

TR-IIS-10-008

 A Model and Simulation Environment
for Symbiotic Automation and
Assistive Devices

 P. H. Tsai, C. H. Chen, C. W. Yu, C.S. Shih
and J. W. S. Liu

Oct. 26, 2010 || Technical Report No. TR-IIS-10-008

http://www.iis.sinica.edu.tw/page/library/TechReport/tr2010/tr10.html

 1

Institute of Information Science, Academia Sinica

Technical Report TR-IIS-10-008

A Model and Simulation Environment for Symbiotic

Automation and Assistive Devices

T. Y. Chen, P. H. Tsai, C. H. Chen, C. W. Yu, C.S. Shih and J. W. S. Liu

Abstract

This paper describes the UCAADS simulation environment and the underlying UCAADS model

that have been developed for the purpose of evaluating the correctness and performance of

UCAADS and user-device interactions. The acronym UCAADS stands for user-centric

automation and assistive devices/systems and services. Examples of UCAADS are medication

dispenser, smart pantry, robotic housekeeping aids, and mobility assistants. UCAADS model

combines two types of modeling elements: workflow model and GOMS model. The behavior

specification of a symbiotic system of device and its user(s) as a whole consists of specifications

of device operations, user actions and user-device interactions. They are defined in terms of

workflows and are executable. The incorporation of GOMS model with workflows enables us to

account for different behavior and skill levels of different users in the estimation of execution

times of their actions. As case studies, we modeled and simulated parts of three UCAADS: smart

medication dispenser for home use, smart storage pantry and multi-user medication station.

These devices require their users to carry out mission-critical operations. Our simulation

experimentations and the results demonstrate that the UCAADS model and USE are effective in

helping us discover and fix design and implementation errors that allow incorrect user-device

interactions, in addition to assessing the responsiveness of devices.

T. Y. Chen, C. H. Chen and C. W. Yu, Department of Computer Science, National Tsing Hua University, Hsinchu,

Taiwan. Their email addresses are yen@iis.sinica.edu.tw, rustic308@gmail.com and cwyu.cs@gmail.com; C. S.

Shih, Department of Computer Science and Information Engineering, National Taiwan University, Taiwan. Email:

cshih@csie.ntu.edu.tw; P. H. Tsai and J. W. S. Liu are affiliated with Institute of Information Science, Academia

Sinica, Nankang, Taipei, Taiwan. Email: peipei@iis.sinica.edu.tw, janeliu@iis.sinica.edu.tw

 2

Table of Contents

ABSTRACT……………………………………………………………………………………...1

1 INTRODUCTION……………………………..…………………………………....................4

2 RELATED WORKS…………………………………………………………………………...6

 2.1 WORKFLOW TECHNOLOGY………………………………………………………...6

 2.2 GOMS MODEL AND TOOLS…………………………………………………………..7

 2.3 PROTOTYPING AND SIMULATION TOOLS………………………………………...8

3 EXAMPLES OF UCAADS……………………………………………………………………9

 3.1 SMART MEDICATION DISPENSER…………………………………………………..9

 3.2 SMART STORAGE PANTRY…………………………………………………………12

 3.3 MULTI-USER MEDICATION STATION……………………………………………..12

4 UCAADS MODEL……………………………………………………………………………15

 4.1 WORKFLOW ELEMENTS OF UCAADS MODEL………………………………….15

 4.2 GOMS ELEMENTS OF UCAADS MODEL………………………………………….18

5 UCAADS SIMULATION ENVIRONMENT……………………………………………….21

 5.1 LOCAL SERVICE AND WORKFLOW COMMUNICATION………………………..21

 5.2 LIBRARIES…………………………………………………………………………….22

 5.3 PRIORITES QUEUES, EVALUATION TOOL AND DATA COLLECTOR………….24

 5.4 DEVELOPMENT PROCESS OF UCAADS…………………………………………..26

6 CASE STUDIES………………………………………………………………………………27

 6.1 SIMULATION OF SMART MEDICATION DISPENSER……………………………27

 6.2 SIMULATION OF SMART STORAGE PANTRY…………………………………….29

 3

 6.3 SIMULATION OF MULTI-USER MEDICATION STATION………………………...31

7 SUMMARY AND FUTURE WORKS………………………………………………………33

8 ACKNOWLEDGEMENTS………………………………………………………………….34

9 REFERENCES……………………………………………………………………………….34

 4

1 Introduction

In the coming decades, we are likely to witness accelerated growth in diversity and use of

user-centric automation and assistive devices/systems and services (UCAADS). Some UCAADS

are home automation and assistive devices and services targeted for users who are elderly or

have functional limitations. Such devices intend to improve the quality of life of their users,

enable the users to live independently longer, make the user’s physical therapy regiment more

effective, and so on. Examples are smart storage pantry, object locator, and smart medication

dispenser [1-5], and robotic housekeeping aids and mobility assistants [6-14]. Other UCAADS

include automation tools and equipment for care-providing institutions. Examples are systems

and devices that assist care providers in medication dispensing and administration and automate

these stages of the medication use process to the desired extent (e.g. [15, 16]).

Despite the vast differences in the functionalities and appearances of UCAADS, these

devices share many commonalities. First and foremost is that they are user-centric. According to

the classification proposed in [17], user-centric devices/systems are for discretionary use, versus

mandatory use of machine-centric devices (such as autopilot and precision machinery).

User-centric devices/systems must be easy to use, configure, customize and maintain. A

user-centric device should be safe, meaning that the device never does any harm even when

misused and erroneous operations are recoverable. Making user-centric devices safe as well as

flexible (i.e., configurable and customizable) is particularly challenging because the majority of

devices/systems exemplified by the ones listed above are semi-automatic. Some of them require

their users to carry out critical operations. Being for discretionary use, it is impractical to require

more than minimal user training, if any training at all. At the same time, the skills of users may

vary widely across user population, and the skill of each individual user may change over time.

This paper presents the UCAADS model and UCAADS simulation environment (USE). USE

is designed to help developers assess the usability and flexibility of new or modified devices and

 5

the degree to which the devices are safe. In particular, USE aims to help developers identify and

fix design and implementation errors that can cause the device to malfunction or allow unsafe

user-device interactions with harmful consequences.

The inputs to USE for the purpose of simulating or emulating a device and its interactions

with the user(s) are based on the UCAADS model. The model incorporates two types of

elements: workflows [18] and GOMS models [19]. It captures the behavior of a device being

evaluated in terms of one or more workflows, called device workflows. User actions (operations)

are captured by user workflows. We refer to the device and user workflows of a device

collectively as an operational specification of the device. As it will become evident in later

sections, operational specifications defined by workflows are expressive and easy to understand.

The UCAADS model also incorporates elements of GOMS and MHP (model human processor)

[20] as building blocks of user workflows and thus enables the developers to model user actions

more precisely. By using workflows to define human operators (i.e., perceptual, cognitive, and

motor operators), they also can be executed during simulation for the purpose of estimating

execution times of user actions for different users.

In USE, a workflow can be defined in terms of either the languages that are supported by

Microsoft workflow foundation [21] (e.g., C# and BPEL [22]) or SISARL-XPDL [23] that

extends the WfMC (Workflow Management Coalition) [24] standard XPDL (XML Process

Definition Language) [25] with elements needed for embedded and robotic applications. USE

uses workflow engines [21, 23] (i.e., a middleware) for execution of workflows. For the case

studies described in this paper, USE ran on top of Microsoft workflow foundation (WF), and

operation specifications were executed by the WF workflow engine. When the workflow-based

implementation of UCAADS device in term of workflows written in SISARL-XPDL becomes

available, USE provides a compiler for translate workflow definitions into executable scripts and

executes the scripts on EMWF (Embedded Workflow Framework) [23].

 6

In addition to supporting the execution of the device workflows and user workflows in the

operational specification of a device being evaluated, USE also provides the developer with an

easy-to-use interface to specify events to be captured, analyzed, displayed and recorded during

simulation. After studying the recorded data, the developer may want to refine the design and

operational specification of the device. USE provides extendible libraries of reusable model

components to reduce the cost and effort in model construction and refinement.

