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Abstract—Wireless multimedia sensor networks (WMSNs) 

have been potentially applicable for several emerging applications. 
However, the available resources, i.e., power and rate, of visual 
sensors in a WMSN are very limited. Hence, it is important but 
challenging to achieve efficient resource allocation and optimal 
video compression while maximizing the overall network lifetime. 
In this paper, a power-rate-distortion (PRD) optimized 
resource-scalable low-complexity multiview video encoding 
scheme is proposed. In our video encoder, both the temporal and 
interview information can be efficiently exploited based on the 
comparisons of extracted media hashes without performing 
motion and disparity estimations, which are known to be 
time-consuming. We present a PRD model to characterize the 
relationship between the available resources and the RD 
performance of our encoder. More specifically, an RD function in 
terms of the percentages for different coding modes of blocks and 
the target bit rate under the available resource constraints is 
derived for optimal coding mode decision. Analytic results are 
provided to verify the resource scalability and accuracy of our 
PRD model, which can provide a theoretical guideline for 
performance optimization under limited resource constraints. 
Both the analytic and simulation results have shown the 
applicability of our video coding scheme for WMSNs. 
 

Index Terms—Low-complexity video coding, multiview video 
coding, resource-scalable video coding, power-rate-distortion 
optimization, wireless multimedia sensor networks, robust media 
hash. 

I. INTRODUCTION 

A. Background 
ITH the availability of low-cost hardware, wireless 
multimedia sensor networks (WMSNs) have been 

potentially applicable for several emerging applications, such 
as security monitoring and environmental tracking [1]-[2]. A 
WMSN is a network of several wireless embedded devices 
supporting to retrieve visual, acoustic, and scalar data from a 
monitored physical environment. Here, a WMSN consisting of 
several battery-powered visual sensor nodes (VSNs) scattered 
in several sensor fields is considered, as shown in Fig. 1. Each 
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VSN equipped with a low-cost camera (e.g., complementary 
metal-oxide-semiconductor, i.e., CMOS camera) can capture 
and encode visual information along with delivering the 
compressed video data to the aggregation and forwarding node 
(AFN). The AFNs aggregate and forward the video data to the 
remote control unit (RCU), usually supporting a powerful 
decoder for video decoding. Compared with traditional 
network systems, WMSN operates under several resource 
constraints (e.g., lower computational capability, limited power 
supply, and narrow transmission bandwidth). This will pose an 
important problem of simultaneously minimizing the power 
consumption and optimizing the video compression 
performance for each VSN in a WMSN while maximizing the 
overall network lifetime [3]. 
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Fig. 1.  An illustrative example of a wireless multimedia sensor network 
(WMSN) architecture. 

Based on the experimental analysis presented in [4], in 
typical scenarios of wireless video communication among 
visual sensor devices, the video encoding process consumes a 
significant portion (about 40%~60%) of the total power 
consumption for a video device. For example, for a well-known 
WMSN hardware platform, called Crossbow Stargate [2], 
equipped with a low-power USB video camera, the video 
encoder consumes about 48% of the total power while the 
wireless transmission consumes about 11% of the total power 
[4]. In this paper, we focus on minimization of the power 
consumptions for the two major components (video encoding 
and wireless video transmission) to prolong the operational 
lifetime of each wireless visual sensor in order to maximize the 
overall network lifetime while optimizing video compression 
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performance. The power consumption of the remaining 
components depends on specific system design and cannot be 
easily controlled from a video encoding perspective [4]. 

To reduce the power consumption of both the video encoder 
and wireless video transmission for a VSN, low-complexity 
and high-efficiency video encoding is critically desired. If the 
video encoding complexity can be minimized while certain 
compression efficiency can be kept, the power consumption for 
both video encoding and video data transmission can be 
simultaneously decreased. However, current video coding 
standards (e.g., H.264/AVC [5]) usually perform complex 
interframe encoding (e.g., motion estimation with high 
computational complexity for exploiting temporal correlation 
of successive frames). On the other hand, to sufficiently exploit 
correlations among adjacent VSNs in a WMSN, current 
multiview video coding (MVC) schemes (e.g., H.264/ 
AVC-based MVC, i.e., joint multiview video model) [6]-[7] 
usually perform both interview (e.g., disparity estimation) and 
temporal (e.g., motion estimation) predictions at the encoder 
with high complexity. In addition, to perform interview 
prediction, uncompressed frames must be exchanged among 
VSNs, which is prohibitive in a WMSN. 

B. Related Works 
To reduce the power consumption of a video encoder, 

several approaches have been proposed, including motion 
estimation-based low-complexity video encoder designs 
[8]-[9], hardware-based video encoder designs [10], and joint 
video encoder/decoder and hardware adaptation schemes 
[11]-[12]. It is claimed that the existing approaches, so far, 
focused on reduction of encoder complexity and power 
consumption through heuristic adaption, instead of systematic 
power optimization, due to their lack of an analytic model to 
characterize the optimal trade-off between power consumption 
and video encoding efficiency [4]. Hence, in [4], [13]-[14], a 
power-rate-distortion (PRD) optimization framework is 
proposed for optimal resource allocation and performance 
optimization of wireless video communication among video 
sensor devices. Based on the PRD model, the minimum video 
distortion that a video encoder can achieve under current power 
and rate constraints can be derived. 

However, the above-mentioned approaches [4], [8]-[14] are 
all based on a standard or motion estimation-based video 
encoder, which is essentially with high encoding complexity. 
Recently, several “motion estimation-free” low-complexity 
video encoding schemes have been proposed, which can be 
roughly classified into three categories shown as follows. 

(i) Still image-based or standard codec-based 
low-complexity video coding [15]-[18]: without performing 
motion estimation, the most straightforward video encoder is to 
apply still-image/intraframe encoding to each frame 
individually. In [18], the H.264/AVC intraframe encoder was 
used as baseline benchmarking to evaluate their 
low-complexity encoding scheme. To further exploit temporal 
correlation, H.264/AVC interframe coding with no motion, 
where all the motion vectors are set to zeros, has been shown to 

be very efficient and difficult to be defeated [18]. 

(ii) Collaborative video coding and transmission [19]-[20]: 
To further increase coding efficiency, interview correlation 
among VSNs can be exploited via collaborative video coding 
and transmission. While transmitting the intra-encoded frames 
from adjacent VSNs toward the AFN through the same 
intermediate node, this node can perform an image matching 
procedure to detect the similar regions, which can be encoded 
once only for these frames. However, image matching is 
usually a complex task, but current researches [19]-[20] usually 
assume that they can be easily detected or already known as 
prior knowledge. 

