

TR-IIS-09-005

Protocols for Secure Multi-party
Computation: Design, Implementation

and Performance Evaluation

I-Cheng Wang, Kung Chen, Tsan-sheng Hsu,
Churn-Jung Liau, Chih-Hao Shen, and Da-Wei Wang

December 1, 2009 || Technical Report No. TR-IIS-09-005
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2009/tr09.html

Protocols for Secure Multi-party Computation: Design, Implementation and
Performance Evaluation

I-Cheng Wang∗, Kung Chen‡, Tsan-sheng Hsu∗,
Churn-Jung Liau∗, Chih-Hao Shen†, and Da-Wei Wang∗

Institute of Information Science,
Academia Sinica, Taiwan

Email: {icw, tshsu, liaucj, wdw}@iis.sinica.edu.tw∗

Department of Computer Science,
National Chengchi University, Taiwan

Email: chenk@cs.nccu.edu.tw‡

Department of Computer Science,
University of Virginia, USA

Email: shench@email.virginia.edu†

Abstract

Protocols for secure multi-party computation allow par-
ticipants to share a computation while each party learns
only what can be inferred from their own inputs and the
output of the computation. However, the execution time of
a secure protocol may be too high so that it is not practical
unless some tradeoffs being made between data access and
confidentiality. In this technical report, we propose a set of
information theoretically secure protocols based on scalar
product protocol and aim to provide some empirical basis
for making such tradeoffs in computing exponentiation. A
detailed performance evaluation was carried out by taking
advantage of the compositional nature of our protocols. We
come up with a time function which provides good predic-
tion of the execution time of the proposed exponentiation
protocols based on the execution time of scalar products.
Using the time function, we obtain several interesting trade-
offs between execution time and privacy. In particular, com-
promising some private information enables a reduction in
the execution time from years, if not centuries, to days or
even minutes. Based on our results, we argue that there are
indeed reasonable tradeoffs between privacy and execution
time. Furthermore, our study indicates that a system intel-
ligently offering users possible tradeoff options will make
secure multi-party computation a more attractive approach
to enhance privacy in practice.

Contents

1 Introduction 3

2 Related Works 3

3 Preliminaries 4

4 Building Blocks 4
4.1 Primitive building blocks 4

4.1.1 Zn-to-Z2 and Z2-to-Zn 5
4.1.2 Product 5
4.1.3 Square 6

4.2 Useful building blocks 6
4.2.1 Comparison 6
4.2.2 Zero 6
4.2.3 If-Then-Else 6
4.2.4 Shift 7
4.2.5 Rotation 8
4.2.6 Division/Remainder 9
4.2.7 Square Root 9
4.2.8 Logarithm 10

4.3 Building Blocks for Fixed-Point Numbers . 11
4.3.1 (flo) Scalar-Product{s} 11
4.3.2 (flo) Product{s} 11
4.3.3 (flo) Square{s} 11

4.4 General Solutions 11
4.4.1 Function(x){s, f(·)} 11
4.4.2 Function(x, y){s, f(·)} 12

1

5 Examples in Statistics 12
5.1 Split Database 12

5.1.1 (secret) Range 12
5.1.2 (secret) Mean 13
5.1.3 (secret) Variance 13

5.2 Shard Database 14
5.2.1 (private) Range 14
5.2.2 (private) Mean 15
5.2.3 (private) Variance 15

6 Tradeoffs 15
6.1 Tradeoffs: Exponentiation 16
6.2 Tradeoffs: Division 18

7 Performance Evaluation 19

8 Conclusions and Future Works 20

List of Figures

1 Shift-Left 7
2 Shift-Right 7
3 Rotate-Left 8
4 Rotate-Right 8
5 The hierarchy of the Square-root protocol. . 10
6 Split database architecture(secret shares) . . 12
7 Shard database architecture(Horizontal par-

titioning) 14
8 The Composition of the Exponentiation

protocol 17
9 The timings of the commodity-based

Scalar-Product protocol with different k
and different dimensions. 20

List of Tables

1 Constituents of our protocols 22
3 Constituents of the statistic protocols 23
4 The Complexity of the statistic protocols . . 23
5 Constituents of the Exponentiation tradeoff

protocols 24
6 Constituents of the Exponentiation tradeoff

protocols 24
7 The Complexity of the Exponentiation

tradeoff protocols 25
8 The Complexity of the Exponentiation

tradeoff protocols 25
9 Constituents of the Div/Rem tradeoff proto-

cols . 25
10 The Scalar-Product Complexity of the

Div/Rem tradeoff protocols 26
13 Experimental and estimated time (seconds)

of the Exp(sb, se) ∈ Znn protocol 26

2 The Complexity of our protocols 27
11 The environment of our experiments 28
12 The timings(seconds) of the commodity-

based Scalar-Product protocol with differ-
ent k and different dimensions 28

14 The time cost of the tradeoff exponentiation
protocols with given k 29

2

1 Introduction

Secure multiparty computation(SMC) is a research topic
aiming at the double-edged privacy problem: How can sev-
eral potentially distrustful parties take advantage of their
private data without revealing their privacy? After Yao’s [1]
general solution to two-party secure computation was pro-
posed, Goldreich et al. [2] soon gave another general solu-
tion to multiparty computation. Both proposals are so el-
egant that they provide secure two-party/multi-party proto-
cols for binary AND and XOR gates, which can be further
generalized to all computable functions. However, despite
their academic significance, both solutions have computa-
tion costs too prohibitive to be feasible in real applications.

A function f is complete if a secure protocol for f im-
plies the existence of secure protocols for all computable
functions. Yao and Goldreich et al. propose the idea to
solve secure two-party/multi-party computation by giving
secure protocols for complete functions. Extended from the
idea, the scalar product has gathered more and more atten-
tion because of its completeness and integer-based comput-
ing power. However, there is no systematic approach to con-
struct all computable functions from scalar products.

In reality, privacy cannot be absolute. Other values, in-
cluding security and social welfare, compete with it. There-
fore, compromise has to be made. In the report [3], the
data access and confidentiality tradeoff is well articulated.
The value of data-intensive research is highly variable, and
it is impossible to specify a universally applicable optimal
tradeoff between privacy and data access. The report calls
for the development of tools that, on a case-by-case basis,
would increase data access without compromising data pro-
tection or conversely, increase confidentiality without com-
promising data access. Our goal is to develop such tools via
protocols for SMC.

Loosely speaking, SMC involves computing functions
with inputs from two or more parties in a distributed net-
work while ensuring that no additional information, other
than what can be inferred from each participant’s input
and output, is revealed to parties not privy to that infor-
mation. In this paper, we present a protocol that computes
the exponentiation–one of the most important functions in
mathematics–in a two-party setting. In the development of
this protocol, we used a compositional approach with the
scalar product protocols serving as building blocks.

Based on the performance data of our protocol, we ar-
gue that the tradeoff between confidentiality and execution
time is a real issue by demonstrating various tradeoff points
of the exponentiation. The performance data shows that it
might either take a very long time or not even be possible to
keep both the base and the exponent values absolutely secret
and complete the computation. Revealing some information
about the base and/or the exponent allows the computation

to be completed in radically different time bounds. Our pro-
tocol was carefully implemented, and furthermore, a thor-
ough performance evaluation was carried out to ensure the
accuracy of these results.

The paper is organized as follows. We give a short re-
view of related works in Section 2. In Section 3, notations
and the scalar-product based specifications are described in
detail. Next, Section ?? lists several scenarios of SMC in
which the exponentiation had concrete tradeoffs between
privacy and efficiency. Besides that, the experimental re-
sults and how to estimate the time cost for each scenario
or each of our protocol are shown here as well. Finally,
we conclude this paper and lay out the future work in Sec-
tion 8.

2 Related Works

Since Yao’s [1] and Goldreich et al.’s [2] proposals, re-
searchers have been looking for new complete functions and
have been looking at the foundations of completeness. Kil-
ian shows that the oblivious transfer is complete [4], and so
are the functions with imbedded OR [5]. Furthermore, it
is claimed that the integer-based scalar products are more
practical to real applications than binary-based oblivious
transfer [6].

Over the past decade, more and more proposals for
the secure scalar products seem to be released each year.
Du and Zhan [7] proposed the invertible-matrix and the
commodity-based approaches. The former approach en-
abled the tradeoff between efficiency and privacy, and
the latter was based on Beaver’s commodity model [8].
Goethals et al. [9] proposed the computationally secure
scalar-product protocol, the security of which depended on
the intractability of the composite residuosity problem. Our
previous work [10] demonstrates the potential of scalar-
product-based protocols, among which the commodity-
based approach has extraordinary performance, though a
neutral third party is needed when it comes to two-party
computation.

Moreover, much effort has gone into building various ap-
plications using secure scalar products. Atallah and Du re-
duced geometry problems to scalar products [11]. Du et
al. constructed secure protocols for statistical analysis [12]
and scientific computations [13]. In addition, Bunn and Os-
trovsky [14] offered a secure k-means clustering protocol
based on scalar products using the composite-residuosity
approach. Zhan et al. [15] have recently constructed an effi-
cient privacy-preserving collaborative recommender system
based on the scalar product protocol using Beaver’s com-
modity model.

There are also plenty of theoretical studies on scalar
products. Chiang et al. [16] proposed a privacy measure-
ment based on information theory, with which they ana-

3

lyzed various scalar-product approaches. They proved that
the invertible-matrix approach discloses at least half the in-
formation whereas the commodity-based approach is per-
fectly secure. Wang et al. [17] proved that no information-
theoretically secure two-party protocol exist for scalar prod-
ucts. Moreover, the closure property of the commodity-
based approach is preliminarily verified according to the se-
curity definition based on information theory [18].

Regarding the secure computation of exponentiation and
the discussion of tradeoffs, Algesheimer et al. [19] pre-
sented a protocol for exponentiation with a shared expo-
nent modulo a shared secret. Damgård et al. [20] gave more
efficient constant round protocols for securely computing
the exponentiation with respect to public/shared exponents
and moduli. Recently, Nielsen and Schwartzbach [21] have
given tradeoff examples of SMC problems and shown the
timing results.

3 Preliminaries

In this section, we introduce the notations used hereafter
and specifications of the building blocks.

For a secure two-party problem, the two parties hold
private inputs X1, X2 respectively. After the execution of
some protocol, they hold private outputs Y1, Y2. The sub-
script of a variable denotes the party who owns the variable.
There might be a list of public variables, plist, and we use
(X1, X2){plist} 7→ (Y1, Y2) to denote it. The domain Zn

denotes a ring consisting of elements {0, . . . , n−1}, and the
results of addition and multiplication in Zn are the modular
summation and the modular product. If not stated other-
wise, the computations of our proposals are over Zn, where
n is two’s power, namely, n = 2k+1, k ∈ N. Moreover, to
extend the domain from natural number to integer, elements
{1, . . . , bn−1

2 c} remain positive numbers, while elements
{n−1, . . . , n−bn−1

2 c} are interpreted as negative integers
analogous to the binary system in modern computers. As
a result, the subtraction to p is equivalent to the addition to
(n− p).

x− p (mod n) = x + n− p (mod n).

