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Abstract—In order to get better reconstruction quality from
compressive sensing of images, exploitation of the dependency or
correlation patterns among the transform coefficients has been
popularly employed. Nevertheless, both recovery quality and re-
covery speed are not compromised well. In this paper, we study a
new image sensing technique, called turbo fast compression image
sensing, with computational complexity O(m2), where m denotes
the length of a measurement vector y = φx that is sampled
from the signal x of length n via the sampling matrix φ with
dimensionality m×n. In order to leverage between reconstruction
quality and recovery speed, a new and novel sampling matrix
is designed. Our method has the following characteristics: (i)
recovery speed is extremely fast due to a closed-form solution is
derived; (ii) certain reconstruction accuracy is preserved because
significant components of x can be reconstructed with higher
priority via an elaborately designed φ. Our method is particularly
different from those presented in the literature in that we focus
on the design of a sampling matrix without relying on exploiting
certain sparsity patterns. Simulations and comparisons with
state-of-the-art CS methodologies are provided and demonstrate
the feasibility of the proposed method in terms of reconstruction
quality and computational complexity.
keywords: Compressive sensing, Measurement, Reconstruc-
tion, Sampling, Sparsity

I. INTRODUCTION

We first describe the background regarding compressive
sensing in Sec. I-A and then discuss related work in Sec. I-B.

A. Background

Compressive sensing (CS) has received much attention
recently due to its revolutionary development in simultane-
ously sensing and compressing signals with certain sparsity.
Moreover, the architecture of the so-called single-pixel camera
[14], [27] has promoted the practicability of compressive
image sensing (CIS). CS is mainly composed of two steps.
Let x denote a k-sparse signal of length n to be sensed, let φ
of dimensionality m×n represent a sampling matrix, and let y
be the measurement of length m. At the encoder, a signal x is
simultaneously sensed and compressed via random projection
and the obtained samples are called measurements y in the
context of compressive sensing. They are related via random
projection as:

y = φx. (1)

The measurement rate is defined as 0 < m
n < 1 or 0 < m

n <<
1, which indicates the compression ratio (without quantization)
without storing the original signal of length n. At the decoder,

the original signal x to be sensed can be perfectly recovered
by means of convex optimization or greedy algorithms if the
relationship between m and k is satisfied [6].

For convex optimization-based CS algorithms, sparse sig-
nal recovery will be time-consuming and intractable if � 0-
minimization is adopted. �0-minimization seeks to find k non-
zero entries of a signal if the signal is k-sparse in either
the time/space or transform (e.g., DCT, wavelet, etc) domain.
The solution can become more tractable if the constraint
of �0-minimization is relaxed and �1-minimization is used
instead. Several algorithms relying on �1-minimization have
been presented in the literature.

On the other hand, �2-norm solution is easy to calculate
but the solution is not sparse, which violates the fundamental
assumption of compressive sensing. Nevertheless, some ap-
proaches [19], [20], [25], [29] try to iteratively approximate
�0-norm or �1-norm solution from their �2-norm counterpart.
We have also studied a fast sparse signal recovery algorithm
based on iteratively refining �2-norm solution [23].

In addition to convex optimization, non-convex program-
ming (or greedy) algorithms like Orthogonal Matching Pur-
suit (OMP) [37] is an alternative for sparse signal recovery.
Basically, OMP has been recognized as a “fast” algorithm
with time complexity O(kmn) with reasonable reconstruction
quality in some cases. The problem here is that can we come
up with a new solution to sparse signal recovery that is
simultaneously faster and more accurate than OMP and other
state-of-the-art compressive sensing recovery algorithms?

On the other hand, in the context of compressive sensing
(CS) [11], the constraint of sparsity enables the possibility
of sparse signal recovery from measurements (far) fewer
than the original signal length. Moreover, the measurements
generated from random projection of the original signal via
a sampling matrix are equally weighted; i.e., no one is more
significant than the others. Thus, CS is inherently weakened
in handling less-sparse signals such as highly textured images.
The problem here is that can we yield weighted measurements
so that less-sparse signals can be fast reconstructed while
maintaining good reconstruction quality?

In this paper, we address the above problems of achieving
fast and accurate CS recovery with less sparsity constraint.
The idea is to investigate an elaborate design of the sampling
matrix φ that can directly capture “important” measurements.
With these important measurements, the quality original signal



can be sparsely reconstructed based on the important (cor-
responding to low-frequency) components in some transform
domain. In our method, the qualities of reconstructed signals
mimic those of JPEG compressed images.

The designed sampling matrix can be readily embedded to
single-pixel cameras [14], [27] or mobile devices with camera
functionality to simultaneously capture and compress signals,
and the sampled measurements can be efficiently transmitted
to the decoder or remote server for turbo fast recovery of
the captured signals. In particular, our turbo fast CS recovery
algorithm can be applied to a scenario where mobile device to
mobile device (M2M) is considered. In addition, the bottleneck
of distributed compressive video sensing (DCVS) [26] at
decoder can now be solved if the proposed method is used.

