, the attacker

may take several hops to its final target and launch the attack so that back tracking is

difficult. However, if we can obtain these network traces, with the help of time rela-

tionship (the staring time of the previous instance and the latter instance should be no

longer than 10 seconds) and IP connected (one host is the destination of one instance

and is the source of another instance), we can correlate instances that are related for

detecting anomaly. We can than generate a path all the way from the victim to the

attacker, such as [19].

These attack symptoms rely on the correlation in time and location dimension to

figure out the abnormal relationship between each network service. We believe that

such design is suitable to confront the complex network environment. We anticipate

that the time and space relationship can be more complicated to confront sophisticated

attacks. For stealth attack that possess incubation time can possibly not correlated

with the related instances. Such studies could be the future works for this research.

5.4 False Alarm Analysis

The DARPA 1999 dataset is used in this subsection. We build our normal protocol

models (only for HTTP and TCP) with the training dataset (lasting one week long) in

DARPA dataset. Then the DARPA testing data (also one week long) is fed into our

system with these normal protocol models. Within the testing data, there are 80 at-

tacks but 18 of them are console-based attacks (telnet or SSH) and 46 of them are

attacks that not target on networks. In these “network” attacks, the network is simply

a carrier to deliver their attack. The network or the network services are not the target

so that they are not our focus. (We will discuss these types of attack in the discussion

section.) There are 16 attacks in DARPA’s trace that fall into the category that we

focus to detect. Within these 16 attacks, ten of them have at least one protocol execu-

tion deviation on HTTP or TCP operations that relate to its attack procedure. And the

other six are attacks the target on SMTP and IMAP. Unlink signature-based IDS, we

do not need to generate attack signature for each attack and its variants. Although

some research has been studied the vulnerability-based signature [15] [25], yet they

still need time to collect attacks, generated efficient vulnerability-based signature and

deliver them. We focus on the network service operation and their relationships for

detecting anomaly. In total 323, 841 execution paths in the dataset, we have 464 alerts

that are actually not belong to an attack. Hence, the false positive rate is about 0.14%,

which is considered acceptable.

In the campus trace, there are total 1,008,534 attack symptoms are identified. Spe-

cifically, 289,476 of them are TCP port sweep and 717,170 of them are TCP SYN

flooding. Both of them are quite common in today’s network; however it still needs

further study to understand why and what applications send these traffic. The rest of

the attack symptoms are mainly the errors occurred at application layer (~81%), and

~14% deviations are caused by TCP. The rest of the attack symptoms are found by

interaction models and correlation models (~4%). Application layer errors could be

sending out of order messages or error messages.

We notice that sometimes bad or incorrect implementation of software may also

cause sending error messages or a crash program may not be able to complete the

entire protocol execution. They could possible one of the reasons that we observe

such attack symptom. P2P programs may also send lots of TCP SYN packets for

finding files. These applications are the possible false positives.

6. Discussion

Network service model proposed in this paper is not used to replace all the other

models (such as user model, program model, or traffic model). Every model has its

pros and cons, and can collaboratively form the defense alliance to detect anomalous

from different perspective. Here, we provide a promising perspective from network

service to detect anomalies that may neglect by other models.

As we discuss in the previous section, several types of attacks do reveal anomalies

when we examine the execution of network services. However, there are still certain

type of attack does not fall into these categories, such as Cross Site Script (XSS),

Cross Site Request Forgery (CSRF), malicious programs executed by human (e.g.,

Trajan in e-mail), and exchanging malicious files via instance message software or

P2P software. Their infection mechanism does not involve network service operation.

Network itself if merely a carrier to deliver the malicious intention of the attackers.

They infect victims by malicious content carrying in normal network service execu-

tion. Research works that focus on malicious content analysis could possibly deal

with these attacks. Our proposed approach can detect them only after infected host

acts abnormally from the perspective of network service operation. However, this

type of attacks is beyond our research focus.

There are works, such as [27] [28], that focus on event correlation approach to de-

tect intrusions; especially data mining techniques are widely used. The benefit of this

approach can decrease the time and effort of human involvement and can automatical-

ly capture the behavior of intrusion. However, we anticipate that a large amount of

mining data is needed, and most of them focus on misuse detection system rather than

anomaly detection system.

7. Conclusion

In this paper, we demonstrate the feasibility of using protocol execution model to

reveal even more anomalies that past may not find. The combination of static and

dynamic approach for constructing protocol models is more appropriate to describe

the real world usage of protocols than models built based on protocol specification.

The Principle Component Analysis can help us to classify different protocol execution

behaviors and figure out the important states in the traces. We also demonstrate that

the interaction models and correlation models can provide more delicate descriptions

between multiple protocol instances. The proposed composite service model can

reveal anomalies in classes of real world attacks with reasonable false positive rate.

Unlike rule-based intrusion detection systems that only rely on signatures, we provide

an alternative for anomaly detection that focuses on the essential part of network

communication—network services. We anticipate that future attacks would be more

and more sophisticated, and the involved protocol instances would be diverse. From

the perspective of service execution and considering the relationships between them

would be a promising approach to describe the characteristics of malicious behavior.