(iii) Distributed video coding (DVC) [18], [21]-[24]: The 
major characteristic of DVC is that individual frames are 
encoded independently, but decoded jointly. The major 
encoding burden, i.e., motion estimation, can be shifted to the 
decoder while preserving a certain coding efficiency. More 
specifically, DVC models lossy video coding as a channel 
coding problem based on Wyner-Ziv information theory. The 
statistical dependency between two correlated sources, a frame 
W (called Wyner-Ziv frame) and its side information Y, is 
modeled as a virtual correlation channel. At the encoder, the 
compression of W can be achieved by transmitting only part of 
the parity bits (called Wyner-Ziv bits) derived from the 
channel-encoded version of W. The decoder uses the received 
Wyner-Ziv bits and the side information Y derived from 
previous decoded video signals to perform channel decoding 
for the reconstruction of W. The side information Y can be 
generated by decoder-side motion estimation exploiting the 
temporal and/or interview correlations, respectively, from 
current VSN and adjacent VSNs. 

C. Overview of the Proposed Scheme 
 So far, the existing “motion estimation-free” low-complexity 
video encoding schemes lack an analytic model to characterize 
the optimal trade-off between power consumption and video 
encoding efficiency. Hence, in this paper, we focus on 
designing a resource-scalable “motion estimation-free” low- 
complexity multiview video encoder (preliminarily presented 
in [25]-[27]), and deriving a PRD model for optimal resource 
allocation and performance optimization of our video encoder 
(preliminarily presented in [28]). 

In our multiview video encoder, both the temporal and 
interview predictive coding can be efficiently achieved by 
extracting the significant differences between a frame and its 
reference frames, respectively, from the same VSN and the 
adjacent VSNs based on comparing the extracted media hashes 
[29] without performing motion and disparity estimations. To 
exploit interview correlation, limited inter-VSN 
communications during the encoding process are allowed to 
exchange hash information of relatively small size. 

In particular, the unique characteristic of our scheme is that a 
PRD model is proposed to characterize the relationship 
between the available resources (e.g., power supply and target 
bit rate) and the RD performance of our video encoder. Based 
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on this model, the encoding procedure can be roughly viewed 
as the combination of the intra-mode block encoding, the 
inter-mode block encoding, and the entropy encoding 
operations. More specifically, an RD function in terms of the 
percentages for different coding modes of blocks and the target 
bit rate under the available resource constraints is derived for 
optimal block coding mode decision. With this model, resource 
allocation can be efficiently performed at the encoder by 
adjusting the encoding parameters according to the available 
resources while optimizing the reconstructed video quality. It 
should be noted that the major goal of this paper is to propose a 
resource-scalable low-complexity video encoder for a WMSN 
and a PRD model for resource allocation and performance 
optimization of our encoder, instead of competing the coding 
performance against the existing standard, motion estimation- 
based, or non-resource-scalable video encoding schemes. 

The remainder of this paper is organized as follows. The 
problem formulation of this paper is described in Sec. II. The 
proposed hash-based video coding scheme and the proposed 
low-complexity video coding scheme are described in Sec. III 
and Sec. IV, respectively. The proposed PRD model for 
resource allocation and performance optimization of our 
low-complexity video encoder together with analytical results 
is described in Sec. V. Simulation results are presented in Sec. 
VI. Finally, conclusions and future works are given in Sec. VII. 

II. PROBLEM FORMULATION 
In this section, we will formulate the problems we want to solve, 
including (1) low-complexity video encoding without 
performing motion estimation and (2) PRD optimized resource 
allocation and performance optimization for our low- 
complexity video encoder, as follows. Our low-complexity 
video encoder is based on the proposed hash-based video 
coding scheme described in Sec. III, which can be formulated 
as follows. 

Problem 1 (media hash-based video block coding): Given 
two video blocks, B and B’, where B is the block to be encoded 
and B’ is the reference block of B. The significant component 
of B, significantly different from B’, can be extracted by 
comparing the respective media hashes of B and B’. The media 
hash should be properly extracted such that ß is more similar to 
B than B’, where ß is an estimate of B and obtained by 
modifying B’ using the significant component of B. 

That is, the compression of a block can be achieved via 
encoding its significant component derived from hash 
comparison while the reconstruction of the block can be 
achieved via integrating its significant component and its 
reconstructed reference block. The problem 1 will be realized 
and solved in Sec. III, which will contribute the basis of the 
proposed low-complexity video encoding scheme described in 
Sec. IV. 
 On the other hand, the resource-scalability and PRD 
optimization of our low-complexity video encoder can be 
formulated as an optimal block coding mode decision problem 
under current resource constraints. For a frame consisting of 

several non-overlapping blocks, the three possible coding 
modes for each block are intra, inter, and skip modes with 
different computational complexity. First, the encoding 
procedure can be roughly divided into the combination of the 
three “atom operations,” including the intra-mode block 
encoding, the inter-mode block encoding, and the entropy 
encoding operations, whose computational complexities are C1, 
C2, and C3, respectively. Second, let X, Y, and Z, respectively, 
denote NIntra/Nb, NInter/Nb, and NSkip/Nb, where NIntra, NInter, and 
NSkip are the number of blocks with intra, inter, and skip modes, 
respectively, of a frame consisting of Nb (= NIntra + NInter + NSkip) 
blocks, and X + Y + Z = 1. Third, the blocks in a frame are 
sorted based on their motion activities estimated from the SAD 
(sum of absolute difference) between each block and its 
reference block. Overall, the optimal coding mode decision 
problem can be formulated as follows. 
 Problem 2 (optimal coding mode decision): Given the 
available resources, including the encoding power P, target bit 
rate R, and a decreasingly sorted list of motion activities of 
blocks, Bi, i = 1, 2, …, Nb, in a frame, the optimization problem 
can be expressed as: 

{ }
( )RYXD

YX
,,min

,
 

s.t. F(C1X + C2Y + C3R) ≤ Φ(P),                         (1) 
where D is the distortion function, F denotes the frame rate, and 
Φ is the power function described in Sec. V-B. 

Once the optimal values of X, Y, and Z (= 1 – X – Y) are 
derived, the optimal coding mode for each block in the 
decreasingly sorted list can be decided by sequentially 
assigning NIntra (= X×Nb) intra mode, NInter (= Y×Nb) inter mode, 
and NSkip (= Z×Nb) skip mode blocks. The problem 2 will be 
realized and solved in Sec. V. 

III. PROPOSED HASH-BASED VIDEO CODING 
In this section, our robust media hashing scheme [29] is first 
described in Sec. III-A. Then, based on this hashing scheme, a 
hash-based video block coding scheme is proposed in Sec. 
III-B, which contributes the basis of the proposed 
low-complexity video coding scheme described in Sec. IV. 

A. Robust Media Hashing 
At the encoder of our multiview video codec, temporal 

correlation is exploited by efficiently comparing the 
block-based media hash information among successive frames, 
while interview correlation is exploited by exchanging limited 
block-based hash information among adjacent VSNs. Our 
robust media hashing scheme, called structural digital signature 
(SDS) [29], which can extract the most significant components 
and provide a compact representation for a video block 
efficiently, meets the aforementioned requirements. 