B. Related Work

In the compressive sensing literature, efforts have been
made to explore the structure or correlation inherent in the
transformed coefficients to better reconstruct the signal from
its corresponding measurement vector. Inspired from the con-
cept of JPEG2000 compression, the tree-structure of wavelet
transform has been popularly exploited.

In [12], [13], instead of capturing non-adaptive or universal
measurements, the authors propose to gain adaptive transform
coefficients from exploiting the tree-structure of Haar wavelet.
In terms of image quality and recovery speed, the so-called
adaptive compressive sensing framework demonstrates its su-
periority over the non-adaptive counterparts.

In [21], a tree-structured Bayesian compressive sensing
framework is proposed, wherein the hierarchical statistical
models of wavelet and DCT are adopted, and Markov chain
Monte Carlo (MCMC) inference is employed. The computa-
tionally inefficient MCMC mechanism is later replaced with
variational analysis in [22] to speed up recovery. Results show
that their methods can achieve both accurate and fast CS
recovery. The paradigm in [21], [22] belongs to probabilistic
structured sparsity [4].

On the other hand, the concept of clustered sparsity has
received considerable attention in compressive sensing. As
summarized in [4] and Table I of [45], many existing CS
algorithms [3], [8], [9], [15], [16], [24], [36] exploiting clus-
tered sparsity need to know some pre-defined information,
such as numbers, sizes, and positions of clusters, and the
degree of sparsity. In [45], the proposed Bayesian compressive
sensing method, a kind of nonparametric recovery algorithm,
can make use of clustered sparsity without relying on prior
information. Basically, the work [45] is inspired by [22]
in that variational analysis is used in place of MCMC for
Bayesian inference in order to guarantee convergence within
finite iterations. The major difference between [22] and [45]
is that the former employs a directional graphical model for
tree-structure of wavelet coefficients, while the latter uses a
undirectional graphical model. Furthermore, in order to target
the problem of reconstructing structured-sparse signals, belief
propagation is employed in [35], which resembles turbo equal-
ization from digital communications. The clustered sparsity-

based compressive sensing methods mentioned above belong
to deterministic structured sparsity [4].

It should be noted that in [3], both tree structure and
structured sparsity are considered and incorporated into two
state-of-the-art CS algorithms, which are CoSaMP [32] and
iterative hard thresholding (IHT) [5].

In addition to the aforementioned sparsity patterns, in-
cluding tree structure and clustered sparsity, other models
of transform coefficients, including Laplacian scale mixtures
[7], piecewise autogressive model [40], Laplace prior [2], and
Gaussian Mixture Models [44] are also employed within the
compressive sensing framework.

The nice property of structured sparsity mentioned above
has been applied to a number of image processing applica-
tions beyond reconstruction. In [42], the inverse problems of
inpainting and deblurring are solved via a proposed structured
sparse model selection algorithm. The key is that the sparsity
of local windows partitioned from an image can be better
controlled. Basically, stable inversion can be achieved because
the degree of freedom in selecting models is equal to the
number of bases, and is considerably lower than overcomplete
dictionary methods. Further, a work, called piecewise linear
estimator (PLE), extended from [42] is presented in [43].

C. Outline of this Paper

The rest of this paper is organized as follows. The use of
compressive sensing for capturing natural images is called
compressive image sensing (CIS) and discussed in Sec. II.
In Sec. III, the idea behind our method and the proposed
turbo fast CIS recovery algorithm are described. Some char-
acteristics of our method are discussed in Sec. IV. In Sec.
V, we provide extensive experiments to verify the proposed
method in terms of reconstruction quality and computation
speed. Finally, conclusions are given in Sec. VI.

II. COMPRESSIVE IMAGE SENSING

Inspired by the development of compressive sensing [11]
and single-pixel cameras [14], [27], it is possible to sense and
recover an image with as few measurements as possible if the
image to be sensed is sufficiently sparse. As an illustrative
example, consider the size of a sampling matrix required to
sense an image of size 128×128 is as huge as 16384×16384
(suppose the use of 1D sensing as in Eq. (1)), which occupies
4×228=1G bytes for 32-bit single precision floating point, and
most current desktop machines cannot afford to this storage
overhead of storing sensing matrix. In addition, large sensing
matrix will of course incur computation overhead during the
process of random projection (Eq. (1)).

There are two solutions to this problem despite almost
all compressive sensing algorithms are developed for 1D
sensing. For purpose of compressive image sensing (CIS),
one common strategy adopted is to divide an image into
several patches/blocks with reasonable sizes and each patch
is arranged in terms of 1D form so as to adapt to the existing
CS algorithms. This is called block sensing [17], [18], [30],



[31]. In fact, each block signal is treated as a 1D signal for
sensing and recovery.

