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Abstract—Privacy has received much attention but is still
largely ignored in the multimedia community. Consider a cloud
computing scenario, where the server is resource-abundant and
is capable of finishing the designated tasks, it is envisioned
that secure media retrieval and search with privacy-preserving
will be seriously treated. In view of the fact that scale-
invariant feature transform (SIFT) has been widely adopted
in various fields, this paper is the first to address the problem
of secure SIFT feature extraction and representation in the
encrypted domain. Since all the operations in SIFT must
be moved to the encrypted domain, we propose a homo-
morphic encryption-based secure SIFT method for privacy-
preserving feature extraction and representation based on
Paillier cryptosystem. In particular, homomorphic comparison
is a must for SIFT feature detection but is still a challenging
issue for homomorphic encryption methods. To conquer this
problem, we investigate a quantization-like secure comparison
strategy in this paper. Experimental results demonstrate that
the proposed homomorphic encryption-based SIFT performs
comparably to original SIFT on image benchmarks, while
preserving privacy additionally. We believe that this work is an
important step toward privacy-preserving multimedia retrieval
in an environment, where privacy is a major concern.

Keywords-feature extraction; homomorphic encryption; pri-
vacy preserving; security; SIFT

|. INTRODUCTION

Recently, people are getting used to accessing and query-
ing multimedia data on a server due to the increase of
bandwidth capacity over the Internet. In addition, if the
remote server has strong computati on/storage capability with
abundant resources, the users can store their data on the
server side and exploit the computation power provided
by the server to execute their intended tasks. Under this
circumstance, Web not only provides passive search service
but also is equipped with high interactive mechanism. This
scenario is analogous to cloud computing, and is of practical
use for multimedia data that demand immense computation
and communication. Under this kind of framework, the
transmission of personal data and permission of the server in
accessing the stored data, however, create the privacy issue
that is usually ignored in the multimedia community.
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Although encryption is a prevalent way in securing the
transmitted data, the datain the encryption form (i.e., cipher-
text) will impede the operations that are usually conducted
on the plaintexts. In order to further process ciphertexts and
obtain the corresponding results in the plaintext domain,
some studies have devoted to encrypted domain operations
on severa aspects.

Text document instead of multimediainformation retrieval
in the encrypted domain has received much attention in the
literature for privacy protection. Song et al. [25] identified
if a query term isin an encrypted text document or not by
using Boolean search. Aiming at returning the documents
in the order of their relevance to the query, Swaminathan
et al. [26] presented a framework for rank-ordered search
over encrypted text documents. In addition, similar privacy
protection has also been applied on data mining [1]. Nev-
ertheless, it is not straightforward to achieve multimedia
retrieval and object recognition over encrypted data. Thisis
mainly due to the reason that encrypted data fail to preserve
the distance between feature vectors if the employed crypto-
graphic primitives are not designed especially for intended
goals.

Only recently, secure text document search has been
extended to secure multimedia data search. Shashank et al.
[24] claimed to first address the problem of protecting the
privacy of the query image when searching over a public
non-encrypted database. The limitation is that encrypted
database is not permitted. Lu et al. [16], [17] studied content-
based multimedia retrieval over encrypted databases, where
both the query and database data are encrypted and their
privacy is protected. The major concern of their methods
is that the user needs to provide encrypted image indices
to the server. In particular, if the approach for encrypting
image indices, largely depending on applications, is required
to be changed, then the user’'s overhead will be increased
as well. While the aforementioned studies have been done
on content-based multimedia retrieval over either encrypted
query, or both encrypted query and database, the prevailing
scale-invariant feature transform (SIFT) [15] conducted in



the encrypted domain is still lacking.

SIFT is an algorithm of detecting and describing local
features in images and has been widely used [3], [7], [9],
[13] due to its powerful attack-resilient keypoint detection
mechanism. In this paper, we focus on presenting a homo-
morphic encryption-based secure SIFT method for privacy-
preserving feature extraction and representation. This core
technology will find many applications, including media
retrieval, (near-) duplicate detection, and so on. Particularly,
both the query and database are permitted to be encrypted
to guarantee privacy-preserving.

The contributions of the proposed approach are summa-
rized as follows.

1) To achieve secure SIFT, the Difference-of-Gaussian
(DoG) transform is executed in the encrypted domain.
We investigate how DoG transform can be performed
in Paillier cryptosystem [20].

2) Usually, the existing homomorphic cryptosystemsonly
provide additive and multiplicative homomorphism.
We study and present a secure comparison method
that can be conducted in the encrypted domain so
that local extrema can be securely detected for SIFT
feature point extraction.

3) Our method is able to achieve local extrema decision,
descriptor calculation, and descriptor matching, all
in the encrypted domain, without multiple rounds
of communications between the user and server. On
the contrary, only one-round pre-communication is
necessary for synchronization of data. To the best of
our knowledge, this work is among the first endeavors
onthe SIFT agorithm in the encrypted domain and has
promising privacy-preserving multimedia applications.

4) The proposed privacy-preserving secure SIFT method
has been evaluated to find its superiority in attaining
both privacy and robustness under benchmark attacks
and datasets, when compared with the origina SIFT.

The remainder of this paper is organized as follows. We
define in Sec. 11 the problem we would like to solve. In Sec.
[11, the operations on the encrypted domain are introduced,
which contain our preliminary result of secure SIFT that
motivates the research of this paper and a cryptosystem that
is appropriate for the design of secure SIFT in a privacy-
preserving manner. In Sec. IV, the proposed homomorphic
encryption-based secure SIFT method with preservation of
privacy is described. Our method is mainly composed of four
steps, including Difference-of-Gaussian transform, feature
point extraction, feature descriptor extraction, and descriptor
matching, which are all accomplished in the encrypted do-
main for privacy concern. Experimental results are presented
to verify the proposed method in Sec. V. Finaly, conclusions
and future work are given in Sec. VI.

