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Abstract—Recent advances in disaster prediction and detection 
technologies and ICT support infrastructures have enabled the 
generation and reliable deliveries of machine-readable early 
disaster alerts over all communication pathways. The emergence 
of ubiquitous smart devices and applications that can receive, 
authenticate and process standard-conforming disaster alert 
messages and respond by taking appropriate actions to help us to 
be better prepared for nature disasters is a natural next step in 
the advancement of disaster management technologies. Such 
smart devices and applications are called iGaDs (intelligent 
Guards against Disasters). This paper describes reference 
architecture, key components and design of iGaDs in general and 
an ASIC enhancement of battery-powered iGaDs.  

Keywords-ubiquitous computing, embedded devices, smart 
environment,  disaster preparedness 

I.  INTRODUCTION 
In recent decades, we have seen tremendous advances in 

technologies for the predication and detection of nature 
disasters and ICT infrastructures for generation and distribution 
of disaster alerts/warnings. Today, most developed regions of 
the world are literally covered by diverse in-situ and remote 
sensors [1, 2], ranging from surveillance and eco sensors in 
oceans, to advanced weather radars, to sensors monitoring 
surface and underground water and road and bridge conditions, 
to broadband seismometers arrays and strong motion sensors, 
and so on. Efforts of large projects (e.g., OSIRIS [3], SANY [4] 
and SensorNet [5]) and standards organizations (e.g., OGC [6] 
and OASIS [7]) have made available standards and tools 
needed to support interoperability of diverse sensor networks 
and sensor webs and the processing and use of multi-domain, 
real-time sensor data and information provided by them. 

Recent advances in ICT infrastructures include platforms 
for emergency services. An example is IPAWS-OPEN 
(Integrated Public Alert and Warning System – Open Platform 
for Emergency Networks) [8] in the USA. The platform 
provides services to receive and authenticate standard-based 
messages from alerting authorities and then broadcasts the 
messages via all communication pathways, including digital 
radio broadcast, cellular networks and Internet. XML-based 
message format standards CAP (Common Alerting Protocol) [9] 
and EDXL-DE (Emergency Data Exchange Language 

Distribution Element) [10] enable information exchanges 
between emergency information systems and public safety 
organizations, automatic report by sensor systems to analysis 
centers, and aggregation and correlation of warnings from 
multiple sources. Consequently, alert decision support systems 
(e.g., [11-16]) not only can generate more accurate alerts earlier 
but also can have the alerts delivered sooner and used for more 
purposes than possible a few years ago.  

This paper describes the design and implementation of 
smart embedded devices, systems, and applications that can 
receive, authenticate and process standard-based disaster alert 
messages and respond by taking specified actions to help us 
minimize personal dangers and reduce property damages and 
economic losses when disasters strike. Such devices and 
applications are called iGaDs (intelligent Guards against 
Disasters) [17] in general. For sake of concreteness, our 
discussions assume that alert messages conform to CAP 
standard and are distributed by IPAWS, and every iGaD can 
receive alerts via one or more of cellular networks, Internet, 
and other wireless connections. We will highlight the capability 
of devices and applications to process and respond to CAP 
messages by saying that they are CAP-aware.  

The CAP and IPAWS assumption is not as restrictive as it 
seems. What will be said about iGaDs in later sections are 
applicable even when messages do not conform to CAP, 
provided that they are in a XML format, are signed and 
broadcast by a trusted service via all communication pathways 
and contain information needed to support iGaDs decisions. 

As examples, Fig. 1 shows two embedded iGaDs designed 
to respond to warnings of imminent strong earthquakes. 
Nowadays, earthquake-prone regions such as Taiwan, Japan 
and parts of USA and Mexico are monitored by broadband 
arrays of seismometers and strong seismic motion sensors. 
Seismic data sent by them via RF to computers at analysis 
centers enable the determination of the focus and magnitude of 
each earthquake, and in case of severe quakes, the broadcast of 
alerts, a fraction of a second or more before shock waves arrive 
and ground motion starts in the affected areas. When warned of 
an earthquake of a specified magnitude or stronger, a CAP-
aware elevator controller in a smart building slows down 
elevators and stops them when they reach the closest floors, as 
shown in the left half the figure.  