Although block-based image sensing seems to be feasible,
it still incurs the sensor calibration problem. The other is
to employ 2D separate sensing [33], [34]. That is, separate
sensing is conducted along the row and column directions,
separately. Moreover, due to separate sensing strategy, the
problem of storage overhead for storing a sampling matrix
in a resource-limited sensor can be efficiently solved. As can
be seen later, the storage overhead for 2D sensing of an image
of size 1024× 1024 is the same as that for 1D sensing of an
image patch of size 32 × 32. Thus, it is apparent that due to
the constraint of storage overhead, 1D block-based sensing is
unfavorable to sense images/patches of large sizes.

In this paper, we study a new compressive image sensing
algorithm via an elaborate design of sampling matrices. The
paper is an extended and complete version of our prior work
[10] in terms of methodological descriptions and analyses,
technical comparisons with related works, and extensive exper-
iments. The details will be described in the following sections.

III. PROPOSED METHOD: TURBO FAST COMPRESSIVE

IMAGE SENSING

We first describe the idea behind our method in III-A.
Then, the proposed turbo fast CS recovery algorithm based on
an elaborately designed sampling matrix is presented in Sec.
III-B. We investigate how it can be conducted via 1D block
sensing and 2D separate sensing. The computation complexity
of recovery and reconstruction quality will be studied.

A. The Idea

Although it is promising to take the concept of clustered
sparsity or tree-structure of transform coefficients into con-
sideration within the compressive sensing framework, we find
two weaknesses for this paradigm of compressive sensing.

The first we notice is that the CS inversion time is still not
computationally efficient. The crux is that the inference for
exploiting some specific sparsity patterns is time-consuming.
In view of this, we seek an alternative so that our CS recovery
time can be significantly reduced while the reconstruction
quality obtained from our method and state-of-the-art algo-
rithms can be comparable.

In order not to spend time in tracing larger transform
coefficients, we propose to sample only those transform
coefficients that are situated at lower frequencies. This is
reasonable because in image compression like JPEG the higher
frequency components will be quantized with larger quantiza-
tion intervals while the lower frequency components can be
preserved with higher priority. Inspired by the principle of
JPEG compression, our CS recovery quality will be designed
to mimic JPEG compressed images. That is, we do not seek
“perfect reconstruction,” which is practically hard to achieve,
due to natural images are usually not sparse.

The most important but unique characteristic that distin-
guishes our method from the existing ones is that our method
can only sample m important measurements with m equal to

the desired degree of sparsity k, and can turbo fast recon-
struct the original signal x approximately from the sampled
measurement vector y with computational complexity O(m2).
The extensive experimental results indicate that our method
indeed is very fast and can keep reconstruction quality up to
the degree of JPEG compression approximately.

The second concern is that compressive sensing conven-
tionally relies on the assumption of sparsity to reconstruct the
original signal from (far) fewer measurements. As studied in
[39], CS is only suitable for so-called sparse signals while
principal component analysis (PCA) is more suitable to deal
with non-sparse or noisy signals.

However, many natural signals inherently containing tex-
tured components are a kind of non-sparse signals. The as-
sumption of sparsity and the exploitation of structured sparsity
do not conform to the property of less-sparse signals. In view
of this, another goal of our method is to target this problem.
Our strategy is intuitive and empirical observations [41] again
suggest that it is better to preserve important measurements
sampled from lower frequency components in some transform
domains.

Our method is particularly different from those reviewed in
Sec. I-B in that we focus on the design of a sampling matrix
while others concern to exploit the dependency or correlation
patterns among the transform coefficients.

B. Turbo Fast Compressive Sensing Recovery via Sampling
Matrix Design

We start from the random projection, y = φx, and observe
that if important information of x can be sampled and stored in
y, then it is possible to approximately reconstruct x with fewer
important measurements in a fast way. The goal is feasible
by designing a new and novel sampling matrix. Our method
has been readily incorporated with single-pixel cameras for
compressive image sensing.

In this subsection, we describe the proposed 1D sensing
of an image patch/block and 2D separate sensing of a whole
image, respectively.

1) 1D Block Sensing: For 1D sensing of an image patch,
we introduce a 1D linear operator T and impose it to random
projection to obtain:

Ty = T (φx), (2)

where x is regarded as a small image or an image patch
of reasonable size. Eq. (2) is further derived based on the
principle of linear operations [28] as:

Ty = T (φx) = (T 2φ)(Tx), (3)

where T 2 denotes 2D linear operator. Please refer to Appendix
A for details.

Eq. (3) reveals that the positions at lower frequencies of
transformed vector Tx indicate important transformed coef-
ficients and Ty indicates important measurements since they
are linear combinations of significant transformed coefficients.

In order to sample “important” transformed coefficients
from Tx and speed up recovery, we design a new sampling



matrix, (T 2φ)z , by setting the last n−m columns of T 2φ to
be zeros. This implies that the non-zero columns of (T 2φ)z

form a full-rank matrix with rank m. Once (T 2φ)z is built
in the transform domain, it is inversely transformed back to
the time/space domain and an elaborately designed sampling
matrix can be expressed as:

Φ = (T 2)−1(T 2φ)z , (4)

where our designed sampling matrix Φ involves a random
matrix φ and 2D linear operator T 2.

