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Abstract

With the advances in wireless communications and GPS technology, there is increasing interest in the field of

location-aware services. Because of the proliferation of GPS-enabled devices and applications, in this study, we

address the scalability issue in trajectory data management. Specifically, we propose a scheme called Inter-Frame

Coding (IFC) for lossless compression of trajectory data, and implement two classical database queries based on

the scheme. Evaluations of the IFC scheme using real trajectory datasets show that it can achieve a compression

ratio of 58%. Moreover, it can reduce the computational complexity of range queries by a factor of 0.45, while

maintaining an acceptable execution time in k-nearest neighbor searches. The IFC scheme is simple, efficient, and

lossless; thus, it has the potential to facilitate trajectory-based data storage, compression, and computation.

I. INTRODUCTION

With the advances in wireless communications and GPS technology, location-aware services are rapidly

permeating every part of our living environments. An enormous number of innovative applications have

been developed and deployed in recent years, e.g., location-based social networks, driving navigation aids,

and mobile object tracking devices. The difference between the new genre of applications and conventional

ones is that they are driven by moving objects with the location information as a function of time [32].

Moving object databases (MODs) have shown promise in supporting applications of this genre [36],

and a substantial amount of research effort has been invested in the areas of indexing [7–9, 19, 24, 30],

querying [11, 27, 29, 33, 34], searching [13–16, 18, 20, 28, 35], and security [22, 26]. Many of these

approaches are based on trajectory data provided by moving objects; however, the amount of data increases



dramatically over time, leading to storage, transmission, and computation problems. Consequently, an

effective trajectory data compression solution that can improve the scalability of moving object databases

is highly desirable.

In this study, we propose a novel algorithm, called Inter-Frame Coding (IFC), for trajectory compression.

The IFC scheme exploits the spatial and temporal localities between contiguous data points on a trajectory,

and compresses data by reducing the amount of redundant information in the raw spatial-temporal data

points. Unlike existing approaches [17, 25, 31], the proposed scheme is simple and lossless; and it can

support data calculation and database queries directly using the compressed database. Thus, IFC has the

potential to facilitate large-scale storage, compression, and computation of trajectory data.

Using trajectory datasets collected by the two real-world systems, namely the Taipei eBus system [6]

and the Microsoft GeoLife Project [1], we evaluate the proposed scheme in terms of the data compression

ratio and the execution time for range queries and k-nearest neighbor searches. Based on the results, we

draw the following conclusions.

1) The IFC scheme achieves a high compression rate in large-scale databases. In our evaluations, the

IFC scheme achieved compression ratios of 49% and 58% on the TPE eBus and Microsoft GeoLife

datasets respectively.

2) The scheme can reduce the computational complexity of range queries by a factor of 0.28 in the TPE

scenario and 0.45 in the GeoLife scenario. Moreover, the performance gain is consistent regardless

of the query range, as long as the database is sufficiently large.

3) Although the computational complexity of the IFC scheme is greater than that of the non-IFC ap-

proach for k-nearest neighbor searches, its execution time is still moderate and affordable. Moreover,

the execution time is consistent regardless of the k value.

4) The IFC scheme is simple and ready for immediate real-world deployment. In addition, it can be

implemented easily in conjunction with unequal erasure protection and data prioritization schemes

for operations in lossy or resource-constrained environments.

The remainder of this paper is organized as follows. In Section II, we present the IFC algorithm and an

analysis of the proposed scheme. In Section III, we describe the IFC-based implementation of two popular

database queries, namely range queries and k-nearest neighbor searches. We provide a comprehensive set

of evaluation results based on realistic trajectory datasets in Section IV, and discuss several issues related to



TABLE I
EXAMPLES OF MOBILE OBJECTS

Mobility Speed (km/hr) Movement (5 sec) Movement (1 min)
Airplane 800 1,111.11 m 13,333.33 m

Car 100 138.89 m 1,666.67 m
Bus 60 83.33 m 1,000.00 m

Pedestrian 5 6.94 m 83.33 m

Fig. 1. An illustration of I frames and O frames in the IFC scheme.

the proposed scheme in Section V. In Section VI, we review related works on trajectory data management.

We then summarize our conclusions in Section VII.