This work was partially supported by Taiwan Academia Sinica Thematic 
Project OpenISDM (Open Information Systems of Disaster Management). 
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 ?xmlns version = “1.0”
<alert xmlns = ……
<event>Earthquake</event>
<urgency>Immediate</urgency>
<severity>Strong</severity>
<certainty>Observed</certainty>…
<parameter>

<valueName>Magnitude
</valueName>

<value>7.2</value>
</parameter>…
<area>

<circle>32.9525 -115.5585
0</circle>

</area>…

?xmlns version = “1.0”
alert xmlns = ……
<event>Earthquake</event>
<urgency>Immediate</urgency>
<severity>Strong</severity>
<certainty>Observed</certainty>

Alert extraction

Action activation rule evaluation

Device interface

iGaD
Earthquake. Slow 
down and pull over

Vehicle safety system

Elevator 
controller

Alert extraction

Action activation rule evaluation

Device interfaces

 

Figure 1.  Examples of embedded iGaDs 

In addition to CAP-aware elevator controllers, a smart 
building may have iGaDs that unlock entry-access controlled 
doors to ease evacuation, shut down natural gas flow into the 
building to prevent fire, and so on. The other example shown in 
Fig. 1 is a CAP-aware vehicle safety system on board a truck 
traveling in an affected area. When triggered by a strong 
earthquake alarm, it warns the driver of the imminent 
earthquake, turns on the hazard flashers, disengages the cruise 
control and helps the driver to slow down. A CAP-aware 
variable message sign system broadcasts text messages to signs 
before tunnels and bridges on highways to tell drivers to 
slowdown and pull over. 

In addition to embedded iGaDs, software iGaDs are CAP-
aware applications that run on computers, smart phones and 
other platforms with sufficient computing power and memory 
space and some form of location-based service. Examples 
include applications that respond to severe earthquake alerts by 
telling surgeons in hospitals to pause on-going operations, or 
shoppers in supermarkets of relatively safe aisles to be during 
the quake, or children in schools to stay calm and take cover 
under their desks, and so on. Other examples of iGaDs for 
preparedness against major earthquakes and other types of 
natural disasters, together with discussions on how they can 
help, can be found in [17]. 

Following this introduction, Section 2 describes related 
works. Section 3 describes reference architecture and key 
components for building configurable and customizable iGaDs. 
Section 4 describes a design and implementation of embedded 
iGaDs and an ASIC enhancement for battery powered iGaDs. 
Section 5 summarizes the paper and discusses future works. 

II. RELATED WORKS 
We focus here primarily on embedded iGaDs. They can be 

viewed as actuators in a large, distributed cyber-physical 
system with diverse sensors, complex decision support servers 
and communication networks. Being dependable and 
responsive is essential. Some iGaDs, including the examples 
mentioned above, aim to complement and to be integrated with 
the increasingly broader spectrum of devices, applications and 

services offered by modern smart homes and environments to 
make the environments safer against disasters. Problems related 
to their integration are out of scope of this paper. We will not 
address them except to say that technologies and protocols for 
smart environments [18] should be used for this purpose.  

As stated earlier, iGaDs receive and respond to alert 
messages in CAP [9] format sent by alert authorities via 
IPAWS – OPEN [8]. In this aspect, they resemble CAP-EAS 
decoders in the public emergency alerting system (EAS) [19] in 
the USA for use by the President to address the public during 
national emergencies and by state and local authorities for 
delivery of emergency information, including severe weather 
and earthquake alerts, to people in specific areas. Since late 
2010, FEMA has adopted CAP v1.2 and implemented IPAWS-
OPEN. Tests of CAP-EAS are now being conducted regularly. 
Some of the implementation guidelines published recently by 
CAP-EAS Industry Group are applicable to the design and 
implementation of iGaDs, especially for iGaDs that function as 
emergency alert systems for large buildings, shopping malls, 
etc. Many common requirements (e.g., low cost and power 
consumption), in addition to being easily configurable and 
customizable to work in different environments and conditions, 
make the design and implementation of iGaDs uniquely 
challenging, however. We will return to discuss problems in 
these respects and describe solutions to them.  

