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Abstract. Problem statements often resort to superlatives such as in
eg. “. . . the smallest such number”, “. . . the best approximation”, “. . . the
longest such list” which lead to specifications made of two parts: one
defining a broad class of solutions (the easy part) and the other request-
ing one particular such solution optimal in some sense (the hard part).
This report introduces a binary relational combinator which mirrors this
linguistic structure and exploits its potential for calculating programs
by optimization. This applies in particular to specifications written in
the form of Galois connections, in which one of the adjoints delivers the
optimal solution.
The framework encompasses re-factoring of results previously developed
by by Bird and de Moor for greedy and dynamic programming, in a
way which makes them less technically involved and therefore easier to
understand and play with.

1 Introduction

Computer programming is admittedly a challenging intellectual activity, calling
for experience and training under a read-understand-repeat learning cycle. By
acquiring good practices, relying on experienced teachers and practising a lot,
the learning curve eventually bents, but reliability cannot be fully ensured. If
one asks a student in programming about why she/he programs in that way
(whatever this is) the answer is likely to be: I don’t know — my teachers used
to do it this way.

Why is this so? Isn’t programming a scientific discipline? Surely it is, as
several landmark textbooks show 3. But, perhaps the question

Why and in what measure is programming difficult?

is yet to be given a satisfactory answer. By satisfactory we mean one which should
unravel problem solving (by computer) in a structured way, shedding light into
the core mental activities involved in programming and thus identifying which
skills one should acquire to become a good programmer.

3 See eg. the following (by no means exhaustive) list of widely acclaimed references:
[13, 8, 22, 21, 6, 4].
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Abstraction is one such skill [14]. Abstracting from the programming language
and underlying technology is generally accepted as mandatory in the early stages
of thinking about a software problem, leading to abstract modeling, which has
become a discipline in itself [12, 11]. However, handling abstractions is not easy
either (many will say it is harder) and the question persists: why and in what
measure is abstract modeling difficult?

Induction is another such skill, to which programmers unconsciously appeal
whenever solving a complex problem by (temporarily) imagining some (smaller)
parts of it already solved. This leads to the divide-and-conquer programming
strategy which explains many algorithms, often leading into parallel solutions.
However, where and how does induction crop up in the design of a program?
For instance, where exactly in the design of quicksort from its specification,

Yield an ordered permutation of the input sequence

does the doubly recursive strategy of the algorithm show up? The starting spec-
ification does not look inductive at all.

Are there other generic skills, or competences, that one such acquire to be-
come a “good programmer”? This report tries to answer this question by splitting
algorithmic specifications generically in two parts, to be addressed in different
stages. Let us see where these come from.

In program construction one often encounters specifications asking for the
“best” solution among a collection of solution candidates. Such specifications
may have the form “the smallest such number . . . ”, “the best approximation such
that . . . ”, “the longest prefix of a list satisfying . . . ”, etc. A typical example is
the definition of whole number division x÷y, for a natural number x and positive
natural number y. A specification in words would say that x ÷ y is the largest
natural number that, when multiplied by y, is at most x. The standard function
takeWhile p, as another example, returns the longest prefix of the input list such
that all elements satisfy predicate p.

Many other, less classroom-like problem statements share the same linguistic
pattern in its use of superlatives. For instance, the computation of the “best” (in
the sense of “quickest”) schedule for a collection of tasks, given their time spans
and an acyclic graph describing which tasks depend upon completion of which
other tasks 4 is another problem of the same kind. Such a schedule is “best”
(among other schedules paying respect to the given graph of dependencies) in
the sense that its tasks start as early as possible.

It is often relatively easy to construct a program that meets half of such
specifications: returning or enumerating the feasible solution candidates, such as
a natural number, or prefixes of the input list. This is the easy part. The hard
part of the specification, however, demands that we return a candidate that
is “best” in some sense (eg. some ordering): the largest integer, or the longest
prefix, that satisfies the first, easy part of the specification.

4 This is widely known as a Gantt graph, a term coined after the surname of the
mathematician Henry Gantt (1861-1919) who introduced them.
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In this report we propose a new relational operator that mirrors this “easy/hard”
dichotomy of problem statements into mathematics. The operator is of the form

P = E �H,

where E specifies the easy part — the collection of solution candidates —, while
H specifies the hard part — criteria under which a best solution is chosen.

One might wonder how to come up with the easy/hard split in the first place.
In this report we aim at characterizing problem specifications in terms of Galois
connections, in which one of the adjoints specifies the easy part (usually a known
function) and the other specifies the one at target (the hard one). For instance,
the (easy) adjoint of whole division is multiplication. This setting, which suggests
that “mathematics comes in easy/hard pairs”, provides a very natural way to
split a problem in its parts, as seen below.

Paper structure. In Section 2 we argue why Galois connections are suitable as
calculational specifications. After giving a minimal review of relational program
calculation in Section 3, we motivate and introduce the (�) operator in Section 4.
If some components in the Galois connection are inductively defined, as reviewed
in Section 5, we present in Section 6 two theorems that allows us to calculate the
wanted adjoint, demonstrated by two examples. A larger example, scheduling a
collection of tasks given a Gantt graph, is presented in Section 7, before we
conclude in Section 8.

2 Galois connections as program specifications

Let us take the problem of writing the algorithm of whole division as starting
example 5. What is its specification, to begin with? This has already been stated
above, informally:

x÷ y is the largest natural number that, when multiplied by y, is at most
x.

Which mathematics should we write to capture the text above? One possibility
is to write a “literal” one,

x÷ y = 〈
∨

z :: z × y ≤ x〉 (1)

encoding superlative largest explicitly as a supremum. However, handling suprema
is not easy in general. A second version will circumvent this difficulty,

z = x÷ y ≡ 〈∃r : 0 ≤ r < y : x = z × y + r〉 x y
r z

(2)

at the cost of existentially quantifying over remainders, still too involved for
reasoning.

5 This example is taken from [19].
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A third alternative [19] comes in the form of an equivalence universally quan-
tified in all its variables,

z × y ≤ x ≡ z ≤ x÷ y (y > 0) (3)

and is surprisingly simpler. Pragmatically, it expresses a “shunting” rule which
enables one to exchange between a whole division in the upper side of a ≤
inequality of natural numbers and a multiplication in the lower side, very much
like in handling equations in school algebra.

Equivalences such as (3) are known as Galois connections [1, 5, 19]. In general,
a Galois connection is a pair of functions f and g satisfying

f z � x ≡ z ≤ g x.

for all z and x, given preorders � and ≤ (which can be the same). Functions f
and g are said to be adjoints of each other — f is the lower adjoint and g the
upper adjoint. In the case of (3) the adjoint functions are as identified in

z (×y)︸ ︷︷ ︸
f

≤ x ≡ z ≤ x (÷y)︸ ︷︷ ︸
g

Why can one be so confident of the adequacy of (3) in the face of the given
requirements? Do substitution z := x÷ y in (3) and obtain (x÷ y)× y ≤ x: this
tells that x÷ y is a candidate solution. Now read (3) from left to right, that is,
focus on the implication z × y ≤ x ⇒ z ≤ x÷ y: conclude that x÷ y is largest
among all other candidate solutions z.