In this paper, there are two different concepts of the
“scalar product.” When it comes to lower case letters, it
means all secure scalar product approaches; when it comes
to capitalized words (Scalar-Product), it means one of these
secure scalar product approaches. The formulation for the
Scalar-Product protocol follows Goldreich’s principle [22],
namely that the intermediate results during protocol execu-
tion are always shared among participants. In a protocol π
composed of Scalar-Products, current outputs can be inputs
to the next Scalar-Product, which are actually the interme-
diate results of π and should be shared. Moreover, the inter-

mediate results are shared by addition rather than multipli-
cation. In ring Zn, the multiplicative sharing reveals infor-
mation when either of the values of the shares is zero, while
the additive sharing has been proven to be perfect [18]. The
secure Scalar-Product protocol is specified as

Specification 3.1 (Scalar-Product) Party 1 and Party 2
want to collaboratively execute the secure protocol

((x[1]1, . . . , x[d]1), (x[1]2, . . . , x[d]2)) 7→ (y1, y2)

such that y1 + y2 = x[1]1 · x[1]2 + · · · + x[d]1 · x[d]2 and
x[i]1, x[i]2, y1, y2 ∈ Zn, for i = 1, . . . , d.

Here we merely specify Scalar-Product instead of pro-
viding a concrete approach because we focus on building
more protocols on top of Scalar-Product. Similar to the soft-
ware specification, as long as a new subroutine matches the
interface, it can replace the old one and work perfectly. In
our scalar-product based protocols, as long as a new solu-
tion matches the specification 4.16, it can be used as the
building block of our proposed protocols. A scalar-product
based composition theory is proved for semi-honest adver-
sary models [23], so our protocols preserve the entropy of
the secret inputs as strong as the underlying scalar product
protocol preserves the entropy of its inputs.

In passing, it should be noted that we do not deal with the
problem of combining the shared output variables to pro-
duce the final results, for we are designing building blocks
which can be used to build even larger protocols. The step
of combining shared variables to produce the final results
does not come until after computation is completed. It is
unnecessary to combine intermediate variables.

As far as we know, there is no systematic approach
to construct all computable functions directly from scalar
products. Hence we specified some more building blocks
to facilitate solving more SMC problems. In the remainder
of this section, we summarize the specifications of those
building blocks that we will employ to develop protocols
for exponentiation. The readers are referred to [24] for the
details of those building blocks.

4 Building Blocks

We separate this section into four subsections proposing
primitive, useful building blocks, building blocks for fixed
point numbers, and general solutions.

4.1 Primitive building blocks

Four primitive building blocks are specified, which are
Zn-to-Z2, Z2-to-Zn, Product, and Square.

4

4.1.1 Zn-to-Z2 and Z2-to-Zn

Zn-to-Z2 and Z2-to-Zn convert to and fro between Zn shar-
ing and bitwise Z2 sharing. In addition to be primitive
building blocks, these two protocols establish the possibil-
ity of secure computation for all functions. Albeit the inef-
ficiency, we can always apply Yao’s circuit evaluation idea
after the Zn-to-Z2 protocol and followed by the Z2-to-Zn

protocol. These two protocols make our proposal as general
as the classic circuit approaches.

Specification 4.1 (Zn-to-Z2 {k′}) Party 1 and
Party 2 share a number in Zn, and they want to
securely convert the Zn sharing into bitwise Z2

sharing. More specifically, Party 1 and Party 2
want to collaboratively execute the secure protocol
(x1, x2){k′} 7→ ((y0

1 , . . . , yk′
1), (y0

2 , . . . , yk′
2)) such that

(yk′yk′−1 · · · y1y0)2 = x1 + x2, where n = 2k+1, k′ ≤ k,
x1, x2 ∈ Zn, yi

1, y
i
2 ∈ Z2, and yi = yi

1 + yi
2 (mod 2), for

i = 0, 1, · · · , k′.

To convert from Zn sharing to bitwise Z2 sharing, we
emulate the carry ripple adder with binary Scalar-Product
protocol, whose n = 2. Let x1 = (xk′

1 · · ·x0
1)2, x2 =

(xk′
2 · · ·x0

2)2, and the adder operates as long addition:

ck′+1 ck′ · · · c1 c0

xk′
1 · · · x1

1 x0
1

+) xk′
2 · · · x1

2 x0
2

yk′ · · · y1 y0

where c0 = 0 and ci+1 = cixi
1 + cixi

2 + xi
1x

i
2 (mod 2)

are the carry bits; yi = ci + xi
1 + xi

2 (mod 2) is the i-
th summation bit. Next, the Zn-to-Z2 {k′} protocol is as
follows:

PROTOCOL Zn-to-Z2 {k′} (n = 2k+1, k′ ≤ k)

1. Party j sets c0
j = 0, and y0

j = x0
j , for j = 1, 2.

2. For i = 0, . . . , k′ − 1, repeat Step 2a to Step 2b.

(a) The two parties jointly execute the binary Scalar-
Product protocol ((ci

1, x
i
1, x

i
1), (x

i
2, c

i
2, x

i
2)) 7→

(ti
1, t

i
2), where ti

1 + ti
2 (mod 2) = ci

1x
i
2 + xi

1c
i
2 +

xi
1x

i
2 (mod 2).

(b) For j = 1, 2, Party j computes

ci+1
j = ci

jx
i
j + ti

j (mod 2),

yi+1
j = xji+1 + ci+1

j (mod 2).

Specification 4.2 (Z2-to-Zn {k′}) Party 1 and Party 2 bit-
wise, additively share a number in Z2, and they want to
securely convert the bitwise Z2 sharing into the Zn shar-
ing. More specifically, the two parties want to execute
the secure protocol ((x0

1, . . . , x
k′
1), (x0

2, . . . , x
k′
2)){k′} 7→

(y1, y2) such that y1 + y2 = (xk′xk′−1 · · ·x1x0)2, where
n = 2k+1, k′ ≤ k, y1, y2 ∈ Zn, xi

1, x
i
2 ∈ Z2, and

xi = xi
1 + xi

2 (mod 2), for i = 0, 1, · · · , k′.

According to the above requirement, the outputs can be
rewritten as the following function:

y1 + y2 =
∑k′

i=0x
i · 2i =

∑k′

i=0(x
i
1 + xi

2 mod 2) · 2i

=
∑k′

i=0(x
i
1 + xi

2 − 2xi
1x

i
2) · 2i

=
∑k′

i=0x
i
1 · 2i +

∑k′

i=0x
i
2 · 2i −∑k′

i=0x
i
1x

i
2 · 2i+1

In the above function, we divide the computation into
two parts. One is locally computable (

∑
xi

1 · 2i and∑
xi

2 ·2i) while the other needs the Scalar-Product protocol
(
∑

xi
1x

i
2 · 2i+1).

PROTOCOL Z2-to-Zn {k′} (n = 2k+1, k′ ≤ k)

1. Party 1 and Party 2 jointly run the Scalar-Product protocol
((2x0

1, . . . , 2
k′+1xk′

1), (x0
2, . . . , x

k′
2)) 7→ (t1, t2) such that

t1 + t2 = 2x0
1 · x0

2 + · · ·+ 2k′+1xk′
1 · xk′

2 .

2. Party j computes yj =
∑k′

i=0 xi
j · 2k′ − tj , for j = 1, 2.

4.1.2 Product

To compute a polynomial function collaboratively, we need
to be able to perform two-party addition and multiplication.
Since we adopt the principle of the additive sharing, the
two-party addition is trivial. However, to execute a secure
two-party multiplication, it is necessary to use the Scalar-
Product protocol.

Specification 4.3 (Product) Party 1 and Party 2 additively
share the multiplicand and the multiplicator. They want
to securely execute the protocol ((x1, y1), (x2, y2)) 7→
(z1, z2) such that z1 + z2 = (x1 + x2)(y1 + y2).

With a little modification, the outputs can be rewritten as

z1 + z2 = x1y1 + x2y2 + (x1y2 + y1x2).

After the above factoring, it is obvious that x1y1 and x2y2

are individually computable for Party 1 and Party 2 respec-
tively. However, the other terms should be computed via the
Scalar-Product protocol. The following protocol describes
the details.

PROTOCOL Product

1. Party 1 and Party 2 jointly execute the Scalar-Product pro-
tocol ((x1, y1), (y2, x2)) 7→ (t1, t2) such that t1 + t2 =
x1y2 + y1x2.

2. Party j individually computes zj = tj + xjyj , for j = 1, 2.

A polynomial is a function constructed from variables
and constants using the operations of addition, subtraction,
and multiplication. With the additive sharing, we can easily
add and subtract; with the Product protocol, we can mul-
tiply as well. Therefore, secure two-party computation on
any polynomial evaluation can be composed of the Product
protocol and the help of additive sharing.

5

4.1.3 Square

The Square protocol, which is very similar to the Product
protocol and employs the same strategy, namely dividing
the computation into the part which can be done individu-
ally and the rest which must be performed collaboratively.
However, the Square protocol reduces the dimension of the
scalar product from two to one.

Specification 4.4 (Square) Party 1 and Party 2 share a
number in Zn, and they want to collaboratively execute the
secure protocol (x1, x2) 7→ (y1, y2) such that y1 + y2 =
(x1 + x2)2.

The protocol details are as follows:

PROTOCOL Square

1. Party 1 and Party 2 jointly execute the Scalar-Product proto-
col (x1, x2) 7→ (t1, t2) such that t1 + t2 (mod n) = x1 ·x2.

2. Party j individually computes yj = x2
j + 2tj , for j = 1, 2.

4.2 Useful building blocks

Based on primitive building blocks introduced in Sec-
tion 4.1, several useful protocols are proposed here, includ-
ing Comparison, Zero, If-Then-Else, Shift, Rotation, Loga-
rithm, Division/Remainder, and Exponentiation.

4.2.1 Comparison

There are many variations of binary comparison: less
than (<), greater than (>), less than or equal to (≤), grater
than or equal to (≥), and equal to (=). However, all of them
are reducible to the less than operator (<). In order to com-
pare x and y, it is intuitive to compare (x−y) and 0 since we
share the intermediate results additively; at the same time,
it is effortless to subtract under additive sharing. Our pro-
posal to compare x and y is to compute the most significant
bit of (x − y). According to the binary system on modern
computers, if the most significant bit of (x−y) is 1, (x−y)
is a negative number inferring that x is less than y.

Specification 4.5 (Comparison) Party 1 and Party 2 share
a number in Zn, and they want to know the sign of the num-
ber. In other words, they want to collaboratively execute the
secure protocol (x1, x2) 7→ (y1, y2) such that

y1 + y2 =
{

1 if x1 + x2 < 0,
0 otherwise.

Recall that we compute the comparison by checking
whether the shared number is negative, i.e., whether the
most significant bit of the shared number is 1. The protocol
details are as follows:

PROTOCOL Comparison

1. Two parties collaboratively execute the Zn-to-Z2{k} pro-
tocol (x1, x2) 7→ ((b0

1, . . . , b
k
1), (b0

2, . . . , b
k
2)), such that

bi = bi
1 + bi

2 (mod 2), and (bk · · · b0)2 = x1 + x2.

2. Party 1 and Party 2 collaboratively execute the Z2-to-Zn{0}
protocol (bk

1 , bk
2) 7→ (y1, y2), such that y1 + y2 = (bk)2 and

bk = bk
1 + bk

2 (mod 2).

4.2.2 Zero

To test if two additively shared numbers are equal to each
other is equivalent to test if the difference of these two num-
bers is zero, and the Zero protocol does the job. More
specifically, the Zero protocol examines whether a shared
number is zero or not. The straightforward idea is to test if
it is neither less nor greater than zero. As mentioned, this is
one of the variations of binary comparison.

Specification 4.6 (Zero) Party 1 and Party 2 share a num-
ber in Zn, and they want to know if the number is equal to
zero. In other words, they want to collaboratively execute
the secure protocol (x1, x2) 7→ (y1, y2) such that

y1 + y2 =
{

1 if x1 + x2 = 0,
0 otherwise.

The protocol details are as follows:

PROTOCOL Zero

1. Two parties collaboratively execute the Comparison protocol
(x1, x2) 7→ (t1, t2), such that

t1 + t2 =

{
1 if x1 + x2 < 0,
0 otherwise.