The remainder of the paper is organized as follows. Section 2 presents closely related works.

Section 3 provides brief descriptions of three UCAADS. They are subjects of case studies

presented in Section 6. Section 4 presents workflow and GOMS elements of the UCAADS

model. Section 5 describes the architecture and components of USE and how the UCAADS

model and USE are used in the development process of UCAADS. Specifically, we use the

above mentioned devices as case studies and present simulation results on their performance in

Section 6. Section 7 summaries the paper and presents future extensions of the UCAADS model

and USE.

2 Related Works

Again, the UCAADS model and USE build on advances in workflow technology [18] and

GOMS models [19]. USE resembles many simulators, prototyping tools and development

environments in their objectives. We all aim to facilitate the evaluation of device designs and

implementation throughout the development process.

2.1 Workflow Technology

The workflow technology is commonly used in enterprise systems for automation of business

processes. Recently, light weight workflow management systems [26-28] enables the workflow

technology be applied to build mobile web-based applications, embedded devices and robotic

applications [23].

There are many reasons for the wide adoption of this technology. First and foremost,

 7

workflow provides an easy, flexible way to define complex business processes. The developer

can design and implement a new workflow application or reconfigure and customize an existing

one by supplying or modifying definitions of workflows in it. Existing standard workflow

process definition and execution languages (e.g., [22, 25, 29, 30]), together with tools (e.g., [21,

31-35]) for editing workflow definitions and for parsing and building them, significantly reduce

the effort to do these tasks. USE is particular suitable for evaluation of workflow-based devices

since their operational specifications generated at the design stage become implementation of the

device later in the development process.

2.2 GOMS Models and Tools

The well-known human processor model GOMS (Goals, Operators, Methods and Selection

Rules) has been widely used for years in studies on human-computer interactions [36, 37].

According to GOMS, each user action, usually referred to as a task, has one or more goals. The

action is composed of operators that are done according to specified methods to achieve the

goal(s). When there is more than one method applicable to a goal, the selection rules represent

the user’s knowledge of which method should be applied.

Four variants of GOMS (i.e., CMN-GOMS, KLM, NGOMSL and CPM-GOMS) [20, 38-40]

have been used for predictions of user performance and evaluation of user interface [41-43].

USE uses NGOMSL and CPM-GOMS. Their usages will be illustrated by case studies presented

in Section 6. According to the former, human operators are executed sequentially. The latter

makes the assumption that perceptual, cognitive and motor operators can be performed in

parallel. We use NGOMSL because it is easy to translate NGOMSL analysis into workflow

model and use CPM-GOMS because it allows us to model complex user actions.

It is time-intensive and labor-intensive to construct GOMS models by hand. Several

software-tools have been developed to ease the burden of building GOMS models. QGOMS,

CAT-HCI, GLEAN, CRITIQUE [44-47] are among the pioneers of tools. Other examples are

 8

Apex-CPM [48] and SANLab-CM [49]. USE most closely resembles CogTool [50], which is a

UI prototyping tool. Both are developed for rapidly prototyping, evaluation of design and

prediction of human performance. Using CogTool to evaluate a UI design, the designer presents

the design as a storyboard of frames. Each frame represents a state of the interface, and each

transition between frames represents user actions that take the UI from one state to another. To

analyze the design, the designer demonstrates tasks on the storyboard. CogTool automatically

generates ACT-R code [51] implemented KLM models from this demonstration. By running the

code, CogTool produces an estimate of execution time and a visualization of the timeline.

A major difference between USE and all the tools mentioned above is that unlike them, USE

is not primary for the evaluation of user interfaces. Rather, it supports the evaluation of

user-device interactions in general for the purpose of determining the correctness and usability of

a device/system throughout the development process, from prototyping to implementation to

quality assurance. Similar to above mentioned HCI tools, USE also provides a rich and

extensible library called Human Action Library. The library includes operators and templates of

GOMS in the form of activities and workflows to significantly reduce the burden of building

GOMS models for execution in USE. USE can be easily hook up with Window Form and WPF

(Windows Presentation Foundation) [52] and is hence particularly convenient for evaluating user

interfaces implemented using them.

2.3 Prototyping and Simulation Tools

Simulation is an effective method for many purposes. Over time, simulation has become

widely used for reducing costs and improving qualities for an increasing broader spectrum of

devices, system and services. Today, one can find simulation environments and simulators for

networks (e.g., [53]), sensor networks (e.g., [54]), embedded systems (e.g., [55]), and robotic

applications (e.g., [56, 57]).

Among prototyping and simulation tools, USE resembles closely to toolkits such as D.tools

 9

[58] and Juxtapose [59] that support iterative-design-centered approach to prototype physical

user interfaces, in particular, design exploration of desktop, mobile and physical interfaces of

interactive devices. The USE has the same design goals but focuses especially on user-device

interaction and flexible design and implementation of UCAADS. USE distinguishes from other

simulation tools in that it combines workflow and GOMS models for assessment of correctness

and performance of complex multi-users and multi-devices interactions.

3 Examples of UCAADS

This section briefly describes a smart medication dispenser, a smart storage pantry and a

multi-user medication station to make the paper more self-contained. We use these devices and

their operations in later sections for illustrative the purposes and capabilities of USE and as

subjects of case studies.

3.1 Smart Medication Dispenser

A smart medication dispenser [3, 60] is designed for users who take medications over long

periods of time without close professional supervision. In particular, it is designed to eliminate

two common causes of administration error: misunderstanding of medication directions and

inconvenience of rigid medication schedules. The dispenser schedules individual doses of the

user’s medications under its care based a machine readable medication schedule specification

(MSS). MSS is compiled from the user’s prescriptions and directions of over the counter (OTC)

drugs by the user’s pharmacist.

To be concrete, we consider here the configuration of the dispenser shown in Figure 1. When

a user comes to get new medication supplies, the pharmacist gives the user an updated MSS in a

memory card together with medication containers. Each container holds one kind of medication,

and the medication is identified by the RFID in the tag on the container. The user makes the

dispenser ready to manage the medications along with existing ones by plugging in the memory

card into the MSS port and the new containers in empty sockets, one at a time, in any sequence.

 10

Base

Sockets

Indicator lights

LED display

Push-To-Dispense button

Verification boxes

Dispensing cup

Memory card reader

Figure 1 Smart dispenser

The dispenser reminds the user at the times when some dose should be taken. The user may

or may not response promptly. When the user is late, the schedule may need to be adjusted. The

work to ensure that the right doses of right medications are given to the user at the right time is

done collaborative by the medication scheduler and the dispenser controller. Figure 2 shows an

example of the communication between the scheduler and the controller. In this example, the

user is supposed to take a 10 mg dose of insulin every 4 hours. If the user is tardy for more than

4 hours, the pending dose is cancelled and a double-size dose is scheduled. Furthermore, MSS

specifies that the user’s physician is to be notified if the user has not taken any dose for 10 hours

or more.

Figure 2 shows what have taken place during part of a day. In Section 6, we will show how

we simulate the interactions among the user, the dispenser controller and scheduler by using

USE. •The user has taken a dose of insulin promptly shortly after 9:00. A dose is scheduled at

13:00. At the time, the controller calls GetNextAction() to query for action. The action list

returned by the scheduler includes turn on the local alarm (i.e., deliver reminder), start to

monitor the PTD (Push-To-Dispense) button and prepare to help the user retrieve a 10 mg

dose when the user pushes the button. After it queues the work items for these actions, the

controller sets the NHST (Next Handshake Time) timer to expire at 17:00 and returns to wait,

 11

while the worker threads process the work items. The threads are represented by wiggly lines

in the left side of the figure.

Controller Scheduler

GetNextAction()13:00

GetNextAction()

Action list:

1.SetAlarm

(on, persistence = 1)

2.SetUserResponse(on)

3. *DoseAfterResponse

(insulin = 10mg)

NHST = 17:00

17:00

Action list:
1. *CancelDose

NHST = 17:00

ActionComplete()

Action list:

1. *DoseAfterResponse

(insulin = 20mg)

NHST = 19:00

19:00 GetNextAction()

Action list:
1. *Call doctor

NHST = 8:00

o
n

Figure 2 Scheduler and controller communication •When the controller wakes up at 17:00 and calls GetNextAction(), the user still has not

responded and the dose scheduled at 13:00 is still pending. The scheduler is aware of the fact

because the controller has not yet reported the completion of DoseAfterResponse action.