In this paper, we propose a method using a more formal way to solve the problem of

constructing normal models and correlating their relationships.

Acknowledgments. This work was partially supported by the iCAST project spon-

sored by the National Science Council, Taiwan, under the Grant No. NSC97-2745-P-

001-001.

References

1. Juan M. Estévez-Tapiador, Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo: Anomaly detec-

tion methods in wired networks: a survey and taxonomy. Computer Communications 27(16):

1569-1584 (2004)

2. Dorothy E. Denning: An Intrusion-Detection Model. IEEE Symposium on Security and

Privacy 1986: 118-133

3. Stephanie Forrest, Steven A. Hofmeyr, Anil Somayaji, Thomas A. Longstaff: A Sense of

Self for Unix Processes. IEEE Symposium on Security and Privacy 1996: 120-128

4. David Wagner, Drew Dean: Intrusion Detection via Static Analysis. IEEE Symposium on

Security and Privacy 2001: 156-

5. Cliff Changchun Zou, Weibo Gong, Donald F. Towsley, Lixin Gao: The monitoring and

early detection of internet worms. IEEE/ACM Trans. Netw. 13(5): 961-974 (2005)

6. George Nychis, Vyas Sekar, David G. Andersen, Hyong Kim, Hui Zhang: An empirical

evaluation of entropy-based traffic anomaly detection. Internet Measurement Comference

2008: 151-156

7. Ruoming Pang, Vinod Yegneswaran, Paul Barford, Vern Paxson, Larry L. Peterson: Charac-

teristics of internet background radiation. Internet Measurement Conference 2004: 27-40

8. Stuart Staniford, Vern Paxson, Nicholas Weaver: How to Own the Internet in Your Spare

Time. USENIX Security Symposium 2002: 149-167

9. J. Treurniet: A Finite State Machine Algorithm for Detecting TCP Anomalies. Technical

report, Defence R&D Canada, 2005

10. Juan M. Estévez-Tapiador, Pedro Garcia-Teodoro, Jesús E. Díaz-Verdejo: Stochastic Proto-

col Modeling for Anomaly Based Network Intrusion Detection. IWIA 2003: 3-12

11. InSeon Yoo, Ulrich Ultes-Nitsche: Towards Run-Time Protocol Anomaly Detection and

Verification. ICETE (2) 2004: 299-304

12. Giovanni Vigna, Richard A. Kemmerer: NetSTAT: A Network-based Intrusion Detection

System. Journal of Computer Security 7(1): (1999)

13. D. R. Ellis, J. G. Aiken, K. S. Attwood, and S. D. Tenaglia: A Behavioral Approach to

Worm Detection. Proc. of the 2004 ACM Workshop on Rapid Malcode (WORM): 43-53.

14. R. Sekar, Ajay K. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, S. Zhou: Specifica-

tion-based anomaly detection: a new approach for detecting network intrusions. ACM Con-

ference on Computer and Communications Security 2002: 265-274

15. Helen J. Wang, Chuanxiong Guo, D.R. Simon, Alf Zugenmaier: Shield: vulnerability-driven

network filters for preventing known vulnerability exploits. SIGCOMM 2004: 193-204

16. J. Postel: Transmission Control Protocol. IETF RFC 793, Sept. 1981.

17. Jayanthkumar Kannan, Jaeyeon Jung, Vern Paxson, Can Emre Koksal: Semi-automated

discovery of application session structure. Internet Measurement Conference 2006: 119-132

18. Peng Ning, Y. Cui, D.S. Reeves: Constructing attack scenarios through correlation of intru-

sion alerts. ACM Conference on Computer and Communications Security 2002: 245-254

19. Yinglian Xie, Vyas Sekar, D.A. Maltz, Michael Reiter, Hui Zhang: Worm Origin Identifica-

tion Using Random Moonwalks. IEEE Symposium on Security and Privacy 2005: 242-256

20. Gordon Lyon : Nmap Network Scanning: The Official Nmap Project Guide to Network

Discovery and Security Scanning. Nmap Project (2009)

21. Nessus. [Online]. Available: http://www.nessus.org/

22. Wireshark. [Online]. Available: http:// www.wireshark.org /

23. DARPA 1999 Intrusion Detection Evaluation Data Set. [Online]. Available:

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/1999data.html/

24. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The Physiology of the Grid: an Open Grid

Services for Distributed Systems Integration. Technical report, Global Grid Forum (2002)

25. David Brumley, James Newsome, Dawn Xiaodong Song, Hao Wang, Somesh Jha: Towards

Automatic Generation of Vulnerability-Based Signatures. IEEE Symposium on Security and

Privacy 2006: 2-16

26. Arno Wagner, Bernhard Plattner: Entropy Based Worm and Anomaly Detection in Fast IP

Networks. WETICE 2005: 172-177

27. Wenke Lee, Salvatore J. Stolfo, Kui W. Mok: A Data Mining Framework for Building

Intrusion Detection Models. IEEE Symposium on Security and Privacy 1999: 120-132

28. Peng Ning, Dingbang Xu: Learning attack strategies from intrusion alerts. ACM Conference

on Computer and Communications Security 2003: 200-209