Now, Φ is stored in the sensors for the purpose of compres-
sive sensing. According to Eq. (3) and Eq. (4), we have the
following derivations:

y = Φx ⇒ Ty = (T 2Φ)(Tx) = (T 2φ)z(Tx). (5)

Recall that the last n−m columns of (T 2φ)z are set to zeros.
This means that we only sample the lower-frequency com-
ponents in Tx by truncating the remaining higher-frequency
components.

In order to speed up sparse signal recovery, let Φs denote
the submatrix of dimensionality m×m by discarding the zero
columns of (T 2φ)z , and let (Tx)s denote the m×1 vector by
discarding the last n−m transformed coefficients. Therefore,
we can derive from Eq. (5) to obtain:

Ty = Φs(Tx)s ⇒
(Φs)−1Ty = (Φs)−1Φs(Tx)s = (Tx)s. (6)

It is now evident that the signal x can be approximately
and fast recovered via the following signal sensing and signal
recovery processes. At the encoder for purpose of sensing, the
measurement y is available via random projection in Eq. (5).
At the decoder for purpose of recovery, y is first processed via
Eq. (6), and then (Φs)−1Ty in Eq. (6) is padded with n−m
zero values (to obtain Tx) and inversely transformed via T −1.

We have to clarify that (Φs)−1T can be calculated in
advance and is fixed for use at the decoder. Therefore, the com-
putational complexity of our CS recovery algorithm merely
comes from processing y via (Φs)−1Ty.

Basically, it is observed that our method is proposed to
execute conventional DCT or wavelet transform within the
framework of compressive sensing if T is selected to be
DCT or wavelet transform. But it is not suitable to just
compute transformation (via T ) of a signal to be sensed and
then stored a proportion of low-frequency components (by
discarding high-frequency components as done in this paper).
This is because some parts to be deleted are still sampled in
advance, which follows the same mechanism of conventional
sampling. On the contrary, the ultimate goal of our method
can, in fact, achieve the same effect of sampling+compression
within the framework of compressive sensing, as explained in
the previous paragraphs.

2) 2D Separate Sensing: Here, we investigate how to
directly sense a whole 2D image via separate sensing in
order to alleviate storage overhead of storing a sampling
matrix. According to Eq. (11) of Appendix A, 2D transform

is conducted on the 2D image, which is no longer divided
into patches and is no longer arranged in terms of 1D form.
Therefore, we can get 2D sensing of an image xn×n via the
sampling matrix φm×n as:

ym×m = φm×nxn×nφt
n×m, (7)

where φt
n×m denotes the transpose of φm×n. Eq. (7) also

reveals the measurement rate of m2

n2 in two dimensional
sensing.

Similar to Eq. (11), let Sm×m and Sn×n stand for two
1D linear operators with respective transpose represented as
St

m×m and St
n×n. We have Sn×nSt

n×n = In×n = St
n×nSn×n,

where In×n denotes an identity matrix of dimensionality n×n.
Then, we can further derive by imposing 2D transform on the
measurement matrix ym×m of Eq. (7) to get:

T 2(y) = Sm×mym×mSt
m×m

= Sm×mφm×nxn×nφt
n×mSt

m×m

= Sm×mφm×n(St
n×nSn×n)xn×n

(St
n×nSn×n)φt

n×mSt
m×m

= (Sm×mφm×nSt
n×n)(Sn×nxn×nSt

n×n)
(Sn×nφt

n×mSt
m×m)

= T 2(φ)T 2(x)T 2(φt). (8)

Then, the sampling matrix can be derived in similar to Eq. (4)
for 2D separate sensing. Another merit of 2D sensing is that it
enables compressive sensing of large images without resorting
to block-based sensing.

IV. ANALYSIS

In this section, we will discuss the following issues, includ-
ing A) difference between our method and frequency/space-
frequency transforms; B) computation complexity of CS re-
covery; C) mutual incoherence between the sampling matrix
and dictionary, D) sparsity vs. reconstruction quality, and
(E) approximate recovery vs. perfect reconstruction, for the
proposed compressive image sensing methods.

A. Difference between Our Method and Frequency/Space-
Frequency Transforms

It is worth noting that the principle of designing Φ in Eq.
(4) still starts with a random sampling matrix φ conventionally
adopted in CS, which is selected as the foundation for our
design. The characteristic unique to our method is that a 2D
linear operator T 2, as described in Appendix A, is applied to
φ, followed by setting the last n − m columns to be zeros.
In addition, our CIS methods are built within the framework
of CS while other conventional frequency or frequency-space
transforms are not.

B. Computation Complexity of CS Recovery

The principle of our method is to preserve the top k-lowest
frequency components of Tx. We have m = k and only two
linear transforms, (Φs)−1T and T−1, as described in the last
paragraph of Sec. III-B, are required for approximate signal



recovery. Thus, the computation complexity of recovery is
in the order of O(m2). As we shall see later in Sec. V,
our method is the fastest CS recovery algorithm among the
methods used for comparisons.