XML processing capabilities is essential since CAP is a 
XML format. Software iGaDs have a wide range of choices 
among matured XML parsers for operating systems and 
programming languages supported by popular computer and 
mobile platforms. In addition to the open source Java library 
[20] for parsing CAP messages specifically, choices of XML 
parsers include NSXML and libxml2 [21, 22]  available for 
Apple iOS and SAXParser [23] in Android Java SDK. 
Windows Phones has LINQ to XML [24], which is an XML 
programming interface.  

Hardware XML parsers have begun to emerge and offer us 
an alternative to software solutions. Existing hardware parsers 
(e.g., [25]) are typically designed for applications that need 
high throughput and processing speed. In contrast, we need 
lightweight parsers that can extract alert information from CAP 
messages within a fraction of a second with minimum energy.  

As the next section will explain, iGaDs also include as a 
key component a rule engine. Similar to XML parsers, there 
are many matured software inference/rule engines. Examples 
include CLIPS [26] and JESS [27]; they are widely used in 
context-aware applications. Table-based rule engines (e.g., 
Logician [28]) and rule engines for mobile devices (e.g., MiRE 
[29]) are also sufficient for iGaDs.  

Rather than using such a rule engine, Section 4 will present 
a lightweight, customizable scheme to provide embedded 
iGaDs with the capability of processing the rules that govern 
their choices of actions of embedded iGaDs. 

III. REFERENCE ARCHITECTURE AND MAJOR COMPONENTS 
This section first discusses our design and architecture 

choice for all iGaDs and the rationale behind the choice. It then 
describes a general structure and major components. 
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A. Design Choices and Rationale 
Despite significant differences in their functionalities, 

different types of iGaDs share many requirements, which 
include configurability, customizability and affordability. 
Building them from configurable components within a general 
architectural framework is a try-and-true way to make them 
affordable. Configurability of iGaDs goes beyond this level, 
however: Individual iGaDs of the same type are often required 
to respond to the same alert differently, depending on where 
and how they are used.  

To illustrate, let us consider an iGaD guarding an entry-
access controlled door of an office building that is a designated 
public severe storm shelter. The door is normally locked. When 
alerted of an EF (Enhanced Fujita) 4 or 5 tornado, the iGaD is 
required to respond by unlocking the door in order to make the 
building accessible to all people. The iGaD also unlocks the 
door in response to alerts of earthquakes magnitude 8 or 
stronger to ease the evacuation of people in the building. In 
other words, the iGaD shall send an unlock command to the 
building door in response to an alert message if either one or 
both of the following rules is true. 

(1) (EventType == “Earthquake”)AND 
(Scale >= THRESHOLD_MAGNITUDE) 

(2) (EventType == “Tornado”) AND  
(Scale >= THRESHOLD_SEVERITY) 

 The values of variables EventType and Scale in the 
expressions of these rules are the standard name of the event 
(e.g., earthquake, tornado, tropical cyclone, etc.) and the value 
of the severity measure (e.g., in the USA, Modified Mercalli 
(MM) intensity scale for earthquakes, Enhanced Fujita (EF) 
scale for strength of tornados, and category for hurricanes, etc.) 
specified by the alert. They are extracted from the message by 
an XML parser before the rules are evaluated. Parameters with 
all capital-letter names are configuration parameters of the 
iGaD. Here, THRESHOLD_MAGNITUDE is the maximum 
earthquake magnitude the building is constructed to withstand, 
and THRESHOLD_SEVERITY is the minimum severity of 
tornados for which the building is used as a public shelter. By 
setting these parameters at installation time and maintenance 
time, we can customize the iGaD according to the construction, 
condition and usage of the building. 