So (3) means the same as (1). What are the advantages of the former over
the latter? It turns up that (3) is far more generous with respect to inference of
properties of x ÷ y. Some of these will arise from mere instantiation, as is the
case of

0 ≤ x÷ y (z := 0)

y ≤ x ≡ 1 ≤ x÷ y (z := 1)

Other properties, for instance

x÷ 1 = x

call for properties of the lower adjoint (multiplication):

z ≤ x÷ 1

≡ { Galois connection (3), for y := 1 }
z × 1 ≤ x

≡ { 1 is the unit of × }
z ≤ x
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That is, every natural number z which is at most x ÷ 1 is also at most x. We
conclude that x ÷ 1 and x are the same. The rationale behind this style of
reasoning is known as the principle of indirect equality 6:

a = b ≡ 〈∀x :: x ≤ a≡ x ≤ b〉 (4)

More elaborate properties can be inferred from (3) using indirect equality
and basic properties of the “easy” adjoint (multiplication), for instance (for
m, d > 0):

(n÷m)÷ d = n÷ (d×m)

Again Galois connection (3) blends well with indirect equality in delivering an
easy proof:

z ≤ (n÷m)÷ d

≡ { Galois connection (3), twice }
(z × d)×m ≤ n

≡ { × is associative }
z × (d×m) ≤ n

≡ { Galois connection (3) again, in the opposite direction }
z ≤ n÷ (d×m)

:: { indirect equality (4) }
(n÷m)÷ d = n÷ (d×m)

Readers are challenged to compare this with alternative proofs of the same
result using (1) or (2) instead of (3), not to mention the inductive proof which
would be required if relying on the actual, recursive implementation of x ÷ y
[19]. Simple (non inductive) proofs of this kind show the calculational power of
Galois connections used as specifications and operated via indirect equality.

This strategy is applicable to arbitrarily complex problem domains, provided
candidate solutions are ranked by a partial order such as ≤ above. This is shown
in our next example, in which the underlying partial order is the prefix relation
� on finite sequences and what is being specified is take, the function which
yields the longest prefix of its input sequence up to some given length n 7:

length z ≤ n ∧ z � x ≡ z � take(n, x) (5)

6 See [1]. Readers unaware of this way of indirectly establishing algebraic equalities
will recognize that the same pattern of indirection is used when establishing set
equality via the membership relation, cf. A = B ≡ 〈∀x :: x ∈ A ≡ x ∈ B〉 as
opposed to, e.g. circular inclusion: A = B ≡ A ⊆ B ∧B ⊆ A.

7 See [17]. The authors would like to thank Roland Backhouse for spotting this Galois
connection, whose upper adjoint g = take is specified in terms of a lower adjoint
involving id and length: f z = (length z, z). Thus the lower ordering is the product
partial order (≤)× (
), defined pointwise in the obvious way.
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The property at target,

take(n, take(m,x)) = take(min(n,m), x) (6)

will rely on another Galois connection — that of defining the minimum of two
numbers,

x ≤ n ∧ x ≤ m ≡ x ≤ min(n,m) (7)

in a way which shows how Galois connections compose with each other in a
natural and effective way 8:

z � take(n, take(m,x))

≡ { Galois connection (5), twice }
length z ≤ n ∧ length z ≤ m ∧ z � x

≡ { Galois connection of min of two numbers (7) }
length z ≤ min(n,m) ∧ z � x

≡ { (5) again, now folding }
z � take(min(n,m), x)

:: { indirect equality over prefix partial ordering 
 }
take(n, take(m,x)) = take(min(n,m), x)

Once again, the inductive proof of the same property likely to be arise from a
recursive definition of take (such as that available from the Haskell prelude) can
but be regarded as an over-kill in face of such a simple calculation relying on the
Galois connection concept.

One may wonder about the extent to which such a calculational style carries
over to supporting the actual synthesis of the implementation of take given its
specification (5) in the form of a Galois connection. This brings us to the core
subject of the current report

How calculational is programming from Galois connections?

Reference [19] shows how the defining Galois connection of (÷) provides most
of what is required for calculating its implementation. Reference [17] does the
same for take, but Galois connection (5) is productive only after an inductive
definition of prefix (�) is given explicitly, at point level. This somehow suggests
that similar, but more economic and generic reasoning could be performed at the
point-free level of the algebra of programming [6], capitalizing on the point-free
definition of partial orderings such as prefix as relational folds.

Presenting such a generic, pointfree style of programming from Galois con-
nections is the main aim of the current report and leads us into the core of the
research being reported.

8 For a detailed account of the algebra of Galois connections see eg. [1, 19, 17].
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3 Preliminaries

In this section we give a minimal review of the point-free calculus of relations.
For a thorough introduction, the reader is referred to Aarts et al [1], and to Bird
and de Moor [6] for a categorical perspective.

Relations. A relation R from set B to set A, written R :: A← B, is a subset
of the set � = {(a, b) | a ∈ A ∧ b ∈ B}. When (a, b) ∈ R, we say R maps b
to a. Set operations such as union, intersection, etc., apply to relations as well.
The largest relation (with respect to set inclusion (⊆)) of its type is �, while
the empty relation is denoted by ⊥. Given R :: A← B and S :: B ← C, their
composition R · S :: A← C is defined by:

(a, c) ∈ (R · S) ≡ 〈∃b :: (a, b) ∈ R ∧ (b, c) ∈ S〉.

Composition is monotonic with respect to (⊆). The identity relation idA :: A←A
defined by 〈∀a : a ∈ A : (a, a) ∈ idA〉 is the unit of composition. We often omit
the subscript when it is clear from the context. Given a relation R :: A←B, its
converse R◦ :: B←A is defined by (b, a) ∈ R◦ ≡ (a, b) ∈ R.

A relation that is a subset of id is said to be coreflexive, often used to filter
results satisfying certain conditions. Given a predicate p, the coreflexive relation
p? is defined by: (a, a) ∈ p? ≡ p a. The domain and range of a relation R are
given respectively by dom R = id ∩ (R◦ · R) and ran R = id ∩ (R · R◦). A
relation R is said to be (1) simple, if (a, b) ∈ R and (a′, b) ∈ R implies a = a′,
or R · R◦ ⊆ id ; (2) entire, if every b ∈ B is mapped to some a, or id ⊆ R◦ · R.
A (total) function is a relation that is both simple and entire. As a convention,
single small-case letters refer to functions. One nice property of functions is that
inclusion equivals equality: f ⊆ g ≡ f = g. The following shunting rules allows
us to move functions to the other side of inclusion:

f ·R ⊆ S ≡ R ⊆ f◦ · S, R · f◦ ⊆ S ≡ R ⊆ S · f . (8)

The relation R ·R◦ is called the image of R, denoted by img R.
Given R :: A←B, S :: B←C, and T :: A←C, the relation T/S :: A←B is

defined by the Galois connection:

R · S ⊆ T ≡ R ⊆ T/S.