Il. PROBLEM DEFINITION

For a multimedia query system with preservation of user’s
privacy, as an example shown in Fig. 1, the user sends
the encrypted data as a query to the server, who possesses
abundant resources and powerful computation capability, can
use the received encrypted data to finish the intended tasks
(e.g., feature extraction and mediaretrieval). Since the users
will rely on the remote but capable server, his’her data will
be encrypted for the purpose of privacy and sent to the server
for storage in advance. The server must learn nothing about
either the query itself sent by the user or the results derived
from the query. In other words, the server is powerful in
finishing the requested tasks and sends the encrypted outputs
back to the user but does not know what have been obtained.
When the user receives the encrypted outputs, they can
be decrypted back to the plaintext domain. In this paper,
we shall take digital images as the case study to describe
the proposed homomorphic encryption-based secure SIFT
method conducted in a privacy-preserving manner.

Encrypted outputs

with

Encrypted
Databases

Encrypted inputs
Figure 1. A query-response model operated in the encrypted domain.

In our model, the user only prepares a homomorphically
encrypted copy of the query image as the encrypted inputs,
which are then sent to the server for subsequent processing,
while the server is responsible for generating the SIFT
features via the framework of homomorphic encryption.
More specifically, in order to finish SIFT in the encrypted
domain, in addition to common homomorphic addition and
multiplication we observe that homomorphic comparison
is aso required. Nevertheless, the extremely challenging
problem, which is a major concern of this paper, is how
to accomplish comparative homomorphism securely. Fig.
2 shows an example of how to perform SIFT from the
encrypted image in Fig. 2(b), which is an encrypted version
of Fig. 2(a) using Paillier cryptosystem [20].

It should be noted that it is not suitable to employ the
framework of secure multiparty computation (SMC) [27] to
achieve this goal since SMC may need several rounds of
interaction between the user and the server. In addition, the
multiple parties in SMC can be said to possess equivalent
capability. On the contrary, for the scenario considered here,
the user heavily relies on the capable and powerful server
to finish amost al tasks. It will be clear later that our
proposed method only needs one-round pre-communication
for necessary synchronization of data when the query is
initiated. Based on the received query image in the form
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Figure 2. Plaintext image (a) and its corresponding ciphertext image (b)
obtained using Paillier cryptosystem [20].

of ciphertexts, the server carries out DoG transform, SIFT
feature point extraction, feature descriptor extraction, and
descriptor matching to accomplish the designated tasks in
the encrypted domain, and sends the encrypted outputs to
the user, who will finaly get the results in the plaintext
domain via decryption.

I11. OPERATIONS IN THE ENCRYPTED DOMAIN

In this section, we will first briefly review our previ-
ous work [11] that proposes to detect SIFT features from
encrypted images. Then, we will introduce the Paillier
cryptosystem [20], which enables to directly operate in the
ciphertext domain but can obtain the equivalent results in
the plaintext domain. The goal of this section is to provide
some preliminaries that motivate the study of this paper, and
make this paper self-contained.

A. SFT in an Encrypted Domain

In our previous work [11], we present two anti-SIFT
attacks that can efficiently remove the feature points re-
trieved by conventional SIFT [15]. The idea comes from
the observation that a pixel is decided as a SIFT keypoint if
and only if it isalocal extremum in the scale space defined
by Difference-of-Gaussian (DoG) functions. As a result, an
original keypoint will not be detected by SIFT if another
extremum is maliciously generated nearby. In other words,
there can be at least two equal extremain a detection region
such that the duplicate extremum is enforced to be at one of
the eight neighbors around the true one in the scale space
to evade keypoint detection.

In order to tackle this problem, we present a secret
key-based transformation process, which is performed on
images before SIFT feature detection, such that the dominant
features become recessive. This implies that the detection
of SIFT features will be conducted in the transformed (or
encrypted) domain instead of the original spatial domain,
and the goal of secure SIFT can be achieved. Such a secret
key-based transformation can be either linear or non-linear.
The proposed strategy is simple and composed of two steps:
bit reversing and local encryption. Basically, the bit reversing
step is to make SIFT detection fail and erroneous while local
encryption aims to secure SIFT detection.

The performance has been evaluated by examining the
security against anti-SIFT attacks, authentication capability
in locating maliciously tampered regions, and robustness
against the benchmark, Stirmark. It has also been incor-
porated with sparse representation for secure image copy
detection and recognition [12].

Nevertheless, as we have aready mentioned in [11], a
more sophisticated design regarding secure SIFT is pos-
sible. In this paper, we shall address this issue so that
the performance of proposed method can be validated in
a cryptographically secure manner.

B. Paillier Cryptosystem

In order to execute SIFT in a ciphertext domain and
still obtain results equivalent to those generated in the
corresponding plaintext domain, the prerequisiteis to seek a
cryptosystem that can provide the required operations, such
as addition, multiplication, and so on. In the original SIFT, in
addition to common additive and multiplicative operations,
the comparison operation is a must for finishing feature point
detection. Nevertheless, the design of a cryptosystem that
can possess homomorphic comparison is still a challenging
issue. Therefore, our goal is to seek a cryptosystem that can
provide additive and multiplicative homomorphism, and de-
velop anew approach to achieve homomorphic comparison .