To extract the SDS for a video block of size n×n, a J-scale 
DWT (discrete wavelet transform) is performed. Here, to make 
the SDS for a block be representative, the block size should be 
large enough. Let ws(x, y) represent a wavelet coefficient at 
scale s and position (x, y), 0 ≤ s < J, 1 ≤ x, y ≤ n. For each pair 
consisting of a parent node, ws+1(x, y), and its four child nodes, 
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ws(2x + i, 2y + j), 0 ≤ i, j ≤ 1, the maximum magnitude 
difference (max_mag_diff) value is calculated as 

( ) ( ) ( ) .2,2,max,__ 11,01 jyixwyxwyxdiffmagmax ssjis ++−= +
≤≤

+
(2) 

All the parent-4 children pairs are then arranged in decreasing 
order based on their max_mag_diff values. The first L (L is 
denoted as the hash length) pairs in the decreasing order are 
determined to be significant. Each significant pair is assigned a 
symbol representing what kind of relationship it carries. 
According to the interscale relationship existing among 
wavelet coefficients, there are four possible types. When the 
magnitude of a parent node p is larger than that of its child node 
c with max_mag_diff value, i.e., |p| ≥ |c|, the four possible 
relationships are (a) p ≥ 0, c ≥ 0; (b) p ≥ 0, c < 0; (c) p < 0, c ≥ 0; 
and (d) p < 0, c < 0. To make the above relationships compact, 
the relations (a) and (b) can be merged to form a signature 
symbol “+1” when p ≥ 0 and c is ignored. In addition, the 
relations (c) and (d) can be merged into another signature 
symbol “-1” when p < 0 and c is ignored. Similarly, the 
signature symbols “+2” and “-2” can be defined under the 
constraint |p| < |c|. Those pairs not included in the selected L 
pairs are labeled by “0.” For an n×n block, there are at most 
(n/2)×(n/2) parent-4 children pairs, and hence, the SDS for the 
block is a symbol sequence in raster scan order, consisting of L 
significant symbols and [(n/2)×(n/2) – L] “0” symbols, which 
can be efficiently compressed via run-length and entropy 
coding techniques. Since the position of a parent node can 
indicate the positions of its child nodes, by using the 
coordinates, px and py, for a parent node p in an n×n block B, the 
SDS of B can be expressed by 

( ) ( ) ( ){ }2,0,2,1,0,,|,, nppppBSppBSBSDS yxyxyx <≤±±== , (3) 

where S(B, px, py) denotes the SDS symbol of the pair with 
parent node position (px, py) in B. Usually, the hash length L is 
selected to be relatively small, i.e., L << (n/2)×(n/2) – L, i.e., L 
<< n2/8. 

B. Hash-based Video Block Coding 
   Here, the major goal is to efficiently extract the most 
significant components of a block for compressing it without 
performing motion estimation. Based on the fact that image 
signals can be approximately reconstructed from their 
multiscale information derived from the DWT domain [30], in 
our video codec, the multiscale information of a block is 
derived from its SDS. To compress a block, its most significant 
components can be extracted by comparing its SDS and that of 
its reference block (the co-located block in its reference frame). 
For each symbol S(B, px, py) ≠ 0 of the block B, if S(B, px, py) ≠ 
S(B’, px, py), then S(B, px, py) is determined to be significant, 
where B’ is the reference block of B, and S(B, px, py) and S(B’, 
px, py) have the same parent node position (px, py); otherwise, 
S(B, px, py) is insignificant. For each significant SDS symbol, 
its corresponding five wavelet coefficients will be reserved. For 
each insignificant SDS symbol, its corresponding five wavelet 
coefficients will be replaced by zeros. Then, for the block B, all 
the reserved coefficients can be efficiently compressed via the 
quantization and entropy encoding techniques for DWT-based 

images (e.g., JPEG-2000 [31]). To reconstruct the block B, 
based on the reconstructed reference block B’, the decoded 
DWT coefficients for B are used to modify B’ (fill the decoded 
coefficients of B into the corresponding positions in the DWT 
representation of B’, followed by performing inverse DWT) to 
obtain ß, which will have SDS similar to that of B, and can be 
regarded as the reconstruction of B. Our hash-based video 
block coding scheme will be used to develop our 
low-complexity multiview video coding scheme, described in 
Sec. IV.  

Someone may wonder why not directly compare the 
co-located DWT coefficients between two blocks to decide the 
significant coefficients. The reason is that it is hard to 
determine a threshold to judge the similarity between two 
co-located coefficients, and determine the significance of a 
coefficient in the block to be encoded. In our hash-based video 
block encoder, we just use a predefined hash length L to 
determine the significant DWT coefficients for a block, which 
can be decided empirically based on current available bit rates. 

IV. PROPOSED LOW-COMPLEXITY HASH-BASED VIDEO CODEC 
In this section, based on the hash-based video block coding 

scheme described in Sec. III-B, a hash-based low-complexity 
single-view video coding scheme is proposed in Sec. IV-A, and 
then extended to the low-complexity multiview video coding 
scheme described in Sec. IV-B. Note that our multiview video 
encoder exploits the two kinds of correlations via hash 
comparison among successive frames in a VSN and limited 
inter-VSN hash information exchange without performing 
motion estimation. 

Assume that there are several adjacent VSNs observing the 
same target scene in a WMSN. Similar to the video structure 
used in [18], [22]-[24], a video sequence consists of several 
group of pictures (GOP), where each GOP consists of one key 
frame and one non-key frame, i.e., GOP size is 2, which has 
been shown to provide the best performance in most evaluated 
sequences when motion estimation cannot be performed at the 
encoder [18]. A key frame similar to an I frame (intraframe) in 
traditional video coding serves as an anchor frame, which can 
be independently encoded and decoded. Here, each key frame 
is encoded using the H.264/AVC intraframe encoder [5], while 
each non-key frame is encoded using our low-complexity video 
encoder, described in this section. To consider adjacent VSNs 
at the same time instant, similar to [22]-[24], the adjacent 
frames for each key frame are non-key frames, while the 
adjacent frames for each non-key frame are key frames. An 
example of the structure with three adjacent VSNs is shown in 
Table 1, where Ks,t and Ws,t, respectively, denote the key and 
non-key frames captured by VSN Vs at time instant t. The first 
frame for each VSN is forced to be a key frame, and the 
remaining frames are interlaced by key and non-key frames in 
both temporal and interview directions. 

A. Block-based Single-view Video Codec 
Our block-based single-view video codec is shown in Fig. 2. 

At the encoder, for each non-key frame Ws,t captured by Vs at 
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time t, its nearest key frame Rs,t (e.g., Rs,t = Ks,t-1) is determined 
to be its reference frame. Each Ws,t is decomposed into several 
non-overlapping n×n (in this paper, n is set to 128) blocks Bs,t,b, 
where b is the block index. The coding mode of Bs,t,b is 
determined by comparing Bs,t,b and the co-located block B’s,t,b 
(called reference block) in Rs,t to be one of the three possible 
coding modes: intra, inter, or skip modes, based on the 
proposed PRD model according to the available resources, 
described in Sec. V. Each block with intra mode is encoded 
using the H.264/AVC intraframe encoder [5]. Each block with 
inter mode will be encoded using our hash-based 
low-complexity video block encoder described in Sec. III-B. 
For each block with skip mode, only the coding mode 
information is encoded. At the decoder, each block with inter 
mode is decoded via our hash-based video block decoder 
described in Sec. III-B. Each block with intra mode is decoded 
using the H.264/AVC intraframe decoder while each block 
with skip mode is decoded by copying and pasting the 
co-located block from the previous decoded frame. 
 