2. Party 1 and Party 2 collaboratively execute the Comparison
protocol (−x1,−x2) 7→ (s1, s2), such that

s1 + s2 =

{
1 if − (x1 + x2) < 0,
0 otherwise.

3. Party 1 and Party 2 collaboratively execute the Product pro-
tocol ((1 − t1, 1 − s1), (−t2,−s2)) 7→ (y1, y2) such that
y1 + y2 = (1− t1 − t2)(1− s1 − s2).

4.2.3 If-Then-Else

The If-Then-Else protocol is useful for functions with alter-
natives.

Specification 4.7 (If-Then-Else) Party 1 and Party 2 addi-
tively share the predicate, IF-clause value, and the ELSE-
clause value. They want to securely execute the protocol
((b1, x1, y1), (b2, x2, y2)) 7→ (z1, z2) such that

z1 + z2 =
{

x1 + x2 if b1 + b2 = 1,
y1 + y2 if b1 + b2 = 0.

6

According to the above requirement, the outputs can be
rewritten as the following function:

z1 + z2 =(b1 + b2)(x1 + x2) + (1− b1 − b2)(y1 + y2)
=(y1 + y2) + (b1 + b2)(x1 − y1 + x2 − y2)

Again, with the strategy dividing the components into indi-
vidually computable ones and those need the Scalar-Product
protocols, we propose the following If-Then-Else protocol.

PROTOCOL If-Then-Else

1. Party j individually computes sj = xj − yj , for j = 1, 2.

2. Party 1 and Party 2 collaboratively execute a Product pro-
tocol ((b1, s1), (b2, s2)) 7→ (t1, t2) such that t1 + t2 =
(b1 + b2)(s1 + s2).

3. Party j individually computes zj = tj + yj , for j = 1, 2.

4.2.4 Shift

Shift-Left, Shift-Right, and Shift{s} protocols are de-
signed. Note that the input and the output of the Shift-Left
and Shift-Right protocols are in Z2, whereas the input and
the output of the Shift{s} protocol are in Zn shares.

Specification 4.8 (Shift-Left) Party 1 and Party 2
want to collaboratively execute the secure proto-
col ((x0

1, x
1
1, . . . , x

k
1 , s1), (x0

2, x
1
2, . . . , x

k
2 , s2)) 7→

((y0
1 , y1

1 , . . . , yk
1), (y0

2 , y1
2 , . . . , yk

2)) such that

yi =
{

xi−s if i− s ≥ 0,
0 otherwise,

where s = s1 + s2 (mod n), xi = xi
1 + xi

2 (mod 2), and
yi = yi

1, y
i
2 (mod 2), for i = 0, 1, . . . , k.

Let bi ∈ Z2 for i = 0, 1, · · · , k, and the design idea of
the Shift-Left protocol is as Figure 1 shown.

Figure 1. Shift-Left

PROTOCOL Shift-Left

1. Party 1 and Party 2 jointly run the Exp(pb, se, ny) ∈ Zn

protocol (s1, s2){2, k +1} 7→ (u1, u2) such that u1 +u2 =
2s1+s2 .

2. Party 1 and Party 2 collaboratively run the Z2-to-Zn{k} pro-
tocol ((x0

1, . . . , x
k
1), (x0

2, . . . , x
k
2)){k} 7→ (t1, t2) such that

t1 + t2 = (xkxk−1 · · ·x1x0)2.

3. These two parties jointly run the Product protocol
((t1, u1), (t2, u2)) 7→ (v1, v2) such that v1 + v2 = (t1 +
t2)(u1 + u2).

4. Party 1 and Party 2 jointly execute the Zn-to-Z2{k} pro-
tocol (v1, v2){k} 7→ ((y0

1 , . . . , yk
1), (y0

2 , . . . , yk
2), such that

(yk · · · y0)2 = v1 + v2, and yi = yi
1 + yi

2 (mod 2), for
i = 0, 1, . . . , k.

Specification 4.9 (Shift-Right) Party 1 and Party 2
want to collaboratively execute the secure proto-
col ((x0

1, x
1
1, . . . , x

k
1 , s1), (x0

2, x
1
2, . . . , x

k
2 , s2)) 7→

((y0
1 , y1

1 , . . . , yk
1), (y0

2 , y1
2 , . . . , yk

2)) such that

yi =
{

xi+s if i + s ≤ k,
0 otherwise,

where s = s1 + s2 (mod n), xi = xi
1 + xi

2 (mod 2), and
yi = yi

1, y
i
2 (mod 2), for i = 0, 1, . . . , k.

Let bi ∈ Z2 for i = 0, 1, · · · , k, and the design idea of
the Shift-Right protocol is as Figure 2 shown.

Figure 2. Shift-Right

PROTOCOL Shift-Right

1. Party j individually sets [d0
j , d

1
j , . . . , d

k−1
j , dk

j] =

[xk
j , xk−1

j , . . . , x1
j , x

0
j], for j = 1, 2.

2. Party 1 and Party 2 jointly run the Shift-Left pro-
tocol ((d0

1, d
1
1, . . . , d

k
1 , s1), (d

0
2, d

1
2, . . . , d

k
2 , s2)) 7→

((f0
1 , f1

1 , . . . , fk
1), (f0

2 , f1
2 , . . . , fk

2)) such that

f i =

{
di−s if i− s ≥ 0,
0 otherwise,

where s = s1 + s2 (mod n), di = di
1 + di

2 (mod 2), and
f i = f i

1, f
i
2 (mod 2), for i = 0, 1, . . . , k.

3. Party j individually sets [y0
j , y1

j , . . . , yk−1
j , yk

j] =

[fk
j , fk−1

j , . . . , f1
j , f0

j], for j = 1, 2.

7

Specification 4.10 (Shift{s}) Party 1 and Party 2 want to
collaboratively execute the secure protocol (x1, x2){s} 7→
(y1, y2) such that y1 + y2 = bx1+x2

2s c.

The protocol details are as follows:

PROTOCOL Shift{s}

1. Party 1 and Party 2 jointly execute the Zn-to-Z2{k} pro-
tocol (x1, x2){k} 7→ ((b0

1, . . . , b
k
1), (b0

2, . . . , b
k
2), such that

(bk · · · b0)2 = x1 + x2, and bi = bi
1 + bi

2 (mod 2), for
i = 0, 1, . . . , k.

2. Party j individually sets [d0
j , d

1
j , . . . , d

k−s−1
j , dk−s

j] =

[bk
j , bk−1

j , . . . , bs+1
j , bs

j], for j = 1, 2.

3. Party 1 and Party 2 collaboratively run the Z2-to-Zn{k− s}
protocol

((d0
1, . . . , d

k−s
1), (d0

2, . . . , d
k−s
2)){k − s} 7→ (y1, y2)

such that y1 + y2 = (dk−sdk−s−1 · · · d1d0)2.

4.2.5 Rotation

Specification 4.11 (Rotate-Left) Party 1 and Party 2
want to collaboratively execute the secure proto-
col ((x0

1, x
1
1, . . . , x

k
1 , s1), (x0

2, x
1
2, . . . , x

k
2 , s2)) 7→

((y0
1 , y1

1 , . . . , yk
1), (y0

2 , y1
2 , . . . , yk

2)) such that yi =
x(i−r) (mod k+1) where r = [(s1 + s2) (mod n)] (mod k +
1), for i = 0, 1, . . . , k.

Figure 3. Rotate-Left

Let bi ∈ Z2 for i = 0, 1, · · · , k, and the design idea of
the Rotate-Left protocol is as Figure 3 shown.

PROTOCOL Rotate-Left

1. Party 1 and Party 2 collaboratively execute the the Z2-to-
Zn2{k} protocol

((x0
1, . . . , x

k
1), (x0

2, . . . , x
k
2)) 7→ (X1, X2)

such that X1 +X2 (mod n2) = (xkxk−1 · · ·x1x0)2, where
xi = xi

1 + xi
2 (mod 2), for i = 0, 1, · · · , k.

2. Party j individually computes Tj = Xj · (2k+1 +
1) (mod n2), for j = 1, 2.

3. Party 1 and Party 2 jointly run the Exp(pb, se, ny) ∈ Zn

protocol (s1, s2){2, k +1} 7→ (u1, u2) such that u1 +u2 =
2s1+s2 .

4. These two parties collaboratively run the Zn-to-Z2{k} pro-
tocol followed by the Z2-to-Zn2{k} protocol

(u1, u2){k} 7→ ((d0
1, . . . , d

k
1), (d0

2, . . . , d
k
2)) 7→ (U1, U2)

such that U1 + U2 (mod n2) = u1 + u2 (mod n).

5. These two parties jointly run the Product protocol
((T1, U1), (T2, U2)) 7→ (V1, V2) such that V1 +
V2 (mod n2) = (T1 + T2)(U1 + U2) (mod n2).

6. Party 1 and Party 2 jointly execute the Zn2 -to-Z2{2k + 1}
protocol

(V1, V2){2k + 1} 7→ ((f0
1 , . . . , f2k+1

1), (f0
2 , . . . , f2k+1

2))

such that (f2k+1f2k · · · f1f0)2 = V1+V2 (mod n2), where
f i = f i

1 + f i
2 (mod 2), for i = 0, 1, · · · , 2k + 1.

7. Party j individually sets [y0
j , y1

j , . . . , yk−1
j , yk

j] =

[fk+1
j , . . . , f2k+1

j].

Specification 4.12 (Rotate-Right) Party 1 and Party 2
want to collaboratively execute the secure proto-
col ((x0

1, x
1
1, . . . , x

k
1 , s1), (x0

2, x
1
2, . . . , x

k
2 , s2)) 7→

((y0
1 , y1

1 , . . . , yk
1), (y0

2 , y1
2 , . . . , yk

2)) such that yi =
x(i+r) (mod k+1) where r = [(s1 + s2) (mod n)] (mod k +
1), for i = 0, 1, . . . , k.

Figure 4. Rotate-Right

Let bi ∈ Z2 for i = 0, 1, · · · , k, and the design idea of
the Rotate-Right protocol is as Figure 4 shown.

PROTOCOL Rotate-Right

1. Party j individually sets [d0
j , d

1
j , . . . , d

k−1
j , dk

j] =

[xk
j , xk−1

j , . . . , x1
j , x

0
j], for j = 1, 2.

2. Party 1 and Party 2 collaboratively execute the Rotate-
Left protocol ((d0

1, d
1
1, . . . , d

k
1 , s1), (d

0
2, d

1
2, . . . , d

k
2 , s2)) 7→

((f0
1 , f1

1 , . . . , fk
1), (f0

2 , f1
2 , . . . , fk

2)) such that f i =

d(i−r) (mod k+1) where r = [(s1 + s2) (mod n)] (mod k +
1), for i = 0, 1, . . . , k.

8

3. Party j individually sets [y0
j , y1

j , . . . , yk−1
j , yk

j] =

[fk
j , fk−1

j , . . . , f1
j , f0

j], for j = 1, 2.

4.2.6 Division/Remainder

We construct our protocols over the finite group Zn, in
which the division is normally defined as the multiplication
to divisor’s multiplicative inverse. However, such defini-
tion is not practical, and neither is it feasible since element
t ∈ Zn may not even have multiplicative inverse if t and
n are not coprime. As a result, we need to give division a
practical and feasible definition, and we choose to follow
the integer division in modern computers. Given two inte-
gers x, y ∈ N, the integer division is defined as the follows:

⌊
x

y

⌋
= q, where x = y · q + r, and 0 ≤ r < y.