We call rules such as (1) and (2) action activation rules of 
the iGaD. In addition to changing configuration parameters that 
define the rules, action decisions of individual iGaDs of the 
same type can also be customized by providing them with 
individualized rules. As an example, suppose that an iGaD for 
outside doors in a smart home is the same as the iGaD for a 
shelter door. This iGaD should also command the doors to 
open in response to a strong earthquake, though likely of a 
lower threshold scale. During a tornado emergency, however, 
the outside doors and vents of the house should open in order to 
equalize air pressures in and out of the house, but only if and 
when a tornado actually hits the house. We can take into 
account of this consideration by letting the iGaD have the 
additional rule defined in terms of the readings of digital 
barometers inside and outside of the house. Rule (3) stated 
below is an example: The iGaD sends open commands to the 

outside doors when rule (1) is true or when rules (2) and (3) are 
both true. 

(3) InsideAirPressure >=  
OutsideAirPressure * THRESHOLD_RATIO 

These examples motivated us to use a rule engine to 
provide iGaDs with decision support. The action activation 
rules of typical iGaDs can be expressed in terms of 
propositional logic or predicate logic, simple enough to be 
evaluated as described in Section 4. 

B. Major Components 
Fig. 2 shows the major functional components of embedded 

iGaDs and information flows among them. We can logically 
partition an embedded iGaD into a CAP message processor and 
a device controller. A software iGaD does not have a device 
controller; a CAP-aware application takes its place.  

The CAP message processor is essential the same for all 
iGaDs. It is responsible for extracting from each alert message 
the information needed by the iGaD device controller (or 
application) to decide whether and how to respond.  

In addition to making decisions regarding actions taken by 
the iGaD, the device controller controls one or more physical 
device(s) (e.g., automatic lock and gas valve) connected 
physically to it, or via one or more networks. The interface 
with each device clearly depends on the device. Specific details 
in their interconnections and interactions are unimportant for 
the sake of our discussion here. It suffices to say that the iGaD 
interacts with the driver of each physical device via events: The 
device driver handles events from the iGaD as commands (e.g., 
lock and unlock commands), and events from the drivers are 
treated by the iGaD as acknowledgements. 

CAP Message Processor

Alert type &
information Alert 

records

Affected
areas

Alert 
message

buffer
Modem Signature

validation
XML

parser

Location 
filter

Device 
Controller

Device interfaces

Configuration 
files

Device 
location 

Resources

Local data

Rule processor 

Rule engine

Activation 
parameters
and rules

 

Figure 2.  General structure and major components 
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Some iGaDs also relies on local data (e.g., device location, 
local sensor data, etc.) provided by its operating environment 
for this purpose, as shown by Fig. 2. The figure omits 
interfaces to them as well.  

As Fig. 2 indicates, once a message arrives in the input 
message buffer, it is authenticated by the signature validation 
module based on its enveloped digital signature. The module 
also stores and maintains the key(s) in ways dictated by the 
message standard. Again, the information extracted by the 
XML parser from each alert message received by the iGaD 
include the name and scale of the type and severity of the alert 
event, as well as specifications of areas affected by the alert. 
The message may also provide resources such as human-
readable descriptions and URLs of files containing supplement 
information (e.g., photos, maps, audio, and so on) that may be 
useful to the public EAS and some iGaDs.  

The C-like data structures in Fig. 3 illustrate how iGaD 
maintains the output of the XML parser. BasicAlertInfo holds 
values of EventType and Scale and other values extracted from 
the beginning of the CAP message. These values enable the 
iGaD to screen the message quickly to determine whether the 
alert event described by the message is of one of its attend-to 
types (i.e., event types for which the iGaD is designed to 
respond) and whether the event is of a scale warranting its 
further attention. Message screening is important for typical 
embedded iGaDs that have only one or a few attend-to event 
types. The next section will discuss this issue further. 

The XML parser processes the remaining part of the 
message and saves the extracted values in AdditionalAlertInfo 
only when the message passes message screening. Once the 
iGaD has ascertained that the alert event is of an attend-to type 
and with severity within the specified scale range of the type, 
the location filter is invoked to determine whether any of the 
physical devices controlled by the iGaDs is located in an 
affected area defined by a polygon, or a circle, or a geocode 
contained in the alert element and hence is targeted by the alert. 
If any of them is located in an affected area, the iGaD then 
evaluates action activation rules and issues commands 
accordingly to physical devices controlled by it. 