If (·S) is like multiplication, (/S) is like division: T/S is the largest relation such
that T/S · S ⊆ T .

Relations on functions Relations are not bound to relating “atomic values” only:
they can relate functions with other functions, for instance. An example of this
is the so-called Reynolds arrow combinator, R← S, which given two relations
R :: D← C, S :: B←A, is the relation on functions such that

(f, g) ∈ (R← S) ≡ f · S ⊆ R · g (9)
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So, f being (R←S)-related to g means that f and g produce R-related outputs
provided their inputs are S-related 9. We will write notation

R S
f�� (10)

as abbreviation of (f, f) ∈ (S←R) — the same as f ·S ⊆ R·f — which expresses
a monotonicity condition on f . For example, let ≤ and � be two partial orders.

Then writing � ≤f�� means that f is monotonic on such orderings.

Relators, Sum, and Product A relator is an extension of a functor in category
theory. For the purpose of this report it suffices to know that a relator F consists
of an operation on types that takes a typeA to another type FA, and an operation
on relations, denoted by the same symbol F, that takes R :: A←B to FR :: FA←
FB. A relator is supposed to preserve identity (FidA = idFA) and composition
(FR ·FS = F(R ·S)), and is monotonic with respect to (⊆) (R ⊆ S⇒FR ⊆ FS).
The unit relator 1 takes any type to the unit type (with one element denoted
by ()), and any relation to id .

A bi-relator is a relator generalised to having two arguments. We will need
two bi-relators: sum (+) and product (×). For (×), the operation on types is the
Cartesian product A × B, defined by {(a, b) | a ∈ A ∧ b ∈ B}. The projections
are fst (a, b) = a and snd (a, b) = b. Given R :: A← C and S :: B ← C, the
“split” 〈R,S〉 :: (A×B)← C is defined by:

((a, b), c) ∈ 〈R,S〉 ≡ (a, c) ∈ R ∧ (b, c) ∈ S.

Equivalently, 〈R,S〉 = (fst ·R)∩ (snd · S). The operation on relations is defined
using split:

(R× S) = 〈R · fst , S · snd〉.
Functional programmers may be more familiar with the special case for functions:
〈f, g〉 a = (f a, g a), and (f × g) (a, b) = (f a, g b).

The disjoint sum of two sets A and B is defined by A + B = {inl a | a ∈
A} ∪ {inr b | b ∈ B}, with inl and inr being two injections. Given two relations
R :: A←B and S :: A← C, their “join” [R,S] :: Afrom(B + C) is defined by:

(a, inl b) ∈ [R,S] ≡ (a, b) ∈ R (a, inr c) ∈ [R,S] ≡ (a, c) ∈ S.

Equivalently, [R,S] = (R·inl◦)∪(S ·inr◦). This gives rise to the relator operation
on relations:

R+ S = [inl ·R, inr · S].
Note the symmetry between the definitions for sum and product. We will often
need this absorption law:

[R,S] · (T + U) = [R · T, S · U ]. (11)

9 This combinator extensively studied in [2] and [16] in the context of calculating
theorems for free.
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One of the applications of the join is to define the branching operator (P →
R,S), corresponding to the if P then R else S construct in many programming
languages:

(p→ R,S) = [R,S] · ((inl · p?) ∪ (inr · (¬p)?))
= (R · p?) ∪ (S · (¬p)?).

More generally, a common programming pattern is to use the converse of a join
[T, U ]

◦
= (inl ·T ◦)∪(inr ·U◦) to simulate possibly non-deterministic case analysis,

and process the two cases by another join. In such situations the following rule
comes in handy:

[R,S] · [T, U ]
◦

= (R · T ◦) ∪ (S · U◦). (12)

4 Calculating Galois adjoints

Recall the definition of a Galois connection: given two preorders (�) on A and
(≤) on B, we say that two functions f : A← B and g : B ← A form a Galois
connection if they satisfy the following equivalence:

f x � y ≡ x ≤ g y cf. diagram: A
g

��

�
��

B
f

��

≤
��

(13)

It is quite common in Galois connections to have adjoints of disparate com-
plexity. In Galois connection (3) relating multiplication (×y) and division (÷y),
for example, the former is easier to define than the latter. A common scenario
is that of one being given the two preorders and an easy adjoint, thereupon
targeting at calculating the other adjoint.

Recall the easy/hard split discussed in Section 1. We will propose in this
section a relational operator that manifests the split: by E � H we denote a
problem specification where the easy part E is “shrunk” by the requirements of
the hard part H. It will then be shown that given (�), (≤), and lower adjoint f
in a Galois connection, the upper adjoint can be expressed by:

g = (f◦ · (�)) � (≥). (14)

We will then discuss, in this section and the next, some properties of (�) that
help us to calculate g. The operator (�) is similar to, and share many property
of, the min operator of Bird and de Moor [6], with the significant advantage of
not requiring a power allegory 10.

10 Interestingly enough, the combinator arose in [9] in reasoning about sequences in
Alloy [11]. This shows how versatile relational algebra is — the same constructs
apply evenly at both algorithm and data level.
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4.1 The “shrink” operator

The first step toward manifesting the easy/hard split is to rewrite (13) to point-
free style by turning both sides into relations between x and y. The right hand
side trivially translates to (≤) ·g and the left hand side, noting that (x, f x) ∈ f◦

and that f x � y is another way of writing (f x, y) ∈ (�), translates to f◦ · (�).
The equivalence means that the two relations are equal:

f◦ · (�) = (≤) · g. (15)

Such equality splits into two inclusions to be dealt with separately:

(≤) · g ⊆ f◦ · (�) ∧ (16)

f◦ · (�) ⊆ (≤) · g. (17)

We show that (16) is equivalent to g ⊆ f◦ · (�) provided that f is monotonic,
that is, x ≤ y ⇒ f x � f y, which can be written point-free as

(≤) · f◦ ⊆ f◦ · (�).
That (16) implies g ⊆ f◦ · (�) is easy to see — since (≤) is a preorder, g ⊆
id · g ⊆ (≤) · g. For the other direction, we reason:

g ⊆ f◦ · (�)
⇒ { monotonicity of (·) }

(≤) · g ⊆ (≤) · f◦ · (�)
⇒ { assumption: f monotonic }

(≤) · g ⊆ f◦ · (�) · (�)
⇒ { � transitive: (�) · (�) ⊆ (�) }

(≤) · g ⊆ f◦ · (�).
Concerning (17):

f◦ · (�) ⊆ (≤) · g
≡ { take converses of both sides }

(f◦ · (�))◦ ⊆ g◦ · (≥)
≡ { shunting (8) }

g · (f◦ · (�))◦ ⊆ (≥).
All in all, we have just factored Galois connection (16) into two parts,

f◦ · (�) = (≤) · g ≡ g ⊆ f◦ · (�)︸ ︷︷ ︸
“easy”