Our solution to the division protocol is actually an em-
ulation for a (k + 1)-bit divider. During the computa-
tion of

⌊
x
y

⌋
, we iteratively check whether x ≥ y · 2i, for

i = k − 1, . . . , 0. If it is true, the i-th bit of q is 1, and x
is subtracted by y · 2i; otherwise, the i-th bit of q is 0, and
x remains untouched. This iterative method is actually the
algorithm for long division.

However, we need to mention that it is unfeasible to com-
pute x ·2i in Zn since we need double precision to correctly
represent y·2i, for i = k−1, . . . , 0; otherwise, y·2i (mod n)
will give us unpredictable results. Therefore, in our solution
we first convert both the dividend and the divisor from Zn

sharing to Zn2 sharing, by which y · 2i can always be cor-
rectly represented. After the conversion, we emulate the
divider with the Scalar-Product protocol.

Based on the Comparison, If-Then-Else, Z2-to-Zn, and
Zn-to-Z2 protocols, we specify the following Div/Rem pro-
tocol, which represents “Division/Remainder”.

Specification 4.13 (Div/Rem) Two parties share the div-
idend and the divisor in Zn, and they want to
jointly execute the secure protocol ((x1, y1), (x2, y2)) 7→
((q1, r1), (q2, r2)), where x1 + x2 = (y1 + y2)(q1 + q2) +
(r1 + r2) and 0 ≤ (r1 + r2) < (y1 + y2).

PROTOCOL Div/Rem

1. Party 1 and Party 2 collaboratively execute the Zn-to-Z2{k}
protocol followed by the Z2-to-Zn2{k} protocol

(x1, x2) 7→ ((b0
1, . . . , b

k
1), (b0

2, . . . , b
k
2)) 7→ (X1, X2)

such that X1 + X2 (mod n2) = x1 + x2 (mod n).

2. Party 1 and Party 2 collaboratively execute the Zn-to-Z2{k}
protocol followed by the Z2-to-Zn2{k} protocol

(y1, y2) 7→ ((c0
1, . . . , c

k
1), (c0

2, . . . , c
k
2)) 7→ (Y1, Y2)

such that Y1 + Y2 (mod n2) = y1 + y2 (mod n).

Algorithm 1 Calculate q = bx
y c, r = x− y · q

q ← 0
for i ← k − 1, k − 2, · · · , 0 do

if x ≥ y · 2i then
x ← x− y · 2i

bit ← 1
else

bit ← 0
end if
q ← q + bit · 2i

end for
r ← x

3. Party j sets Xk
j = Xj , for j = 1, 2.

4. For i = k − 1, k − 2, . . . , 0, repeat Step 4a to Step 4d.

(a) Party j computes ti
j = Xi+1

j − Yj · 2i (mod n2), for
j = 1, 2.

(b) Party 1 and Party 2 jointly run the Comparison proto-
col (ti

1, t
i
2) 7→ (si

1, s
i
2) such that

si
1 + si

2 (mod n2) =

{
1 if ti

1 + ti
2 < 0,

0 otherwise.

(c) Party j individually computes qi
j = 1− si

j (mod n2),
for j = 1, 2, such that

qi
1 + qi

2 (mod n2) =

{
0 if si

1 + si
2 = 1,

1 if si
1 + si

2 = 0.

(d) Party 1 and Party 2 run the If-Then-Else protocol
((si

1, X
i+1
1 , ti

1), (s
i
2, X

i+1
2 , ti

2)) 7→ (Xi
1, X

i
2) such

that

Xi
1+Xi

2 (mod n2) =

{
Xi+1

1 + Xi+1
2 if si

1 + si
2 = 1,

ti
1 + ti

2 if si
1 + si

2 = 0.

5. For j = 1, 2, Party j computes rj = X0
j (mod n), and

qj =
∑k−1

i=0 qi
j · 2i (mod n).

4.2.7 Square Root

Specification 4.14 (Sqrt) Party 1 and Party 2 want to
collaboratively execute the secure protocol (x1, x2) 7→
(y1, y2) such that y1 + y2 = b√x1 + x2c.

The protocol details are as follows:

PROTOCOL Sqrt

1. Two parties collaboratively execute the Zn-to-Z2{k} pro-
tocol (x1, x2) 7→ ((b0

1, . . . , b
k
1), (b0

2, . . . , b
k
2)), such that

bi = bi
1 + bi

2 (mod 2), and (bk · · · b0)2 = x1 + x2.

2. If k + 1 (mod 2) = 1, Party j sets bk+1
j = 0, for j = 1, 2.

3. For j = 1, 2, Party j individually sets de
j , g

e
j , ye

j = 0, where
e = d k+1

2
e+ 1.

9

Algorithm 2 Calculate y = b√xc
(bkbk−1 · · · b1b0)2 ← x
if k + 1 (mod 2) = 1 then

bk+1 ← 0
end if
d, g, y ← 0
for i ← dk+1

2 e to 1 do
d = 4d + 2b2i−1 + b2i−2

if d ≥ 2g + 1 then
f ← d− (2g + 1)
g ← 2g + 2
y ← 2y + 1

else
g ← 2g
y ← 2y

end if
end for

4. For i = d k+1
2
e, · · · , 1, repeat from Step 4a to Step 4f.

(a) Party 1 and Party 2 jointly run the Z2-to-Zn{0} proto-
col (b2i−1

1 , b2i−1
2) 7→ (t2i−1

1 , t2i−1
2), such that t2i−1

1 +
t2i−1
2 (mod n) = (b2i−1)2.

(b) Party 1 and Party 2 jointly run the Z2-to-Zn{0} proto-
col (b2i−2

1 , b2i−2
2) 7→ (t2i−2

1 , t2i−2
2), such that t2i−2

1 +
t2i−2
2 (mod n) = (b2i−2)2.

(c) For j = 1, 2, Party j individually sets di
j = 4di+1

j +

2t2i−1
j + t2i−2

j .

(d) Two parties jointly execute the Comparison protocol
(di

1 − 2gi
1 − 1, di

2 − 2gi
2) 7→ (c1, c2), where

c1+c2 =

{
1 if (di

1 + di
2)− 2(gi

1 + gi
2)− 1 < 0,

0 otherwise.

(e) Party 1 and Party 2 collaboratively run the If-Then-
Else protocol ((c1, d

i
1, d

i
1 − 2gi

1 − 1), (c2, d
i
2, d

i
2 −

2gi
2)) 7→ (di−1

1 , di−1
2) such that

di−1
1 + di−1

2 =

{
di if c1 + c2 = 1,
di − 2gi − 1 if c1 + c2 = 0,

where di = di
1 + di

2, g
i = gi

1 + gi
2.

(f) Party 1 sets gi−1
1 = 2gi

1+2−2c1, y
i−1
1 = 2yi

1+1−c1

while Party 2 sets gi−1
2 = 2gi

2−2c2, y
i−1
2 = 2yi

2−c2

such that

gi−1
1 + gi−1

2 =

{
2gi if c1 + c2 = 1,
2gi + 2 if c1 + c2 = 0,

yi−1
1 + yi−1

2 =

{
2yi if c1 + c2 = 1,
2yi + 1 if c1 + c2 = 0,

where yi = yi
1 + yi

2.

5. Party j individually sets yj = y0
j , for j = 1, 2.

Figure 5. The hierarchy of the Square-root
protocol.

4.2.8 Logarithm

Specification 4.15 (Logarithm) Party 1 and Party 2 want
to collaboratively execute the secure protocol (x1, x2) 7→
(y1, y2) such that y1 + y2 = blog2 (x1 + x2)c.

Algorithm 3 Calculate t = blog2 xc
(bkbk−1 · · · b1b0)2 ← x
t ← b1

for i ← 2 to k do
if bi = 1 then

t ← i
end if

end for

PROTOCOL Logarithm

1. Party 1 and Party 2 collaboratively execute the Zn-to-
Z2{k} protocol (x1, x2){k} 7→ ((b0

1, . . . , b
k
1), (b0

2, . . . , b
k
2))

such that (bkbk−1 · · · b1b0)2 = x1 + x2 where x1, x2 ∈
Zn, bi

1, b
i
2 ∈ Z2, and bi = bi

1 + bi
2 (mod 2), for i =

0, 1, · · · , k.

2. Party 1 and Party 2 collaboratively execute the Z2-to-Zn{0}
protocol (b1

1, b
1
2){0} 7→ (t11, t

1
2) such that t11 + t12 = (b0)2

where t11, t
1
2 ∈ Zn.

3. For i = 2 to k, repeat Step 3a and Step 3b.

(a) Party 1 and Party 2 collaboratively run the Z2-to-
Zn{0} protocol (bi

1, b
i
2){0} 7→ (di

1, d
i
2) such that

di
1 + di

2 = (bi)2 where di
1, d

i
2 ∈ Zn.

(b) These two parties jointly run the If-Then-Else protocol
((di

1, i, t
i−1
1), (di

2, 0, ti−1
2)) 7→ (ti

1, t
i
2) such that

ti
1 + ti

2 =

{
i if di

1 + di
2 = 1,

ti−1
1 + ti−1

2 if di
1 + di

2 = 0.

4. Party j locally sets yj = tk
j , for j = 1, 2.

10

4.3 Building Blocks for Fixed-Point Numbers

Since the Scalar-Product is integer-based, we can trans-
form the fixed-point numbers (such as x) to integers (such
as x̂, x̃) and use integers to simulate fixed-point number ad-
dition, subtraction, multiplication, and other arithmetic. In
Section 4.3, let x, y be fixed-point numbers with s bits after
the decimal point, and

x̂ = 2sx, x̃ = 2sx̂ = 22sx,
ŷ = 2sy, ỹ = 2sŷ = 22sy.

It is apparent that x̂, ŷ, x̃, ỹ are integers. We propose (flo)
Scalar-Product{s}, (flo) Product{s}, and (flo) Square{s}
simulating fixed-point number arithmetic. Note that both
the inputs and outputs of these protocols are variables with
symbol ˆ , which means they represent fixed-point numbers
with s bits after the fixed point, where s is a public type
integer.

4.3.1 (flo) Scalar-Product{s}
Specification 4.16 ((flo) Scalar-Product{s}) Party 1 and
Party 2 want to collaboratively execute the secure protocol

((x̂[1]1, . . . , x̂[d]1), (x̂[1]2, . . . , x̂[d]2)){s} 7→ (ŷ1, ŷ2)

such that ŷ1 + ŷ2 = b x̂[1]1·x̂[1]2+···+x̂[d]1·x̂[d]2
2s c and

x̂[i]1, x̂[i]2, ŷ1, ŷ2 ∈ Zn, for i = 1, . . . , d.

PROTOCOL (flo) Scalar-Product{s}
1. Party 1 and Party 2 jointly execute the Scalar-Product proto-

col

((x̂[1]1, . . . , x̂[d]1), (x̂[1]2, . . . , x̂[d]2)) 7→ (t̃1, t̃2)

such that t̃1 + t̃2 = x̂[1]1 · x̂[1]2 + · · ·+ x̂[d]1 · x̂[d]2.

2. Party 1 and Party 2 jointly run the Shift{s} protocol

(t̃1, t̃2){s} 7→ (ŷ1, ŷ2), where ŷ1 + ŷ2 = b t̃1 + t̃2
2s

c.

4.3.2 (flo) Product{s}
Specification 4.17 ((flo) Product{s}) Party 1 and Party 2
share the multiplicand and the multiplicator. They want
to securely execute the protocol ((x̂1, ŷ1), (x̂2, ŷ2)){s} 7→
(ẑ1, ẑ2) such that ẑ1 + ẑ2 = b (x̂1 + x̂2)(ŷ1 + ŷ2)

2s
c.