To achieve operations in the ciphertext domain and ob-
tain results equivalent to those in the plaintext domain,
homomorphic encryption [8], [23] has been widely inves-
tigated. We choose the Paillier cryptosystem [20] as the
platform for designing our secure SIFT method because
Paillier cryptosystem provides additive and multiplicative
homomorphism, achieves provable security based on mod-
ular arithmetic, and is computationally comparable to RSA.
In fact, Paillier cryptosystem has been widely adopted in
various applications [5]. Some recent promising privacy-
preserving applications include secure transform [2], face
recognition [6], secure watermark detection [18], sensor
network surveillance[19], and secure distortion computation
[22].

The operations of Paillier cryptosystem are briefly de-
scribed as follows. First, a pair of private and public keys
are set. Let p and ¢ be two large primes and let N = pq.
Let Zy2 = {0,1,..,N? — 1} and Z}, C Zy= denotes
the set of non-negative integers that have multiplicative
inverses modulo N2. We also select g € Z%, to satisfy
ged(L(g* mod N?),N) = 1, where \ defined as \ =
lem(p — 1,q — 1) is the private key. The pair of N and
g defines the public keys.

Second, the encryption phase is operated as follows. Let
the message to be encrypted be denoted as m € Z 5, which

11t should be noted that secure comparison for SIFT feature detection
needs to be accomplished alone on one party (e.g., the server side of Fig.
1). Therefore, secure multiparty computation (SMC) [27] does not meet the
goal of our paper.



satisfies m < N. The ciphertext of m € Z - is derived as:
D

where r € Z3% denotes the user chosen key and integer
numbers modulo is employed.

Third, for decrypting the ciphertext ¢ in the decryption
phase, we use the private key A and obtain the plaintext m
as:

c= E(m,r) = g™rY mod N?,

L(c* mod N?)

m = D(eA) = TN mod N7)

mod N, 2
where L(z) = 1.

The Paillier cryptosystem is said to be homomorphically
additive because

E(mhrl) X E(mg,’l’g)
g(m1+m2)(r1r2)N mod N2.

Cc1 X C2
©)

After decrypting the above result by D(E(mq,7m1) X
E(ma,r2),\), we can get the plaintext m; + ms2, which
is generated by executing multiplication in the ciphertext
domain, as indicated in Eq. (3). Another form equivaent to
Eq. (3) is expressed as:

meo

E(my,r) X g
gt (r YN mod N2,

c1 X ng
(4)

which can also be decrypted to get mq + mo.
The Paillier cryptosystem is also homomorphically mul-
tiplicative because

D([E(m1,71)]™ mod N?) = (my x ma) mod N.  (5)

The plaintext mq x mq is equivalent to being generated by
executing exponentiation operation in the ciphertext domain.

IV. SECURE SIFT IN HOMOMORPHIC ENCRYPTED
DOMAIN

In this section, we describe the proposed secure SIFT
method that is conducted in the homomorphic encryption
domain. The traditional SIFT consists of four major parts:
Difference-of-Gaussian (DoG) transform, feature point (key-
point) detection, feature description, and descriptor match-
ing. We will give a particular account of these four parts,
which are al operated on encrypted data.

A. Difference of Gaussian in the Encrypted Domain

The first step of the SIFT framework for extracting the
feature points is to execute Difference-of-Gaussian trans-
forms. For this, the image is convolved with Gaussian filters,
which are assigned different variances p;’s (corresponding
to scales), and then the differences between two neigh-
boring Gaussian-blurred images are taken. Feature points
are then chosen as loca extrema of the DoG images,
which occur at multiple scales. Specifically, a DoG image

DoGImg(x,y, pi;) generated at two neighboring scales p;
and p; is defined as:

DoGImg(;v, Y, pl]) = COTLG(ZZ?, Y, pl) - COTLG(I7 Y, p]))
(6)
where Cong(x,y, p;) denotes the convolution of the original
image I(x,y) with the Gaussian kernel G(z,y, p;) a the i-
th scale, i.e,

()

To preserve the users privacy, the image I(x,y) is
encrypted by using homomorphic encryption, as described
in the previous section. The resultant encrypted data is
expressed as.

I(z,y) = E((z,y),7) = ¢' @YY mod N?,

CO”G(xay,pi) = G(Z,y,pz) * I(‘Tay)

®)

where F() denotes Paillier cryptosystem, as indicated in
Eqg. (1) and r is the user chosen key. For practical imple-
mentation, we present to scale the original Gaussian filter
coefficients to be integers with a constant s in view of the
fact that Paillier cryptosystem can only operate in the integer
domain. For this, the integer DoG filter, G piss(x,y, pij), iS
derived as:

Gpiss (2., pis) = round(s[G(x, y, pi) — Gy, m)})(,g)
where round() is a rounding function and s is a constant
used to enlarge Gaussian filter coefficients, G()’s, which are
usualy smaller than 1. It is worth noting that the secure
SIFT proposed in this paper only introduces errors due to
the rounding operation in Eq. (9). For the sake of notation
simplification, we will smply use p in place of p;; in
the following if there is no confusion. In addition, when
Gaussian kernel G() isinvolved in the following discussions,
its support will aso be omitted.

By convolving the image to be encrypted with the DoG
filter in the encrypted domain for SIFT, the resultant en-
crypted image in the DoG domain can be derived as:

E(GDiff(J/"y, /)) * I(I,y), 7‘)
= E(Z GDiff(CC,y, p)I(z, y)7r)

DOGImge('ra Y, p)

where the last equation is derived according to homo-
morphic addition and multiplication of Paillier cryptosys-
tem, respectively, shown in Eq. (3) and Eg. (5). Note
that DoGImg.(x,y,p) is aso interpreted as the encrypted
difference between two Gaussian-blurred images at two
neighboring scales.