II. INTER-FRAME CODING

A. The IFC Algorithm

The rationale for this study is based on the observation that spatial and temporal localities are common in

a trajectory, and the spatial and temporal offsets between any two contiguous data points in a trajectory are

limited to the object’s mobility and the trajectory’s sampling rate, as shown in Table I. Thus, we propose

a novel trajectory compression algorithm, called Inter-Frame Coding (IFC), to exploit the spatial and

temporal localities of contiguous spatial-temporal data points, thereby reducing the amount of redundant

information in the raw trajectory data.

As shown in Figure 1, there are two types of data points in the IFC scheme: I frames, which contain

the index data points of a trajectory; and O frames, which contain the offsets of the subsequent data points

that correspond to the I frames. Let Iu
i denote the i-th I frame that represents the v-th spatial-temporal

data point of the u-th trajectory (i.e., T u
v ); and let Ou

i,j denote the j-th O frame associated with Iu
i , i.e.,

the offset of T u
v+j to T u

v .

Specifically, Iu
i = (sn, u, lngu

i , latui , t
u
i ), where sn is the sequence number of Iu

i ; u is the trajectory



Fig. 2. The inverted right circular cones of Iu
i−1, Iu

i , and Iu
i+1 in the projected 3D spatial-temporal space. (n = 3)

identifier; and lngi, lati, and ti are the longitude, latitude, and timestamp of T u
v respectively. Meanwhile,

Ou
i,j = (i sn, lngOffu

i,j , latOffu
i,j, tOffu

i,j), where i sn is the sequence number of the I frame that Ou
i,j

is associated with (i.e., i sn = Iu
i .sn); and lngOffu

i,j , latOffu
i,j , and tOffu

i,j represent, respectively, the

longitude, latitude, and time offsets of T u
v+j to T u

v .

Generally, an I frame is associated with n O frames. The value of n is a system parameter tunable based

on several factors, such as the sampling rate of the trajectory data, the speed of the moving object, and

the data compression ratio required for the application (which we discuss in detail in the next subsection).

However, when the offset values exceed the range allowed in an O frame1, a new I frame must be created,

even though the number of O frames associated with the former I frame is less than n.

We project trajectory data points in a 3D spatial-temporal space, where the x, y, and z axes represent the

longitude, latitude, and time respectively. The maximum possible space of O-frame data points associated

with Iu
i form an inverted right circular cone Υu

i , which is rooted at Iu
i with a height Υu

i .h equal to the

maximum temporal offset and a radius Υu
i .r equal to the maximum spatial offset to Iu

i . Moreover, we

know that, Υu
i .r = Vmax × Υu

i .h, where Vmax is the maximum speed of a moving object in the database.

Figure 2 shows three contiguous I frames and their associated O frames (n = 3) in the projected 3D

spatial-temporal space.

1For instance, the offset values may exceed the range allowed in an O frame if, in the data stream, a long period containing data points
is missed due to transmission errors or GPS errors.



TABLE II
AN EXAMPLE OF A TRAJECTORY’S RAW SPATIAL-TEMPORAL DATA (u = 1)

sn u lng lat t
1 1 121.493710 25.048517 2010/4/26 20:55
2 1 121.493463 25.048624 2010/4/26 20:56
3 1 121.493334 25.048689 2010/4/26 20:57
4 1 121.493222 25.048785 2010/4/26 20:58
5 1 121.493098 25.048715 2010/4/26 20:59
6 1 121.492926 25.048898 2010/4/26 21:00
7 1 121.153431 23.042658 2010/4/27 13:23
8 1 121.153476 25.042723 2010/4/27 13:24
9 1 121.153546 25.042754 2010/4/27 13:25
10 1 121.153721 25.042818 2010/4/27 13:27

TABLE III
THE I FRAMES OF THE TRAJECTORY SHOWN IN TABLE II

sn u lng lat t
1 1 121.493710 25.048517 2010/4/26 20:55
2 1 121.493098 25.048715 2010/4/26 20:59
3 1 121.153431 23.042658 2010/4/27 13:23

TABLE IV
THE O FRAMES OF THE TRAJECTORY SHOWN IN TABLE II

i sn lngOff latOff tOff
1 -25 11 1
1 -38 17 2
1 -49 27 3
2 -17 18 1
3 4 7 1
3 11 10 2
3 29 16 4

Table II shows an example of ten contiguous spatial-temporal data points contributed by a random

user’s GPS logger. Given the IFC configuration n = 3, the ten data points are IFC encoded into three I

frames and seven O frames, as shown in Tables III and IV respectively. More precisely, in this example,

the second I frame is created because n O frames have been created for the first I frame; and the third I

frame is created because the longitude and latitude offsets between the 7th data point and the second I

frame (i.e., the 5th data point) exceed the maximum offset value allowed for an O frame.