As stated earlier, the alert message may include additional 
parameters of the event, expiration times, image and text 
descriptions, and so on. Some iGaDs (e.g., those that provide 
emergency alert functions of building management systems) 
can use them as suggested by the CAP-EAS implementation 
guidelines [19] in the generation of their responses. 

IV. DESIGN AND IMPLEMENTTION 
This section first describes a design of embedded iGaDs. 

The design aims to make them highly configurable and 
customizable while keeping their processing and memory 
usages small. There are good reasons to off-load some or all of 
the CAP-awareness functions to an ASIC (Application-Specific 
Integrated Circuit) or a microcontroller. The section presents 
the reason for off-loading the message screening function to an 
ASIC as a minimal hardware enhancement of battery powered 
iGaDs and then describes a proof of concept ASIC prototype. 

typedef struct BasicAlertInfo {
Identifier;     // Message identifier
… // Sender ID, References, Scope, etc.
Status;        // Actual or Exercise
MsgType;   // Alert, Cancel, Error, .
Scope;        //.Public, Restricted, Private
Category;    // Geo, Met, Health, etc.
EventType; // Earthquake, Tornado, etc.
Scale;         // Value of severity measure
Urgency;     // Immediate, Future, etc.
Certainty;    // Observed, Likely, etc.
…
* AdditionalAlertInfo; 

} BASIC_ALERT_INFO;

typedef struct AdditionalAlertInfo {
* BasicAlertInfo; 
AffectedAreaListHead;
ParameterListHead;
ResourceListHead;
… // Description, instructions, etc.

} ADDITIONAL_ALERT_INFO

typedef struct AffectArea {
union {

struct PolygonCoordinates;
struct CircleCenterRadius;
GeoCode;
AffectedAreaListEntry; }

} AFFECTED_AREA

 

Figure 3.  Basic and addttional alert information 

A. A Design Pattern for Configurable iGaDs 
Fig. 4 describes in pseudo code a design for configurable 

iGaDs. To keep the description simple, all error handling paths 
are omitted. The figure also omits specifics on the interfaces 
between the iGaD and the physical devices controlled by it and 
iGaD and local sensors and services relied on by it.  

This version uses a message handler (MsgHandler) thread to 
stream input messages to one or more alert message buffers. 
The remaining functions of the iGaD are performed by the 
main thread. 

Major data structures
typedef struct PhysDevInterfaces {

Information on physical devices;
Events for interaction with drivers;
…

} PHYS _DEV_INTERFACES;

typedef struct iGaDLocation {
Coordinates; Geocode;  

} iGaD_LOCATION;

typedef struct LocalData { 
… // Other local data 

} LOCAL_DATA;

typedef struct iGaDConfig {
SizeOfNamesScalesRules; 
NoAttendToTypes; 
NoRuleFunctions;
TotalSizeOfRuleFunctions;
Other information on rule library

for loading rule functions;
} iGAD_CONFIG;

typedef struct EventConfig {
TypeName;
ScaleUpperThreshold;
ScaleLowerThreshold;
* ActivationRuleFunc; 

} EVENT_CONFIG;

// Variables shared with MsgHandler
typedef struct SharedVar {

ReadyEvent;  ExitEvent;
MessageWaitingEvent;
ProcessingDoneEvent;
* AlertMessageBuffer;

} SHARED_VAR;  

PhysDevInterfaces; AlertMessageBuffer;
BasicEventInfo; AdditionalEventInfo;
EventConfig[ ];  
Initialize PhysDevInterfaces;
Copy ConfigParameters file to iGaDConfig;

// iGaDConfig is initialize
EventConfig = calloc (

iGaDConfig.SizeOfNamesScalesRules);
Copy NamesScalesRules file to the pool;

// EventConfig array is initialized
Complete load rule functions;
Initialize events and complete initialization;   
Create MsgHandler thread; 
Set SharedVar.ReadyEvent;

W: Waitfor SharedVar.MessageWaitingEvent;
// Screen the message
XMLParser (* BasicEventInfo,

AlertMessageBuffer);
for every element i of  EventConfig[ ] {

if (current event is of attend-to type & its
scale is in threshold range of the type) {
// The message passed.
XMLParser (* AdditionalEventInfo,