PROTOCOL (flo) Product{s}
1. Party 1 and Party 2 jointly execute the Scalar-Product pro-

tocol ((x̂1, ŷ1), (ŷ2, x̂2)) 7→ (t̃1, t̃2) such that t̃1 + t̃2 =
x̂1ŷ2 + ŷ1x̂2.

2. Party j individually computes ũj = t̃j + x̂j ŷj , for j = 1, 2.

3. Party 1 and Party 2 jointly run the Shift{s} protocol

(ũ1, ũ2){s} 7→ (ẑ1, ẑ2), where ẑ1 + ẑ2 = b ũ1 + ũ2

2s
c.

4.3.3 (flo) Square{s}
Specification 4.18 ((flo) Square{s}) Party 1 and Party 2
share a number in Zn, and they want to securely execute
the protocol (x̂1, x̂2){s} 7→ (ŷ1, ŷ2) such that ŷ1 + ŷ2 =

b (x̂1 + x̂2)2

2s
c.

PROTOCOL (flo) Square{s}

1. Party 1 and Party 2 jointly execute the Scalar-Product proto-
col (x̂1, x̂2) 7→ (t̃1, t̃2) such that t̃1 + t̃2 = x̂1 · x̂2.

2. Party j individually computes ũj = 2t̃j + x̂2
j , for j = 1, 2.

3. Party 1 and Party 2 jointly run the Shift{s} protocol

(ũ1, ũ2){s} 7→ (ŷ1, ŷ2), where ŷ1 + ŷ2 = b ũ1 + ũ2

2s
c.

4.4 General Solutions

Here we design two protocols, the Function(x){s, f(·)}
and Function(x, y){s, f(·)} protocols, which provide gen-
eral solutions to functions that have one or two additively
shared parameters between two parties. For generality, we
assume that the output is a fixed-point number with s bits
after the decimal point. Using the same strategy, these two
parties can always securely compute functions with more
parameters rather than one or two.

4.4.1 Function(x){s, f(·)}
Specification 4.19 (Function(x)) Party 1 and Party 2
share some number x. They want to securely execute the
protocol (x1, x2){s, f(·)} 7→ (ŷ1, ŷ2) such that ŷ1 + ŷ2 =
[2s · f(x1 + x2)] where s is the number of bits after the
decimal point and f(·) is some function. (For example,
f(x) = log7 x or f(x) = 3

√
x where x = x1 + x2.)

PROTOCOL Function(x)

1. For i = 0, 1, · · · , n− 1, repeat Step 1a.

(a) Party 1 individually sets t̂[i] = [2sf(x1 + i)] while
Party 2 individually sets

u[i] =

{
1 if i = x2,
0 if i 6= x2.

2. Party 1 and Party 2 collaboratively execute the Scalar-
Product protocol

((t̂[0], . . . , t̂[n− 1]), (u[0], . . . , u[n− 1])) 7→ (ŷ1, ŷ2)

such that ŷ1 + ŷ2 = t̂[0] · u[0] + · · ·+ t̂[n− 1] · u[n− 1].

11

4.4.2 Function(x, y){s, f(·)}
Specification 4.20 (Function(x, y)) Party 1 and Party 2
share some x and y. They want to securely execute the
protocol ((x1, y1), (x2, y2)){s, f(·)} 7→ (ẑ1, ẑ2) such that
ẑ1 + ẑ2 = [2s · f(x1 + x2, y1 + y2)] where s is the num-
ber of bits after the decimal point and f(·) is some function.
(For example, f(x, y) = logy x or f(x, y) = y

√
x where

x = x1 + x2 and y = y1 + y2.)

PROTOCOL Function(x, y)

1. For i = 0, · · · , n− 1, repeat from Step 1a to Step 1c.

(a) For j = 0, · · · , n− 1, repeat Step 1(a)i.

i. Party 1 individually sets t̂[j] = [2sf(x1 + i, y1 +
j)] while Party 2 individually sets

w[j] =

{
1 if j = y2,
0 if j 6= y2.

(b) Party 1 and Party 2 collaboratively execute the Scalar-
Product protocol

((t̂[0], . . . , t̂[n−1]), (w[0], . . . , w[n−1])) 7→ (û[i]1, û[i]2)

such that û[i]1 + û[i]2 = t̂[0] ·w[0] + · · ·+ t̂[n− 1] ·
w[n− 1].
(More specifically, û[i]1 + û[i]2 = t̂[y2] = [2sf(x1 +
i, y1 + y2)].)

(c) Party 1 individually sets v̂[i] = û[i]1 while Party 2
individually sets

q[i] =

{
1 if i = x2,
0 if i 6= x2.

2. Party 1 and Party 2 collaboratively execute the Scalar-
Product protocol ((v̂[0], . . . , v̂[n − 1]), (q[0], . . . , q[n −
1])) 7→ (r̂1, r̂2) such that r̂1 + r̂2 = v̂[0] · q[0] + · · · +
v̂[n− 1] · q[n− 1].
(More specifically, r̂1 + r̂2 = v̂[x2] = û[x2]1.)

3. Party 1 individually sets ẑ1 = r̂1, and Party 2 computes ẑ2 =
û[x2]2 + r̂2.

Since every building block is composed of other ones
and based on the Scalar-Product, Table 1 lists the con-
stituents of these building blocks.

We further break those constitutive building blocks in
Table 1 into Scalar-Product protocols of which Table 2
shows the domain, dimension, and times.

5 Examples in Statistics

In this section, we give examples for SMC problems in
statistics and design protocols solving them. Two scenar-
ios of a shared database are considered. The secret type
of database indicates the data of which are shared between
Party 1 and Party 2 ; the private type one means each party

privately owns their database, and a view with a union is
created over both of them to provide a complete view. Fig-
ure 6 and Figure 7 show the split and the shard database ar-
chitecture(aka horizontal partitioning) relatively. Based on
these two different scenarios, (secret) and (private) types
of protocols are proposed, including Range, Mean, and Var.
With these protocols, we can securely compute the range,
the mean, and the variance of the linked database.

5.1 Split Database

Figure 6. Split database architecture(secret
shares)

5.1.1 (secret) Range

Before introducing the (secret) Range protocol, we first de-
sign the (secret) Max and the (secret) Min protocols.

Specification 5.1 ((secret) Max) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, x[2]1, · · · , x[d]1), (x[1]2, x[2]2, · · · , x[d]2)){d} 7→
(y1, y2) such that y1 + y2 = the maximum of
(x[1], x[2], · · · , x[d]) where x[i]1, x[i]2, y1, y2 ∈ Zn,
for i = 1, 2, · · · , d.

Algorithm 4 Calculate max = the maximum of
(x[1], x[2], · · · , x[d])

max ← x[1]
for i ← 2, 3, · · · , d do

if max < x[i] then
max ← x[i]

end if
end for

Based on Algorithm 4, the (secret) Max protocol details
are as follows:

PROTOCOL (secret) Max

12

1. Party j individually sets m1
j = x[1]j , for j = 1, 2.

2. For i = 2, 3, · · · , d, repeat Step 2a and Step 2b.

(a) Party 1 and Party 2 jointly execute the Comparison
protocol (mi−1

1 − x[i]1, m
i−1
2 − x[i]2) 7→ (c1, c2)

such that

c1+c2 =

{
1 if mi−1

1 + mi−1
2 − x[i]1 − x[i]2 < 0,

0 otherwise.

(b) These two parties collaboratively run the If-Then-Else
protocol ((c1, x[i]1, m

i−1
1), (c2, x[i]2, m

i−1
2)) 7→

(mi
1, m

i
2) such that

mi
1 + mi

2 =

{
x[i]1 + x[i]2 if c1 + c2 = 1,
mi−1

1 + mi−1
2 if c1 + c2 = 0.

3. Party j individually sets yj = md
j , for j = 1, 2.

Specification 5.2 ((secret) Min) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, x[2]1, · · · , x[d]1), (x[1]2, x[2]2, · · · , x[d]2)){d} 7→
(y1, y2) such that y1 + y2 = the minimum of
(x[1], x[2], · · · , x[d]) where x[i]1, x[i]2, y1, y2 ∈ Zn,
for i = 1, 2, · · · , d.

Algorithm 5 Calculate min = the minimum of
(x[1], x[2], · · · , x[d])

min ← x[1]
for i ← 2, 3, · · · , d do

if min > x[i] then
min ← x[i]

end if
end for

Based on Algorithm 5, the (secret) Min protocol details
are as follows:

PROTOCOL (secret) Min

1. Party j locally sets m1
j = x[1]j , for j = 1, 2.

2. For i = 2, 3, · · · , d, repeat Step 2a and Step 2b.

(a) Party 1 and Party 2 jointly execute the Comparison
protocol (x[i]1 − mi−1

1 , x[i]2 − mi−1
2) 7→ (c1, c2)

such that

c1+c2 =

{
1 if x[i]1 + x[i]2 −mi−1

1 −mi−1
2 < 0,

0 otherwise.

(b) These two parties collaboratively run the If-Then-Else
protocol ((c1, x[i]1, m

i−1
1), (c2, x[i]2, m

i−1
2)) 7→

(mi
1, m

i
2) such that

mi
1 + mi

2 =

{
x[i]1 + x[i]2 if c1 + c2 = 1,
mi−1

1 + mi−1
2 if c1 + c2 = 0.

3. Party j locally sets yj = md
j , for j = 1, 2.

Specification 5.3 ((secret) Range) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, x[2]1, · · · , x[d]1), (x[1]2, x[2]2, · · · , x[d]2)){d} 7→
(y1, y2) such that y1 + y2 = the range of
(x[1], x[2], · · · , x[d]) where x[i] = x[i]1 + x[i]2 and
x[i], x[i]1, x[i]2, y1, y2 ∈ Zn, for i = 1, 2, · · · , d.

Algorithm 6 Calculate r = the range of (x[1], . . . , x[d])
u ← Max(x[1], . . . , x[d])
v ← Min(x[1], . . . , x[d])
r ← u− v

PROTOCOL (secret) Range

1. Party 1 and Party 2 collaboratively
execute the (secret) Max protocol
((x[1]1, x[2]1, · · · , x[d]1), (x[1]2, x[2]2, · · · , x[d]2)){d} 7→
(y1, y2) such that y1 + y2 = the maximum of
(x[1], x[2], · · · , x[d]).

2. Party 1 and Party 2 collaboratively
execute the (secret) Min protocol
((x[1]1, x[2]1, · · · , x[d]1), (x[1]2, x[2]2, · · · , x[d]2)){d} 7→
(v1, v2) such that v1 + v2 = the minimum of
(x[1], x[2], · · · , x[d]).

3. Party j individually computes yj = uj − vj , for j = 1, 2.

5.1.2 (secret) Mean

Specification 5.4 ((secret) Mean) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, . . . , x[d]1), (x[1]2, . . . , x[d]2)){d} 7→ (q1, q2) such

that q1 + q2 = b
∑d

i=1(x[i]1+x[i]2)

d c.

PROTOCOL (secret) Mean

1. Party j individually computes tj =
∑d

i=1 x[i]1, for j =
1, 2.

2. Party 1 and Party 2 collaboratively execute the Div{divisor}
protocol (t1, t2){d} 7→ ((q1, r1), (q2, r2)) such that q1 +
q2 = b t1+t2

d
c.

5.1.3 (secret) Variance

Specification 5.5 ((secret) Var) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, . . . , x[d]1), (x[1]2, . . . , x[d]2)){d} 7→ (q1, q2) such
that q1 + q2 = bd(s1+s2)−(t1+t2)

2

d2 c where s1 + s2 =∑d
i=1(x[i]1 + x[i]2)2, and tj =

∑d
i=1 x[i]j , for j = 1, 2.