Since more than 4 hours has elapsed, the scheduler tells the controller to cancel the pending

dose, while it adjusts the schedule according to the instruction from MSS. •When the controller reports the completion of CancelDose, the scheduler requests that a 20

mg dose be given to the user when the user responds. The value of NHST returned by the

scheduler this time is 19:00. By then, 10 hours will have been elapsed since the user took the

latest dose of insulin. •At 19:00, the user still has not come to push the PTD button. The scheduler requests that the

controller calls the designated care taker to report the non-compliance event. The wide

wiggly line on the left side of the figure represents the thread that logs the event and calls the

care taker.

 12

3.2 Smart Storage Pantry

A smart pantry [2] is for storage of non-perishable household supplies, such as detergent and

shampoo. The pantry is smart because when the last unit of any kind of supply is removed from

the pantry, the pantry automatically contacts a specified supplier, places an order and arranges

payment on user’s behalf to have replenishment delivered. This work requires the pantry to be

able to identify the objects stored in it. We have built and experimented with pantries that use

different technologies (i.e., RFID, digital camera and bar-code) for identifying objects and found

that a BAC (bar-code) pantry has the best tradeoff between cost and usability.

A BAC pantry identifies objects in it by their bar-codes and sends the bar-codes of the objects

in its orders to the supplier. Each shelf in such a pantry is partitioned into compartments.

Associated with each compartment is a sensor, which allows the pantry controller to determine

whether the compartment is empty or non empty. A restriction is that each compartment is used

to hold only one kind of object.

A BAC pantry requires the user to scan the bar-code of the object when placing an object into

an empty compartment. Load-pantry and remove-pantry are two major user operations.

Load-pantry consists of user actions for placing objects into the pantry. Remove-pantry consists

of user actions that remove objects from the pantry. We will return in Section 4 to describe

details of these operations as illustrations of the UCAADS model.

3.3 Multi-User Medication Station

A medication station is a system of smart cabinets that are integrated by a server to provide

storage and dispensing services in a patient ward. State-of-art medication stations (e.g., [61, 62])

operate in fully automated mode: When a user (normally, a nurse) comes to retrieve medications

for a patient, the station opens automatically all the compartments (drawers) holding medications

due to be administered to the patient at the time. Operating in this mode, a station can serve only

one user at a time. The added burden on nurses to stand in line for retrieval of medications and to

 13

adjust their work plans in order to minimize queuing time is a serious shortcoming. In contrast,

multi-user medication station (MUMS) can also operate in semi-automatic mode [16]. In this

mode, it allows multiple users to retrieve medications from the same station at the same time.

Figures 3 and 4 show a possible user scenario. As Figure 3 shows, each medication

compartment (or drawer) in a MUMS has a label and a small LCD. The label has the name,

bar-code and administration instruction of the medication inside. When a nurse comes to the

station to retrieve medications, the LCD lights up and shows the names of the nurse and the

patient and thus, helps the nurse locate the compartment.

DOSING INFORMATION:

The dose for adults is 325
to 650 mg every 4 to 6

hours. The maximum
daily dose is 4 grams.

Acetaminophen
Nurse: Robin
Patient: K. S. Chaug

Figure 3 MUMS: Multi-User Medication station

No

[Robin]
- Arrives at MUMS with iNuC#4
- Pushes RetrieveMedications button on the cart

[Server]

- Get list of Robin’s patients with medications due

- Send the list to iNuC#4
[iNuC#4]
- Display patient list
- Unlock empty drawers
- Wait for patient selection

[Robin]
- Select a patient and open an empty drawer

[iNuC#4]

- Store the mapping (Patient, Drawer)

for the open drawer

- Send (iNuC#4, Robin, Patient) to Server

[MUMS]
- Display (Robin, Patient) on

all compartments containing
medications due

- Wait for bar-code of medications

Go to patients
[Robin]
- Closes cart drawer
[iNuC#4]
- Remove the patient’s

name from display Yes
Go to

MUMS

server

Do while some compartments display (Robin, Patient) {

[Robin] - Scan bar-code of a compartments

[iNuC#4] - Send (iNuC#4, Barcode) to MUMS

[MUMS] - Verify correctness and open scanned compartment

[Robin] - Retrieve a dose of medication, puts the dose in

the open cart drawer, and close the compartment

[MUMS] - Locks the compartment and turn off display on it

}

More patients?

Figure 4 Bar-code controlled medication dispensing by MUMS

 14

The flow diagram in Figure 4 illustrates the interactions between a user (say a nurse named

Robin), MUMS and a mobile nursing cart during bar-code controlled medication dispensing.

When Robin comes to work and signs on the MUMS server, the server retrieves Robin’s patient

list and her patients’ prescriptions and medication schedules from the hospital database. The

MUMS server sends a reminder via designated devices to Robin shortly before it is time for her

to come to the station for retrieval of medications. We omit this part in Figure 4 to save

spaceRobin responds to the reminder by logining a nursing cart (referred to as iNuC#4 in the

figure) and bringing the cart to the station. After the station server authenticates Robin and

discovers the ID of the cart, it sends to the cart the list of Robin’s patients who are due to take

medications. The list contains patient names and their IDs. The ID of each patient is the bar-code

on the waistband of the patient. The monitor of her cart displays the patient list. Robin selects a

patient at a time via the monitor. For each selected patient, she opens an empty drawer in the cart.

The cart automatically associates the id of the selected patient with the location of the opened

drawer. Once Robin finishes retrieving all the medications of the selected patient, she closes the

opened cart drawer. The drawer can be opened again only by scanning the bar-code id on the

patient’s waistband.

After Robin selects a patient, the cart monitor displays the MUMS compartments where the

medications of the patient are. At the same time, the MUMS compartments holding the

medications display Robin’s name and the patient name. To retrieve a dose of medication from

one of these compartments, Robin uses the bar-code scanner attached to the cart to read the

bar-code on the label of the compartment. The computer on the cart then sends the nurse’s ID and

the reading of the scanner to the MUMS server. After verification, the server unlocks the

compartment, allowing Robin to retrieve a dose from it.

After retrieving a dose, Robin closes the MUMS compartment and then goes on to scan the

bar-code on another compartment displaying her name, until a dose of every medication due to

 15

be administered to the patient has been retrieved. Robin then closes the patient’s drawer in the

cart and moves on to retrieve medications of another patient, if any.

4 UCAADS Model

As stated earlier, an operational specification of a UCAADS describes the behavior of the

device and the operations of the user (or users) in terms of one or more workflows. GOMS

models elements are used to capture quantitatively the ability of the user in performing

operations on the device. We use the model elements together to simulate the device and user as

a whole for evaluation of device usability and prediction of user performance.

4.1 Workflow Elements of UCAADS Model

Specifically, a workflow is composed of elementary steps, called activities. Some of them are

software activities, i.e., programs executed on CPU(s). Other activities are carried out by

hardware components or by the user or users. The orders and conditions under which activities in

a workflow are executed, the resources (e.g. software programs, hardware devices, users, etc.)

needed for their execution, and interactions and communications among activities are specified

either textually or by one or more workflow graphs. As stated earlier, we can define a workflow

in terms of either the programming language C# [21] or the process definition language

SISARL-XPDL [23]. In a workflow graph, each node represents an activity (or a state of the

workflow). Each directed edge defines a transition between the activities (or states) represented

by the source and sink nodes of the edge.