AlertMessageBuffer);
if (DeviceLocation is an affected area

listed in AddditionalEventInfo) {
invoke ActivationRuleFunc of the type;  
if (Some action is to be taken) 

Raise events in PhyDevInterfaces;
break;

} // iGad not in an affected area, 
} // Continue to search EventConfig array

} // The event can be ignored
Log alert; Set ProcessingDone; 
goto W; // go to wait for new message
… // Run until shutdown
set SharedVar.ExitEvent;
wait until MsgHandler exits;
cleanup and return; 

} 

Void main {  // iGad main thread
iGaDLocation; localData; 
iGaDConfig; SharedVar;

 

Figure 4.  Pseudo code description of embedded iGaDs operatons 
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In general, the number of message handler threads and 
numbers of threads for XML parsing and rule evaluation are 
configuration parameters of the iGaD. The configuration 
described here is appropriate for simple iGaDs that have only a 
small number of attend-to event types. We have seen examples 
earlier. iGaDs that are required to respond to numerous alert 
types in ways governed by numerous and complex rules may 
need to use multiple threads to manage message buffers and 
parse messages and processes action activation rules. 

The threads in an iGaD communicate via events: After 
authenticating the message in the current buffer, MsgHandler 
sets MessageWaitingEvent to indicate that the message is ready 
to be processed. ProcessingDoneEvent is set by the main 
thread to let MsgHandler know that the message in the buffer 
can be discarded. In addition, the main thread sets ReadyEvent 
and ExitEvent to tell MsgHandle that the iGaD is ready to work 
and wants to terminate, respectively.   

Another design choice of this version is to use a library of 
(action activation) rule functions to support action activation 
decisions of the iGaD. The library is loaded at run time into the 
address space of the iGaD executable. This choice is also for 
simple iGaDs that have a few rules. (Without loss of generality, 
the description assumes one rule function per attend-to event 
type.) For iGaDs with numerous or complex rules, a better 
alternative is to use a general-purpose rule engine (e.g., [28, 29]) 
capable of processing all the rules of all kinds of iGaDs. 

The left half of Fig. 4 lists some of the major data structures. 
Some of the configuration parameters of the iGaD are held in a 
structure of a known size, called iGaDConfig. It is initialized by 
copying the values of an identical structure in the configuration 
file ConfigParameters. Elements of iGaDConfig provides the 
iGaD thread with the sizes of remaining configuration data and 
the rule library so that memory can be allocated for them 
dynamically, as indicated in the lines in the top-right part of Fig. 
4.  

An array of EventConfig structures, one for each attend-to 
event type of the iGaD, holds other configuration parameters: 
Specifically, each EventConfig holds name, scale thresholds 
and a pointer to the rule function for an attend-to event type. 
During initialization, the values of these structures, as well as 
executables of the rule functions, are copied from the 
configuration file NamesScalesRules. In short, the iGaD thread 
initializes every data structure or function that needs to be 
customized for the iGaD by copying the corresponding 
structure or function stored in its configuration files. Finally, as 
its name indicates, SharedVar structure holds variables shared 
by the threads. 

Lines in the right column in Figure 4 describe the work 
done by the main thread: After it successfully completes 
initialization, it waits for MessageWaitingEvent to be set by 
MsgHandler. When awaken, the thread first screens the 
message: It extracts from the message the event type and 
severity of the alert and compares them with the event type and 
scale thresholds held in EventConfig[ ] to determine whether the 
alert is of the type and severity for which it is required to 
respond. If the message passes the screening test, the main 
thread proceeds to parse the rest of the message and determine 

whether and how to respond to the alert. This work is done by 
the for loop listed in the bottom half of the right column.  

Clearly, this and similar designs can be easily implemented 
to run on common computing and mobile device platforms. 
Modern low-cost, low-power microcontrollers (e.g., the 32-bit 
Stellaris LM3S1016) capable of delivering tens of Dhrystone 
MIPS at less than 5 mW per MIPS are well suited for 
embedded iGaDs.  