It is worth mentioning here that the above computation of
DoG can maintain privacy without significant information
loss except for the rounding errors that are caused due to

.y
H E(I(z,y),r)¢pis @YP) mod N2,
@y

(10)



only integer operations are permitted within the framework
of Paillier cryptosystem.

B. SFT Feature Point Detection: Local Extrema Extraction
via Integer Comparison in Encrypted Domain

The most challenging task of secure SIFT is the local
extrema extraction operated in the encrypted domain. As
we have introduced in Sec. 111-B, the Paillier cryptosystem
only provides additive and multiplicative homomorphism.
Nevertheless, SIFT feature detection still needs homomor-
phic comparison. In this section, we investigate a secure
comparison strategy in the Paillier cryptosystem.

1) Direct Comparison on Single Encrypted Data (One-to-
One Mapping): To achieve the comparison operation in the
ciphertext domain, an intuitive way is to directly compare
the received encrypted data. Under this circumstance, the
result yielded after comparison can be decrypted to obtain
the corresponding plaintexts. In other words, the one-to-
one mapping between pairs of (plaintext, ciphertext) can be
reveadled, leading to breach the privacy of plaintexts. This
problem cannot be ignored if the encrypted data are sent
to the server for subsegquent processing and the server is
malicious in that he/she would like to recover the plaintexts
from the received ciphertexts.

More specifically, suppose we design a transformation
function?, F(), that aims to transform the ciphertexts into
another domain to accomplish comparison. Such a trans-
formation is required since the encrypted data, basically a
random string, cannot be directly used for processing. Let
K pairs of plaintexts and ciphertexts be denoted as (p;,
¢;), where 1 < ¢ < K. Consider the result obtained after
comparing F(c;)'s as F(c1) < F(ca) < ... < F(ck). After
decryption, the relationship among the plaintexts can be
revealed. Even worse, the information about plaintexts can
still be revealed via comparing ciphertexts (the sorting list
of F'(c¢;)’s) to know the order of plaintexts without needing
decryption.

Recall from the Paillier encryption procedure shown in
Eqg. (1) that if the user chosen key r is fixed, then the
plaintext and its corresponding ciphertext will form a one-
to-one mapping, and the number of possible ciphertexts is
exactly equal to that of plaintexts instead of N2 (note that
N is the integer number modulo). It is easy to revea the
plaintexts if the sorting list regarding the ciphertexts can be
obtained, violating the need of privacy during operations.
This is possible because given the public keys, N and ¢,
and the ciphertext ¢, the adversary can exhaustive choose
r € Z3 to solve the plaintext m according to Eq. (1).
Note that the adversary will not choose to derive m from
Eq. (2) since the secret key A related to the two primes p
and ¢ is unknown. Fig. 3 illustrates an example of breaking
an encrypted image if a fixed user chosen key in Paillier

2In the next subsection, Eq. (15) shows an example.

cryptosystem is used. We can observe that the visual quality
of the recovered image in Fig. 3(b) looks acceptable, despite
the quantization artifacts.

Figure 3. Breaking an encrypted image generated using a fixed user chosen
key in Palillier cryptosystem: (&) original image; (b) image recovered from
a Palllier encrypted image.

Let's dso consider this security breach problem from
another viewpoint. If for some reasons and applications it
is required to directly compare the encrypted data to obtain
the magnitude relations among the plaintexts, the privacy
breach problem described above is also suitable for use here.
Therefore, it is concluded that (1) if Paillier cryptosystem
is used, the user chosen key » must be chosen at random
or content-dependent and (2) homomorphic comparison on
single encrypted data is insecure.

2) Direct Comparison on Linear Combination of En-
crypted Data (One-to-Many Mapping): According the above
observations, the user chosen key r in Eq. (1) must be
variable. Under this circumstance, given the plaintext m;,
the resultant ciphertexts ¢;’s will be different according to
the used user keys r;'s, leading to one-to-many mapping.
This states the property of semantic security in the Paillier
cryptosystem.

In the two-dimensional case like images considered here,
the user chosen key r, ,, dependent on the location of a
pixel, is used. Therefore, a DoG image in the encrypted
domain using different r, ,’s can be derived as:

DoGImge(x,y, p) = E(Gpigs(z,y,p)* I(2,y),72,y)
E(Z GDiff($> Y, p)I(l’, y)a rw,y)

Y
= H E(I(x,y), rx’y)GDiff(z’y’p) mod N2.
ey

(11)

It can be observed that EqQ. (11) is generated using homomor-
phic addition and multiplication. Substituting Eq. (1) into
Eq. (11), we have:
DoGImge(z,y, p)
= [ BU G y), )25 @) mod N2

z,Y



. NGp; Ty,
_ Hgf(w’y)Gszf(w,y,p)m’y piff(@:Y:0) o1 N2
z,y

_ gZIy I(atwy)GD'iff(rvyvp)(H TfDiff(mvyvp))N mod N2

Y

Y
Gpifs(z,y,
= E(Zf(x,y)GDiff(x,y,p)7Hmé’ #5( yp))
x,y oy
= E(DoGImg(z,y,p),R,), 12)

where a pixel DoGImg(z,y, p) is encrypted using a com-
bined user chosen key R,, which is expressed as.

R, =[5, (13

z,y

which is a function of the user chosen key r,, that is
dependent on a pixel’s location (x,y). Since the Gaussian
kernel G() is involved in the calculation of R,, we know
that R, depends on the support of G/() instead of the image
size, as we have mentioned in Sec. IV-A.