C. Mutual Incoherence

In the literature, a sampling matrix is usually a Gaussian
random matrix or a Bernoulli random matrix taking value
±1 with equal probability. A good sampling matrix, which
preserves incoherence [6] with a dictionary or transform basis,
is desired for efficient recovery. Mutual incoherence leads to
perfect recover with a higher probability under the condition
that m ≥ ck · O(log(n/k)) holds.

Our results show that random matrix conventionally adopted
in the compressive sensing literature is more incoherent than
the sampling matrix proposed in this paper with either K-SVD
[1] or DCT. We have to, however, point out that since the
sparsity assumption is rarely satsified with respect to natural
images, which are usually less sparse, our method theoretically
sacrifices mutual incoherence between the sampling matrix
and the corresponding dictionary but is practically feasible in
reconstructing signals with higher quality and speed.

D. Sparsity vs. Reconstruction Quality

Following the above descriptions, the impact of sparsity
on reconstruction quality is discussed here. According to our
empirical observations, almost all compressive sensing algo-
rithms proposed so far fail to reconstruct a natural image with
quality (in terms of PSNR or SSIM [38]) superior to simple
interpolation. For example, consider a natural image, Peppers,
of size 50 × 50. When a bicubic interpolation technique is
adopted to generate an enlarged image of size 100 × 100,
the obtained PSNR is 26.76dB (between the original Peppers
and the resultant interpolated Peppers). However, within the
framework of compressive sensing, if the original image has
the size of 100 × 100 and the number of corresponding
measurements is 50 × 50, the obtained image obtained from
the measurements via OMP has PSNR 17.06dB, which is
far lower than the one obtained using bicubic interpolation.
Similar results can also be observed from many other CS
recovery algorithms.

In view of these results, we propose a new CS recovery
algorithm that does not follow the convention of CS. More
specifically, our method is an alternative of CS in the sense that
we seek to pursue approximate recovery instead of theoretic
perfect reconstruction that is the ultimate goal of CS. Our
observations and results are strongly supported by the fact
that natural images are not highly or sufficiently sparse,
which somewhat violates the fundamental assumption of CS.
However, we also have to clarify that for those applications
exhibiting sufficient sparsity the random sampling matrix
inherently used in compressive sensing may be better than
the one presented in this paper.

E. Approximate Recovery vs. Perfect Recpnstruction

It is known that under the constraint of m ≥ ck · O(log n
k )

conventional compressive sensing methods can achieve perfect

reconstruction if the available number of measurements and
the sparsity of the signal to be reconstructed satisfy the above
relation. However, perfect reconstruction is usually not prac-
tical because for many signals with large k, sometimes only
small M is available, leading to violation of m ≥ ck·O(log n

k ).
In this paper, we aim to explore a more practical solution to

CS recovery. More specifically, based on the elaborate design
of the sampling matrix, we do not seek perfect reconstruction
but approximate reconstruction. Depending on the selected
m, which is assumed to be k, turbo fast and approximate
reconstruction can be achieved. Approximate reconstruction
has been readily useful for many CS-based image/video ap-
plications [42], [43].

In this paper, as described in Appendix A, a Haar matrix is
exploited as T to design the sampling matrix Φ such that the
original signal x can be approximately reconstructed from as
many measurements as the number of transform coefficients
sampled via Eq. (5) and Eq. (6).

V. EXPERIMENTAL RESULTS

Several experiments were conducted to verify the perfor-
mance of the proposed turbo fast CIS methods in terms of
reconstruction quality and speed.

State-of-the-art CS algorithms [11], including orthogonal
matching pursuit (OMP) [37], Lasso, TS-BCS-MCMC [21],
TS-BCS-VB [22], and model-based CS (MCS) [3]1, were
chosen for comparisons under different measurement rates
(MRs). There are two signal models, wavelet trees and block
sparsity, used in MCS. In our experiments conducted here,
2D wavelet trees and block sparsity in [3] were adopted. The
default settings of all source codes were employed in our
experiments to better guarantee the good performances of the
aforementioned methods for fair comparisons.

All experiments were conducted in Matlab 7.11 (R2010b)
with Intel CPU Core i7 930 (2.80 GHz) and 6 GB RAM under
OS Windows 7 Enterprise edition 64-bit. For simulations of
image sensing, several images with different sizes and spar-
sities, including Baboon, Barbara, Cameraman, Flintstones,
Lena, and Peppers, were adopted.

For 1D sensing, all the methods used for comparisons were
conducted in a block-wise manner. That is, image sensing
and recovery were executed for each 32 × 32 block [30].
In our method, as derived in Appendix A, two Haar matri-
ces, H1024×1024 and H(1024×MR)×(1024×MR) were employed.
However, if RAM is larger, then the block size can be
permitted to be larger.