TABLE I 
AN EXAMPLE OF THE STRUCTURE OF OUR LOW-COMPLEXITY MULTIVIEW 

VIDEO CODEC WITH THREE ADJACENT VSNS. 
VSN/ 
Time 

instant 
t t + 1 t + 2 t + 3 t + 4 t + 5 t + 6 t + 7 •••

V1 K1,t K1,t+1 W1,t+2 K1,t+3 W1,t+4 K1,t+5 W1,t+6 K1,t+7 •••
V2 K2,t W2,t+1 K2,t+2 W2,t+3 K2,t+4 W2,t+5 K2,t+6 W2,t+7 •••
V3 K3,t K3,t+1 W3,t+2 K3,t+3 W3,t+4 K3,t+5 W3,t+6 K3,t+7 •••

 

Decoded 
Key frame

Decoded non-
key frame

Key 
frame

Non-key
frame

SDS extraction, comparison, and 
significant coefficients extraction

Non-key frame 
Reconstruction

Non-key 
frame bits

H.264/AVC Intra-
frame encoder

H.264/AVC Intra-
frame decoder

Key frame bits

H.264/AVC Intra-
frame decoder

Non-key 
frame bits

Block coding 
mode decision

H.264/AVC Intra-
frame encoder

Inter mode

Intra mode

Quantization Entropy-
encoding

Skip 
mode

Entropy-
decoding

Dequantization

Encoder in a WMSN Decoder in the RCU

Decoded 
Key frame

Decoded non-
key frame

Key 
frame

Non-key
frame

SDS extraction, comparison, and 
significant coefficients extraction

Non-key frame 
Reconstruction

Non-key 
frame bits

H.264/AVC Intra-
frame encoder

H.264/AVC Intra-
frame decoder

Key frame bits

H.264/AVC Intra-
frame decoder

Non-key 
frame bits

Block coding 
mode decision

H.264/AVC Intra-
frame encoder

Inter mode

Intra mode

Quantization Entropy-
encoding

Skip 
mode

Entropy-
decoding

Dequantization

Encoder in a WMSN Decoder in the RCU

 
Fig. 2.  Block diagrams of our low-complexity single-view video coding 
scheme. 

B. Block-based Multiview Video Codec 
To achieve better coding efficiency by extending our video 

codec from single-view to multiview, for each non-key frame, 
the multi-reference frames from the same VSN and the adjacent 
VSNs are jointly exploited. However, the frames from adjacent 
VSNs may be captured from different viewpoints, and hence, 
they should be transformed to the same viewpoint. The global 
disparities among them can be represented by global motion 
models. Here, the affine transform model is exploited, which 
has been successfully employed in traditional multiview video 
coding at the encoder [7] and recent low-complexity multiview 
video coding at the decoder [22]-[24] to exploit interview 

correlation. Consider a frame Wj,t captured by Vj at time t and 
one of its reference frames Ki,t from Vi adjacent to Vj. In the 
affine transformation model, each pixel (x, y) in Ki,t can be 
mapped to the pixel (x’, y’) in Wj,t via the estimated global 
motion parameters. However, global motion estimation (GME) 
is too complex to be performed in a VSN, and should be shifted 
to the decoder at the RCU. It is recalled that the RCU at receiver 
side can usually support powerful video decoding capability. 
The GME between the pair of the first intra-decoded key 
frames captured at the same time instant from adjacent VSNs is 
performed at the decoder. That is, the GME is performed only 
once for each pair of adjacent VSNs at the decoder. Then, the 
estimated global motion parameters are transmitted back to the 
corresponding VSNs via a feedback channel for processing 
subsequent frames until the configuration of the WMSN is 
significantly changed or the significant target scene change 
occurs. Note that the availability of a feedback channel is a 
common assumption of most recent low-complexity video 
encoding approaches [18], [21]-[23]. 

Our multiview video codec can be illustrated by an example 
shown in Fig. 3. For encoding Wj,t (j = 1 and t = 45), its nearest 
key frame, Rj,t (Rj,t = R1,45 = K1,44) is determined to be its first 
reference frame. Similar to our single-view video encoder, the 
coding mode for each block Bj,t,b in Wj,t is determined by 
comparing Bj,t,b and the co-located block B’j,t,b (the first 
reference block in the first reference frame of Wj,t) in Rj,t (step 
(a)). The coding mode decision and the resource scalability of 
our video encoder will be described in Sec. V. For each block 
Bj,t,b with inter mode, the respective media hashes (described in 
Sec. III-A) for Bj,t,b and B’j,t,b are extracted and compared (step 
(b)) to extract the initial significant SDS symbols for Bj,t,b (step 
(c)), which will be compared with the co-located symbols in its 
second reference block as follows. Without allowing 
uncompressed frame exchanged between VSNs, Vj will send a 
message containing each initial significant SDS symbol of Wj,t 
to its adjacent VSN Vi to announce it needs the second 
reference block for each of its blocks with inter mode. Vi will 
warp Ki,t to the same viewpoint of Wj,t (i = 0, j = 1, and t = 45) to 
get K’i,t (the second reference frame of Wj,t). Then, each initial 
significant SDS symbol of Wj,t will be compared with the 
co-located symbol of K’i,t (step (d)) to determine the true 
significant SDS symbols (step (e)), whose parent node 
positions will be sent back to Vj. Finally, the DWT coefficients 
corresponding to each true significant SDS symbol are encoded 
via our hash-based video block encoder described in Sec. III-B. 

Additional auxiliary information, including the coding mode 
information and the bitmap for each block with inter mode 
indicating which reference block (the first or second) should be 
referred for each significant DWT coefficient, can be 
efficiently encoded via the run-length and entropy encoding 
techniques. In this paper, the block size (e.g., 128×128) is 
relatively large compared to the frame size, i.e., the number of 
blocks in a frame is relatively small. Hence, the auxiliary 
information will be not a significant overhead. On the other 
hand, each block with intra mode is encoded using the 
H.264/AVC intraframe encoder while for each block with skip 
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mode only the coding mode information is encoded. At the 
decoder, each block is decoded according to its coding mode 
via the procedure similar to our single-view video decoder 
described in Sec. IV-A. 
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Fig. 3.  An example for our low-complexity multiview video coding scheme for 
non-key frames. 

V. PROPOSED PRD OPTIMIZED MULTIVIEW VIDEO CODING 
In this section, a power-rate-distortion (PRD) model for 
optimal resource allocation and performance optimization of 
the proposed low-complexity multiview video encoder 
described in Sec. IV-B is proposed. As mentioned in Sec. IV, 
the block coding mode is determined based on PRD 
optimization according to the available resources. Since block 
coding mode is related to the RD performance, it is important to 
characterize the relationship between the available resources 
and the RD performance. The major objective is to optimize the 
resource allocation and video coding performance while 
maximizing the lifetime for a VSN under current resource 
constraints. 