B. Performance Analysis

In this subsection, we use analysis to examine the intrinsic properties of the proposed IFC scheme.

We assume that 1) the maximum possible speed of a moving object along lines of latitude and lines of



longitude is Vmax meters per second; 2) the trajectory data is collected at a rate of s data points per

second; 3) the maximum value of the latitude and the longitude offsets is Max dist offset; and 4) the

maximum value of the time offset is Max time offset. We know that

Vmax ×
n

s
≤ Max dist offset , and (1)

n

s
≤ Max time offset. (2)

Therefore, we can obtain the upper bound of n by Equation 3. We also know that the maximum

possible value of n is 29 for airplane trajectories (i.e., Vmax = 800 km/hr) and 393 for bus trajectories

(i.e., Vmax = 60 km/hr), when s = 0.2 (i.e., one data point every 5 seconds). However, when s = 1/60

(i.e., one data point every minute), the maximum possible value of n is 2 for airplane trajectories and 33

for bus trajectories.

n ≤ Min

(
Max dist offset × s

Vmax

,Max time offset × s

)
. (3)

In addition, we define the compression ratio Ψ as the ratio of the data size using the IFC scheme over

the data size without using the scheme, i.e., in the raw data format. Since the size of an I frame is Size I ,

the size of an O frame is Size O, and each I frame is associated with n O frames at most, we can obtain

the value of Ψ by

Ψ = Size I+n×Size O
Size I×(n+1)

= Size O
Size I

+ Size I−Size O
Size I×(n+1)

.
(4)

Thus, the higher the value of n, the smaller will be the compression ratio Ψ achieved. The ‘best’

compression ratio is Size O
Size I

, which can be achieved when n approaches infinity. However, even though a

large n can yield a high compression ratio, which is desirable, we find that a very large n value is infeasible

in the IFC scheme. There are two reasons for this phenomenon. First, when n is very large, O frames

are used to store most spatial-temporal data points. This is computationally expensive for spatial-temporal

applications because (i) each data query in the application layer involves two separate database queries;

and (ii), restoring the O frames to the raw data format requires a tremendous amount of computation.



Moreover, if n is very large, the loss of a single I frame may result in contiguous data losses of the

original data points, as I frames are crucial for restoring the original data points of O frames.

The second reason is that, the larger the value of n, the greater the likelihood that an I frame will have

less than n O frames in the database. In other words, when n is large, the subsequent n points of an

I frame are more likely to have oversized offset values that can not be represented by O frames. As a

result, a new I frame will be created, even though the number of O frames associated with the former I

frame is less than n. Hence, the IFC scheme cannot achieve the theoretical compression ratio when n is

large.

In addition to satisfying the constraint in Equation 3, we suggest that, to be efficient, the value of n in

the IFC scheme should not be larger than 10. At this value, the scheme can achieve a good compression

ratio for storage efficiency, and it is computationally efficient. We discuss these aspects in detail in the

evaluation section.

III. IFC-BASED DATABASE QUERIES

In this section, we describe the processing of two classical spatial queries, namely range queries (RQ)

and k-nearest neighbor (kNN ) searches over the proposed IFC scheme. Let Rs be the reference location;

Rt be the reference time; and the longitude and the latitude of Rs be Rs.lng and Rs.lat respectively.

A. Range Queries

We define a range query RQ(Bs,Bt,Rt,Rs) in DEFINITION 1, where Bs and Bt determine, respectively,

the spatial and temporal area specified in the query.

Definition 1: The query RQ(Bs,Bt,Rt,Rs) seeks to find all distinct trajectories crossing the square area

that is within Bs distance (along the lines of latitude or longitude) of the reference location Rs in the Bt

time units prior to the reference time Rt.

Specifically, when projecting trajectory data points in a 3D spatial-temporal space, the query range

space forms a 2Bs × 2Bs ×Bt square cuboid centered at the reference location Rs and the time Rt − Bt

2
,

as shown in Figure 3. There are two cases where the u-th trajectory meets the criteria of the range query:

Case 1:There exists an I frame within Bs distance (along the lines of latitude or longitude) of Rs no

more than Bt time units before Rt.