An essential component of USE is a workflow management system which is a middleware

that provides a workflow manager and a workflow engine. The workflow manager schedules

workflows and activities in them and have the workflow engine execute them. Again, USE uses

either Microsoft .NET Workflow Foundation (WF) [21] or our own embedded workflow

framework EMWF [23] for this purpose. Both workflow managers provide built-in activities as a

part of the workflow engine. Built-in activities alter the timing, condition or flow path of the

 16

execution of workflows, while activities provided by the developer usually do not. Our

subsequent discussions assume that WF is used except where it is stated otherwise. Table 1 lists

examples of built-in activities. The names of some of them (e.g., if-else and wait event) more or

less tell what they do. A workflow can be a sub-workflow of a larger workflow or comprises

sub-workflows and invokes them (i.e., called them asynchronously) or executes them (i.e., called

them synchronously).

Table 1 Examples of build-in activities

Start

If else

Invoke workflow

Built-in Activities

Stop

Repeat point

While

Delay / Timeout

Execute workflow

Invoke activity

Wait event

Exception

There are two types of workflows, sequential workflow and state machine workflow. A

sequential workflow consists of a fixed sequence of execution steps. The execution path may

branch, or loop, etc. but has a workflow-wide starting point and ending point. A state machine

workflow is event driven. A state machine workflow defines a set of states and possible

transitions between states. Each state may have one or more activities that are executed prior to a

transition to another state. The executions of all or most activities, and hence the transitions, are

triggered by external events. We use both sequential and state machine workflows in operational

specifications of devices and models of users and their actions.

For illustrative purpose, we go back to the load-pantry and remove-pantry operations of the

smart storage pantry. Figure 5 shows a part of the operational specification that defines the

load-pantry operation [2]. The user workflow in left side of the figure is sequential. It defines

activities that model user actions. We will return to describe the incorporation of GOMS models

with user workflows. The state machine workflow in the right side of the figure is the device

 17

workflow. It specifies device behavior and services in the load-pantry process during which the

user puts objects into the pantry.

A user starts load-pantry by pushing the LOAD button on the pantry. The button triggers the

pantry to turn on the bar-code scanner and then returns to wait for the user to scan the bar-code

of an object to be put into an empty compartment. After the user scans the bar-code and puts the

object into the compartment, the storage pantry stores the association between the bar-code of the

object and id of the compartment. The load-pantry process (i.e., the workflows) stops after the

user puts all the objects into the pantry and the pantry timeouts waiting for bar-code. When a

compartment becomes empty, the pantry inserts the bar-code associated with the compartment in

the purchase order. It then deletes the association and thus frees the compartment for new

supplies.

Waiting for compartment state change
State

Standby State

Waiting for bar-code State

Timeout
event

User Workflow Device Workflow

While other kinds of
supplies to put

Push the “LOAD” button

Turn on bar-code scanner & Display
“Please scan ba-rcode.”

Scan the bar-code
of a kind of supply

Store bar-code

Put away the supply into

an empty compartment

Get compartment id & Store
compartment-id-bar-code association

Go to Waiting for bar-code State

Figure 5 Load-pantry operation of the smart storage pantry

Figure 6 shows the workflow graph that specifies remove-pantry. When the last object is

removed from a compartment (named Comp[k] in the figure), the pantry detects that the

compartment is empty. It is possible that the user did not follow the load-pantry procedure as

described, but simply put the objects in the compartment without scanning their bar-codes. In

that case, the bar-code associated with the compartment is NULL. The pantry requests the user to

scan the bar-code of the just removed object. If the user ignores the request, the pantry generates

an error message to inform the user of its failure to reorder the object when timeout occurs. If the

 18

pantry has a bar-code associated with the compartment or if the user has responded the request of

scanning the bar-code of the removed object, the pantry generates and sends the order containing

the bar-code to the specified supplier.

Is bar-code
NULL?

no

Standby State

Scan the removed object

Remove an object

Sense compartment state
change, find Comp[k] empty

Get Comp[k].barcode

Ask the user to scan object

yes

Waiting for bar-code State

Timeout
event

Generate error
message

Generate & send
order containing

the bar-code

User Workflow Device Workflow

Go to Standby State

Is the object
the last?

Figure 6 Remove-pantry operation of the smart storage pantry

4.2 GOMS Elements of UCAADS Model (GOMS Workflows and Activities)

Oftentimes, the developer also wants to know the lengths of time required to complete

important operations, referred to as response times. For example, before we deploy MUMS in a

ward, we will want to determine the maximum number of users the server should allow to

retrieve medications concurrently. The response time of a semi-automatic operation depends not

only on the user-device interaction, but also on the execution times of user actions. By

incorporating GOMS models of human behavior with the workflow model, we can more

precisely model user actions and estimate execution times of the actions.

As stated earlier, USE supports NGOMSL and CPM-GOMS variants of GOMS model. The

hierarchical goal structure of NGOMSL resembles the structure of workflow (activity, composite

activity, sub-workflow, and workflow). We can easily translate a NGOMSL analysis into

executable and reusable workflows, sub-workflows and activities. As an example, Figure 7

shows a NGOMSL analysis of the user actions during the load-pantry operation. Here, the

 19

analyst starts with the highest level goal “load pantry”, and then breaks it into subgoals. Each

subgoal is to be achieved by a specified method or methods and may be further broken into more

detailed subgoals to be achieved by their own methods.

Method for goal: load pantry

Step 1. Accomplish goal: push <LOAD> button.

Step 2. Accomplish goal: scan the bar code.

Step 3. Accomplish goal: put objects.

Step 4. Return with goal accomplished.

Method for goal: push <LOAD> button.

Step 1. Locate <LOAD> button on the screen.

Step 2. Move hand to <LOAD> button.

Step 3. Press <LOAD> button.

Step 4. Return with goal accomplished.

Method for goal: scan a bar code.

Step 1. Wait for response from the pantry.

Step 2. Verify the message on the screen.

Step 3. Accomplish goal: grab the bar code scanner.

Step 4. Accomplish goal: grab the object.

Step 5. Locate the bar-code on the object.

Step 6. Click the scanner to scan.

Step 7. Put down the bar code scanner.

Step 8. Return with goal accomplished.

Method for goal: put objects.

Step 1. Accomplish goal: choose an empty compartment.

Step 2. Accomplish goal: put the objects into the compartment.

Step 3. Return with goal accomplished.

Figure 7 Top-Level-Methods of the load-pantry operation in NGOMSL model

CPM-GOMS variant supports concurrent execution of human operators. In this sense, it is

most compatible with workflows among four variants and more natural for modeling many

UCAADS user actions. To incorporate CPM-GOMS model with workflows, we implement basic

and frequently used human operators (e.g., perceptual, cognitive and motor operators) as

human-operator activities. We implement the rules (e.g. Fitt’s law [63] for moving a hand, or an

empirical probability function for taking an object) and parameters (e.g., start and end positions

of the mouse cursor) that govern the definitions of operators and calculations of execution times

or learning times of users by parameterized functions executed by human-operator activities.

Human-operator activities are components with which a developer can construct composite

activities and sub-workflows that represent simple actions of the user (e.g., push a button).

To illustrate, Figure 8 shows a fragment of CPM-GOMS model of a user pressing the LOAD

button on the pantry. Except for precedence constraints indicated by directed edges in the graph,

 20

operators can execute in parallel. Figure 9 shows the equivalent workflow model fragment. By

being equivalent, we mean that the workflow model “implements” the CPM-GOMS fragment

and allows the model to run during simulation.

Vision

Cognition

Hand

Eye

initiate
hand

movement

attend
<LOAD>

initiate
eye

movement

move
hand

move
eye

perceive
<LOAD>

verify
<LOAD>
position

perceive
hand @
<LOAD>

down
figure

up
figure

50 50 50

530

50 50 50

100 100

30

100 100

verify
hand @
<LOAD>

initiate
press

Figure 8 Push LOAD button in CPM-GOMS model

init hand

movement

Cognition & Vision
sub-workflow

attend <LOAD>

init eye
movement

perceive <LOAD>

Eye sub-workflow Hand sub-workflow

move eye

move hand

verify <LOAD>

position

perceive hand @

<LOAD>

verify hand

@ <LOAD>

init press

down finger

up finger

trigger event

Figure 9 Push LOAD button CPM-GOMS template in workflow

For sake of simplicity, cognition and visual perception operators in the example are

implemented by a single sub-workflow, called cognition & vision sub-workflow. The actions of

eyes and hands are executed by eye sub-workflow and hand sub-workflow, respectively. Similarly,

each activity in the sub-workflows has a function that estimates the execution time of user. The

 21

sub-workflows synchronize via the wait event build-in activity. The down finger activity is

enabled and executed by the workflow engine when the move hand activity completes and init

press completed event occurs (i.e., the init press within the cognitive sub-workflow completes).