Based on [4], [13]-[14], to analyze and control the power 
consumption of a VSN, a CMOS circuit design technology, 
called dynamic voltage scaling (DVS), is assumed to design the 
VSNs employed in this paper. It is claimed that the power 
consumption of a video encoder can be controlled by adjusting 
its computational complexity. That is, for a video encoder, its 
computational complexity can be translated into its power 
consumption. Hence, based on DVS, the power scalability is 
equivalent to the complexity scalability. 

A. Block Coding Mode Decision 
First, without performing motion estimation, for a non-key 

frame consisting of Nb blocks, the motion activity for each 
block is estimated by the SAD between itself and its reference 
block. A block with larger motion activity has a larger 
probability of being decided to be with intra mode whereas a 
block with smaller motion activity has a larger probability of 
being decided to be with skip mode. Then, all the blocks in a 
non-key frame are sorted in a decreasing order based on their 
motion activities. Assume that there are NIntra, NInter, and NSkip 
blocks decided to be encoded with intra, inter, and skip modes, 
respectively, in a non-key frame, where NIntra + NInter + NSkip = 
Nb. Let {Bi, i = 1, 2, …, NIntra}, {Bi, i = NIntra + 1, NIntra + 2, …, 
NIntra + NInter}, and {Bi, i = NIntra + NInter + 1, NIntra + NInter + 2, …, 
NIntra + NInter + NSkip (= Nb)} denote the sets of blocks with intra, 

inter, and skip modes, respectively, where the sorted block list, 
Bi, i = 1, 2, …, Nb, is sorted by the SAD between each Bi and its 
reference block. Let X, Y, and Z, respectively, denote NIntra/Nb, 
NInter/Nb, and NSkip/Nb, where X + Y + Z = 1. The optimal 
determination of X, Y, and Z according to the current resources 
is equivalent to the coding mode decision for each block, which 
can be achieved via our PRD optimized resource allocation 
described in Secs. V-B and V-C. 

B. Power-Rate-Distortion Model 
In the proposed PRD model, our non-key frame encoding 

procedure can be roughly viewed as the combination of several 
“atom operations,” including the intra-mode block encoding 
(DCT and quantization), the inter-mode block encoding (DWT, 
hash extraction, hash exchange, hash comparison, and 
quantization), and the entropy encoding operations. The 
encoding operation for a block with skip mode is ignored due to 
only the coding mode information being encoded, which is 
included in the entropy encoding operation. Let the normalized 
computational complexity for the intra encoding, inter 
encoding, and entropy encoding operations be C1, C2, and C3, 0 
≤ C1, C2, C3 ≤ 1, respectively, where C1, C2, and C3 can be 
estimated via averaging respective execution time obtained 
from several simulations, followed by being normalized to [0, 
1]. For the available resources consisting of the encoding 
power P (watt = Joule per second) and target bit rate R (bits per 
pixel, i.e., bpp), the computational complexity for non-key 
frame encoding per second can be expressed as: 

F×(C1×X + C2×Y + C3×R) ≤ Φ(P),                     (4) 
where F is the normalized frame rate, 0 ≤ F ≤ 1, and Φ(P), 0 ≤ 
Φ(P) ≤ 1, is the normalized power consumption for the 
encoding power P transformed by the power function Φ(•) 
under the assumption that DVS is employed [4], [13]-[14]. To 
optimally decide the coding mode for each block according to 
the current available resources (P and R), an RD function for 
non-key frame encoding should be derived and minimized, 
which can be derived as follows. 

The classic RD function can be expressed as [13]-[14]: 

( ),21min
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22∑
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b
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b
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               (5) 

where Ri is the bit rate of the ith block, 2
iσ  is the variance of the 

ith block, and γ is a model parameter related to encoding 
efficiency. Here, the variance means the mean of the squared 
pixel values in a block. That is, the variance 2

iσ  means the 
maximum possible distortion for the ith block. Based on the 
Lagrangian multiplier technique, the minimum distortion 
obtained by the optimal bit allocation can be expressed as: 

R
NN

i
i
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D γσ 2
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⋅







= ∏ .                                 (6) 

Based on Eq. (6), obviously, the RD function for a block with 
intra mode can be expressed as: 

R
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i
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2
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where 2
,Intraiσ  is the variance of the ith block with intra mode. 

On the other hand, a block with inter mode includes some 
significant DWT coefficients (corresponding to the significant 
SDS symbols) being entropy-encoded, and the remaining 
insignificant DWT coefficients being skipped and predicted by 
the corresponding coefficients in its reference block. Hence, 
the RD function for a block with inter mode can be expressed 
as: 

,12
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1

1

2
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+

+=

+
−+

+=

+⋅
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InterIntra

Intra
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InterInterIntra
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Interi

Inter
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NN

NNNN
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InteriInter N

D δσ
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where 2
,Interiσ  is the variance of the pixels corresponding to the 

significant DWT coefficients in the ith block with inter mode, 
while 2

,Interiδ  is the mean squared error (MSE) between the 

pixels corresponding to the insignificant DWT coefficients and 
the corresponding pixels in its reference block. Note that in the 
block coding mode decision process, for a block with inter 
mode, only the first reference block from the same VSN is 
considered. This is because prior to actual video encoding, it is 
unworthy to waste power to perform media hash data 
exchanges between VSNs. 

In addition, for a block with skip mode, the RD function is 
simply the MSE (denoted by 2

,Skipiδ ) between the block and its 

reference block as: 

.1

1

2
,∑

++=

=
b

InterIntra

N

NNi
Skipi

Skip
Skip N

D δ                                (9) 

C. Power-Rate-Distortion Optimization 
Based on Eqs. (7)-(9), the overall RD function of a block in 

our multiview video codec can be expressed as: 
 
DOverall = (1/Nb)×(NIntra×DIntra + NInter×DInter + NSkip×DSkip) 
            = X×DIntra + Y×DInter + Z×DSkip.                                         (10) 
 
To minimize DOverall based on optimally selected X, Y, and Z, 
where Z = 1 – X – Y, under the constraint shown in Eq. (4), 
DOverall should be translated into a function of X and Y, 
described as follows. 

C.1. Model parameter γ estimation 
First, based on Eqs. (7)-(10), the parameter γ can be 

estimated as follows. For a scene to be observed, several sets of 
estimated encoding parameters (X, Y, Z, NIntra, NInter, and NSkip) 
and the corresponding actual distortions, respectively, obtained 
from the PRD optimization processes and the actual video 
encoding/decoding processes are collected offline. Consider 
the parameters, Xt, Yt, Zt, NIntra_t, NInter_t, and NSkip_t, obtained 
from the PRD optimization process with a given initial 
parameter γ = γInit and the actual distortion Dt, for a non-key 
frame Wt, the parameter γ can be updated as: 
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Then, the updated γ can be used for the PRD optimization of the 
next non-key frame, and γ can be similarly updated iteratively. 
Several offline estimated γ’s can be averaged to get the 
parameter γ for a certain scene in a period. The parameter γ 
related to encoding efficiency should be adaptively updated 
according to the available resources, past frame complexities, 
and past resource allocation configurations for current frame. 