Fig. 3. The projected square cuboid of the range query RQ(Bs,Bt,Rt,Rs) in the 3D spatial-temporal space, and its cross-section in the
2D latitude-time space.

Case 2:There exists an I frame that is not within the query range, but it has at least one O-frame data

point within the range.

The first case can be processed in the same way as the conventional method (i.e., without the IFC

scheme), and the u-th trajectory meets the criteria of the range query if there exists an i such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rs.lng − Bs ≤ lngu
i ≤ Rs.lng + Bs;

Rs.lat − Bs ≤ latui ≤ Rs.lat + Bs; and

Rt − Bt ≤ tui ≤ Rt.

(5)

However, in the second case, it may be necessary to examine all I frames that are not within the query

range, as well as their associated O frames. This is computationally expensive and unaffordable when the

database is very large. To resolve this problem, we propose a simple algorithm that can identify the set of

candidate I frames that may have O frames within the query range, thereby avoiding extensive lookups of

all I frames in the databases. Using the projected 3D spatial-temporal space, we regard the i-th I frame

of the u-th trajectory Iu
i as a candidate I frame if and only if there is an intersection between Υu

i and the

query range space; that is, if Iu
i satisfies the criteria of either Equation 6 or Equation 7.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Rs.lng − Bs − Υu
i .r ≤ lngu

i ≤ Rs.lng + Bs + Υu
i .r;

Rs.lat − Bs − Υu
i .r ≤ latui ≤ Rs.lat + Bs + Υu

i .r; and

Rt − Bt − Υu
i .h ≤ tui < Rt − Bt.

(6)



⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Bs < |lngu
i − Rs.lng| ≤ Bs + Υu

i .r;

Bs < |latui − Rs.lat| ≤ Bs + Υu
i .r; and

Rt − Bt ≤ tui < Rt.

(7)

B. k-Nearest Neighbor Searches

We formally define the k-nearest neighbor search kNN(k,Rs,Rt) in DEFINITION 2.

Definition 2: kNN(k,Rs,Rt) is a database lookup that finds the top k spatial nearest objects to the

reference location Rs at the reference time Rt.

Answering the query kNN(k,Rs,Rt) involves three steps: 1) find the location of each moving object

(i.e., the trajectory) at time Rt; 2) calculate the distance between Rs and the object’s location at time Rt;

and 3) sort the distances in ascending order and take the corresponding objects of the first k distance as

the result. Let L(u,Rt) denote the location of the object’s u-th trajectory at time Rt. There are two cases

related to obtaining L(u,Rt).

Case 1:There exists a j such that the timestamp of the i-th I frame of the u-th trajectory is exactly equal

to Rt (i.e., tui = Rt). In this case, L(u,Rt) = (lngu
i , latui ).

Case 2:If the u-th trajectory does not have any I frames with timestamp values equal to Rt, we find

the two adjacent I frames that have the largest timestamp values prior to Rt. Suppose the two I

frames are Iu
i−1 and Iu

i ; then we can calculate L(u,Rt) in the following three subcases2.

Case 2.a:If two or more O frames are associated with Iu
i (say the last two O frames are Ou

i,j−1

and Ou
i,j), we obtain the location L(u,Rt) by

L(u,Rt) = (lngu
i + (Rt − tui − tOffu

i,j)×
lngOffu

i,j−lngOffu
i,j−1

tOffu
i,j−tOffu

i,j−1
,

latui + (Rt − tui − tOffu
i,j)×

latOffu
i,j−latOffu

i,j−1
tOffu

i,j−tOffu
i,j−1

).

(8)

Case 2.b:If only one O frame is associated with Ij , we obtain the location L(u,Rt) by

L(u,Rt) = (lngu
i + lngOffu

i,1(Rt−tu
i −tOffu

i,1)

tOffu
i,1

,

latui + latOffu
i,1(Rt−tu

i −tOffu
i,1)

tOffu
i,1

).
(9)

2The location L(u, Rt) can be obtained by either interpolation or extrapolation. However, for simplicity, we only consider the interpolation
approach in this study.