PROTOCOL (secret) Var

13

Algorithm 7 Calculate var = the variance of
(x[1], x[2], · · · , x[d])

s ← SquareSum(x[1], x[2], · · · , x[d])
t ← Sum(x[1], x[2], · · · , x[d])
var = (d · s− t2)/d2

1. Party 1 and Party 2 collabora-
tively run the Scalar-Product protocol
((2x[1]1, 2x[2]1, · · · , 2x[d]1), (x[1]2, x[2]2, · · · , x[d]2)) 7→
(u1, u2) such that u1 + u2 = 2x[1]1 · x[1]2 + · · ·+ 2x[d]1 ·
x[d]2.

2. Party j individually computes sj =
∑d

i=1 x[i]2j + uj , for
j = 1, 2.

3. Party 1 and Party 2 collaboratively run the Square protocol
(t1, t2) 7→ (v1, v2) such that v1 + v2 = (t1 + t2)

2.

4. Party j computes zj = p · sj − vj , for j = 1, 2.

5. Party 1 and Party 2 jointly execute the Div/Rem{divisor}
protocol (z1, z2){d2} 7→ ((q1, r1), (q2, r2)) such that q1 +
q2 =

⌊
z1+z2

d2

⌋
.

5.2 Shard Database

Figure 7. Shard database architec-
ture(Horizontal partitioning)

5.2.1 (private) Range

Before introducing the (private) Range protocol, we first de-
sign the (private) Max and the (private) Min protocols.

Specification 5.6 ((private) Max) Party 1 and Party 2
want to collaboratively execute the secure protocol

(x, y) 7→ (z1, z2) such that

z1 + z2 =
{

y if x− y < 0,
x otherwise,

where x, y, z1, z2 ∈ Zn.

Algorithm 8 Calculate max = the maximum of (x, y)
if x > y then

max ← x
else

max ← y
end if

Based on Algorithm 8, the (private) Max protocol details
are as follows:

PROTOCOL (private) Max

1. Party 1 and Party 2 jointly run the Comparison protocol
(−x, y) 7→ (t1, t2) such that

t1 + t2 =

{
1 if y − x < 0,
0 otherwise.

2. Party 1 and Party 2 jointly run the If-Then-Else protocol
((t1, x, 0), (t2, 0, y)) 7→ (z1, z2) such that

z1 + z2 =

{
x if t1 + t2 = 1,
y if t1 + t2 = 0.

Specification 5.7 ((private) Min) Party 1 and Party 2
want to collaboratively execute the secure protocol
(x, y) 7→ (z1, z2) such that

z1 + z2 =
{

x if x− y < 0,
y otherwise,

where x, y, z1, z2 ∈ Zn.

Algorithm 9 Calculate min = the minimum of (x, y)
if x < y then

min ← x
else

min ← y
end if

Based on Algorithm 9, the (private) Min protocol details
are as follows:

PROTOCOL (private) Min

1. Party 1 and Party 2 jointly run the Comparison protocol
(x,−y) 7→ (t1, t2) such that

t1 + t2 =

{
1 if x− y < 0,
0 otherwise.

14

2. Party 1 and Party 2 jointly run the If-Then-Else protocol
((t1, x, 0), (t2, 0, y)) 7→ (z1, z2) such that

z1 + z2 =

{
x if t1 + t2 = 1,
y if t1 + t2 = 0.

Specification 5.8 ((private) Range) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1]1, . . . , x[dx]), (y[1], . . . , y[dy])) 7→ (z1, z2) such that
z1+z2 = the maximum - the minimum of the union database
(x[1], . . . , x[dx], y[1], . . . , y[dy]).

Algorithm 10 Calculate r = the range of
(x[1], . . . , x[dx], y[1], . . . , y[dy])

sx ← Max(x[1], . . . , x[dx])
sy ← Max(y[1], . . . , y[dy])
tx ← Min(x[1], . . . , x[dx])
ty ← Min(y[1], . . . , y[dy])
u ← Max(sx, sy)
v ← Min(tx, ty)
r ← u− v

Based on the primitives proposed in Section 4, the Range
protocol can be constructed as follows:

PROTOCOL (private) Range

1. Party 1 sets sx = the maximum and tx = the minimum of
(x[1], . . . , x[dx]), while Party 2 sets sy = the maximum and
ty = the minimum of (y[1], . . . , y[dy]).

2. Party 1 and Party 2 collaboratively execute the (private) Max
protocol (sx, sy) 7→ (u1, u2) such that

u1 + u2 =

{
sy if sx − sy < 0,
sx otherwise.

3. Party 1 and Party 2 collaboratively run the (private) Min pro-
tocol (tx, ty) 7→ (v1, v2) such that

v1 + v2 =

{
tx if tx − ty < 0,
ty otherwise.

4. Party j individually computes zj = uj − vj , for j = 1, 2.

5.2.2 (private) Mean

Specification 5.9 ((private) Mean) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1], . . . , x[dx]), (y[1], . . . , y[dy])) 7→ (q1, q2) such that

q1 + q2 = b
∑dx

i=1 x[i]+
∑dy

i=1 y[i]

dx+dy
c.

PROTOCOL (private) Mean

1. Party 1 computes t1 =
∑dx

i=1 x[i], while Party 2 computes
t2 =

∑dy

i=1 y[i].

2. Party 1 and Party 2 collaboratively execute the Div pro-
tocol ((t1, dx), (t2, dy)) 7→ ((q1, r1), (q2, r2)) such that
q1 + q2 = b t1+t2

dx+dy
c.

5.2.3 (private) Variance

Specification 5.10 ((private) Var) Party 1 and Party 2
want to collaboratively execute the secure protocol
((x[1], . . . , x[dx]), (y[1], . . . , y[dy])) 7→ (q1, q2) such that

q1 + q2 = b (dx+dy)(s1+s2)−(t1+t2)
2

(dx+dy)2 c where s1 =
∑dx

i=1 x[i]2, t1 =
∑dx

i=1 x[i], s2 =
∑dy

i=1 y[i]2, and t2 =∑dy

i=1 y[i].

Algorithm 11 Calculate var = the variance of
(x[1], x[2], · · · , x[dx], y[1], y[2], · · · , y[dy])

d ← dx + dy

s ← SquareSum(x[1], x[2], · · · , x[dx], y[1], y[2], · · · , y[dy])
t ← Sum(x[1], x[2], · · · , x[dx], y[1], y[2], · · · , y[dy])
var = (d · s− t2)/d2

PROTOCOL (private) Var

1. Party 1 computes s1 =
∑dx

i=1 x[i]2 and t1 =
∑dx

i=1 x[i]

while Party 2 computes s2 =
∑dy

i=1 y[i]2 and t2 =∑dy

i=1 y[i].

2. Party 1 and Party 2 collaboratively execute the Product pro-
tocol ((dx, s1), (dy, s2)) 7→ (u1, u2) such that u1 + u2 =
(dx + dy)(s1 + s2).

3. Party 1 and Party 2 collaboratively run the Square protocol
(t1, t2) 7→ (v1, v2) such that v1 + v2 = (t1 + t2)

2.

4. Party 1 and Party 2 collaboratively execute the Square proto-
col (dx, dy) 7→ (w1, w2) such that w1 + w2 = (dx + dy)2.

5. Party j computes zj = uj − vj , for j = 1, 2.

6. Party 1 and Party 2 jointly execute the Div protocol
((z1, w1), (z2, w2)) 7→ ((q1, r1), (q2, r2)) such that q1 +

q2 =
⌊

z1+z2
w1+w2

⌋
.

Table 3 lists the constituents of building blocks intro-
duced in this section.

We further break those constitutive building blocks in
Table 3 into Scalar-Product protocols of which Table 4
shows the domain, dimension, and times.

6 Tradeoffs

In order to show tradeoffs between privacy and effi-
ciency, in this section we take exponentiation (xy) and divi-
sion (bx

y c) as concrete examples discussing possible trade-
offs. For exponentiation, we also analyze the information
leaking out according to public variables, present the exper-
imental results, and estimate the time cost for each tradeoff
helping make a reasonable tradeoff decision.

15

6.1 Tradeoffs: Exponentiation

Party 1 and Party 2 share the base x and the exponent
y. Let the positive integers nx and ny be the range of
x and the range of y respectively, where x < nx ≤ n,
y < ny ≤ n, nx = 2kx+1, ny = 2ky+1, and kx, ky ∈ N. As
we can see in the discussion below, if tighter bounds are/is
known for x and/or y, i.e., nx and/or ny are/is much smaller
than n, the execution time needed would be much smaller.
We argue that in cases where the users know or can derive
tighter upper bounds for x and/or y due to the nature of the
problem, and this knowledge can greatly improve computa-
tional efficiency. In some other cases, we envision that the
computational cost is prohibitively high, so that the parties
would agree to reveal some information about x and/or y
in order to get the results in reasonable time. Nielsen and
Schwartzbach define three variable types which are secret,
public, and private [25]. Here we only define two vari-
able types: secret and public. The secret type of variable
indicates the value of which is shared between Party 1 and
Party 2 , while the public type of variable means the value
of which resides in plain view on these two parties. For
simplicity, hereafter we set sb = secret base, se = secret
exponent, pb = public base, and pe = public exponent.

Since the performance of the protocol is dependent on
the number of bits necessary to represent the final results, a
very effective way to improve the performance is to reveal
the upper bounds of the base and/or the exponent. Below
is the description of the exponentiation protocol with nx

and ny . Note that nx = ny = n is the case where no
information about x, y is revealed.

Algorithm 12 is a simple repeated squaring algorithm to
compute the exponentiation [26]. Note that in this algo-
rithm the exponent y has to be treated as a sequence of bits.
It is apparent that a secure two-party protocol based on the
algorithm must first invokes the Zn-to-Z2{ky} protocol to
transform an additive shared y to a shared bit string which is
the binary representation of y. Because of x < nx, y < ny,
the answer of xy is in Znx

ny . Therefore, to ensure the cor-
rectness all the steps of the protocol must be done in Znx

ny .
More specifically, we need Zn-to-Z2{kx} and {kx}Z2-to-
Znn protocols to transform the base x from Zn shares to
Znx

ny shares. Besides that, ky + 1 times of the Z2-to-
Znx

ny {0} protocol are necessary to transform the shared
bits of the exponent y from Z2 to Znx

ny shares. The If-
Then-Else, Square, and Product protocols are required as
well to complete this algorithm. Figure 8 is the construc-
tion of the Exp(sb, se, nx, ny) ∈ Znx

ny protocol.

Specification 6.1 (Exp(sb, se, nx, ny) ∈ Znx
ny)

Party 1 and Party 2 share the base and the expo-
nent. They want to securely execute the protocol
((x1, y1), (x2, y2)){nx, ny} 7→ (z1, z2) such that
z1 + z2 = (x1 + x2)y1+y2 , where z1, z2 ∈ Znx

ny ,

Algorithm 12 Calculate u = xy

(bkbk−1 · · · b1b0)2 ← y
u ← 1
if b0 = 1 then

u ← x
end if
v ← x
for i = 1, 2, · · · , k do

v = v2

if bi = 1 then
u = u · v

end if
end for

nx, ny are public ranges of x and y respectively. More
specifically, x < nx ≤ n, and y < ny ≤ n.

PROTOCOL Exp(sb, se, nx, ny) ∈ Znx
ny

1. Party 1 and Party 2 collaboratively execute the Zn-to-
Z2{kx} protocol followed by the Z2-to-Znx

ny {kx} proto-
col,

(x1, x2){kx} 7→ ((e0
1, . . . , e

kx
1), (e0

2, . . . , e
kx
2)) 7→ (X1, X2),

where X1 + X2 (mod nx
ny) = x1 + x2 (mod n).