C.2. RD function for blocks with intra mode 
Second, the function DIntra defined in Eq. (7) can be 

converted to a continuous-time function. Usually, only a small 
number of blocks in a non-key frame are with intra mode (NIntra 
should be small). It can be observed from the curve “Actual” in 
Fig. 4(a) that, in a non-key frame, the first few blocks in the 
decreasingly sorted list of motion activities of blocks usually 
have larger variances, and these variances will decrease as the 
motion activities decrease. Hence, it is reasonable to model 

2
,Intraiσ  as a decreasing linear function: 

 
G(t) = A·(1 – t), A > 0, 0 ≤ t ≤ 1, t = i / Nb, 1 ≤ i ≤ NIntra.       (12) 

 
From Fig. 4(a), when the block index i < 5 (X < 0.25) in the total 
20 blocks, the function G(t) is accurate enough to model 2

,Intraiσ . 
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Fig. 4. (a) The curve “Actual” shows the variances of the first few blocks in the 
decreasingly sorted list of motion activities of blocks for the Ballroom and Exit 
sequences. All the variances for the same block index in each non-key frame are 
averaged. The curve “Estimated” shows the linear function G(t); (b) the curve 
“Actual” shows the variances of the significant pixels in the blocks in the 
decreasingly sorted list of motion activities of blocks for the two sequences. 
The curve “Estimated” shows the function H(t). 
 
Due to X is usually much smaller than 0.25, using G(t) to model 

2
,Intraiσ  is reasonable. The parameter A in Eq. (12) can be derived 

from the previous PRD optimization result as follows. Assume 
NIntra_pre denotes the number of blocks with intra mode obtained 

(11)
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from the previous coding mode decision. Hence, in the current 
non-key frame, A can be estimated from 
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To get the continuous-time version of DIntra, we let 
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The continuous-time version of lnS can be written as: 
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By applying the Taylor expansion to Eq. (17), S can be derived 
as: 

           
( ) ( )

( )XAeAS
XX

X ×−×≈⋅=
−−−−

5.01
1ln111

, 0 ≤ X ≤ 1.   (18) 
Hence, based on Eqs. (7) and (12)-(18), DIntra can be derived as:     

( ) ( ) YX
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C.3. RD function for blocks with inter mode 
 Third, DInter in Eq. (8) can be expressed as DInter(X, Y, RInter) 
described as follows. Usually, the variance of the significant 
pixels corresponding to the significant DWT coefficients for a 
block with inter mode will decrease as the motion activity 
decreases. Based on Fig. 4(b), it is reasonable to model 2

,Interiσ  

as a decreasing exponential function as: 
( ) tBeBtH 2

1
−= , B1 > 0, B2 > 0, 0 ≤ t ≤ 1, t = i / Nb,  

NIntra + 1 ≤ i ≤ NIntra + NInter.                                               (20) 
The parameter B1 in Eq. (20) can be derived from the previous 
PRD optimization result as follows. Assume NIntra_pre and 
NInter_pre denote the numbers of blocks with intra mode and inter 
mode, respectively, obtained from the previous coding mode 
decision. Hence, in the current non-key frame, B1 can be 
estimated from 
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where B2 controls the degradation speed of the exponential 
function H(t), which can be obtained by some pre-training for 
each sequence. Usually, B2 is a constant for the same scene. To 
get the continuous-time version of the first term of Eq. (8), we 
let 
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By considering the continuous-time version of lnT, we get: 
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Then, T can be derived as 
  ( )2

1
2 YXBeBT +−×= .                                   (25) 

By applying the Taylor expansion, T can be approximated as: 
( )YXhBT ,1 ×≈ , 0 ≤ X, Y ≤ 1 and X + Y ≤ 1,         (26) 

where h(X, Y) = h1(X)×h2(Y), and 
( ) ( ) ( ) ( )13.0045.03.015.0 2
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On the other hand, as the motion activity decreases, the MSE of 
the pixels corresponding to the insignificant DWT coefficients 
for a block with inter mode will be also decreased. Based on Fig. 
5(a), it is reasonable to model 2

,Interiδ  as a decreasing linear 

function: 
I(t) = C·(1 – t), C > 0, 0 ≤ t ≤ 1, t = i / Nb,  
NIntra + 1 ≤ i ≤ NIntra + NIner.                                          (29) 

It can be observed from Fig. 5(a) that when the block index i ≥ 
16 in the total 20 blocks, the function I(t) is somewhat 
inaccurate in modeling 2

,Interiδ . However, the latter few blocks in 

the decreasingly sorted list are usually with skip mode; hence, 
using I(t) to model 2

,Interiδ  is reasonable. The parameter C in Eq. 

(29) can be derived from the previous PRD optimization result 
as follows. Assume NIntra_pre and NInter_pre denote the numbers of 
blocks with intra mode and inter mode, respectively, obtained 
from the previous coding mode decision. Hence, in the current 
non-key frame, C can be estimated from 
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By considering the continuous-time version of the second term 
of Eq. (8), we can get: 
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Hence, based on Eqs. (8), and (20)-(31), DInter can be derived 
as: 

( ) ( ) ( )YXCYXhBRYXD YX
R

InterInter 5.012,,,
2

1 −−+⋅= +
− γ .     (32) 

C.4. RD function for blocks with skip mode 
Finally, DSkip in Eq. (9) can be derived as follows. By 

considering the inverse order of the decreasingly sorted list of 
motion activities of blocks, as the motion activity increases, the 
MSE of a block with skip mode will be increased as shown in 
the “Actual” curve of Fig. 5(b). Hence, it is reasonable to model 

2
,Skipiδ  as an increasing exponential function as: 

( ) tDeDtK 2
1= , D1 > 0, D2 > 0, 0 ≤ t ≤ 1,  

t = i / Nb, 1 ≤ i ≤ NSkip.                                                (33) 
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It can be observed from Fig. 5(b) that when the inverse block 
index i ≥ 14 in the total 20 blocks, the function K(t) is 
somewhat inaccurate in modeling 2

,Skipiδ . However, the latter 

few blocks in an inverse decreasingly sorted list of motion 
activities of blocks are usually with intra or inter modes, hence 
using K(t) to model 2

,Skipiδ  is reasonable. The parameter D1 in Eq. 

(33) can be derived from the previous PRD optimization result 
as follows. Assume NSkip_pre denotes the number of blocks with 
skip mode obtained from the previous coding mode decision. 
Hence, in the current non-key frame, D1 can be estimated from 
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where D2 controls the increment speed of the exponential 
function K(t), which can be obtained by some pre-training for 
each sequence. Usually, D2 is a constant for the same scene. 
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Fig. 5. (a) The curve “Actual” shows the MSEs of the pixels corresponding to 
the insignificant DWT coefficients in the decreasingly sorted list of motion 
activities of blocks for the Ballroom and Exit sequences. All the MSEs for the 
same block index in each non-key frame are averaged. The curve “Estimated” 
shows the function I(t); (b) the curve “Actual” shows the MSEs of the blocks in 
the inversed order of the decreasingly sorted list of motion activities of blocks 
for the two sequences. The curve “Estimated” shows the function K(t). 
 