For 2D sensing in our method, we currently only employ
2D DCT because the design of 2D wavelet filters in terms of
matrix forms need to be further studied.

A. Reconstruction Quality

The recovery quality is measured in terms of PSNR (in dB)
and structural similarity (SSIM, 0 ≤ SSIM ≤ 1) indexing [38],
respectively. The bigger, the better. Table I and Table II show

1Our experiments conducted on MCS show that block sparsity is better
than 2D tree in both reconstruction quality and speed.



the comparisons of reconstruction qualities under different
measurement rates (MRs) for images of different sparsities,
including a less-sparse image, Barbara, of size 512× 512 and
a sparse image, Cameraman, of size 256× 256.

It is surprising to find from Table I and Table II that our
method significantly outperforms or is comparable to all the
algorithms used for comparisons no matter whether either
structured sparsity or tree structure is taken into consideration
or not. DCT- and Haar wavelet-based 1D sensing in our
method exhibit comparable reconstruction results. Fig. 1 shows
some of the reconstructed Barbara images using measurement
rate 12.5%. Nevertheless, our method spends considerably less
time than all the methods used for comparisons, as will be
shown in the next subsection.

(a) (b)

(c) (d)

Fig. 1. CS recovered Barbara images with MR 12.5%: (a) our result with Haar
wavelet-based 1D sensing (PSNR: 22.98dB; SSIM: 0.65); (b) our result with
DCT-based 1D sensing (PSNR: 22.60dB; SSIM: 0.61); (c) our result with
DCT-based 2D separate sensing (PSNR: 24.54dB; SSIM: 0.73); and (d) He
et al.’s result [22] (PSNR: 21.37dB; SSIM: 0.54).

It is also interesting to find that for most cases the re-
construction quality of the Barbara image is better than that
of the Cameraman image in terms of PSNR, which violates
the intuition that Cameraman is sparser than Barbara in the
transform (either DCT or wavelet) domain. However, when
SSIM is adopted as the image quality evaluation metric, the
obtained results indeed indicate that Cameraman is better
reconstructed than Barbara for our method and those CS
methods exploiting sparsity patterns.

B. Reconstruction Speed

The reconstruction speed is measured in terms of execution
time (abbreviated as Exe.) and CPU time. We only provide

in Table III the comparison of reconstruction speed under
different measurement rates (MRs) for the Barbara image.
Nevertheless, similar results can also be observed for other
images with different sparsity levels. As the results indicate,
our method finds its usefulness in real-time image sensing
and recovery due to its extremely fast CS recovery. For the
CS algorithms used for comparison, only the model-based CS
with (CoSaMP+block sparsity) [3] is as fast as ours. It can
be, however, found from Table I and Table II that our method
obtains far better reconstruction quality than [3], in particular,
for measurement rates smaller than 12.5%.

C. Fast Compressive Sensing and Recovery of Large Images

Fast compressive sensing and recovery of large-scale images
is still challenging for the existing CS algorithms that employ
1D sensing strategy. The feasibility of our 2D separate sensing
algorithm is demonstrated using a Shepp-Logan image of size
2048× 2048. The reconstruction qualities obtained using our
1D sensing and 2D separate sensing strategies are shown in
Fig. 2 under the measurement rate 1.5625%. The execution
time for all strategies is between 2 and 3 seconds for mea-
surement rate ranging from 1.5625% to 50%.

(a) (b)

(c) (d)

Fig. 2. CS recovered Shepp-Logan images with MR 1.5625%: (a) original
image of size 2048 × 2048; (b) our result with Haar wavelet-based 1D
sensing (PSNR: 22.18dB; SSIM: 0.95); (c) our result with DCT-based 1D
sensing (PSNR: 22.22dB; SSIM: 0.94); and (d) our result with DCT-based
2D separate sensing (PSNR: 28.69dB; SSIM: 0.92).

D. Remarks

It should be noted that both the model-based CS method
[3] and tree structure-based CS method [21], [22] need to
perform wavelet decomposition prior to sensing. It is, however,



TABLE I
RECOVERY QUALITY COMPARISON OF CS ALGORITHMS UNDER DIFFERENT MEASUREMENT RATES (MRS) FOR CAMERAMAN IMAGE.