2. Party 1 and Party 2 jointly execute the Zn-to-Z2{ky} pro-
tocol (y1, y2){ky} 7→ ((b0

1, . . . , b
ky

1), (b0
2, . . . , b

ky

2)) such
that (bky bky−1 · · · b1b0)2 = y1 + y2, where y1, y2 ∈ Zny ,
bi
1, b

i
2 ∈ Z2, and bi = bi

1+bi
2 (mod 2), for i = 0, 1, · · · , ky.

3. Party 1 and Party 2 jointly execute the Z2-to-Znx
ny {0}

protocol (b0
1, b

0
2){0} 7→ (d0

1, d
0
2) such that (b0)2 = d0

1 +
d0
2 (mod nx

ny), where d0
1, d

0
2 ∈ Znx

ny , b0
1, b

0
2 ∈ Z2, and

b0 = b0
1 + b0

2 (mod 2).

4. Party 1 and Party 2 jointly execute the If-Then-Else proto-
col ((d0

1, X1, 1), (d0
2, X2, 0)) 7→ (u1

1, u
1
2) such that u1

1 +
u1

2 (mod nx
ny) =

{
X1 + X2 if d0

1 + d0
2 = 1,

1 if d0
1 + d0

2 = 0.

It is clear from the context that + represents addition in Z
n

ny
x

.

5. Party j individually sets v1
j = Xj , for j = 1, 2.

6. For i = 1, 2, · · · , ky , repeat from Step 6a to Step 6d.

(a) The two parties jointly execute the Square proto-
col (vi

1, v
i
2) 7→ (vi+1

1 , vi+1
2) such that vi+1

1 +
vi+1
2 (mod nx

ny) = (vi
1 + vi

2)
2.

(b) The two parties jointly execute the Product proto-
col ((ui

1, v
i
1), (u

i
2, v

i
2)) 7→ (wi

1, w
i
2) such that wi

1 +
wi

2 (mod nx
ny) = (ui

1 + ui
2)(v

i
1 + vi

2).

(c) Party 1 and Party 2 jointly execute the Z2-to-
Znx

ny {0} protocol (bi
1, b

i
2){0} 7→ (di

1, d
i
2) such that

(bi)2 = di
1 +di

2 (mod nx
ny), where di

1, d
i
2 ∈ Znx

ny ,
bi
1, b

i
2 ∈ Z2, and bi = bi

1 + bi
2 (mod 2).

16

(d) The two parties jointly execute the If-Then-Else proto-
col ((di

1, w
i
1, u

i
1), (d

i
2, w

i
2, u

i
2)) 7→ (ui+1

1 , ui+1
2) such

that

ui+1
1 +ui+1

2 (mod nx
ny) =

{
wi

1 + wi
2 if di

1 + di
2 = 1,

ui
1 + ui

2 if di
1 + di

2 = 0.

It is clear from the context that + represents addition in
Z

n
ny
x

.

7. Party j individually sets zj = u
ky+1
j , for j = 1, 2.

Figure 8. The Composition of the Exponenti-
ation protocol

There are situations where the final results of the ex-
ponentiation are bounded above by numbers much smaller
than nn; here we consider the case where the result is guar-
anteed to be in Zn. The corresponding protocol is described
below:

Specification 6.2 (Exp(sb, se) ∈ Zn) Party 1 and Party 2
share the base and the exponent. They want to securely ex-
ecute the protocol ((x1, y1), (x2, y2)) 7→ (z1, z2) such that
z1 + z2 = (x1 + x2)y1+y2 .

PROTOCOL Exp(sb, se) ∈ Zn

1. Party j individually sets Xj = xj , for j = 1, 2.

2. Party 1 and Party 2 jointly execute the Zn-to-Z2{k} pro-
tocol (y1, y2) 7→ ((b0

1, . . . , b
k
1), (b0

2, . . . , b
k
2)) such that

(bkbk−1 · · · b1b0)2 = y1 + y2, where y1, y2 ∈ Zn, bi
1, b

i
2 ∈

Z2, and bi = bi
1 + bi

2 (mod 2), for i = 0, 1, · · · , k.

3. Party 1 and Party 2 jointly execute the Z2-to-Zn{0} proto-
col (b0

1, b
0
2) 7→ (d0

1, d
0
2) such that (b0)2 = d0

1 + d0
2, where

d0
1, d

0
2 ∈ Zn, b0

1, b
0
2 ∈ Z2, and b0 = b0

1 + b0
2 (mod 2).

4. Party 1 and Party 2 jointly execute the If-Then-Else protocol
((d0

1, X1, 1), (d0
2, X2, 0)) 7→ (u1

1, u
1
2) such that

u1
1 + u1

2 (mod n) =

{
X1 + X2 if d0

1 + d0
2 = 1,

1 if d0
1 + d0

2 = 0.

5. Party j individually sets v1
j = Xj , for j = 1, 2.

6. For i = 1, 2, · · · , k, repeat from Step 6a to Step 6d.

(a) The two parties jointly execute the Square proto-
col (vi

1, v
i
2) 7→ (vi+1

1 , vi+1
2) such that vi+1

1 +
vi+1
2 (mod n) = (vi

1 + vi
2)

2.

(b) The two parties jointly execute the Product proto-
col ((ui

1, v
i
1), (u

i
2, v

i
2)) 7→ (wi

1, w
i
2) such that wi

1 +
wi

2 (mod n) = (ui
1 + ui

2)(v
i
1 + vi

2).

(c) Party 1 and Party 2 jointly execute the Z2-to-Zn{0}
protocol (bi

1, b
i
2) 7→ (di

1, d
i
2) such that (bi)2 = di

1 +
di
2, where di

1, d
i
2 ∈ Zn, bi

1, b
i
2 ∈ Z2, and bi = bi

1 +
bi
2 (mod 2).

(d) The two parties jointly execute the If-Then-Else proto-
col ((di

1, w
i
1, u

i
1), (d

i
2, w

i
2, u

i
2)) 7→ (ui+1

1 , ui+1
2) such

that

ui+1
1 +ui+1

2 (mod n) =

{
wi

1 + wi
2 if di

1 + di
2 = 1,

ui
1 + ui

2 if di
1 + di

2 = 0.

7. Party j individually sets zj = uk+1
j , for j = 1, 2.

For some other situations where either the value of x or y
can be revealed completely, we can then take full advantage
of it and have much faster protocols.

1. Exp(pb x, se) ∈ Zxn : Since the base resides in plain
view on these two parties as x and the exponent is still
securely shared in Zn, the answer of xy is in Zxn . We
can omit the step transforming the base from Zn shares
to Zxn ones. At the same time, securely executing the
Square protocol for x2 is not necessary anymore.

2. Exp(sb, pe y) ∈ Zny : Since the exponent resides in
plain view on these two parties as y and the base is
still securely shared in Zn, the answer of xy is in Zny .
Party 1 and Party 2 can individually transform y to a
bit string. Details of this protocol are provided as fol-
lowings.

Specification 6.3 (Exp(sb, pe y) ∈ Zny) Party 1 and
Party 2 share the base while the exponent is pub-
lic. They want to securely execute the protocol
(x1, x2){y} 7→ (z1, z2) such that z1+z2 = (x1+x2)y ,
where z1, z2 ∈ Zny .

PROTOCOL Exp(sb, pe y) ∈ Zny

(a) Party 1 and Party 2 collaboratively execute the Zn-to-
Z2{k} protocol followed by the Z2-to-Zny{k} proto-
col,

(x1, x2) 7→ ((e0
1, . . . , e

k
1), (e0

2, . . . , e
k
2)) 7→ (X1, X2),

where X1 + X2 (mod ny) = x1 + x2 (mod n).

(b) Party 1 and Party 2 individually turn the pub-
lic exponent y from Zn into Z2 such that
(bky bky−1 · · · b1b0)2 = y, where ky = blog2 yc, y ∈
Zn, bi ∈ Z2, for i = 0, 1, · · · , ky.

17

(c) Party 1 sets u1
1 = b0X1 + (1− b0), while Party 2 sets

u1
2 = b0X2, such that

u1
1 + u1

2 (mod ny) =

{
X1 + X2 if b0 = 1,
1 if b0 = 0.

It is clear from the context that + represents addition in
Zny .

(d) Party j individually sets v1
j = Xj , for j = 1, 2.

(e) For i = 1, · · · , ky , repeat Step 2(e)i and Step 2(e)ii.

i. The two parties jointly execute the Square pro-
tocol (vi

1, v
i
2) 7→ (vi+1

1 , vi+1
2) such that vi+1

1 +
vi+1
2 (mod ny) = (vi

1 + vi
2)

2. It is clear from the
context that + represents addition in Zny .

ii. If bi = 1, the two parties jointly execute the Prod-
uct protocol ((ui

1, v
i
1), (u

i
2, v

i
2)) 7→ (ui+1

1 , ui+1
2)

such that ui+1
1 + ui+1

2 (mod ny) = (ui
1 +

ui
2)(v

i
1 + vi

2). If bi = 0, Party j individually sets
ui+1

j = ui
j , for j = 1, 2. It is clear from the con-

text that + represents addition in Zny .

(f) Party j individually sets zj = u
ky+1
j , for j = 1, 2.

There are other tradeoffs. For example, keep the expo-
nent in shares; at the same time reveal the base and the upper
bounds of the exponent. Or on the one hand, keep the base
in shares; on the other hand, disclose both the exponent and
the upper bounds of the base. The former and the latter are
represented as Exp(pb x, se, ny) ∈ Zxny and Exp(sb, pe y,
nx) ∈ Znx

y respectively.

1. Exp(pb x, se, ny) ∈ Zxny : This is quite the same as
Exp(pb x, se) ∈ Zxn except the domain of the compu-
tation reduced from Zxn to Zxny .

2. Exp(sb, pe y, nx) ∈ Znx
y : This one is supposed have

better performance than Exp(sb, pe y) ∈ Zny since the
domain of the computation reduced from Zny to Znx

y .

Then we enumerate two situations which may indirectly
disclose some information.

1. Exp(pb x, se) ∈ Zn: Once the base x is not a secret
and the answer of xy is guaranteed in Zn, the range of
y is no longer in n but limited to logx n, if x 6= 1.

xy < n ⇒ y < logx n.

2. Exp(sb, pe y) ∈ Zn: Much the same, when it comes to
a public exponent y and a guaranteed answer in Zn, the
range of x is constrained to b y

√
nc rather than supposed

n.
xy < n ⇒ x < b y

√
nc.

Note that hereafter in this paper, we present the worst
cases of those protocols with pe. More specifically, we
view every bit of the public exponent y as 1. That is

y = 2ky+1 − 1, where ky = blog2 yc. We break the afore-
mentioned exponentiation protocols into their constitutive
building blocks of which Table 6 lists the domain and times.

Based on Table 1 and Table 2, we further break the con-
stitutive building blocks of those exponentiation protocols
in Table 6 into Scalar-Product protocols of which Table 8
lists the domain, dimension, and times.

6.2 Tradeoffs: Division

Specification 6.4 (Div/Rem {kx, ky}) Two parties share
the dividend and the divisor in Zn, and they want to jointly
execute the secure protocol ((x1, y1), (x2, y2)){kx, ky} 7→
((q1, r1), (q2, r2)), where nx = 2kx+1 > (x1 + x2) =
(y1 + y2)(q1 + q2) + (r1 + r2) and 0 ≤ (r1 + r2) <
(y1 + y2) < 2ky+1 = ny.