∧ g · (f◦ · (�))◦ ⊆ (≥)︸ ︷︷ ︸
“hard”

. (18)

uncovering the easy/hard blend which is implicit in the original formulation.
To see this, let us first abbreviate f◦ · (�) to S. The left hand operand of the
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conjunction, g ⊆ S, states that g must return a result permitted by S — the
“easy” part. The right hand operand g ·S◦ ⊆ (≥), on the other hand, states that
if S maps x to y (therefore (x, y) ∈ S◦), it must be the case that g x ≥ y. That
is, g returns a maximum result, under (≥), among those results allowed by S.
This is the “hard” part of the connection.

This is in fact nothing surprising: we have merely reconstructed an equivalent
definition of a Galois connection [1, Theorem 5.29, page 66]:

– f is monotonic,
– (f · g) x ≤ x,
– (f x) ≤ y⇒ x � (g y).

The calculation above, however, inspires us to capture this pattern by a new
relational operator. Given relations S :: A← B and R :: A← A, define S � R :
A←B, pronounced “S shrunk by R”, by

X ⊆ S �R ≡ X ⊆ S ∧ X · S◦ ⊆ R , cf. diagram: B

S

��

S�R

��
A A

R
��

(19)

The definition states that X must be at most S, and that if X yields an output
for an input x, it must be a maximum, with respect to R, among all possible
outputs of x. In terms of the easy/hard split, S is the easy part and R defines
the (optimisation) criterion to be taken into account in the hard part. Using the
properties of relational intersection and division, one may come up with a closed
form for S �R:

S �R = S ∩R/S◦. (20)

With the new notation we can go back to (18) and rephrase the right hand
side of the equivalence in terms of (�):

g ⊆ (f◦ · (≤)) � (�). (21)

4.2 Properties of Shrink

From the definition (19), it is clear that S � R ⊆ S. It is easy to find out under
what condition the other direction of inclusion holds: S ⊆ S � R iff S · S◦ ⊆ R,
and so

S = S �R ≡ img S ⊆ R. (22)

since img S = S · S◦. Since � is above anything, we have

S �� = S,

that is, S stays the same if we put no constraints in the “hard” part.
When R = ⊥, no maximum exists, and thus S � ⊥ yields nothing for any

input:
S �⊥ = ⊥.
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The following rule shows how (�R) distributes into relational union:

(S ∪ T ) �R = ((S �R) ∩R/T ◦) ∪ ((T �R) ∩R/S◦). (23)

This arises from (20) and distribution of intersection over union. A most impor-
tant consequence of (23) is that (�R) distributes into joins,

[S, T ] �R = [S �R, T �R], (24)

— recalling that [S, T ] = (S · inl◦) ∪ (T · inr◦) — and therefore conditionals,

(p→ S, T ) �R = (p→ (S �R), (T �R)). (25)

The following two rules allow us to distribute a function in and out of (�R):

(S · f) �R = (S �R) · f ,
(f · S) �R = f · (S � (f◦ ·R · f)).

The first equality can be proved using shunting and indirect equality, while the
second generalizes a similar result in [6].

A number of results of the (�) combinator relate to simplicity. Recall that
the image of a simple relation S is coreflexive, that is, img S ⊆ id. Then, from
(22) we draw

S = S �R ⇐ S simple and R reflexive

since img S ⊆ id and id ⊆ R entail img S ⊆ R.
Very often, R in (19) is anti-symmetric: R ∩ R◦ ⊆ id. In this case it can be

shown that S �R is always simple [9]. An application of this result concerns (21),
ensuring (f◦ · (≤)) � (�) simple for (�) a partial order. Thus equality (14) holds
in such a situation.

The special case R = id in (19) deserves some attention. In this situation,
each output in the shrunk relation can relate only to itself. Thus (y, x) ∈ S � id
only when y is the sole value that x is mapped to by S. When more than one
such y exists, x cannot be in the domain of S � id . Therefore, S � id is the largest
deterministic fragment of S. Formally,

X ⊆ S � id ≡ X � S ∧X ·X◦ ⊆ id . (26)

where X � S means S · dom X = X, that is, X is less defined than S but as
non-deterministic as S where defined. This is the �pre ordering of [18], where it
is shown to be a factor of the standard refinement ordering. The proof of (26),
given in Appendix A, essentially shows that the right hand sides of (19) and (26)
coincide.

5 Inductive relations

A question was raised in Section 1: where and how does induction crop up in
the design of a program? An answer is provided in the remainder of this report,
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in two steps. First, we recall that the “natural” way of ordering inductively
defined data (such as eg. lists and trees) is through inductive relations defined
using well-known combinators of the algebra of programming known as folds and
unfolds [6]. Second, we show how specifications written as Galois connections
on such inductive orderings “naturally” lead to inductive implementations, by
calculation.

Inductively defined datatypes. Natural numbers are often inductively defined to
be the smallest set N such that (a) 0 ∈ N; (b) if n ∈ N, so is 1 + n. Let FN be
a function from sets to sets defined by FNX = {0} ∪ {1 + n | n ∈ X}. The two
conditions together are equivalent to saying that FNN ⊆ N, and the requirement
that N being the smallest means that N is the least prefix-point, and also the
least fixed-point of FN.

11

If we abstract over 0 and (1+), representing them respectively by inl ()
and inr , F can be expressed as the type operation of relator FNX = 1 + X.
Letting inN :: N← FNN be the isomorphism between FNN and N, the successor
function (1+) can be encoded by suc = inN · inr . The number 0 is encoded
by inN (inl ()). In point-free calculation, however, we often find the constant
function zero = inN · inl · � (that always yields 0 for any input) more useful.

Many inductively defined datatypes can be encoded this way. A finite list
of elements of type A, for example, can be defined as the least fixed-point of
FListX = 1 + A × X, with constructors nil :: List A← B defined by inList ·
inl · � and cons :: List A ← (A × List A) by inList · inr . The type of leaf-
valued binary trees, as defined in Haskell notation by data Tree A = Tip A |
Bin (Tree A) (Tree A), is the least fixed-point of FTreeX = A+X ×X.

Catamorphisms. To design programs on these inductively defined datatypes, one
is often encouraged to define the function on the inductive structure of its input.
The catamorphism, also known as fold, is one such useful pattern of induction.
Functional programmers are familiar with foldr defined on lists:

foldr f e [ ] = e
foldr f e (x : xs) = f (x, foldr f e xs).