We can also argue for the merits of using XML parsers and 
rule engines (e.g. [21-29]) now available on popular platforms 
to implement CAP-awareness functions of iGaD applications 
that run on smart phones, PDAs, and computers. In a browser-
based programming environment, we also can use a JAVA 
script to extract alert information and process action activation 
rules. Indeed, these options are all reasonable for iGaDs (such 
as CAP-aware elevator controllers and vehicle and building 
safety systems) that are always powered on and plugged to 
uninterruptable power sources. 

B. Hardware Enhancement 
Pure software implementation is problematic for battery 

powered embedded iGaDs or CAP-aware applications on 
portable platforms, however. To see why, let us look at a laptop 
or smart phone hosting an early earthquake warning application. 
With no other CAP-aware applications on the platform, CAP 
messages other than strong earthquake alerts can be ignored. 
Nevertheless, all messages must be processed as soon as they 
arrive to make sure that they are about earthquake, even when 
the platform is off or in a power-saving mode. Turning the 
platform on or wake it up is not a problem: The laptop can be 
powered up in ways similar to how NOAA weather radios are 
turned on by alerts, and the phone can be woken up if alert 
messages are treated as incoming calls. However, letting all 
CAP messages wake up the platform is clearly not acceptable. 
Even in an earthquake prone region, there are only a few strong 
earthquake alerts per year, but probably hundreds and 
thousands of broadcast alert messages for all event types. 

An ideal solution is to incorporate into popular platforms of 
computers and personal communication devices iGaD 
hardware components that can provide applications on the 
platforms with CAP-awareness capabilities. Being a XML 
document one to a few thousand characters in length, a typical 
message can be processed by the components within a second 
or two even when the components operate at sleep-mode clock 
rates of the platforms. Moreover, their cost can be minuscule if 
they conform to international standards such as CAP and hence, 
can be mass produced like ICs for phones.  

The ideal solution is not going to happen until diverse 
iGaDs have been proven cost-effectiveness beyond doubts as 
tools for disaster preparedness and they are used pervasively. 
Until then, an ASIC message screener shown in Fig. 5 is a 
solution. It is primarily for iGaDs that run on battery powered 
platforms: It screens incoming CAP messages. When it finds a 
message that may require the response of one or more iGaD 
served by it, it wakes or powers up the platform if the platform 
is sleeping or off and notifies the iGaD(s) to respond. 
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Figure 5.  ASIC CAP message screener 

In the proof-of-concept message screener, basic Info 
extractor is a small hardware parser. It recognizes only the tags 
marking message type, event type, scale, urgency and certainty 
elements in the beginning of CAP messages. (Fig. 3 gives 
examples of their possible values.) After scanning the 
beginning of the current message in the message buffer, it 
extracts the values of these elements, translates the values into 
internal codes and places the code in the alert register file. The 
number of alert registers and the number of bits per register are 
small. (Fig. 5 shows eight registers with 8 bits per register.) 

The ASIC also has a register file of similar sizes for each 
iGaD served it; the registers in the file hold the corresponding 
configuration parameters of the iGaD. Having extracted basic 
information from the message, the extractor enables the 
message screening rule processor to compare the extracted 
values against the corresponding configuration parameters of 
the iGaDs stored in their configuration registers.  

For sake of simplicity, Fig. 5 does not show the clock and 
most of the enable lines. It shows only select lines to the 
multiplex, clear to the message buffer and asserts to the host 
and iGaD from the control and decision circuit. The circuit 
sequences the comparisons of register contents. If the result of 
a microinstruction in the sequence indicates that the message is 
not intended for any iGaD served by the screener, the circuit 
terminates the processing and clears the current message buffer. 
If the extracted values passes all the comparisons and hence 
match the corresponding configuration parameters of an iGaD, 
the circuit alerts the iGaD, having the platform powered or 
woken up if necessary.  

As shown here, the message screener does no other work. 
All the works, including authenticating the message, checking 
affected areas, etc. are done by the iGaD(s) once the screener 
finds that the message warrants attention. 

Even with the help of the ASIC message screener, state-of-
the-art notebooks and laptops remain to be less than ideal 
platforms for some iGaD applications. The reason is that they 
typically take 10’s of second to wake up from deep sleep mode 
and even longer to power up. This amount of delay is too long 

for early earthquake alert applications used in areas such as 
Taiwan and parts of California where the time between the 
detection of an earthquake to time when earth movements are 
felt can be as short as a small fraction of a second. On the other 
hand, the delay is tolerable for storm and flood warning 
applications as long as long as it is less than a minute.  