Case 2.c:If no O frames are associated with Iu
i , we let Ou

i−1,j denote the last O frame associated

with Iu
i−1; then, we can calculate L(u,Rt) by

L(u,Rt) = (lngu
i + (Rt − tui )×

lngu
i −(lngu

i−1+lngOffu
i−1,j)

tu
i −(tu

i−1+tOffu
i−1,j)

,

latui + (Rt − tui )×
latu

i −(latu
i−1+latOffu

i−1,j)

tu
i −(tu

i−1+tOffu
i−1,j)

).

(10)

If no O frames are associated with Iu
i−1, we obtain L(u,Rt) by

L(u,Rt) = (lngu
i + (lngu

i −lngu
i−1)(Rt−tu

i )

tu
i −tu

i−1
,

latui + (latu
i −latu

i−1)(Rt−tu
i )

tu
i −tu

i−1
).

(11)

After obtaining the location of each moving object at time Rt, we calculate the Euclidean distance

between L(u,Rt) and Rs for all trajectories in the database. Then, kNN(k,Rs,Rt) reports the k trajectories

that have the smallest distance to Rs at time Rt.

IV. EVALUATION

Next, we evaluate the proposed scheme in terms of the data compression ratio and the scheme’s ability

to support database queries (i.e., range queries and k-nearest neighbor searches). Using the open-source

PostgreSQL database (version 8.4.4) [4] and the PostGIS spatial database extension (version 1.5.1) [3],

we implement the two GIS applications in the form of stored procedures. We then measure the execution

time of the database queries using the EXPLAIN command [5] on a BSD machine, which has two Intel

Xeon 2.0 GHz CPUs, a 16GB RAM, and the FreeBSD 8.0 OS.

For I frame data in the IFC scheme, we store the location information (lng and lat) using the Point

data type (16 bytes), the time information (t) using the Timestamp data type (8 bytes), and the sequence

number (sn) and the trajectory identifier (u) using the Integer data type (4 bytes). For O frames, we store

the I frame sequence number (i sn) using the Integer data type; and the longitude, latitude, and time

offsets lngOff , latOff , and tOff ) all use the Short Integer data type (2 bytes). Therefore, the size of

an I frame (Size I) is 32 bytes, and the size of an O frame (Size O) is 10 bytes. Note that the distance

offsets (i.e., lngOff and latOff ) are measured in meters3, and the time offset (i.e., tOff ) is measured

3For simplicity, we approximate the distance between two data points along lines of latitude and lines of longitude by one meter every
10−5 degree, which is valid at sea level on the Equator.



TABLE V
THE BASIC PROPERTIES OF THE TWO DATASETS USED IN THIS STUDY

TPE GeoLife
Data source Taipei e-bus System GeoLife Project, Microsoft Research Asia

Duration 22 days (2010/04/01 - 2010/04/23) 1,129 days (2007/04/13 - 2010/05/15)
Coverage greater Taipei area, Taiwan mostly in Beijing, China

# of distinct moving objects 4,028 104
trajectory types bus bus, car, bike, and walk

avg # of trajectories per day 3,865 12
avg # of data points per day 3,235,460 24,020

avg # of data points per trajectory per day 836 1.517
data resolution about 1 minute about 5 seconds

in seconds. In addition, we use B-tree and Generalized Search Tree (GiST) [2] to index the temporal and

spatial data in this study. We present the evaluation results in the following subsections.

A. Dataset

As mentioned earlier, we evaluate the proposed scheme using two real-world trajectory datasets, namely

the Taipei eBus Dataset (TPE) [6] and the GeoLife Dataset (GeoLife) [1]. Table V summarizes the basic

properties of the two datasets.

The TPE dataset was provided by the Taipei e-bus system, which was deployed by the Taipei City

Government in 2004. In the system, each participating bus has an on-board unit (OBU), which is a thin-

client with a GPS receiver and a GPRS interface. The OBU transmits the bus’s information (the bus

identifier, GPS location, and status codes) to the network control center (NCC) via the GPRS connection

periodically (every 15 ∼ 25 seconds). In 2010, the e-bus deployment involved 4,028 buses covering 287

routes and 15 operating agencies. The system covers nearly the entire greater Taipei area (i.e., Taipei city,

Taipei county, and Keelung City), and there are more than 180 million passenger-trips every day. Starting

on 04/01/2010, we used the system’s API to download real-time bus data every minute for a period of

22 days. On average, there were 3,865 trajectories and 3,235,460 data points each day.