Knowing that N is an inductively defined datatype, a fold function can also be
defined on N:

foldN f e 0 = e
foldN f e (1 + n) = f (foldN f e n).

Folds exist for all datatypes defined as least fixed-points of so-called regular
relators: those defined in terms of 1, (+), (×), constants, and type relators. Let
T denote the least fixed-point of the type operation of relator F. Given a relation
R :: B ← FB, the catamorphism ([R ])F :: B ← T is the least prefix point, and

11 For f monotonic on (≤), x is a prefix-point of f if f x ≤ x, and a fixed-point if
f x = x. The least prefix-point is also the least fixed-point [3].
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also the least fixed-point, of λX → R · FX · in◦
T. Thus it is the least relation

satisfying:

([R ])F ⊇ R · F([R ])F · in◦
T, (27)

([R ])F = R · F([R ])F · in◦
T.

Take FX = 1+A×X as an example, and note that every relation R :: B← (1+
A×B) can be factored to [R1, R2] with R1 :: B← 1 and R2 :: B← (A×B). By
taking inT = [nil , cons] and instantiating R1 and R2 respectively to a constant
and a function we recover foldr above.

The fold fusion rule is one of the most important properties of folds:

([T ]) ⊆ S · ([R ])F ⇐ T · FS ⊆ S ·R.

It states conditions under which we may promote relations into the body the
fold. We will need this rule later.

Inductively defined orderings. While functional folds are often used to define
operations on inductively defined datatype, it is often overlooked that many
relations between inductively defined data can also be inductively defined as
relational folds.

The (≥) ordering on N, for example, is nothing but the least relation satis-
fying

x ≥ 0 ∧
x ≥ y⇒ (x+ 1) ≥ (y + 1).

The two lines respectively translate to � · zero◦ ⊆ (≥) and (≥) ⊆ suc◦ · (≥) · suc
in point-free style. We reason:

� · zero◦ ⊆ (≥) ∧ (≥) ⊆ suc◦ · (≥) · suc
≡ { shunting }
� · zero◦ ⊆ (≥) ∧ suc · (≥) · suc◦ ⊆ (≥)

≡ { since R ⊆ T ∧ S ⊆ T ≡ R ∪ S ⊆ T }
(� · zero◦) ∪ (suc · (≥) · suc◦) ⊆ (≥)

≡ { by (12): [R,S] · [T, U ]
◦
= (R · T ◦) ∪ (S · U◦) }

[�, suc · (≥)] · [zero, suc]◦ ⊆ (≥)
≡ { absorption (11) }

[�, suc] · (id + (≥)) · [zero, suc]◦ ⊆ (≥)
≡ { (27) }

(≥) = ([�, suc ]).
Thus (≥) is a fold.

This not the only way the ordering on natural numbers can be defined, how-
ever. If we instead perform case analysis on the lesser side of the ordering, we
come up with:

0 ≤ y ∧
x ≤ y⇒ (x+ 1) ≤ (y + 1).
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The first line translates to zero · � ⊆ (≤), where �, having type A ← N, is
equivalent to [zero, suc]

◦
. By a similar calculation, we come up with a definition

of (≤) as a fold:
(≤) = ([ zero, zero ∪ suc ]).

Given two finite lists xs and ys, let xs � ys mean that xs is a prefix of ys.
Natural numbers and finite lists are similar in structure and, through a similar
calculation, one comes up with the following definition of (�) as a fold:

(�) = ([nil ,nil ∪ cons ]). (28)

Knowing that lists are special cases of binary trees, one might define a fold
with a similar structure expressing the ordering on trees which “grow” by sub-
stitution of empty nodes by any other (sub)trees. But the two orderings above
are enough for our purposes of showing their role in calculating implementations
of adjoints of Galois connections, as is shown in the sequel.

6 Program calculation by optimization — “shrinking
specs into programs”

Given a Galois connection f x ≤ y ≡ x � g y, recall the conclusion of Section
4.1 that g can be expressed as g = (f◦ · (≤)) � (�). The next step is triggered by
a question: what can we do wherever (≤) and/or (�) are inductive relations?

In this section we will see two examples that follow a standard scheme we
propose: (1) fusion, in the easy part, of the inner ordering (≤) with f◦, to form
either a fold or a restricted form of a hylomorphism (a fold followed by the
converse of a fold); (2) shrinking the easy part using the hard part (�(�)), hence
the motto: “shrinking specs into programs”.

We present two theorems to perform the shrinking: the Greedy Theorem,
which applies when the easy part is a fold, and the Dynamic Programming (DP)
Theorem, when it is a hylomorphism where the folding phase is a function. The
Greedy Theorem is a simplification of that of Bird and de Moor [6]: it does not
need a power allegory, and thus is applicable in more categories and, we believe,
easier to comprehend. The DP-Theorem is similar to that of Bird and de Moor,
with a different precondition, arising from its more general setting.

Both theorems are datatype-generic, and in fact applicable not only for prob-
lems specified as Galois connections, but also for optimisation problems in gen-
eral.

6.1 Example of greedy programming

Given a predicate p, takeWhile p xs yields the longest prefix of xs whose elements
all satisfy p. It can be given a definition that resembles a Galois connection, apart
from having an extra condition on xs:

all p xs ∧ xs � ys ≡ xs � takeWhile p ys. (29)
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One of the ways to rewrite (29) as a Galois connection is to express all p by
a coreflexive relation. Recall that (a, a) ∈ p? ≡ p a. Therefore, (xs, xs) ∈
map p? ≡ all p xs, and (29) is equivalent to:

map p? xs � ys ≡ xs � takeWhile p ys,

a Galois connection where map p? xs is the lower adjoint. We now know that
takeWhile p can be defined in terms of (�):

takeWhile p = (map p? · (�)) � (�).
What to do now? If we manage to transform the easy part map p? · (�) into
a fold, the following Greedy Theorem gives us conditions under which we may
promote (�(�)) into a fold:

Theorem 1. ([S � R ]) ⊆ ([S ]) � R if R is transitive and S is monotonic with

respect to R◦, that is, R◦ FR◦S�� holds. Proof: see appendix B.
�

The “monotonic condition” means the same as S · FR◦ ⊆ R◦ · S, recall (10). It
states that if x1 is no worse than x2 under R, at least one output of S on x1 is
no worse than any output on x2. Thus we lose nothing if we compute only the
locally optimal answers, that is, doing (�R) in the fold.

Transforming map p? · (�) into a fold turns out to be easy because, as shown
in (28), (�) is already a fold. By a standard fold-fusion we get:

map p? · (�) = ([nil ,nil ∪ (cons · (p?× id)) ]),

that is, in every step we may choose between taking an empty prefix (nil) and,
if the current element satisfies p, attach it to the previously computed prefix
(cons · (p?× id)).