In this way, we capture in workflows the precedence constraints in CPM-GOMS fragment.

5 UCAADS Simulation Environment

Figure 10 shows the structure of UCAADS simulation environment. Again, a developer

specifies the operations of the device being evaluated by device workflow(s) and user actions by

user workflow(s). The simulation environment takes them as input of a simulation experiment.

User Workflows Device Workflows

Resource

Components

Device

Library

Human

Action

Library

Human

Models
Data Collector Evaluation Tool

Report

Sir
Operational

Specification

Resource

ComponentsWorkflow Engine

Priority Queue

Figure 10 Architecture of UCAADS Simulation Environment (USE)

5.1 Local Service and Workflow Communication

USE local service provided by the simulation environment is a communicated channel

between user workflows and device workflows in an operational specification. It is built on the

custom data exchange services (called local services) supported by WF.

USE local service interface is defined as follows:

interface IUSELocalService {

RegisterWorkflow(String identifier, Type wfType, Guid workflowInstance);

OperateDevice(String deviceIdentifier, OperateDeviceEventArgs eventArgs);

RespondToUser(String userIdentifier, RespondToUserEventArgs eventArgs);

event EventHandler<OperateDeviceEventArgs> OperateDeviceEvent;

event EventHandler<RespondToUserEventArgs> RespondToUserEvent; }

 22

When a workflow is created at the start of a simulation, it calls RegisterWorkflow method to

register itself with USE local service so that the local service can deliver events to it.

Figure 11 shows the use of OperateDevice method: A user workflow calls OperateDevice

method to raise an OperateDeviceEvent event. The event carries information on a user action (e.g.,

click, push, open, etc.), the target of the action (e.g., scanner, LOAD button, drawer #1, etc.), and

other information (e.g., bar-code, medication-id) associated with the action. USE local service

delivers the event to the device workflow specified by the deviceIdentifer argument. A device

workflow calls RespondToUser method to raise a RespondToUserEvent event to react to a user

workflow. The event carries the output type of the response and the message of the response.

USE
Local

Service

User
Workflows

Device
Workflows

O
p

e
ra

te
D

e
v
ic

e

O
p

e
ra

te
D

e
v
ic

e
E

v
e

n
t

R
e

s
p

o
n

d
T

o
U

s
e

r

R
e

s
p

o
n

d
T

o
U

s
e

rE
v
e

n
t

Figure 11 USE local service

5.2 Libraries

As Figure 10 shows, USE has four libraries: device library, human action library, resource

components and human models. A developer can easily extend the libraries by putting new

components into the libraries for use later. The device library contains reusable activities and

workflows (e.g., load-pantry and remove-pantry device workflows in Figure 5 and 6) for

constructing device workflows. Resource components include dynamically linked library (DLL)

functions, executable and other types of building blocks required by workflows to carry out

activities. As examples, many UCAADS (e.g., medication dispenser [3], iNuC [15], and MUMS

[16]) have drawers. A sensor on each drawer is used to detect whether the drawer is empty or

nonempty. In the model of such a device, one or more device workflows specify the actions to be

taken when a drawer changes from empty state to non-empty state and vice versa. The resource

 23

components required by the device workflows include emulators of sensor hardware and driver.

Human action library holds activities and workflows (e.g., human-operator activities and the

push LOAD button CPM-GOMS workflow described in the previous section) from which

developers can construct user workflows. The activities and workflows in this library are

implemented as DLL functions.

A developer can put frequently used activities and workflows in the toolbox in the workflow

editor provide by WF, and later drag them from the toolbox to build new user workflows. Figure

12 shows a part of the activities and workflows in the toolbox for constructing CPM-GOMS

models. When an activity or workflow is dragged from the toolbox to the workflow editor, the

toolbox pops a picture of CPM-GOMS PERT chart of the activity or workflow for the

developer’s information.

The forth library in USE is the human model library. As stated earlier, human models allow

the developer to take account of factors that influence execution times of activities in user

workflows. Examples of factors are skills of users, ages of users, and environments (e.g., dark

room) etc. Some targeted users of UCAADS are elderly individuals and staff members of

care-providing institution. We are collecting data to generate human models for these users and

store the models in XML format.

Figure 12 Human actions in toolbox

 24

5.3 Priority Queues, Evaluation Tool and Data Collector

Most UCAADS have tasks that provide time-critical services. These tasks usually execute at

different priorities in order to ensure their timely completion. Workflows simulating these tasks

need to execute at the priorities of the tasks. To support priority-based design, USE provides a

customized scheduling service rather than relying on the default scheduling service of the

Microsoft WF. USE scheduling service manages a specified number of prioritized work queues.

A developer can assign a priority to a workflow. During the execution of the operational

specification containing the workflow, the workflow is inserted into the work queue of the

assigned priority as a work item and is executed at the priority by a thread serving the work

queue. The current USE scheduling service does not allow varying priorities within workflows

(i.e., have activities in a workflow executed at different priorities). This limitation prevents the

simulation of workflow-based devices to run on EMWF [23]. As a part of future work, we will

extend the USE scheduling service to eliminate this limitation.

Oftentimes, human errors are in fact design errors of devices. When a user operates a device,

he/she expects that the device to enter a certain state or executes certain service. Problems arise

when the expectation and view of the user differs from the actual state and behavior of the device.

This kind of discrepancy, sometimes called automation surprise, is known to cause serious

accidents, errors and harm. To help the developer identify and eliminate user-device interaction

that can cause this kind of problem, USE provides an evaluation tool with which the developer

can set pre-conditions and post-conditions of individual activities. A pre-condition of an activity

(or a sub-workflow) defines an initial state of the workflow immediately prior to the execution of

the activity (or the sub-workflow). A post-condition defines a final state after the execution

completes. Take the activity called “Scan the bar-code…” in the user workflow of Figure 5 as an

example. A pre-condition and a post-condition of the sub-workflow are:

pre-condition: PantryController.state == AWAITS_BAR_CODE

 25

post-condition: Scanner.register != NULL && Scanner.register == User.object.barcode

In other words, the user (or tester) thinks that the pantry controller should be in

AWAITS_BAR_CODE state before the “Scan the bar-code…” is executed. After the sub-workflow

is executed, the register of the bar-code scanner should stores a valid bar-code value and the

value is the bar-code of an object to be put into the pantry. The conditions are checked at runtime,

and execution of the workflow pauses for attention when any condition is violated. By setting

pre- and post-conditions, a developer can observe whether the workflows execute as expected

and whether the simulated device behaves as expected.

Finally, USE data collector logs details on transitions of activities, and changes in variables

and conditions during each simulation run. It also can capture the events specified by the

developer and interactions among user workflows and device workflows. The data are stored in a

database for off-line analysis and display. Figure 13 shows the GUI of USE for setting up the

simulation and showing simulation results. The screenshot in part (a) shows a GUI tab for a

developer to load and remove workflows and complete initial settings. The screenshot in part (b)

shows another GUI tab for displaying the logs and timelines of simulation data generated from

logged data by an open source timeline widget [64] embedded in USE.

(a) (b)

Figure 13 GUI of USE

5.4 Development Process of UCAADS

We conclude this section by describing how USE can assist developers during different

 26

phases of the development process. To be concrete, we divide the developers of a new UCAADS

into three teams: test team, system team and user interface team. The test team is responsible for

building user workflows used to test all kinds of user scenarios. The system team is responsible

for implementing device workflows and functions of the device/system. If the device/system has

a GUI, the user interface team is responsible for the design and implementation of the GUI.