The GeoLife dataset is provided by the GeoLife project of Microsoft Research Asia [37, 38]. It was

compiled from data collected by volunteers using different GPS loggers and GPS-phones. As a result,

it is very diverse in terms of the sampling rate (ranging from 2 to 5 seconds per point), mobility type

(including driving, walking, hiking, and cycling), and demography. Although the dataset spans over 30

cities in China, the USA, and Europe, most of the data relates to the Beijing area. The collection period

was approximately three years (from April 13, 2007 to May 15, 2010), and involved 104 distinct moving
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objects.

In Figure 4, we compare the theoretical compression ratio (cf. Equation 4) and the ratio achieved

in the TPE and GeoLife scenarios with different n values under the IFC scheme. We observe that the

GeoLife curve is consistently higher than the other two curves, and the TPE curve and the theoretical

compression ratio curve are overlapped completely. The reason is that the GeoLife dataset is comprised

of a large number of short trajectories contributed by volunteers on a daily basis, while the TPE dataset

contains a set of uninterrupted trajectories contributed by the Taipei e-buses on a day-and-night basis.

Consequently, the GeoLife dataset has a higher percentage of I frames that have less than n O frames

due to the truncation of the trajectory data collection, resulting in a higher compression ratio than the

theoretical value. By contrast, in the TPE dataset, most of the I frames have complete n frames, and only

a limited number of I frames have less than n O frames due to the truncation of the data collection.

Therefore, the TPE dataset can achieve a comparable compression ratio to the theoretical ratio.

Figure 5 compares the storage required, in terms of the byte size and the compression ratio, before and

after applying the IFC scheme (n = 5) with different lengths of the TPE and GeoLife datasets. We observe

that the proposed scheme can achieve a compression ratio of approximately 49.5% in all test cases, which

represents a 50.5% storage saving. The compression ratio is slightly higher than the theoretical value (i.e.,

48.81%) because it is inevitable that some I frames have fewer than n O frames in the compressed dataset.
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Fig. 5. Comparison of the size of the two datasets (for different time periods) with and without the IFC scheme (n = 5).

For instance, the number of data points in a trajectory may not be a multiple of (n + 1), so there will be

fewer O frames for the last I frame. Moreover, most trajectories are related to urban areas, which have

poor GPS reception due to buildings and other obstacles; therefore, an I frame may not have exactly n O

frames if one data point floats away from the maximum offset value allowed for an O frame. Since the I

frame is larger than the O frame, the compression ratio becomes larger if some I frames do not have n

O frames in the dataset.



B. Range Queries

We evaluate the proposed IFC scheme to support range queries. For simplicity, we set Rt as the

timestamp of the latest data point of the dataset. In addition, we set Rs as the center of one of the 100

predefined cells (which we explain below) for each dataset used in the evaluation. All the results are

based on the average performance using the 100 different Rs.

For the TPE dataset, we use the map of central Taipei (north to Taipei SongShan Airport, east to Taipei

City Hall, south to National Taiwan University of Technology, and west to Taipei Main Station). The area

covers approximately 30 sq. km (6 km from east to west, and 5 km from south to north), and we divide

it into a 10 × 10 equal-sized cells. Similarly, for the GeoLife dataset, we use the map of Beijing (north

to Shang Qing Qiao Qu, east to Yuan Tong Qiao, south to Nan Zhong Zhou Lu, and west to Ya Men

Kou Qiao). The area covers approximately 812 sq. km (28 km from east to west, and 29 km from south

to north), and we divide it into a 10 × 10 equal-sized cells.

First, we evaluate the impact of the dataset’s size on the evaluation time of range queries when the

values of Bs and Bt are fixed at 1 km and 5 minutes respectively. From the results shown in Figure 6, we

observe that the execution time ratio, i.e., the execution time when the scalable data scheme is applied

over that when the original data format is used, decreases as the time period covered by the dataset

increases. Specifically, the ratio is less than 1 when the time period of the TPE dataset is more than 2

days, and it is consistently less than 1 in the GeoLife case. Moreover, the ratio tends to converge to the

values of 0.28 and 0.45 in the TPE and GeoLife datasets respectively, i.e. the execution time of range

query operations is reduced by more than 50%. The results demonstrate that the proposed data scheme

can support range queries more efficiently than the conventional approach, as long as the dataset is large

enough. Fortunately, this is not a problem for durable applications in reality.