The monotonicity condition basically says that a longer prefix remains longer
after such an operation. For a formal proof, it expands to nil ⊆ (�) · nil , which
is true because id ⊆ (�), and

(nil ∪ (cons · (p?× id))) · (id × (�)) ⊆ (�) · (nil ∪ (cons · (p?× id))).

The interesting part is verifying cons · (p?× (�)) ⊆ (�) · cons · (p?× id), which
is true because cons · (id × (�)) ⊆ (�) · cons, following from (28).

By Theorem 1 we may choose ([ [nil ,nil∪(cons ·(p?×id))]�(�) ]) as a candidate
for takeWhile p. By (24), we may distribute (�(�)) into the join. The relation
(nil ∪ (cons · (p? × id))) � (�) returns a longer list whenever possible, that is,
whenever the current element satisfies p. Thus the fold refines to ([nil , ((p·fst)→
nil , cons) ]), which translates to the usual definition of takeWhile:

takeWhile p [ ] = [ ]
takeWhile p (x : xs) | p x = x : takeWhile p xs

| otherwise = [ ].
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6.2 Example of DP-programming

Given the Galois connection (3) between multiplication and division, (÷y) can
be expressed in terms of �:

(÷y) = ((×y)◦ · (≤)) � (≥).
To calculate (÷y), one may proceed the same way as in the previous section and
fuse (×y)◦ into (≤) to form a fold, and attempt to apply Theorem 1. This time,
however, we can not prove the monotonicity condition.

Fortunately, for this and many other examples, the following Dynamic Pro-
gramming Theorem applies. Let 〈μX :: f X〉 denote the least fixed point of f ,
the theorem goes:

Theorem 2. Let M = (([h ])·([T ])
◦
)�R, we have 〈μX :: (h·FX ·T ◦)�R〉 ⊆ M

if h is monotonic with respect to R, that is, R FR
h�� holds, and dom T ⊆

dom FM . Proof: see appendix B.
�
As a special case, by taking h = in (and thus ([h ]) = id), we have

〈μX :: (in · FX · T ◦) �R〉 ⊆ ([T ])
◦ �R,

if in · FR ⊆ R · in.
To apply Theorem 2, we aim at turning (×y)◦ · (≤) to converse of a fold or,

equivalently, turning (≥) · (×y) into a fold. It is known that (×y) can be defined
in terms of a fold: (×y) = ([ zero, (+y) ]). By fold fusion, we get: (≥) · (×y) =
([�, (+y) ]): the base case can be any number.

The monotonicity condition in Theorem 2 instantiates to:

[zero, suc] · (id + (≥)) ⊆ (≥) · [zero, suc],
which expands to two terms: zero ⊆ (≥) · zero, which is true because id ⊆ (≥),
and suc · (≥) ⊆ (≥) · suc, which follows from the definition of (≥) as a fold.
Theorem 2 is thus applicable and we get:

〈μX :: ([zero, suc] · (id+X) · [�, (+y)]
◦
) � (≥)〉 ⊆ ([ zero, (+y) ])

◦ � (≥).
Denote (+y)◦, a partial function that applies only to input no less than y,

by (−y), and note that zero · � = zero. By (12), the left hand side simplifies to
〈μX :: (zero ∪ (suc ·X · (−y))) � (≥)〉. It is a recursive definition where, in every
step, we may choose to simply return 0 or, if possible, subtract y from the input
and add 1 to the recursively computed result.

We have yet to simplify (zero∪(suc ·X ·(−y)))�(≥). For an intuition, note that
since the result, if any, of suc ·Y for any Y is strictly larger than 0, to maximise
the output, we shall just choose the right branch whenever possible, that is,
when the input is no less than y. For a formal calculation, let Y = suc ·X · (−y).
By (23) the term to simplify expands to:

(zero � (≥) ∩ (≥)/(suc · Y )◦) ∪
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((suc · Y ) � (≥) ∩ (≥)/zero◦).

It can be shown, however, that for all Y and Z, Z ⊆ suc·Y implies Z·zero◦ ⊆ (≥).
Also, for all Z, Z ⊆ zero implies Z · Y ◦ · suc◦ ⊆ (≥) only if Z · Y ◦ is the empty
relation. Therefore, (zero ∪ Y ) � (≥) simplifies to ((≥ y)→ suc ·X · (−y), zero),
that is, we perform suc · X · (−y) only if the input is in the domain of (−y).
Otherwise we return 0. This results in the usual program for division:

x ÷ y | x ≥ y = 1 + ((x− y)÷ y)
| otherwise = 0.

7 Case study: scheduling as a Galois Connection

As our closing case study, we will be looking at a more complex problem related
to task scheduling. The full detail cannot be covered in this report, and we will be
proceeding in a less formal manner, sketching only an outline of the development.

Let A be a set of tasks, and let g :: PA ← A such that for each x ∈ A,
g x is the set of tasks that have to wait for x to complete before commencing,
while the spans, time need by each task, is given by a function N← A where
N models discrete time intervals (eg. days, months). Dependencies in g form an
acyclic graph, known as a Gantt graph, coined after Henry Gantt (1861-1919)
who introduced them.

A time schedule associating starting times to tasks (optimal or not), is also
modelled by a function of type N← A. In summary, we introduce the following
types:

Gantt =A← PA, Spans =N←A, Schedule =N←A.

The types Spans and Schedule will be refined later. We use variables sp for
Spans, sh for Schedule, x, y, etc. for tasks, and s, t for time.

Given g :: Gantt , the goal is to calculate a function bschg :: Schedule←Spans
that computes the “best” schedule for the tasks — “best” in the sense that tasks
start as early as possible. Take, for instance, A = {a, b, c, d}, for task spans sp =
{(1, a), (5, b), (10, c), (20, d)} and graph g = {({b}, a), ({c}, b), ({}, c), ({c}, d)},
the best schedule will be bschg sp = {(0, a), (1, b), (20, c), (0, d)}.

How do we specify bschg? Note that “best” means smallest and that bschg sp
should be monotonic in both arguments: more dependencies in g and/or longer
tasks in sp can only defer tasks start-up times into the future. This suggests
specifying bschg as adjoint of a Galois connection between schedules and spans.
Let lazyg :: Spans←Schedule be a function that, given a schedule, computes for
each task the maximum time it is allowed to take (hence the name).

lazyg sh ≥̇ sp ≡ sh ≥̇ bschg sp,

where (≥̇) denotes (≥) lifted to functions: f ≥̇ h ≡ 〈∀x : x ∈ A : f x ≥ h x〉.
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The function lazyg appears to be easier to define than bschg. In the definition
below, (t ←� x) � sh denotes a function sh, whose domain does not include x,
extended with a mapping from x to t.

lazyg {} = {}
lazyg ((t←� x) � sh) | g x ⊆ dom sh = (s←� x) � sp

where sp = lazyg sh
s = �{sh y | y ∈ g x} − t.