Comparing Eqg. (11) and Eq. (12), we know that the result
obtained from the scenario that the user provides encrypted
data E(I(z,y),72,y) to the server for executing DoG in the
ciphertext domainis equivalent to that obtained from directly
encrypting DoG image using R, at the scale p. Similarly,
a unique characteristic is that the server does not access to
rz,y'S and their combined ones 1?,’s.

Homomorphic Comparison: Due to one-to-many map-
ping, the resultant ciphertexts, as indicated in Eq. (12), will
fall into the range between 0 and N 2—1, and the whole range
may be completely occupied. In addition, the ciphertexts are
accompanied with R,,. Therefore, we propose quantization-
like secure comparison of ciphertextsto equivalently achieve
local extrema extraction in the plaintext domain. In our
method, a series of thresholds, which will divide the cipher-
text domain located between 0 and N2 —1 into several (non-
uniform) quantization intervals, in the ciphertext domain are
designed.

For this, the user will generate a series of thresholds
T;'s in the plaintext domain, where T; € Zy, and these
thresholds will be encrypted and sent to the remote server
for secure comparison. Since comparison will be conducted
in the encrypted domain, these thresholds are encrypted via
Peillier encryption using R, at scale p as.

T = E(T;,R,) = "' R) mod N?, (14)

where T, € Zy=. Note that R, is employed by users
to encrypt T;'s because the ciphertexts used for secure
comparisons are aso encrypted using R ,,, as indicated in Eq.
(22). In the proposed method, in addition to the encrypted
query data, the additional data needed to be sent to server
for subsequent secure processing are the secure thresholds
T;.'s and their order. Note that the calculation of R, needs
Gpiss(z,y,p), which will be sent from the server to the
user. Such a pre-computation will only be executed once

during the course of the query system when a user initiates
his’her query task. Nevertheless, we also note that some
secure comparison algorithms like [4] employ the framework
of secure multiparty computation and need a few rounds of
communications.

Now, the strategy for comparison between two el-
ements in DoGImg.(z,y,p) in the encrypted domain
will be described as follows. Basically, our idea is to
compare two encrypted data according to their loca
tions in the intervals separated by the thresholds T;,.’s.
Given two ciphertexts, E(DoGImg(x1,y1,p),R,) and
E(DoGImg(z2,y2,p), R,), a scale p and at two different
locations, (z1,y1) and (z2,y2), respectively, the goal is to
compare them in the encrypted domain and finally find their
magnitude relationship in the plaintext. This goal can be
accomplished by identifying which quantization intervals the
two ciphertexts fall into via Paillier homomorphic addition
as.

ar = a/rgminlnc(E(DOGlmg(xka Yk, p)? Rp)gInC_E(Tia Rl)))a
————

Vi
(15)

where k = 1,2. In Eq. (15), g/™* appears for additive
homomorphism but, in fact, it should be E(Inc,1) =
g'™rN mod N? with r = 1 in order not to change the
combined r value, as indicated in Egs. (3) and (4).

Mathematically, Eq. (15) implies that the plaintext
DoGImg
(xk, yr, p) isincrementally increased by Inc in the plaintext
domain until it is finally increased to be equal to the
nearest threshold 73, which corresponds to E(7}, R,) in
the ciphertext domain for certain i. Here, the increment
Inc is set to 1. By doing so, once two different thresh-
olds E(Ty, R,)’s are found in this case for £ = 1,2,
the server can determine the magnitude relationship be-
tween the two ciphertexts, E(DoGImg(z1,y1,p), R,) and
E(DoGImg(z2,y2,p), R,), since it receives the order of
encrypted thresholds sent from the user.

On the other hand, if E(T1,R,) = E(I»,R,)
is found, then the magnitude relationship between
the two ciphertexts, E(DoGImg(z1,y1,p),R,) and
E(DoGImg(z2,y2,p), R,), can still be determined
by checking the magnitude relationship between
a; and ao. For example, if a; > a2, then
E(DoGImg(z1,y1,p), Rp) < E(DoGImg(z2,y2,p), R,)
since E(DoGImg(z1,y1,p),R,) is more distant from
T;. for certain 4. Thus, according to this proposed
secure comparison strategy the SIFT feature detection
conventionally done in the plaintext domain can now be
finished in the ciphertext domain without reveaing the
origina image data.

Fig. 4 illustrates a result of SIFT feature point extraction
with respect to Fig. 2 in the plaintext and ciphertext domains,
respectively. Visualy, the detected locations (labeled in



‘blue’ circle) of feature points look similar. More advanced
evaluations will be elaborated in Sec. V.

() . :

Detection of SIFT features in the plaintext domain (a)
and ciphertext domain (b), which correspond to the pictures in Fig. 2,
respectively. (best viewed on a color display)

Figure 4.

Please also note that in the proposed scheme the locations
of pixels are not encrypted, so that the locations of SIFT
features are known to the public and the server. Such a
characteristic is significantly different from our previous
work [11], which aims to hide the locations of SIFT features
in order to escape from being maliciously tampered with.
Nevertheless, for the scenario which is privacy-preserving
considered here, the locations of feature points will not
breach the privacy because their corresponding feature de-
scriptors (to be described later) are till in the encrypted
form®.

The Impact of Number of Thresholds 7;’s and Their
Pairwise Distances. As described in the above subsection,
the quantization-like secure comparison strategy needs a
series of thresholds 7;'s. It is interesting to investigate the
impact of number of thresholds and their pairwise distances
on the accuracy and security of homomorphic comparison.

First, we note that the different pairwise distances be-
tween a pair of thresholds will not affect the accuracy of
comparison since both the magnitude relationship between
E(T\,R,) and E(T>, R,), and a; and a, can cooperatively
finish secure comparison. Hence, in the following analyses,
we assume the use of uniform quantization for simplicity.