By approximating 2

,Skipiδ  in Eq. (9) using Eqs. (33)-(35) and 

transferring Eq. (9) into a continuous form, we have 
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By applying the Taylor expansion, Eq. (36) can be 
approximated as:    

( ) ( )( ),121 −= ZkZDDDSkip
                          (37) 

where 
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Hence, DSkip can be derived as: 

( ) ( ) ( )[ ]11
1

,
2

1 −−−
−−

= YXk
DYX

DYXDSkip
.        (39) 

C.5. Optimization of the overall RD function 
In summary, the overall distortion function can be derived 

based on Eqs. (10), (19), (32), and (39) as: 
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Hence, the overall PRD optimization problem can be 
formulated as: 
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s.t. F(C1X + C2Y + C3R) ≤ Φ(P).                                                   (43) 
 
Based on the proposed PRD model, before encoding a 

non-key frame, the parameters {X, Y, Z} can be efficiently 
solved based on the current available power P and the target bit 
rate R to minimize the overall distortion DOverall(X, Y, R) defined 
in Eq. (43). That is, the coding mode for each block can be 
determined based on the available resources while optimizing 
the reconstructed video quality. When the motion activity of 
captured video sequence is not too large, the resource 
allocation procedure can be performed only once every few 
seconds. The major objective to represent the distortion 
function in Eq. (43), using the Taylor approximation, in terms 
of the polynomial of X and Y is that it is expected to more easily 
find the close form for solving X and Y in minimizing the 
distortion function. Although there are still some exponential 
terms of X and Y in Eq. (43), further simplification of Eq. (43) 
will be investigated in our future work. 

Here, discrete sampling on X and Y is used to achieve 
efficient implementation for solving Eq. (43). Specifically, 
only a few points, (X, Y) = (0.05x, 0.05y), x, y = 0, 1, 2, …, 19, 
under the constraints, 0 ≤ X, Y, X + Y ≤ 1, and F(C1X + C2Y + 
C3R) ≤ Φ(P), are evaluated to find the optimal point (X, Y) in 
minimizing Eq. (43). The average optimal parameter sets, {X, Y, 
Z}, for the Ballroom sequence, minimizing Eq. (43) with 
different combinations of the available encoding power P and 
the bit rates R, are shown in Fig. 6, where the parameters, X, Y, 
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and Z, respectively, of all the non-key frames are averaged. The 
analytic and actual PRD performances for the Ballroom 
sequence are shown in Fig. 7, where the MSEs of all the 
non-key frames are averaged. 
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Fig. 6. The optimal parameter sets, {X, Y, Z}, for the Ballroom sequence, 
minimizing Eq. (43) with Φ(P) ranged from 0.1 to 1.0, and R fixed to: (a) 
0.5bpp; (b) 1.0bpp; and  with Φ(P) fixed to: (c) 0.5; and (d) 1.0, and R ranged 
from 0.1 to 1.0 bpp. 
 

It can be observed from Fig. 6(a) and (b) that, under a fixed 
bit rate, when the power increases, Y (the percentage of the 
blocks with inter mode) will increase accordingly. In addition, 
X (the percentage of the blocks with intra mode) is usually 
small due to the encoding performance for a block with intra 
mode is usually not good even though the corresponding power 
consumption is relatively low. Similarly, it can be observed 
from Fig. 6(c) and (d) that under a fixed medium or high power, 
when the bit rate increases, Y will increase and X is almost 
unchanged. When the power is very high, Y will be much larger 
than X and Z (the percentage of the blocks with skip mode). To 
evaluate the accuracy of the proposed PRD model for non-key 

frame encoding, all the key frames are encoded with very high 
quality and only the PRD performance for the luminance 
component of the non-key frames is shown in Fig. 7. It can be 
observed from Fig. 7 that under a fixed bit rate, when the power 
increases, the distortion will decrease. In addition, under a 
fixed power, when the bit rate increases, the distortion will also 
usually decrease. However, when the power is too low, the 
reduction of MSE will be insignificant even when the bit rate 
increases. It can also be observed from Fig. 7 that the proposed 
PRD model is fairly accurate to estimate the actual PRD 
performance. 
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Fig. 7. The analytic and actual PRD performances for the Ballroom sequence. 
The curves “Estimated” show the PRD performance obtained from the 
proposed PRD model, whereas the curves “Actual” show the actual PRD 
performance obtained from our multiview video codec. 

VI. SIMULATION RESULTS 
The two representative multiview video sequences, Ballroom 
(with large motions) and Exit (with medium or low motions) 
sequences [32] consisting of 250 frames, a frame size of 
640×480, a block size of 128×128 (n = 128), YUV4:0:0 (only 
luminance component was evaluated), and a frame rate of 10 
frames per second (fps) were used to evaluate our 
low-complexity multiview video codec under different 
available resources (encoding powers and target bit rates). The 
hash length L is set to 128, 256, or 512 based on the available 
resources. The more the available resources are, the longer the 
hash length is. The quantization parameter (QP) for each 
H.264/AVC intra-encoded key frames ranged from 28 to 36. 
The H.264/AVC JM14.2 software is employed. 

In the evaluated WMSN, the second, third, and fourth views 
(VSNs), i.e., V1, V2, and V3, from the total eight views (V0~V7), 
structured based on Table 1, where GOP size is 2, were 
employed, where the distance between each pair of VSN is 19.5 
cm [32]. The structure shown in Table 1 was also similarly 
employed in [24]. To evaluate only three adjacent VSNs were 
also conducted in [22]-[24]. 

The four low-complexity video encoding schemes, including 
our low-complexity single-view video encoder (Proposed 
Single) [25], the H.264/AVC intraframe encoder (H.264 Intra) 
[5], the H.264/AVC interframe encoder with no motion (where 
all the motion vectors are set to zeros) with GOP size set to 2 
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(H.264 No motion (GOP = 2)), and the H.264/AVC interframe 
encoder with no motion with GOP size set to infinity (H.264 
No motion (GOP = ∞)) were employed for comparisons with 
our low-complexity multiview video encoder. The two 
H.264/AVC-based low-complexity video encoders (H.264 
Intra and H.264 No motion (GOP = 2)) were also used for 
comparisons in [18]. It should be noted that the studies of 
resource-scalable low-complexity multiview video encoding 
have rarely appeared in the literature. Hence, only 
some baseline non-resource-scalable low-complexity video 
encoders were selected for comparison with our encoding 
scheme. In this paper, the two metrics, i.e., PRD performance 
and encoding complexity were used for performance 
evaluation and comparison. 

A. Power-Rate-Distortion Performance 
The average PRD performances for the three adjacent VSNs 

of our multiview video codec and the RD performances for the 
four schemes used for comparisons are shown in Figs. 8-9, 
respectively, for the Ballroom and Exit sequences, where the 
PSNR (peak signal to noise ratio) values of all the luminance 
frames from the three VSNs are averaged. 