The � operator in the non-empty case takes the minimum of a set, thus the
span allowed for each task x is the difference between the earliest scheduled time
among tasks that follow x and t, the time scheduled for x. The non-deterministic
pattern (t←� x)�sh does not explicitly specify an order in which tasks are picked.
However, the guard g x ⊆ dom sh, needed because we want to look up all the
y’s in sh, implicitly enforces the topological order — x is processed before all
tasks that depend on it. Equivalently, we could have treated the schedule as a
list of pairs sorted in topological order: Schedule = Spans = [(N, A)]. One may
thus drop the domain check and come up with the following definition for lazyg:

lazyg [ ] = [ ]
lazyg ((t, x) : sh) = (s, x) : lazyg sh

where s = �{sh y | y ∈ g x} − t.

For brevity we still use the syntax sh y for looking up.

To calculate bschg = ((lazy g)◦ · (≥̇)) � (≤̇), we have to construct the converse
of lazyg. Consider, in s = �{sh y | y ∈ g x} − t, what t could be given s and x.
If g x is empty, s =∞, and t could be any finite value. With g x non-empty, we
have t = �{sh y | y ∈ g x} − s. However, t :: N must be non-negative. So we are
putting an constraint on sh: �{sh y | y ∈ G x} must be no smaller than s. That
gives us a very non-deterministic program for (lazyg)

◦: we go through the graph
in topological order until we reach a task say y, for which g y is empty, guess
a possible time to schedule it, and go back to some task x that must be done
before y. If y is scheduled late enough that x can finish, that’s fine. Otherwise
this trial fails and we backtrack.

We can refine (lazyg)
◦ to a more deterministic program that explicitly pass

the constraint �{sh y | y ∈ g x} ≥ s down through the recursive calls, so that
the choice of t for when g x = {} is guaranteed to be late enough. We use an
extra argument, a mapping from tasks to time, that records the earliest time
each task must be scheduled. Initially it is all zero, meaning that there is no
constraint yet:

(lazyg)
◦ sp = scheg (sp, {(z, 0) | z ∈ dom sp}).

In point-free style, let init sp = (sh, {(z, 0) | z ∈ dom sp}), we have (lazy g)◦ =
scheg · init . The main computation happens in sche, the name suggesting that
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it returns a scheduling, but not always the best one. It can be defined as:

scheg ([ ], ) = [ ]
scheg ((s, x) : sp, c) = (t, x) : scheg (sp, c′)

where t = if null (g x) then (something no less than c x) else c x
c′ y = if y �∈ g x then c y else (t+ s) � (c y).

This is an unfold, that is, converse of a fold, on lists. In each step, the next task
in topological order is scheduled, and the constraint set c is updated to c′ to
schedule the rest of the tasks.

Now that we have bschg = (scheg · init · (≥̇)) � (≤̇), the next steps are to fuse
(≥̇) into scheg · init to form an unfold, and to promote (�(≤̇)) into the unfold.
Fusing (≥̇) with scheg merely makes the value of t more non-deterministic: we
are left with only t ≥ c x. To promote (�(≤̇)) we need a theorem related to
Theorem 2 that needs a stronger antecedent.

Theorem 3. Let H = ([h ]) · ([T ])
◦
and M = H � R, we have 〈μX :: h · FX ·

(T ◦ �Q)〉 ⊆ M if h is monotonic on R and h · FH ·Q◦ ⊆ R◦ · h · FH.

While Theorem 2 potentially makes recursive calls on all possible values sug-
gested by T ◦ and picks a optimal one by R, Theorem 3 allows us to decide
earlier on a value returned by T ◦ using (�Q), if we are sure that a better value
under Q always leads to a better result under R.

Application of Theorem 3 confines the value of t to the smallest possible: c x.
The development concludes with the following program:

bschg ([ ], ) = [ ]
bschg ((s, x) : sp, c) = (t, x) : bschg (sp, c′)

where c′ y = if y �∈ g x then c y else (c x+ s) � (c y).

8 Conclusions and future work

Poor scalability is often pointed out as the main problem of the mathematics of
program construction. By contrast, Galois connections are a well-known example
of mathematical device which scales up from trivial to complex problem domains.
The research programme which embodies this report starts from the conjecture
that the latter could help the former to scale up.

In this context, “programming from Galois connections” is proposed as a
way of calculating programs from specifications which take the form of Galois
connections. This (emerging) discipline is beneficial in several respects. First,
the specification of a “hard operation as adjoint of a Galois connection provides
early insight on the properties of the adjoint at target, well before the actual
implementation is derived. This is granted by the rich algebra of Galois con-
nections, which compose which each other in several ways (thus growing larger
and larger) and offer a powerful framework for reasoning about suprema without
making these explicit in the calculations.
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It should be noted that Galois connections are ubiquitous in mathematics and
computer science. In the latter case, they have been shown to offer a powerful way
to structure the allegory calculus of Freyd and Ščedrov [10, 6], of which Tarski’s
relation algebra is an instance [20]. Several examples of such Galois connections
are given in the current report (see eg. [1, 5, 16]) for a detailed account). At the
other side of the spectrum, they have even been proposed (together with the
principle of indirect equality) as the building block of a new brand of theorem
provers [19].

In this context, the main contribution of the current report is to be found in
the proposed process of deriving, using the algebra of programming [6], the al-
gorithmic implementation of Galois adjoints, expressed in closed formulæ which
record what is “easy” and “hard” to implement. However, instead of resorting
to explicit, point-level suprema, as is usual in textbooks, a new relational combi-
nator (named shrinking) is proposed which expresses such formulæ at pointfree
level.

Thanks to the rich algebra of this combinator, already sketched in [9], one
is able to express and generalize previous results on dynamic and greedy pro-
gramming by Bird and de Moor [6], in a way which dispenses with the heavy
artillery of power-allegories [10]. As a side effect, such results become accessible
to a wider audience and easier to apply.

The whole division example provides a measure of progress: the verification
of a given algorithm against the given Galois connection (3), carried out in [19],
now gives place to its construction from the connection itself.

So much for pros. Future work is concerned with a number of cons, namely
the fact that not every problem casts into a Galois connection. The typical
counter-example arises from the (false) lower adjoint being an embedding (or
even the identity) and lacking monotonicity. Still calculations can proceed, but
more work and experience is required before concluding. Functions arising in
bioinformatics (eg, in finding sections of DNA dense with mutations) such as
the shortest maximally-dense prefix (two superlatives!) [7] remain a challenge.

Still on the negative side, we feel that the conceptual economy of the overall
approach is still unmatched by the effort needed to carry out particular exam-
ples. A body of knowlege around these results needs to be developed, structured
in corollaries, special cases, etc. The general result concerning checking mono-
tonicity in the side conditions of theorems 1 and 2 given in appendix C is an
example of what is required.