Second, we examine the impact of number of thresholds
upon the speed of computation and security. If the number
of thresholds is large, meaning that the interval size is
small, then the computation of homomorphic comparison
indicated in Eq. (15) can be speeded-up since a; can be
found fast. Nevertheless, if large number of thresholds is
adopted, then the communication cost spent in transmitting
these thresholds from the user to the server is large. Thus,
there exists a tradeoff between communication cost and
computation overhead in homomorphic comparison. If the

3We have an interesting observation that if the SIFT feature descriptors
are not encrypted, the adversary can use them to query another databases so
that the originally encrypted content may be approximately guessed from
the search outputs, leading to privacy breach. This issue, currently not the
scope of this paper, is worth further studying if we try to break the Paillier
cryptosystem-based applications.

server is considered to be resource-abundant, it is, however,
preferable to use a limited number of thresholds.

Finally, we discuss the security of secure comparison ac-
complished using Eq. (15). Given the encrypted data shown
in Eqg. (12) and the public key (V, g), the plaintexts cannot
be exactly recovered since each combined user chosen key
R, as shownin Eq. (13), is a combination of location-based
user chosen keys r,, ,'s and is unknown publicly.

C. SFT Feature Point Descriptor in Encrypted Domain

In this section, we first describe how to derive SIFT
feature descriptors in the plaintext domain, which is then
extended to the ciphertext domain. First, as done in [15],
orientation assignment is executed for each detected feature
point. Then, a normalized region of size 16 x 16 expanded
from the region covering the derived orientation is built from
which feature descriptors are obtained as follows.

An SIFT feature descriptor is established for the 16 x 16
region, which is further divided into sixteen 4 x 4 blocks,
around a feature point. In addition, the calculation of feature
descriptor is accomplished at the scale, where the feature
is detected. Let the gradient magnitudes be, respectively,
denoted as Dif fx = Cong(x+1,y,p)—Cong(z—1,y, p)
and Diffy = Cong(x,y + 1,p) — Cong(z,y — 1,p)
aong different directions. For each 4 x 4 block, the gradient
magnitude and orientation are, respectively, computed for
each position (x, y) within the 4 x 4 block as:

m(z,y) = /(Dif fx)? + (Dif fv)?, (16)
1 Diffx
O(x,y) = tan Diffy (17)

Then, the histogram of weighted magnitudes defined on a
number of restrictive directionsis derived based on Egs. (16)
and (17).

For feature descriptor extraction conducted in the en-
crypted domain, the weighted magnitudes located at the
four axes (i.e., positive and negative x-axes, and positive
and negative y-axes) are calculated in this paper, which will
congtitute a 4-dimensiona vector. Since there are in total
sixteen 4 x 4 blocks in a 16 x 16 region, a 64-dimensional
feature descriptor is established. It should be noted that no
more than the four restrictive directions are employed in
this paper because the operation of secure inner product is
required to derive the included angle with the two sides not
both coinciding with the z— and y— axes. Our empirical
results, however, reveal that the SIFT descriptors with 64
dimensionalities are sufficient to maintain robustness nearly
without any loss.

In this paper, the feature descriptor calculated in the en-
crypted domain for each 4 x 4 block is conducted as follows.

4In the field of secure computation, secure inner product computation
without needing interaction between the user and server is another chal-
lenging issue that needs to be further studied.



Let V(k), 0 < k < 3, denote the 4-dimensional feature
descriptor of a 4 x 4 block. They are derived according to
the above conceptions based on homomorphic addition and
multiplication as:

V(0) = V(0)E(Cong(z+1,y, p)) E(Cong(z—1,y,p)) ",
if Cong(z+1,y,p) > Cong(xz —1,y,p)

V(1) = V(1) E(Cong(z,y+1, p)) E(Cong(z,y—1,p)) ",
if Cong(x,y+1,p) > Cong(z,y —1,p)

V(2) = V(2)E(Cong(x—1,y, p)) E(Cong(z+1,y,p)) ",
if Cong(z —1,y,p) > Cong(xz+1,y,p)

V(3) = V(3)E(Cong(z,y—1,p)) E(Cong(z,y+1,p)) ",

if Cong(z,y—1,p) > Cong(z,y+1,p).

It should be noted that the comparisons in the above equa-
tions also need to be executed in the encrypted domain via
the proposed secure comparison strategy.

D. SFT Feature Descriptor Matching in Encrypted Domain

Once the encrypted descriptors have been calculated,
the stage of descriptor matching can be widely used in
many applications such as object recognition and media
retrieval. The descriptor matching stage aims to compares
a query descriptor with each candidate descriptor in the
database for similarity evaluation via a similarity metric.
Let the similarity between two descriptors, V' and V7, be
denoted as Sim(V*, V7). Since the inner product between
two descriptors is commonly used as a similarity metric,
which is expressed in the plaintext domain as:

Z Vik (18)

For concern of privacy protection, the above similarity
measure must be computed in the ciphertext domain while
obtaining the same result as in the plaintext domain. Thus,
Eqg. (18) can be rewritten in the homomorphic encryption
domain as:

Szm,P V’ VJ

) mod N2

(19)
to achieve the desired goal. It is not hard to derive from Eq.
(19) that the same similarity measure as in Eq. (18) can be
obtained by means of homomorphic addition (Eg. (3)) and
homomorphic multiplication (Eg. (5)).