Next, using the TPE and GeoLife datasets, we apply the scalable data format with the Bt value fixed

at 5 minutes, and evaluate its execution time ratio using different-sized datasets and various Bs values.

The results shown in Figure 7 confirm our previous findings that the larger the dataset, the greater will

be the reduction in the execution time (i.e., a lower execution time ratio is achieved). In addition, the

results show that, overall, the execution time ratio tends to increase with the value of Bs; however, the

curves drop after Bs becomes larger than a certain value when the dataset size is less than 1 day in

the TPE scenario. The reason is that, as Bs increases, the query must examine a larger number of data
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Fig. 6. Comparison of the execution times of range query operations (Bs = 1 km and Bt = 5 minutes) using different-sized datasets with
and without the IFC scheme.

points, which involves an increased number of I frame and O frame lookups, resulting in a higher time

complexity. However, after Bs becomes larger than a certain threshold, the number of data points involved

in the query is considerable, given the size of the dataset. As a consequence, the time complexity of the

range query is reduced because of the B-tree index used for the data points. Note that the threshold value

depends on the dataset’s size; in general, the larger the dataset, the greater will be the threshold value.

In addition, we fix the Bs value at 1 km, and evaluate the proposed scheme with different Bt values

using the TPE and GeoLife datasets. Again, the results in Figure 7 confirm our previous findings that,
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Fig. 7. Comparison of the execution times of range query operations (Bt = 5 minutes) with different-sized datasets and Bs values in the
logarithmic scale under the IFC scheme.

for both datasets, the execution time ratio improves with the dataset size, regardless of the value of Bt.

Moreover, the execution time ratio is stable under different Bt values in the GeoLife case. However, in

the TPE dataset, the ratio increases with the Bt values, except that the curve of the 1-hour TPE dataset

drops initially and than remains stable when the value of Bt increases. The reason is that the query must

examine a larger number of data points as the value of Bt increases, which involves a greater number of

data lookups for both I frames and O frames, resulting in higher time complexity. Meanwhile, when the

1-hour TPE dataset is used, the number of data points involved in the query is considerable, given the
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Fig. 8. Comparison of the execution times of range query operations (Bs = 1 km) with different-sized datasets and Bt values under the
IFC scheme.

size of the dataset; thus, the time complexity of the range query declines because of the GiST index used

for the data points.

C. k-Nearest Neighbor Searches

We also evaluate the proposed scheme’s ability to support k-nearest neighbor (kNN) searches. Similar

to the previous evaluation, we set Rt as the timestamp of the latest data point in the dataset, and set Rs

as the center of one of the 100 predefined cells for both TPE and GeoLife datasets. All the results are
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Fig. 9. Comparison of the execution times of k-NN searches with different k values under the IFC scheme.

based on the average performance using the 100 different Rs.

From the results shown in Figure 9, we observe that the execution time of kNN searches is consistent

regardless of the value of k. The results also show that the larger dataset used, the longer will be the

execution time. The reason is quite straightforward: as the search space increases with the size of the

dataset, it takes longer to perform kNN searches.

Moreover, the results in Figure 10 demonstrate that the IFC scheme requires a consistently longer

execution time than the original scheme (i.e., using raw data format). The execution time ratio is about
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Fig. 10. Comparison of the execution times of k-NN searches with and without the proposed IFC scheme when k = 5 under different-sized
TPE and GeoLife datasets.

1.5 in all test cases. The reason is that, when performing kNN searches, the IFC scheme has to restore

the latest data point by doing two database lookups (i.e., one for the latest I frame, and the other for

the last O frame associated with the latest I frame). In contrast, the non-IFC scheme can retrieve the

latest data point by only doing lookups on the raw dataset. Even so, we note that the execution time of

kNN searches is still affordable under the IFC scheme. For instance, the results in Figure 10 show that

the execution time is less than 3 seconds under the TPE dataset and less than 60 milliseconds under the

GeoLife dataset.



V. DISCUSSION

In this section, we consider a number of issues related to the proposed IFC scheme that require further

investigation.