Last but not least, we find that the shrinking combinator has a lot more to
offer to algorithmic refinement, in particular with respect to its two-dimensional
factorization: either increasing definition or reducing non-determinism [18]. As
discussed in section 4.1, R � id captures the largest deterministic fragment of a
specification R, that is, that part of R which cannot be further refined. So, in a
sense, all effort should go into refinining the complement of R � idi with respect
to R. Embodying this intuition in in the greedy and dynamic programming
theorems is celarly a matter of future research.
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A Checking for deterministic fragments of specifications

The aim is to prove (26):

X ⊆ S � id ≡ S · dom X = X ∧X ·X◦ ⊆ id .

We reason:

S · dom X = X ∧ X ·X◦ ⊆ id

≡ { replacing X◦ by (S · domX)◦ }
S · dom X = X ∧ X · dom X · S◦ ⊆ id

≡ { X · dom X = X }
S · dom X = X ∧ X · S◦ ⊆ id

≡ { X ⊆ S · dom X ≡ X ⊆ S }
S · dom X ⊆ X ∧ X ⊆ S ∧ X · S◦ ⊆ id

≡ { claim: X · S◦ ⊆ id ⇒ S · dom X ⊆ X, see below }
X ⊆ S ∧ X · S◦ ⊆ id

≡ { univesal property of (�) }
X ⊆ S � id .

The claim is proved below:

X · S◦ ⊆ id

≡ S ·X◦ ⊆ id

⇒ { monotonicty of (·) }
S ·X◦ ·X ⊆ X

⇒ { dom X ⊆ X◦ ·X }
S · dom X ⊆ X.

B Proofs of theorems

Proof of Theorem 1.

Proof.

([S �R ]) ⊆ ([S ]) �R
≡ { universal property of (�) }

([S �R ]) ⊆ ([S ]) ∧ ([S �R ]) · ([S ])
◦ ⊆ R

≡ { monotonicity of ([ ]) and X �R ⊆ R }
([S �R ]) · ([S ])

◦ ⊆ R

≡ { hylomorphism: ([R ]) · ([S ])
◦
= 〈μX :: R · FX · S◦〉 }

〈μX :: (S �R) · FX · S◦〉 ⊆ R
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⇐ { least prefix point }
(S �R) · FR · S◦ ⊆ R

⇐ { monotonic condition: S · FR◦ ⊆ R◦ · S }
(S �R) · S◦ ·R ⊆ R

⇐ { since S �R ⊆ R/S◦ }
(R/S◦) · S◦ ·R ⊆ R

⇐ { division: R/S · S ⊆ R }
R ·R ⊆ R

≡ { R transitive }
true.

�

Proof of Theorem 2

Proof. For brevity we let H = ([h ]) · ([T ])
◦
, and thus M = H �R. The aim is to

prove 〈μX :: (h · FX · T ◦) �R〉 ⊆M . We reason:

〈μX :: (h · FX · T ◦) �R〉 ⊆M

⇐ { least prefix point }
(h · FM · T ◦) �R ⊆M

≡ { universal property of (�) }
(h · FM · T ◦) �R ⊆ H ∧
((h · FM · T ◦) �R) ·H◦ ⊆ R.

The two proof obligation are proved separately. For the first one we reason:

(h · F(H �R) · T ◦) �R
⊆ { X �R ⊆ X }

h · F(H �R) · T ◦

⊆ { X �R ⊆ X, F relator }
h · FH · T ◦

⊆ { H = ([h ]) · ([T ])
◦
, hylomorphism }

H.

For the second proof obligation we reason:

((h · FM · T ◦) �R) ·H◦

⊆ { since X �R ⊆ R/X◦ }
(R/(T · FM◦ · h◦)) ·H◦

⊆ { see below }
((R · h · FM)/T ) ·H◦
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⊆ { H◦ = T · FH◦ · h◦, division }
R · h · FM · FH◦ · h◦

⊆ { since M = H �R and X �R ⊆ R/X◦ }
R · h · F(R/H◦) · FH◦ · h◦

⊆ { functor, division }
R · h · FR · h◦

⊆ { monotonicity condition: h · FR ⊆ R · h }
R ·R · h · h◦

⊆ { h simple: h · h◦ ⊆ id }
R ·R

⊆ { S transitive }
R.

What remains is to show:

R/(T · FM◦ · h◦) ⊆ (R · h · FM)/T ,

under the given condition dom T ⊆ dom FM . We use an indirect inclusion:

X ⊆ R/(T · FM◦ · h◦)
≡ X · T · FM◦ · h◦ ⊆ R

≡ { function shunting }
X · T · FM◦ ⊆ R · h

⇒ { (·) monotonic }
X · T · F(M◦ ·M) ⊆ R · h · FM

⇒ { since dom X ⊆ X◦ ·X }
X · T · dom FM ⊆ R · h · FM

⇒ { assumption: dom T ⊆ dom FM }
X · T · dom T ⊆ R · h · FM

≡ { T · domT = T }
X · T ⊆ R · h · FM

≡ X ⊆ (R · h · FM)/T .

�

Proof of Theorem 3

Proof. Recall H = ([h ]) · ([T ])
◦
and M = H � R. The aim is to prove 〈μX ::

h · FX · (T ◦ �Q)〉 ⊆ M . We reason:

〈μX :: h · FX · (T ◦ �Q)〉 ⊆ M

⇐ { least fixed point }
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h · FM · (T ◦ �Q) ⊆ M

{ universal property of (�) }
h · FM · (T ◦ �Q) ⊆ H ∧ h · FM · (T ◦ �Q) ·H◦ ⊆ R.

The first requirement is easy and omitted here. For the second, we reason:

h · FM · (T ◦ �Q) ·H◦

⊆ { since S �Q ⊆ Q/S◦ }
h · FM · (Q/T ) ·H◦

= h · FM · (Q/T ) · T · FH◦ · h◦

⊆ h · FM ·Q · FH◦ · h◦

⊆ { assumption: h · FH ·Q◦ ⊆ R◦ · h · FH }
h · FM · FH◦ · h◦ ·R

⊆ { since (H �R) ·H◦ ⊆ R }
h · FR · h◦ ·R

⊆ { monotonicity: h · FR ⊆ R · h }
R · h · h◦ ·R

⊆ { h simple }
R ·R

⊆ R.

�

C Handling monotonicity

Let R = ([ I ]) where in ⊆ I. Then it is always true that in · FR ⊆ R · in.

in · FR ⊆ R · in
≡ { fold cancellation }

in · FR ⊆ I · FR
⇐ { monotonicity }

in ⊆ I.

Thus, for instance, let in = [zero, suc], we have

in · (id + (≥)) ⊆ (≥) · in,

since (≥) = ([�, suc ]) and zero ⊆ �. Similarly for

in · (id + (≤)) ⊆ (≤) · in,

since (≤) = ([ zero, zero ∪ suc ]) and suc ⊆ zero ∪ suc.