In the first phase, developers work cooperatively to define the operational specification of the

new device. The system team uses state machine and sequential workflows to depict the skeleton

of device behaviors such as states transitions and activities for handling events trigged by user

actions. The test team creates all kinds of user workflows (e.g., for normal user, exceptional user,

arbitrary user, etc.) for testing. Testing in this phase aims to explore all the possible user

scenarios and make sure that the device handles these scenarios in correct manner and transits to

the correct state. In this step, device workflows and user workflows interact through USE local

service described above. In the meantime, the user interface team design and implement another

local service, called GUI local service, which is for communication between the GUI and device

workflows. Figure 14(a) sketches the configuration used in this phase.

U
S

E
 L

o
c
a

l S
e
rv

ic
e

User
Workflows

GUI Local Service

Device

Workflows

GUI

U
S

E
 L

o
c
a

l S
e
rv

ic
e

User
Workflows

GUI Local Service

Device

Workflows

U
S

E
 L

o
c
a

l S
e
rv

ic
e

User
Workflows

GUI Local Service

Device

Workflows

GUI

 (a) (b) (c)

Figure 14 Development process of UCAADS

In the second phase of the development process, the system team starts to implement

functions of the device in this phase. Resource components can be used to carry out parts of

these functions. While the GUI is still under construction and is unavailable for testing purpose,

user workflows can be used to trigger events on GUI local service. These events simulate events

from the GUI triggered by user actions that operate the GUI. Similarly, user workflows can be

 27

used to trigger events on USE local service to simulate user actions that are not related GUI (e.g.,

take drugs, open a drawer). Figure 14(b) sketches the configuration used for testing in this phase.

In the final phase of the development process, the new device is almost completed. The test

team can test the GUI, GUI local service and device workflows as a whole. In particular, once

the GUI is completed, user workflows can be used to simulate GUI operations by operating the

GUI directly. Figure 14(c) gives a sketch of this phase.

6 Case Studies

We have used USE to assess the design of the UCAADS described in Section 3. We ran

device workflows and user workflows of these devices in order to identify defects of their

designs: Serious defects exhibit themselves by the inconsistency between pre/post conditions and

device states captured by the evaluation tool. The simulation experiments also gave us estimated

execution times of user operations.

6.1 Simulation of Smart Medication Dispenser

A critical requirement of the dispenser is that it works correctly. This means that it carries out

all medication administration operations according to the rules and constraints defined by the

user’s MSS and it handles all exceptions (and faults) dependably. We rely on simulation to catch

design flaws that can cause errors in medication administration, including mistakes in medication

schedules and failures to raise and handle non-compliance events.

Figure 15 shows parts of the operational specification of the dispenser. It is a part of the input

provided to USE in a simulation experiment. For simulating the dispenser, it suffices to

characterize the user by a set of parameters that allow us to compute the lengths of time the user

takes to complete elementary steps in user activities in the user workflow. The most important

parameter is the probability distribution of the response time (i.e., the time between when a

reminder is sent to the time when the user comes to push PDT button). During each simulation

run, timeout length of the response timer is set to a sample value from this distribution. In

 28

addition, we use many real-life prescriptions as basis to generate sample MSS. We also use

synthetic MSS generated randomly from specified probability distributions as described in [65].

Yes

Has user retrieved all medications?

Yes

Wait for

response

timer

Power on

dispenser

Wait for

reminder

Get

reminder

Push

PTD

Wait for reminder

and retrieve

medication timer

Retrieve

medications one at

time as instructed

Set up

dispenser

Powered

on and

initialize

Do set up

with user

Invoke controller

and scheduler

workflows

Get

next

action

Receive

NHST &

action list

Set

NHST

timer

Go to

While action list is not empty?

No

DoseAfterResponse

Action?

Other actions

Wait for user to retrieve

all medications & resend-
reminder-timer expiration

Compute initial

schedule, first

action list & NHST

Wait for controller to call

action complete or get

next action

Send NHST &

action list
Compute NHST &

action list

While dispenser is operating

While dispenser is operating

While dispenser is operating

Is action list empty?

Execute

actions
Execute

actions
Execute

actions

Set alarm

(Send reminder)
Cancel dose

Action

complete

Wait for user to push

PTD & NHST timer

expiration

PTD?

No

No

Yes

Wait for

NHST

timer

R

Figure 15 Parts of the operational specification of the dispenser and user actions

During simulation, USE captures and logs events in interactions of the user, and the

controller and scheduler of the dispenser. As an example, the scheduler workflow generates an

error event when it cannot determine next action or NHST. In addition, we add conditional rules

in the workflows. The rules enable us to check whether the controller correctly instructed the

user to retrieve each dose of each medication at each dose time. We check for correctness by

processing and analyzing the logged events to find error events. We also can detect errors by

studying timeline displays of the event traces.

To illustrate, Figure 16 shows fragments of event traces captured in two simulation runs. We

say that the user is prompt if he/she responds to reminder soon enough that there is no need to

 29

adjust the medication schedule. Otherwise he/she is tardy by a random amount of time. Both

simulation traces are for a user who is tardy about 30% of the time. Each dot on the timeline

represents an event. We can view detailed information and the actual logged time of the event by

clicking the dot. The trace in Figure 16 (a) shows that the dispenser correctly handles the

non-compliance event described in Figure 2. The trace in Figure 16 (b) shows an event raised by

the controller in response to the user pushing the PTD button at times when no medication is due.

(a) (b)

Figure 16 Examples of simulation data

6.2 Simulation of Smart Storage Pantry

The process the smart pantry takes to acquire compartment id and bar-code associations is

error prone. A busy user may dump new supplies in the pantry without scanning their bar-codes.

Multiple users may put away supplies and remove supplies at the same time. We cannot strictly

restrict user-pantry interaction patterns but must be sure that the pantry works satisfactorily

regardless. For this reason, an objective of simulations of the smart pantry is to determine

whether and how inconsistency between bar-codes of objects recorded by the pantry and actual

bar-codes of objects can occur. Such inconsistencies cause the pantry to order wrong supplies for

the user, which is deemed unacceptable. We started our experiment by simulating the scenario

where a single user operates load-pantry and remove-pantry, one operation at a time. We then

repeated the experiment numerous times, each time with multiple users doing load-pantry and

remove-pantry simultaneously.

 30

As we expected and hoped, the simulation results expose at least two design errors when the

pantry is operated by more than one user at the same time. This scenario is highly likely in most

households. We were able to reconstruct from the recorded event logs detailed use scenarios that

led to the errors reported by USE. As example, the scenario in Figure 17 explains how the

load-remove error occurred. Before diving into details of the scenario, we note that for sake of

usability, the pantry allows objects to be placed into empty compartments without first being

scanned. Consequently, there may not be a bar-code associated with a compartment when the last

object in it is removed. When this happens, the pantry tries to acquire the missing bar-code

before the user removing the last object goes away. This is why remove-pantry workflow is

executed at a higher priority than the interactive load-pantry workflow process.

User 3: Push “Load ” Button .

Pantry: Turns on bar-code scanner and expects the user to scan each

object and then put the object away.

User 3: Scan bar-code of a six pack of mineral water.

Pantry: You just scanned an object.

User 4: Remove the last bottle of coke in compartment 4.

Pantry: You just remove the last unit of the unknown object. Please

scan bar-code for re-order.

User 4: Scan bar-code of coke.

Pantry: Re-order?

User 4: Push “Yes” Button.

User 4: Walk away.

User 3: Put a six pack of mineral water into compartment 3.

Pantry: You have just put an object in compartment 3.

User 3: Walk away.

Figure 17 Scenario of load-remove error

Returning to Figure 17, we see that just after user 3 scanned the bar-code of a pack of

mineral water, user 4 removed the last bottle of Coca-Cola from a compartment for which the

pantry had no bar-code. By preempting the load-panty workflow immediately to capture the

missing bar-code without first saving the bar-code captured in the load-pantry process, the pantry

mistook the bar-code of Coca-cola, which user 4 scanned in the remove-pantry process, for

bar-code of mineral water, which user 3 put into compartment 3. In this case, there are many

ways to fix the problem, (e.g. save the bar-code captured by load-pantry before preempt the

 31

workflow, or requesting the user to rescan the object put into a compartment immediately after

load-pantry resumes, etc.) once we are aware of the problem.