Unfortunately, it is, however, not possible for the server to
access the plaintexts V7 (k)’s used in Eq. (19) due to user's
privacy protection. To conquer this problem, we adopt the ¢
distance metric instead since the calculation of ¢; distance
can be conducted in a secure way. More specificaly, the ¢

Simip(E(V"*

HEVZ

k=0

distance between two descriptors in the plaintext domain is
defined as:
Simf (VI V) = [VI—-Vi|, = Z Vi k)|. (20)
For ¢, distance between two descriptors in the ciphertext
domain, we can derive via homomorphic encryption as:

Simj, (B(V'), E(V7)) = E([V' = V'],

63
[T EV (R)EV (k)= mod N*. (21)
k=0

Finally, V* and V7 are considered to be similar if the
similarity value defined in Eq. (21) is smaller than a thresh-
old, o. The threshold o can be found by minimizing the
probability of false positive as:

g =

argming P{Sim} (E(V*),E(V7)) <o | V' and V/
are dissmilar}. (22)

E. Comparison with Original SFT

For the sake of clarity, the differences between the original
SIFT (denoted as “original-SIFT”) and the proposed homo-
morphic encryption-based SIFT (abbreviated as “HE-SIFT”)
are summarized as follows.

1) The magjor difference is that HE-SIFT is entirely
conducted in the encrypted domain, wherein DoG
conducted in the encrypted domain is presented and
homomorphic comparison is proposed for privacy-
preserving feature extraction.

2) The descriptor vector length of HE-SIFT is 64 for the
reason of avoiding executing inner product without
alowing interaction between parties in the encrypted
domain, as mentioned in Sec. 1V-C, while the descrip-
tor length of origina-SIFT is 128.

3) The metric used for privacy-preserving matching be-
tween two descriptorsin HE-SIFT is ¢, distance while
it is inner product in original-SIFT.

The performance difference for both origina-SIFT and
HE-SIFT will be evaluated in the next section.

V. EXPERIMENTAL RESULTS

Two kinds of experiments were conducted to evaluate
the performance of proposed method. In Sec. V-A, the
robustness of our method against benchmark attacks will be
demonstrated. The goal is to examine whether certain ro-
bustness is lost due to secure computation of SIFT features.
In Sec. V-B, we describe a case study on image recognition,
which is a popular application based on feature extraction.
The aim is to verify whether comparable performance be-
tween original-SIFT and HE-SIFT can still be obtained even
al operations of HE-SIFT are conducted in the encrypted
domain.



For experimental setup, the two large prime numbers, p
and ¢, were usually selected to be 100-bit as donein [22], but
they could be larger, and g € Z 3. can be arbitrarily selected
and was set to be 20 here. For implementation of DoG, 7
octaves and 6 voices between two neighboring octaves were
selected. For feature point detection via secure comparison,
ten thresholds 7; € Z were arbitrarily selected for reducing
the communication cost on the user side but increasing the
computation overhead on the server side.

A. Robustness Evaluation

Six commonly used color images with different contents
(I: Lenna; I5: F-16; I3: Baboon; 14: Peppers; I5: Bridge;
Is: Goldhill) were adopted to verify the robustness of our
secure SIFT scheme against miscellaneous attacks. The stan-
dard benchmarks, Stirmark 3.1 and 4.0, were quite suitable
for simulating various manipulations of the digital images.
The reader may refer to [21] for more detailed parameters of
Stirmark. Basicaly, this experiment is analogous to image
copy detection.

In this test, the encrypted original image was used as a
query and sent to the server to find out how many modified
versions could be successfully detected by comparing the
detected SIFT feature vectors in the ciphertext domain. The
results for robustness verification are summarized in Table
| and Table Il. In these two tables, each attack’s name is
followed by a digit, which indicates the number of times that
the attack was performed with different parameters. Accord-
ing to our results, among 1224 modified images (there arein
total 204 attacked images for each original image), 1151 of
them could be correctly identified, which indicates that the
correct recognition rate was 94.04%. Note that these results
were obtained by controlling the false positive rate to be
zero. The cases for miss recognition all occur in the attacks,
including severe noise adding, cropping with (extremely)
small parts remaining, and flipping, which are also the failed
examples for SIFT in the plaintext domain. Obviously, our
results indicate that homomorphic encryption-based secure
SIFT can preserve robustness while achieving privacy.

B. Case Sudy on Image Recognition

To demonstrate the usefulness of the proposed homomor-
phic encryption-based secure SIFT approach in achieving
privacy-preserving image recognition, the Caltech101 [14]
and Caltech256 datasets [10] consisting of object categories
with high shape variability were adopted. We randomly
select 24 commonly used categories, each of which contains
60 images, for the experiment. Among them, 30 images per
category were used as the query and the remainder were
stored in the database for search purpose. Basically, this
experiment is analogous to image near-duplicate detection.
Fig. 5 shows some examples of Caltech images, where the
first row shows four images of the Caltech256 category

Table |
ROBUSTNESS OF OUR SCHEME VS. STIRMARK 3.1: ATTACKS
ARE DENOTED AS SPA: THE SIGNAL PROCESSING ATTACK,
INCLUDING MEDIAN FILTERING, GAUSSIAN FILTERING,
SHARPENING, AND FREQUENCY MODE LAPLACIAN REMOVAL
(FMLR); JPEG: COMPRESSION WITH QUALITY FACTORS
RANGING FROM 0.9 TO 0.1; GLGT: GENERAL LINEAR
GEOMETRIC TRANSFORM; CAR: CHANGE OF THE ASPECT
RATIO; LR: LINE REMOVAL; RC: ROTATION+ CROPPING,;
SCALING: SCALED WITH FACTORS RANGING FROM 0.5 TO 2.0;
RRS: ROTATION+RESCALING; RB: RANDOM BENDING.