V. SUMMARY AND FUTURE WORK 
In previous sections, we first discussed how iGaDs can help 

us better prepare against natural disasters. The acronym iGaD 
stands for intelligent guards against disasters. They are 
embedded devices, systems of devices, and applications 
designed to process and respond to disaster alert messages that 
are in a standard XML format, generated by registered alert 
agencies and emergency alert services, and broadcast via all 
communication pathways. In addition to their being machine-
readable and automatic authenticable, these alert messages 
differ from tweets, RTM (right this moment) and other kinds of 
eyewitness reports sent by crowd via social media in yet 
another important way: Eyewitness reports have proven to be 
effective tools for people to inform people of on-going 
emergencies. In contrast, alert messages used by iGaDs provide 
early warnings of imminent calamities, typically prior to their 
ill effects are felt by people in affected area. iGaDs aim to 
make use of the small lead time to prepare our living 
environment and ourselves in face of potential danger.  

We also presented in previous sections an architectural 
framework for building diverse iGaDs that can be customized 
individually at installation and maintenance times according to 
their usages and operating environments. By adjusting 
configuration parameters and component choices, embedded 
iGaDs for smart homes, smart work places, shopping malls, etc. 
that run on common computing platforms and microcontrollers 
that are powered up and connected to uninterruptable power 
sources can be implemented as suggested by the design pattern 
described in Section 4.  

iGads running on battery powered platforms need to be 
enhanced by a small ASIC message screener such as the one 
described in Section 4. The device screens incoming messages 
to filter out all but the small percentage of them that require the 
attention of the iGaDs served by it. Clearly, the message 
screener is useful even when keeping the energy consumed by 
processing irrelevant messages small is not essential. 

We are experimenting with proof-of-concept prototypes of 
ASCI message screener and embedded iGaD capable of 
controlling simple physical devices such as automatic locks and 
spot lights used for public shelter doors, hazard flashers in cars, 
etc. We are yet to assess their performance in terms of response 
times versus processing, memory usage and power usage 
overheads.  

Many iGaDs are safety-critical devices or components of 
safety equipment. Their being highly dependable is of critical 
importance. For this reason, a major emphasis of our future 
work is on dependability. The pseudo code description 
presented in Fig. 4 leaves out all the error handling paths, 
which normally amounts to multiple times the size of working 
code. Similar, rules governing actions to take when alert events 
are cancelled or physical device malfunctions, as well as rules 
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for interdependency of actions in response to multiple events of 
different types, can be far more complex than action activation 
rules governing normal operations. Just like error handling 
code, error and failure handling rules must be well designed.  

Meeting dependability requirements from the system 
perspective is even more challenging. For many reasons, 
including error and failure handling, we may want iGaDs to be 
able to communicate and collaborate. This and other seemingly 
reasonable functionalities can add considerable complexity and 
make the system as a whole less dependable. Problems on 
tradeoffs amongst functionalities, system complexity and 
dependability need to be rigorously formulated and solved. 

Ultimately, hopefully in not so distance future, iGaDs need 
to tested and evaluated in field trials of significant sizes and 
scopes. For this purpose, we will need matured prototypes that 
can convincingly demonstrate their effectiveness for disaster 
preparedness in likely scenarios.  

Lastly, but most importantly, we will need to reexamine the 
message format standards (e.g., CAP [9]) and delivery services 
(e.g., IPAWS-OPEN [8]). Thus far, the primary consumers of 
CAP alert messages are public emergency alert systems and 
commercial mobile alert services. These systems process the 
messages and then rebroadcast to public in human-readable 
forms. The open platform, protocols and standards designed for 
this much more restricted usage may not be ideal when 
messages are also pushed to enterprise and personal computing 
and communication platforms running diverse iGaDs used for 
diverse purposes in diverse environments and conditions. 
Extensive testing and field trials need to be done to determine 
whether and what revisions will be needed. 
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