Methods Metrics MR (1.56%) MR (3.13%) MR (6.25%) MR (12.5%) MR (25.0%) MR (50.0%)

OMP PSNR(dB) 7.41 14.67 15.86 17.47 20.06 23.68
(Sparsify toolbox) SSIM 0.04 0.32 0.35 0.41 0.53 0.69

Lasso PSNR(dB) 13.82 15.39 17.24 19.04 21.76 25.96
(Sparsify Lab) SSIM 0.33 0.38 0.43 0.49 0.62 0.77

Model-based CS PSNR(dB) 6.38 7.42 9.18 14.92 21.99 23.05
(CoSaMP+block sparsity) [3] SSIM 0.06 0.07 0.08 0.26 0.64 0.70

TS-BCS-VB PSNR(dB) 17.11 17.98 19.10 20.20 22.62 26.78
[22] SSIM 0.46 0.50 0.56 0.63 0.73 0.85

TS-BCS-MCMC PSNR(dB) 16.87 17.90 19.33 20.59 23.11 27.39
(wavelet tree) [21] SSIM 0.46 0.51 0.55 0.64 0.74 0.85
TS-BCS-MCMC PSNR(dB) 7.68 11.64 18.10 21.08 23.87 28.15
(DCT tree) [21] SSIM 0.08 0.26 0.48 0.60 0.75 0.87

Our Method (1D sensing: PSNR(dB) 18.32 18.39 19.84 22.15 24.82 29.06
Haar wavelet-based) SSIM 0.57 0.58 0.64 0.73 0.82 0.92

Our Method (1D sensing: PSNR(dB) 18.42 18.46 19.38 22.36 25.60 30.22
DCT-based) SSIM 0.58 0.58 0.61 0.69 0.79 0.90

Our Method (2D sensing: PSNR(dB) 20.74 21.84 23.26 24.94 27.46 31.42
DCT-based) SSIM 0.58 0.63 0.70 0.78 0.87 0.94

TABLE II
RECOVERY QUALITY COMPARISON OF CS ALGORITHMS UNDER DIFFERENT MEASUREMENT RATES (MRS) FOR BARBARA IMAGE.

Methods Metrics MR (1.56%) MR (3.13%) MR (6.25%) MR (12.5%) MR (25.0%) MR (50.0%)

OMP PSNR(dB) 15.84 16.55 18.00 20.26 23.12 27.76
(Sparsify toolbox) SSIM 0.19 0.22 0.31 0.47 0.64 0.82

Lasso PSNR(dB) 14.76 16.70 19.15 21.70 24.89 29.99
(Sparsify Lab) SSIM 0.19 0.26 0.38 0.54 0.72 0.88

Model-based CS PSNR(dB) 7.13 7.82 9.81 16.32 23.82 25.03
(CoSaMP+block sparsity) [3] SSIM 0.04 0.05 0.06 0.31 0.69 0.74

TS-BCS-VB PSNR(dB) 18.46 19.30 20.31 21.37 22.35 23.85
[22] SSIM 0.37 0.41 0.46 0.54 0.62 0.74

TS-BCS-MCMC PSNR(dB) 18.19 19.48 20.85 22.04 23.31 25.19
(wavelet tree) [21] SSIM 0.36 0.42 0.48 0.55 0.65 0.77
TS-BCS-MCMC PSNR(dB) 8.81 11.41 18.07 22.49 24.57 29.07
(DCT tree) [21] SSIM 0.06 0.20 0.43 0.59 0.73 0.89

Our Method (1D sensing: PSNR(dB) 19.25 19.32 21.18 22.98 25.49 30.24
Haar wavelet-based) SSIM 0.48 0.50 0.56 0.65 0.79 0.93

Our Method (1D sensing: PSNR(dB) 19.31 19.38 20.27 22.60 25.41 33.03
DCT-based) SSIM 0.48 0.49 0.52 0.61 0.77 0.93

Our Method (2D sensing: PSNR(dB) 22.47 23.24 23.92 24.54 25.70 30.88
DCT-based) SSIM 0.56 0.61 0.67 0.73 0.82 0.93

impractical because before sensing we have no image data that
can be used for wavelet transform. On the contrary, our method
can directly sample signals in the time/space domain without
needing such a pre-processing step.

Another characteristic of our method is that the original
signal x can be approximately reconstructed from as many
measurements as the number of transform coefficients sampled
via Eq. (5) and Eq. (6).

VI. CONCLUSIONS AND FUTURE WORK

Fast and accurate compressive sensing recovery is still a
challenging issue, and has received considerable attention in
the literature. In this paper, we do not follow the tradition of
imposing certain sparsity patterns on a CS recovery algorithm.
On the contrary, we propose to design a new and novel sam-
pling matrix for the purpose of preserving important measure-

ments. Under this circumstance, turbo fast and accurate CIS
recovery with closed-form solution of computation complexity
O(m2) can be achieved.

We have also studied 1D sensing and 2D separate sensing
strategies for 1D signals and 2D images, respectively. Com-
pared to 1D sensing, 2D separate sensing is found to be par-
ticularly feasible in compressive sensing of large-scale images
in terms of storage and computation overhead reduction and
reconstruction quality improvement.

The issues, including the impact of noisy measurements on
our methods and the exploration of CS characteristics for our
method, deserve further studying.
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TABLE III
RECOVERY SPEED (IN SECONDS) COMPARISON OF CS ALGORITHMS UNDER DIFFERENT MEASUREMENT RATES (MRS) FOR BARBARA IMAGE.