Stirmark 3.1 | I; I I3 n Is Ig
SPAG) | 6 6 6 6 6 6
JPEG(12) | 12 12 12 12 12 12
GLGT® | 3 3 3 3 3 3
CAR®B) | 8 8 8 8 8 8
LRG| 5 5 5 5 5 5
Cropping® | 8 8 8 8 8 9
RC(16) | 16 16 16 16 16 16
Scaling6) | 6 6 6 6 6 6
RRS(16) | 16 16 16 16 16 16
Shearing6) | 6 6 6 6 6 6
RB(1) 1 1 1 1 1 1
Hipping(1) 0 0 0 0 0 0

Table 11
ROBUSTNESS OF OUR SCHEME VS. STIRMARK 4.0: ATTACKS
ARE DENOTED AS AFFINET: AFFINE TRANSFORMATION;
CoNVF: CONVOLUTION FILTERING; CROPPING: CROPPED TO %
.3 3, AND £ THE ORIGINAL SIZE; JPEG: COMPRESSION WITH
QUALITY FACTORS RANGING FROM 0.9 TO 0.1; MF: MEDIAN
FILTERING; NOISE: NOISE ADDITION; SS: SELF-SIMILARITIES;
SCALING: SCALED WITH FACTORS RANGING FROM 0.5 TO 2.0;
RML: REMOVING LINES; PSNR: ALL PIXEL VALUES
INCREASED BY THE SAME QUANTITY; ROTATION: PURE
ROTATION; RRS: ROTATION+ RESCALING; AND RC:
ROTATION+CROPPING.

Stirmark 4.0 | I; I I3 n Is Ig
AffineT8) | 8 &8 8 8 8 8
ConwvF(2) | 1 1 1 1 1 1
Cropping® | 4 4 2 4 3 4
JPEG(12) [ 12 12 12 12 12 12
MF4) | 4 4 4 4 4 4
Noise(6) 1 1 1 1 2 1
ss® |3 3 3 3 3 3
Scaling) | 6 6 6 6 6 6
RML(10) [ 10 10 10 10 10 10
PSNR(10) | 10 10 10 10 10 10
Rotation(16) | 16 16 16 16 16 16
RRS(10) | 10 10 10 10 10 10
RC(10) | 10 10 10 10 10 10

“golden-gate-bridge,” and the second row shows four images
of the Caltech101 category “bowling-ball.”

It should be noted that we mainly compare the per-
formance of original-SIFT and HE-SIFT without adopting
advanced feature representation and classifiers. The focus



is put on the impact of homomorphic encryption on SIFT
feature detection and descriptor.

Figure 5. Top row: four examples of the Caltech256 category “ golden-gate-
bridge”; Bottom row: four examples of the Caltech101 category “bowling-
ball”.

For each query image, it is homomorphically encrypted,
followed by DoG, feature point detection, and feature de-
scriptor extraction. Then, each query is used to find the
closet category via secure descriptor comparisons among the
images in the database. A query image is classified into a
certain category if it matches to the images belonging to
that category according to SIFT feature descriptor match-
ing most often. Of course, the categories a query image
belongs to can aso be ranked according to the number
of matches in each category. Therefore, results regarding
the top-k query are examined here. Table Il and Table
IV, respectively, show the results when top-%£ query, where
k=1, 2, 3, 5, 10, were adopted. The digit indicates
the number of correct recognition according to top-k query.
Some pictures excerpted from two of the 23 categories are
shown in Fig. 5. It can be observed from these tables that
the recognition performance between original-SIFT and HE-
SIFT seems to be comparable. To be specific, we have the
following observations.

o If origina-SIFT (dlightly) outperforms HE-SIFT, we
conjecture that thisis mainly due to the reason that both
secure SIFT feature detection and descriptor extraction
are affected by privacy-preserving operations in the
encrypted domain.

o If HE-SIFT (dlightly) outperforms origina-SIFT, it
is presumed that HE-SIFT captures less sophisticated
features than original-SIFT since the feature length of
the former is only half the latter, as we have described
in Sec. IV-C and Sec. IV-E. Under this circumstance,
rough feature representation more fits the experiment
of near-duplicate object classification conducted here.

In this experiment, we solely compare the SIFT descrip-
tors, generated from original-SIFT and HE-SIFT, in image
recognition. It can be expected that the recognition rate can
be remarkably improved and comparable with the state-of-
the-art while still providing privacy-preserving simultane-
ously if sophisticated designed advanced feature representa-
tion and well-designed classifiers are further employed.

V1. CONCLUSIONS AND FUTURE WORK

We have proposed a homomorphic encryption-based se-
cure SIFT approach to deal with the privacy-preserving prob-
lem encountered in a cloud computing environment, where
the server can finish the tasks of SIFT-based image retrieval
and management without learning anything to breach the
user’s privacy. Notably, we address the privacy issue that
is relatively ignored in the media retrieval literature. We
present a new method to enable SIFT to be done in the
framework of Paillier cryptosystem, where the most chal-
lenging problem; i.e., secure comparison, has been solved
in this paper. We believe that the presented work is an im-
portant step toward privacy-preserving multimedia retrieval
in an environment, where privacy is a major concern.

For future work, we will analyze the errors introduced due
to integral operations in encrypted domain. At present, we
mainly verify the performance of the proposed homomor-
phic encryption-based SIFT at the feature level; i.e., SIFT
descriptors built upon the SIFT feature points are used for
experiments. However, advanced features (such as visua
words, descriptive visual words/phrases, query expansions,
and etc) built upon the encrypted SIFT features should be
further investigated to improve the retrieval performance.
Moreover, privacy-preserving feature extraction finds broad
applications and is also a key to secure video surveillance.
Our another work indeed shows promising results in object
detection of encrypted surveillance videos.
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