First, the performance of an IFC-based moving object database depends to a great extent on the

maximum number of O frames that can be associated with an I frame (i.e., the n value). However,

rather than adopt a ‘one-size-fits-all’ solution (i.e., apply a fixed n value to all trajectories), it is desirable

to adapt the value of n in accordance with the mobility (i.e., Vmax) and the sampling rate (i.e., s) of

a trajectory, especially when there is heterogeneity among the trajectories in the database. Similarly, to

improve the computational efficiency of range queries, it is desirable to have tighter settings for the height

and the radius of the inverted right circular cone (i.e., Υh
i and Υr

i for Υi, which represents the maximum

possible space for O-frame data points associated with the i-th I frame in the projected 3D spatial-temporal

space). We defer a detailed discussion of this issue to a future work.

Second, the proposed IFC scheme only has two layers (i.e., the I frame layer and the O frame layer);

however, the concept can be extended to support multiple layered coding, which would be beneficial in

scalable GIS-based services, i.e., GIS applications that require different resolutions. For instance, when

plotting trajectories on a map, the IFC-enabled scheme only requires lookups of I frames when the scale

of the map is several kilometers, but it requires lookups of both I frames and O frames when the scale

of the map is several meters. Due to the space limitation of the paper, we do not discuss this aspect in

detail.

Finally, the IFC scheme can be implemented in conjunction with unequal erasure protection (UEP)

[10], which provides different levels of erasure protection to the layered trajectory data, depending on

its essentiality, by adding various amounts of redundancy. In the IFC scheme, since O frames cannot be

interpreted without I frames, I frames are more important and should be given more protection/redundancy.

The IFC scheme can also be implemented in conjunction with data prioritization [21, 23] to give priority

to I frames when sending trajectory data in lossy or low-bandwidth networks. Again, we defer a detailed

discussion of this issue to a future work.



VI. RELATED WORK

A Trajectory Database (TD) is a moving object database in which a number of moving objects change

their locations over time [32]. The field of trajectory data management has been studied extensively in

the last ten years. For instance, a substantial amount of research effort has been invested in the indexing

of moving object databases [8, 19, 24], and several data structures, such as r*-tree [7], TPR-tree [30],

and SETI [9], have been proposed to facilitate the indexing of spatial-temporal data.

Using moving object databases, a number of approaches have been proposed to improve the handling

of basic database queries of historical data (a.k.a. instantaneous queries) [27, 29] and trajectory prediction

(a.k.a. continuous queries) [11, 33, 34]. In addition, several advanced functions have been developed to

support moving object databases in emerging location-based service (LBS) and geographic information

system (GIS) applications, such as similarity search [16, 20, 28, 35] and nearest neighbor search [13–

15, 18]. Nergiz [26] and Jin [22] also studied the security and privacy issues related to trajectory-based

moving object databases.

Meanwhile, several trajectory compression algorithms have been proposed to improve the scalability of

moving object databases by exploiting the spatial and temporal localities in trajectory data [17, 25, 31]. For

instance, Meratnia et al. proposed the time ratio algorithm [25], which discards a data point on a trajectory,

as long as that data point can be interpolated/extrapolated by any two adjacent data points on the trajectory

within an error threshold. Gudmundsson et al. [17] proposed a fast implementation of the well-known

Douglas-Peucker line simplification algorithm [12] that can reduce the computational complexity from

O(n2) to O(nlogkn). Finally, Schmid et al. [31] proposed semantic trajectory compression (STC), which

achieves its compression rate by replacing raw spatial-temporal data points with a semantic representation

of the trajectory comprised of a sequence of events. However, the main drawback of these approaches is

that they achieve trajectory compression by means of a lossy compression approach. Thus, information

loss is inevitable, and applications built on top of the approaches are dependent on the accuracy of the

compressed trajectory data.

VII. CONCLUSION

In this paper, we propose the Inter-Frame Coding algorithm (IFC) for lossless compression of trajectory

data. We have also implemented two database queries, i.e., the range query and the k-nearest neighbor



search, based on the proposed scheme. Using realistic datasets compiled by two real-world systems, we

evaluated the proposed IFC scheme and verified that it can achieve a compression ratio of 58%. The results

also demonstrate that the IFC scheme can effectively reduce the execution time of range queries; and it

only requires a moderate execution time for k-nearest neighbor searches. The scheme is simple, lossless,

efficient, and extensible with advance features (e.g., unequal erasure protection and data prioritization).

Thus, we believe that it could facilitate the development of trajectory databases and future location-aware

services.
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