6.3 Simulation of Multi-User Medication Station

In an experiment to evaluate the multi-use medication station (MUMS) described in Section

3.3, we simulated different numbers of users (from 2 to 10 nurses) retrieving medications from a

multi-user medication station in the same time. Similar to the experiment on the smart storage

pantry, we first determined the correctness of the bar-code controlled dispensing process. The

mobile nursing cart and the MUMS server operations and their interactions with each user during

this process are described by Figure 4. By being correct, we mean that every user (a nurse) gets

correct medication(s) from MUMS and puts the medications in an associated drawer of the cart

correctly identified by the cart and MUMS server for each patient. Fortunately, in the simulation

runs we have done to date we did not discover any inconsistency and malfunction caused by

user-device interactions. Even though the user-device interaction shown by Figure 4 looks

complicated, it actually has less chance for errors. An analysis of the recorded logs shows that,

while the MUMS server allows multiple users to access and operate multiple compartments, it

correctly allowed only one user at a time to operate any compartment. Moreover, unlike users of

the smart pantry, who share resources (e.g. bar-code scanner), each of the MUMS users has

his/her own cart and bar-code scanner.

To access the responsiveness of MUMS, this purpose, we simulated the scenarios where

multiple nurses are using a medication station to get medications. Each nurse does the retrieval in

order given by his/her patient list, and waits for a MUMS compartment if the compartment

holding the next medication he/she is going to retrieve was being used by another nurse.

Table 2 lists the parameters of the simulation. Usually some medications in the MUMS of a

hospital ward are frequently prescribed. We use a probability distribution (e.g. even distribution

or Zipf’s law [66]) to govern the selection of medications stored in the station. By adjusting the

 32

distribution, we can fit the medication access patterns to different departments in a hospital. The

number (138) of compartments of the MUMS was suggested by National Taiwan University

Hospital, and the use pattern is based on actual data on use frequencies of medications provided

by the hospital. The estimated times of user actions while operating the GUI on the nursing cart

are modeled by CPM-GOMS. The amounts of time of other user actions (e.g., open a

compartment, walk a distance, etc.) were obtained by measuring the time taken by ten people.

Table 2 Parameters of the MUMS Simulation

Number of patients for each nurse 6

Number of medications for each patient 6~14

Medications use pattern Zipf’s law

Drawers of MUMS 138

Operations on Basic Nursing Cart CPM-GOMS

Other Operations Measured

Machine Response Time 0.1s~1s

Figure 18 shows the average waiting time and average retrieval time taken by a nurse to

retrieval all the medications of a patient as functions of the number of nurses using the MUMS at

the same time. The former is the average amount of time wasted waiting for access to some

compartments holding medications to be retrieved. The average retrieval time is the average

amount of time taken to retrieve all medications of a patient without any waiting. It is

unacceptable when the average waiting time is a significant portion of the average retrieval time.

According to this data, we suggest that the MUMS server schedule at most three or four nurses to

uses the MUMS at the same time.

7 Summary and Future Works

We described in this paper how the combination of workflow and GOMS models provides a

flexible way to define device operations and user actions for the purpose of evaluating UCAADS

and their user-device interactions. USE provides libraries of reusable model components for

construction operational specifications and supports prioritized executing of workflows.

 33

Figure 18 Average waiting time of a nurse finish retrieval of all medications

The simulation results can help us in two aspects throughout the three phases of UCAADS

development. One is refinements of the device design. In simulation experiments on the

dispenser, we examine the protocol between the controller and the scheduler of the dispenser and

make sure the dispenser handle all non-regular compliance events. In experiments on the pantry,

we found that the smart pantry may fail and order wrong replenishment when the pantry is

operated by multiple users. By examining the recorded event sequence, we were able to

determine the cause of the bug and fix it. In the experiment involving MUMS, we can improve

the usability of the UI of the mobile nursing cart and simplify the process of medication retrieval.

Also, we can implement a scheduler to schedule the nurses in order to minimize their contentions

for MUMS compartments when they come to retrieve medications from MUMS at the same time.

Another is giving suggestions of usages of UCAADS.

There are many works remain to be done. We want to design a script language and exploit

current automation GOMS tools to automatically generate user workflows from the human

action library. We will provide USE the capability of automatically generating GOMS models by

simply demonstrating tasks with a graphic user interface that implemented in Windows Form and

Windows Presentation Foundation in the future.

We plan to improve the evaluation and analysis tool to reduce the human efforts in finding

complicated error scenarios. We also need to improve the GUI and visualization tools for setting

 34

up USE and presenting simulation data. The experiments in this paper did not adopt human

models. In the future, we will incorporate human models as parameters of user workflows to get

user performance for different types of users.

Acknowledgement

This work is supported by Taiwan Academia Sinica Thematic Project SISARL, Sensor

Information Systems for Active Retirees and Assisted Living. The authors wish to thank T. S.

Chou and Y. C. Huang for their contribution on EMWF.

References

[1] Sensor Information Systems for Active Retirees and Assisted Living, http://www.sisarl.org/

[2] C. F. Hsu, Y. H. Liao, P. C. Hsiu, Y. S. Lin, C. S. Shih, T. W. Kuo, and J. W. S. Liu, “Smart pantries for

homes,” in Proceedings of IEEE SMC, October 2006.

[3] P. H. Tsai, H. C. Yeh, C. Y. Yu, P. C. Hsiu, C. S. Shih and J. W. S. Liu, “Compliance enforcement of temporal

and dosage constraints,” in Proceedings of IEEE Real-Time Systems Symposium, December 2006

[4] Y. Hsu, C. E. Chiang, Y. H. Chien, H. W. Tseng, A. C. Pang, T. W. Kuo, and K. H. Chiang, “Walker’s buddy:

an ultrasonic dangerous terrain detection system,” in Proceedings of IEEE SMC, October 2006.

[5] T. S. Chou and J. W. S. Liu, “Design and Implementation of RFID-Based Object Locators,” in Proceedings of

IEEE International Conference on RFID Technology, March 2007.

[6] iRobot Home Robots, http://www.irobot.com/

[7] Forizzi, J. and C. DiSalvo, “Service robots in domestic environment: a study of Roomba vacuum in the

home,” in Proceedings of ACM/IEEE International Conference on HRI, March 2006.

[8] Kulyukin, V. A. and C. Gharpure, “Ergonomics-for-one in a robot shopping cart for the blind,” in Proceedings

of ACM/IEEE International Conference on HRI, March 2006

[9] Kaneshige, Y., M. Nihei, and M. G. Fujie, “Development of new mobility assistive robot for elderly people

with body functional control,” in Proceedings of IEEE/RAS-EMBS, February 2006.

[10] Lin, C. H., Y. Q. Wang and K. T. Song, “Personal assistant robot,” in Proceedings of IEEE

International Conference on Mechatronics, July 2005.

[11] Mataric, M. J., J. Eriksson, D. J. Feil-Seifer, C. J. Winstein, “Socially assistive robotics for

 35

post-stroke rehabilitation,” in Journal of Neuroengineering and Rehabilitation, Vol. 4, No. 5, 2007

[12] Gockley R., and M. J. Mataric, “Encouraging physical therapy compliance with hand-off mobile robot,” in

Proceedings of ACM/IEEE International Conference on HRI, March 2006.

[13] Thrun, S., “Toward a framework for human-robot interaction,” in Human-Computer Interaction, Vol. 19,

2004.

[14] Fong, T., I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” in Robotics and

Autonomous Systems, Vol. 42, 2003.

[15] P. H. Tsai, Y. T. Chuang, T. S. Chou, C. S. Shih and J. W. S. Liu, "iNuC: An Intelligent Mobile Medication

Cart," in Proceedings of the 2nd International Conference on Biomedical Engineering and Informatics,

October 2009.

[16] J. W. S. Liu, C. S. Shih, C. T. Tan and Vincent J. S. Wu, “MeMDAS: Medication Management, Dispensing and

Administration System,” in International Mobile Health (mHealth) Workshop, July, 2010.