Methods time MR (1.56%) MR (3.13%) MR (6.25%) MR (12.5%) MR (25.0%) MR (50.0%)

OMP Exe. 0.32 0.42 0.70 1.36 3.56 11.91
(Sparsify toolbox) CPU 1.25 1.68 2.81 5.43 14.20 47.67

Lasso Exe. 1.88 3.74 8.97 24.22 85.18 702.04
(Sparsify Lab) CPU 7.60 14.94 35.83 96.86 339.83 2787.05

Model-based CS [3] Exe. 1.13 1.25 1.49 2.60 5.75 4.86
(CoSaMP+block sparsity) CPU 4.49 4.99 5.91 10.42 22.84 186.39

TS-BCS-VB [22] Exe. 219.94 236.28 244.47 247.23 267.77 298.33
CPU 220.66 907.33 937.05 949.77 1022.48 1135.52

TS-BCS-MCMC [21] Exe. 2243.21 2450.64 2492.97 2580.08 2742.51 3088.34
(wavelet tree) CPU 2241.52 9263.53 9411.93 9213.51 10279.05 11469.12

TS-BCS-MCMC [21] Exe. 2585.22 2748.26 2842.79 2848.40 2978.40 3233.30
(DCT tree) CPU 2579.59 10305.24 10650.77 10670.41 11109.13 11962.47

Our Method Exe. 0.02 0.02 0.02 0.02 0.03 0.03
(1D sensing: Haar wavelet-based) CPU 0.06 0.06 0.06 0.06 0.12 0.12

Our Method Exe. 0.02 0.02 0.02 0.02 0.02 0.04
(1D sensing: DCT-based) CPU 0.06 0.06 0.05 0.06 0.06 0.19

Our Method Exe. 0.06 0.06 0.06 0.06 0.07 0.07
(2D sensing: DCT-based) CPU 0.25 0.16 0.27 0.25 0.31 0.39

98-2221-E-001-004-MY3.

APPENDIX A
LINEAR TRANSFORM OF RANDOM PROJECTION

The linear operator introduced in [28] is employed to derive
the linear transform relationship among x, y, and φ. Let S
be a linear orthogonal transform operator and let x denote
a 1D signal with dimensionality m × 1. The vector X of
transform coefficients corresponding to x is represented as:
X=Sx, where S is a matrix with dimensionality m×m. The
original signal x can be reconstructed as:

x̂ = StX = StSx, (9)

where St is the transpose of S, and S tS = SSt = I . Similarly,
if 2D case, i.e., x of size m×m, is considered, then we have:

X = SxSt,

x̂ = StXS = StSxStS. (10)

According to the above characteristics, the linear transform
relationship among x, y, and φ can be, respectively, derived
under the cases of DCT and discrete Haar wavelet transform
(DHWT). For the DCT case, let Sm and Sn, respectively,
denote m×m and n×n DCT matrices. Also let T [·] and T 2[·],
respectively, denote the 1D-DCT and 2D-DCT operations.
Let’s start from y = φx, and we can derive:

Smy = Smφx = (SmφSt
n)(Snx) ⇒

T [y] = T [φx] = T 2[φ]T [x]. (11)

Thus, Eq. (11) explains the rationality of Eq. (3).
For the wavelet case, the simple structure inherent in the

Haar wavelet is adopted. Let H denote a 2D Haar wavelet
transform. Then, the Haar transform of x can be derived,
similar to Eq. (10), as:

X = HxHt. (12)

However, it is not straightforward to use the conventional Haar
wavelet to achieve Eq. (12) because if, for example, the 8× 8
Haar wavelet, as shown in Eq. (13), is used, only one wavelet
decomposition is allowed.

H =
√

2
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

To handle this problem, another type of Haar transform
suitable for Eq. (12) is designed as:

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c3 c3 c3 c3 c3 c3 c3 c3

c3 c3 c3 c3 −c3 −c3 −c3 −c3

c2 c2 −c2 −c2 0 0 0 0
0 0 0 0 c2 c2 −c2 −c2

c −c 0 0 0 0 0 0
0 0 c −c 0 0 0 0
0 0 0 0 c −c 0 0
0 0 0 0 0 0 c −c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)
where c =

√
2

2 .
Different from conventional wavelet transforms, it is worth

noting that the use of the Haar matrix shown in Eq. (14)
allows multi-scale wavelet decomposition finished within one
matrix operation. Fig. 3(a) and (b), respectively, illustrate the
results of Haar wavelet decomposition using the designed Haar
matrix (via Eq. (12) and Eq. (14)) and conventional Haar
filter. It can be observed that the Haar matrix will continue
to decompose the LH-band and HL-band at each scale while
the conventional Haar wavelet will not. Furthermore, we want
to clarify that Fig. 3 is merely used to illustrate the difference
between the Haar matrix and conventional Haar wavelet. In



fact, the Haar matrix is used in our method to decompose the
sampling matrix, as indicated in Eq. (3).

(a) (b)

Fig. 3. Comparison of Haar Transforms: (a) Haar matrix decomposition; (b)
conventional Haar decomposition.
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