It should be noted that the RD performances of our video 
encoder shown in Figs. 8-9 don’t take the rate used for 
interview hash data exchange during encoding blocks with 
inter mode into account. That is, the interview hash data 
exchange will consume a little power for wireless transmission 
of a VSN, but will not contribute the rates for final compressed 
video data. 

For the Ballroom sequence, we have the following 
observations from Fig. 8. The PSNR performance gains of our 
multiview video codec at Φ(P) = 1.0 above those of the H.264 
No motion (GOP = 2) are from 2 to 4 dB. The PSNR 
performance gains of our multiview video codec at Φ(P) = 1.0 
above those of the H.264 Intra are from 4 to 5 dB. The RD 
performance of our multiview video codec at Φ(P) = 0.5 is 
somewhat close to that at Φ(P) = 1.0. The RD performance of 
our multiview video codec at Φ(P) = 0.1 is still close to that of 
the H.264 Intra. The PSNR performance gains of our multiview 
video codec at higher powers can significantly outperform our 
single-view video codec. Similar results can also be observed 
from Fig. 9 for the Exit sequence. 

More specifically, based on Figs. 8-9, our multiview video 
codec (Φ(P) = 1.0 or Φ(P) = 0.5) can outperform the three 
schemes used for comparisons (except H.264 No motion (GOP 
= ∞)), especially at high power and low bit rates. That is, when 
the power is high, our multiview video encoder can efficiently 
exploit the available bit rates to optimize the video quality, even 
though the bit rate is low. In addition, with the benefits of 
exploiting the reference frames from adjacent views, our 
multiview video encoder can have more skipped SDS symbols 
or skipped blocks, which can save more bit rates. On the other 
hand, at higher bit rates, the RD performances of our multiview 
video codec (Φ(P) = 0.5) can still significantly outperform the 
H.264 Intra, but is very close to those of the H.264 No motion 
(GOP = 2). That is, for a fixed power, excess bit rates cannot be 

efficiently exploited, and this is consistent with the analytic 
PRD results shown in Fig. 7, where the RD curves will be 
flatter while the bit rates are greatly increased. It is also 
consistent with the block coding mode decision results shown 
in Fig. 6(c) and (d), where the configurations of X, Y, and Z will 
be unchanged while the bit rates are greatly increased. On the 
other hand, when the power is low, the RD performance of our 
multiview video codec is poor and the RD curves are flatter, 
which mean the bit rates cannot be efficiently exploited. It can 
be observed from Figs. 6-9 that when the power is low, the 
block coding modes are almost determined to be the skip mode, 
which will result in poor RD performance for the video 
sequences with medium or large motion. Oppositely, when the 
power is high, the RD performance will be better, but when the 
power reaches a certain level, the RD performance 
improvement gaps will be degraded, which means excess 
power cannot be efficiently exploited, and will not significantly 
change the block coding mode decision results. 
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Fig. 8. The PRD performance for the Ballroom sequence. 

 

26

28

30

32

34

36

38

40

0 100 200 300 400 500 600 700 800 900 1000 Bitrate (kbps)

PSNR (dB)

Proposed (Φ(P) = 1.0) Proposed (Φ(P) = 0.5)
Proposed (Φ(P) = 0.1) Proposed Single
H.264 No motion (GOP = ∞) H.264 No motion (GOP = 2)
H.264 Intra (GOP = 1)

 
Fig. 9. The PRD performance for the Exit sequence. 

 
 For the three H.264/AVC-based low-complexity video 
encoders used for comparison, the H.264 Intra encoder has 
been shown to be low-complexity and efficient, which can 
outperform or be comparable to several current single-view or 
multiview low-complexity video encoders [18], [23]. Our 
multiview video encoder exploits interview correlation at the 
encoder via a few interview hash data exchanges and can, 
therefore, outperform the H.264 Intra encoder. The H.264 No 
motion (GOP=2) encoder has also been shown to be 
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low-complexity and very efficient, which is difficult to be 
defeated [18], [23]. Our multiview video encoder can 
significantly outperform the H.264 No motion (GOP = 2) at the 
low bit rates, which is a benefit for WMSN applications with 
severely limited transmission bit rates. The H.264 No motion 
(GOP = ∞) encoder has the best RD performance and has not 
been used as a benchmark in the existing low-complexity video 
encoding researches [18], [21]-[24]. However, it should be 
recalled again that the major goal of this paper is to propose a 
resource-scalable low-complexity video encoder for a WMSN 
and a PRD model for resource allocation and performance 
optimization of our encoder, instead of competing the coding 
performance against existing standard or non-resource-scalable 
video encoding schemes. In addition, the resource-scalability 
characteristic and the proposed PRD model are worthy for most 
low-complexity video encoding applications. 

B. Encoding Complexity 
Although it is claimed that the proposed multiview video 

encoder and the existing encoders used for comparisons are all 
with low-complexity, it is still important to compare their 
encoding complexities. The simplest way to estimate the 
encoding complexity for a video encoder is to measure its 
encoding time [18]. The respective average encoding time per 
frame (of size, 640×480) for the Ballroom sequence of our 
multiview video encoder, the H.264 Intra encoder, the H.264 
No motion (GOP = 2), and H.264 No motion (GOP = ∞), 
measured on a Pentium-4 PC with 3.40GHz CPU and 1.49GB 
RAM at different bit rates is shown in Fig. 10. The encoding 
time of our multiview video encoder includes the time 
consumed in interview hash data exchanges, where the hash 
data size is relatively small (e.g., average 3.78 kbits, i.e., about 
0.16% of the original frame size, per frame), the time consumed 
in PRD optimization, and the time consumed in the remaining 
video coding tasks. By considering the typical data 
transmission rate, 40 kbps, for a common sensor node [1] 
(actually, the rate may be higher for a VSN, e.g., 250 kbps [1] 
or 1 Mbps [19]), it takes only 0.09 seconds to achieve interview 
hash data exchange per frame. Fig. 10 shows that the encoding 
complexity (in second) of our multiview video encoder is lower 
than those of the three H.264/AVC-based low-complexity 
video encoders, even though when the full power, i.e., Φ(P) = 
1.0, is applied. 
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Fig. 10. The average encoding time per frame for the Ballroom sequence. 

VII. CONCLUSIONS AND FUTURE WORKS 
In this paper, we have proposed a resource-scalable media 

hash-based low-complexity multiview video encoder and a 
PRD model to characterize the relationship between the 
available resources and the RD performance of our video 
encoder. Based on this model, the resource allocation can be 
efficiently performed at the encoder while optimizing the 
reconstructed video quality. Analytic results have been 
provided to verify the resource scalability and accuracy of the 
proposed PRD model. 

For future work, the distortion induced by wireless video 
transmission (e.g., packet loss) will be integrated into the 
current distortion function to form a complete end-to-end 
distortion function. More precise theoretical analyses, such as 
the optimal achievable video quality based on available 
resources and the minimum resource requirements based on 
acceptable video distortion, can be derived to provide a 
practical guideline in preparation and deployment for a 
WMSN. 
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