[17] J. W. S. Liu, C. S. Shih, T. W. Kuo, S. Y. Chang, Y. F. Lu and M. K. Ouyang, "Flexible User-Centric

Automation and Assistive Devices," in Proceedings of Workshop on Adaptable and Reconfigurable Embedded

Systems, April 2008.

[18] Workflow definition, http://en.wikipedia.org/wiki/Workflow

[19] John, B. E. and Kieras, D. E., “The GOMS family of user interface analysis techniques: comparison and

contrast,” in ACM Transactions on Computer-Human Interaction, Volume 3, Issue 4, December 1996.

[20] Card, S. K., Moran, T.P., and Newell, A. (1983). The Psychology of Human Computer Interaction. Lawrence

Erlbaum Associates. ISBN 0-89859-859-1.

[21] Windows Workflow Foundation: http://msdn2.microsoft.com/en-us/netframework/aa663328.aspx

[22] BPEL (Business Process Execution Language), http://en.wikipedia.org/wiki/BPEL

[23] T.S. Chou, S.Y. Chang, Y.F. Lu, Y.C. Wang, M.K. Ouyang, C.S. Shih, T.W. Kuo, J.S. Hu, and J.W.S. Liu,

“EMWF for Flexible Automation and Assistive Devices,” in Proceedings of the 15th IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), San Francisco, USA, April 13-16, 2009.

[24] WfMC: Workflow Management Coalition, http://www.wfmc.org/

[25] XPDL (XML Process Definition Language), http://www.wfmc.org/xpdl.html

[26] Pajunen, L. and S. Chande, “Developing workflow engine for mobile devices,” in Proceedings of IEEE

International Enterprise Distributed Object Computing Conference, 2007.

 36

[27] Hackmann, G., M. Haitjema, C. Gill, and G. C. Roman, “Silver: A BPEL workflow process execution engine

for mobile devices,” in Conference of Conference on Service Oriented Computing, ICSOC 2006.

[28] Jing, J., K. Huff, B. Hurwitz, H. Sinha, B. Robinson, and M. Feblowitz, “WHAM: supporting mobile

workforce and applications in workflow environments,” in Proceedings of the 10th IEEE Workshop on

Research Issues in Data Engineering, February 2000.

[29] BPMN (Business Process Modeling Notation), http://www.bpmn.org/

[30] YAWL (Yet Another Workflow Language), http://www.yawl-system.com/

[31] Open Source Java XPDL editor, http://www.enhydra.org/workflow/jawe/index.html

[32] WfMOpen, http://wfmopen.sourceforge.net/

[33] ProcessMaker: Open Source BPM and Workflow, http://www.processmaker.com/

[34] ActiveBPEL, http://www.activevos.com/community-open-source.php

[35] Bonita, http://www.bonitasoft.com/

[36] John, B. E. (1995) Why GOMS? interactions, vol. 2, no. 4. pp. 80-89.

[37] John, B. E. and Kieras, D. E., “Using GOMS for User Interface Design and Evaluation: Which Technique?,”

in ACM Transactions on Computer-Human Interaction, Volume 3, Issue 4, December 1996.

[38] S. K. Card, T. P. Moran, and A. Newell, “The keystroke-level model for user performance time with

interactive systems,” in Communications of the ACM, 23(7), 396-410, 1980.

[39] Kieras, D. E. (1997). A guide to GOMS model usability evaluation using NGOMSL. M. Helander, T. Landauer,

and P. Prabhu (Eds.), Handbook of human-computer interaction. (Second Edition). Amsterdam: North-Holland.

733-766.

[40] Bonnie E. John, “Extension of GOMS analyses to expert performance requiring perception of dynamic visual

and auditory information,” in Proceedings of the 1990 Conference on Human Factors in Computing Systems,

Seattle, April, 1990.

[41] Lu Luo, and Bonnie E. John, “Predicting task execution time on handheld devices using the keystroke-level

model,” in Conference on Human Factors in Computing Systems (CHI '05) extended abstracts on Human

factors in computing systems, Portland, OR, April 2005.

[42] John, B. E. & Suzuki, S. (2009) Toward Cognitive Modeling for Predicting Usability. Proceedings of HCI

International 2009 (19-24 July 09, San Diego, CA).

[43] J. L. Drury, J. Scholtz, and D. Kieras, “Adapting GOMS to model human-robot interaction,” in Proceedings of

 37

the ACM/IEEE international conference on Human-robot interaction, Arlington, Virginia, March USA , 2007.

[44] Beard, David V., Smith, Dana K. & Denelsbeck, Kevin M., Quick and Dirty GOMS: A Case Study of

Computed Tomography, Human-Computer Interaction, 11 (2) p.157-180.

[45] Williams, K. E. (2005). Computer-aided GOMS: A description and evaluation of a tool that integrates existing

research for modeling human-computer interaction. International Journal of Human-Computer Interaction, 18,

39–58.

[46] Kieras, D.E., Wood, S.D., Abotel K. and Hornof, A. GLEAN: a computer-based tool for rapid GOMS model

usability evaluation of user interface designs. In Proc. of the 8th annual ACM symposium on User interface

and software technology 1995.

[47] Hudson, S. E., John, B. E., Knudsen, K., and Byrne, M. D. A tool for creating predictive performance models

from user interface demonstrations. UIST'99: Proceedings of the ACM Symposium on User Interface Software

and Technology, CHI Letters 1(1), 93-102.

[48] John, B., Vera, A., Matessa, M., Freed, M., and Remington, R. Automating CPM-GOMS. CHI 2002, ACM

Conference on Human Factors in Computing Systems, CHI Letters 4(1), 147-154.

[49] Patton, E. W., Gray, W. D., & Schoelles, M. J. (2009). SANLab-CM - The Stochastic Activity Networking

Laboratory for Cognitive Modeling. Proceedings of the 53rd Human Factors and Ergonomics Society

Conference (Oct 18-23), San Antonio, TX.

[50] CogTool, http://cogtool.hcii.cs.cmu.edu/

[51] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., Qin, Y. An Integrated Theory of the

Mind. Psychological Review, 111(4) 1036--1060 (2004).

[52] Windows Form and Windows Presentation Foundation, http://windowsclient.net/

[53] The ns-3 Network Simulator, http://www.nsnam.org/

[54] SENSE: Sensor Network Simulator and Emulator, http://www.ita.cs.rpi.edu/sense/index.html

[55] SkyEye, http://skyeye.sourceforge.net/index.shtml

[56] MobileSim, http://robots.mobilerobots.com/wiki/MobileSim

[57] Webots, http://www.cyberbotics.com/

[58] Hartmann, B., Klemmer, S.R., Bernstein, M., Abdulla, L., Burr, B., Robinson-Mosher, A., Gee, J. Reflective

physical prototyping through integrated design, test, and analysis. In Proceedings of UIST 2006, October 2006.

[59] Björn Hartmann , Loren Yu , Abel Allison , Yeonsoo Yang , Scott R. Klemmer, Design As Exploration:

 38

Creating Interface Alternatives through Parallel Authoring and Runtime Tuning. In Proceedings of UIST 2008.

[60] Tsai, P. H., C. Y. Yu, W. Y. Wang, J. K. Zao, H. C. Yeh, C. S. Shih, and J. W. S. Liu, "iMAT: Intelligent

 Medication Administration Tools," To Appear in Proceedings of IEEE Healthcom, July 2010.

[61] Pyxis Medstation, http://cardinal.com/us/en/providers/products/pyxis/brochure/MS3500_spec_details_PLA

.pdf

[62] Rx Showcase, http://www.rxinsider.com/prescription_dispensing_automation.htm

[63] Paul M. Fitts. The information capacity of the human motor system in controlling the amplitude of movement.

Journal of Experimental Psychology, volume 47, number 6, June 1954, pp. 381-391.

[64] “SIMILE Widgets, Free, Opens-Source Data Visualization Web Widgets and More”,

http://www.simile-widgets.org/

[65] Tsai, P. H., C. S. Shih, and J. W. S. Liu, “Algorithms for scheduling multiple interacting medications,”

Foundations of Computing and Decision Sciences, Vol. 34, No. 4, 2009.

[66] Zipf’s Law. http://en.wikipedia.org/wiki/Zipf's_law.