PROTOCOL Div/Rem {kx, ky}

1. Party 1 and Party 2 collaboratively execute the Zn-to-
Z2{kx} protocol followed by the Z2-to-Znx·ny{kx} proto-
col

(x1, x2) 7→ ((b0
1, . . . , b

kx
1), (b0

2, . . . , b
kx
2)) 7→ (X1, X2)

such that X1 + X2 (mod nx · ny) = x1 + x2 (mod n).

2. Party 1 and Party 2 collaboratively execute the Zn-to-
Z2{ky} protocol followed by the Z2-to-Znx·ny{ky} proto-
col

(y1, y2) 7→ ((c0
1, . . . , c

ky

1), (c0
2, . . . , c

ky

2)) 7→ (Y1, Y2)

such that Y1 + Y2 (mod nx · ny) = y1 + y2 (mod n).

3. Party j sets Xkx
j = Xj , for j = 1, 2.

4. For i = kx − 1, . . . , 1, 0, repeat Step 4a to Step 4d.

(a) Party j computes ti
j = Xi+1

j − Yj · 2i (mod nx · ny),
for j = 1, 2.

(b) Party 1 and Party 2 jointly run the Comparison proto-
col (ti

1, t
i
2) 7→ (si

1, s
i
2) such that

si
1 + si

2 (mod nx · ny) =

{
1 if ti

1 + ti
2 < 0,

0 otherwise.

(c) Party j individually computes qi
j = 1 − si

j (mod nx ·
ny), for j = 1, 2, such that

qi
1 + qi

2 (mod nx · ny) =

{
0 if si

1 + si
2 = 1,

1 if si
1 + si

2 = 0.

(d) Party 1 and Party 2 run the If-Then-Else protocol
((si

1, X
i+1
1 , ti

1), (s
i
2, X

i+1
2 , ti

2)) 7→ (Xi
1, X

i
2) such

that Xi
1 + Xi

2 (mod nx · ny) =

{
Xi+1

1 + Xi+1
2 if si

1 + si
2 = 1,

ti
1 + ti

2 if si
1 + si

2 = 0.

18

5. For j = 1, 2, Party j computes rj = X0
j (mod n), and

qj =
∑k−1

i=0 qi
j · 2i (mod n).

The two parties can agree on revealing the range of the div-
idend or the range of the divisor to get better efficiency. We
list the specification and details for these two protocols in
the following.

Specification 6.5 (Div/Rem{divisor ky}) Two
parties share the dividend in Zn, and they
want to jointly execute the secure protocol
((x1, y1), (x2, y2)){ky} 7→ ((q1, r1), (q2, r2)), where
x1 + x2 = (y1 + y2)(q1 + q2) + (r1 + r2) and
0 ≤ (r1 + r2) < (y1 + y2) (mod n) < 2ky+1.

PROTOCOL Div/Rem{divisor ky}

1. Party j individually sets Yj = yj , X
k−ky

j = xj where ky =
blog2 yc, for j = 1, 2.

2. For i = k − ky − 1, k − ky − 2, . . . , 0, repeat Step 2a to
Step 2d.

(a) Party 1 individually computes ti
1 = Xi+1

1 − Yj · 2i

while Party 2 individually sets ti
2 = Xi+1

2 .

(b) Party 1 and Party 2 jointly run the Comparison proto-
col (ti

1, t
i
2) 7→ (si

1, s
i
2) such that

si
1 + si

2 =

{
1 if ti

1 + ti
2 < 0,

0 otherwise.

(c) For j = 1, 2, Party j individually computes qi
j = 1−

si
j such that

qi
1 + qi

2 =

{
0 if si

1 + si
2 = 1,

1 if si
1 + si

2 = 0.

(d) Party 1 and Party 2 run the If-Then-Else protocol
((si

1, X
i+1
1 , ti

1), (s
i
2, X

i+1
2 , ti

2)) 7→ (Xi
1, X

i
2) such

that

Xi
1 + Xi

2 =

{
Xi+1

1 + Xi+1
2 if si

1 + si
2 = 1,

ti
1 + ti

2 if si
1 + si

2 = 0.

3. For j = 1, 2, Party j computes rj = X0
j (mod n), and

qj =
∑k−1

i=0 qi
j · 2i (mod n).

Specification 6.6 (Div/Rem{dividend kx}) Two par-
ties share the divisor in Zn, and they want to jointly
execute the secure protocol ((x1, y1), (x2, y2)){kx} 7→
((q1, r1), (q2, r2)), where nx = 2kx+1 > (x1 + x2) =
(y1+y2)(q1+q2)+(r1+r2) and 0 ≤ (r1+r2) < (y1+y2).

PROTOCOL Div/Rem{dividend kx}

1. Party 1 and Party 2 collaboratively execute the Zn-to-Z2{k}
protocol followed by the Z2-to-Znx·n{k} protocol

(y1, y2) 7→ ((c0
1, . . . , c

k
1), (c0

2, . . . , c
k
2)) 7→ (Y1, Y2)

such that Y1 + Y2 (mod nx · n) = y1 + y2 (mod n).

2. Party 1 individually sets Xkx
1 = x while Party 2 individually

sets Xkx
2 = 0.

3. For i = kx − 1, . . . , 1, 0, repeat Step 3a to Step 3d.

(a) Party j computes ti
j = Xi+1

j − Yj · 2i (mod nx · n),
for j = 1, 2.

(b) Party 1 and Party 2 jointly run the Comparison proto-
col (ti

1, t
i
2) 7→ (si

1, s
i
2) such that

si
1 + si

2 (mod nx · n) =

{
1 if ti

1 + ti
2 < 0,

0 otherwise.

(c) For j = 1, 2, Party j individually computes qi
j = 1−

si
j (mod nx · n) such that

qi
1 + qi

2 (mod nx · n) =

{
0 if si

1 + si
2 = 1,

1 if si
1 + si

2 = 0.

(d) Party 1 and Party 2 run the If-Then-Else protocol
((si

1, X
i+1
1 , ti

1), (s
i
2, X

i+1
2 , ti

2)) 7→ (Xi
1, X

i
2) such

that Xi
1 + Xi

2 (mod nx · n) =

{
Xi+1

1 + Xi+1
2 if si

1 + si
2 = 1,

ti
1 + ti

2 if si
1 + si

2 = 0.

4. For j = 1, 2, Party j computes rj = X0
j (mod n), and

qj =
∑k−1

i=0 qi
j · 2i (mod n).

We break the aforementioned division protocols into
their constitutive building blocks of which Table 9 lists the
domain and times.

Based on Table 1 and Table 2, we further break the con-
stitutive building blocks of those division protocols in Ta-
ble 9 into Scalar-Product protocols of which Table 10 lists
the domain, dimension, and times.

7 Performance Evaluation

No doubt, there are tradeoffs between privacy and effi-
ciency. Nevertheless, making an adequate decision is never
an easy task without more evidence. Below we provide
methods estimating the time cost for each protocol based
on the Scalar-Product.

We adopt the secure scalar product protocol that Du
and Zhan proposed, namely, the commodity-based ap-
proach [7], which is based on Beaver’s commodity
model [8]. This approach has extraordinary performance
among several secure scalar product ones, though a neutral
third party, the commodity server, is needed [10]. We im-
plemented this scalar product protocol and all of our build-
ing blocks in Ruby(1.8.6 patchlevel 111). Table 11 shows
the environment of our experiments. To minimize the prob-
abilistic variation, our experimental results are the average
of 100 effective executions. There are two parts of the ex-
periments:

19

1. We focus on the execution time of the Scalar-Product
protocol with different dimensions and a different
number of bits of domain. Table 12 shows the experi-
mental results. Recall that 2k+1 = n, and with given k
in this table, timings are not apparently different when
it comes to different dimension d ≤ 32. Therefore, we
simply set d = 1 and find the time estimation function
EF (·) which is a polynomial curve fitting our experi-
mental results (see Figure 9).

EF (k) = 2 · 10−10k2 − 5 · 10−8k + 0.0566,

R2 = 0.9993.

Then, given two necessary parameters for the Scalar-
Product, dimension d and the number of bits of n (that
is k + 1), we have two ways to estimate the time cost.
First, with extrapolation we can look up the prepared
experimental data, like Table 12. Second, when d ≤
32, we can easily use EF (k) to estimate the time.

Figure 9. The timings of the commodity-
based Scalar-Product protocol with different
k and different dimensions.

2. We concentrate on the execution time of the Exp(sb,
se) ∈ Znn protocol with a different number of bits of
n. At the same time, we estimate the time cost by using
Table 8 and EF (·). Both the experimental results and
the estimated time are listed in Table 13. As this table
shown, it is convincing that EF (·) is a useful function
which helps estimate the execution time of protocols
composed of the Scalar-Product.
Again, we use Table 8 and EF (·) to construct Ta-
ble 14, showing the estimated time of almost all pos-
sible tradeoffs of the exponentiation. Recall that nx =
2kx+1, ny = 2ky+1, n = 2k+1; for simplicity, we set
x = 2kx+1, y = 2ky+1, where kx, ky = bk

2 c. We can
see that the time to compute the exponentiation may
range from seconds to centuries, depending on the de-
gree of information one is willing to reveal.

8 Conclusions and Future Works

A set of information theoretically secure two-party pro-
tocols have been developed based on scalar product. The
ultimate goal to design such protocols is to build a com-
piler for secure multiparty computation environments. The
protocols presented in this paper is part of protocol along
this line. More protocols need to be designed to achieve the
ultimate goal.

Although the pursuit of efficient general solutions to
SMC problems is admirable, a more modest but likely more
successful pursuit is to carefully consider tradeoff options
during the protocol design phase. In this paper, protocols
for secure two-party computation of exponentiation were
designed based on the repeated squaring algorithm using
scalar products as building blocks. A careful performance
evaluation was carried out in which an analysis of the execu-
tion time for our protocols was conducted by breaking them
into their constitutive building blocks and estimating the ex-
ecution times using the performance evaluation results of
our implemented Scalar-Product protocol. We noted that
the estimated execution times were comparable to those we
measured in the experimental runs of the protocols. This
suggests that using scalar products as building blocks may
make execution time estimation easier.

The results of this evaluation shed some light on the
tradeoffs between necessary execution time and the amount
of private information revealed as well as suggest future
research directions. Within the commodity-based secure
scalar product protocol, the results demonstrated that cer-
tain kinds of calculations, exponentiation using the repeated
squaring algorithm in this case, become infeasible if no in-
formation of the shared base and the exponent, except they
are in Zn, is provided. Future research directions include
designing more efficient protocols for cases where such se-
crecy is mandatory. Other kinds of calculations should also
be considered. Exponentiation was discussed in this paper
since it is widely used for various applications in many dis-
ciplines. Lastly, the proposed protocols can handle only in-
tegers. Hence we are also eager to extend them to handle
floating point numbers so that we can apply our work to
more real world applications.

References

[1] A. C. Yao, “Protocols for secure computation,” in
Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, November 1982,
pp. 160–164.

[2] O. Goldreich, S. Micali, and A. Wigderson, “How to
play any mental game,” in STOC ’87: Proceedings of
the 19th Annual ACM Symposium on Theory of Com-

20

puting. New York, NY, USA: ACM Press, 1987, pp.
218–229.

[3] Committee on National Statistics, “Improving access
to and confidentiality of research data: Report of a
workshop,” in NRC ’00: National Research Council,
C. Mackie and N. Bradburn, Eds., Commission on Be-
havioral and Social Sciences and Education. Wash-
ington, D.C.: National Academy Press, 2000.

[4] J. Kilian, “Founding cryptography on oblivious trans-
fer,” in STOC ’88: Proceedings of the 20th Annual
ACM Symposium on Theory of Computing. New
York, NY, USA: ACM, 1988, pp. 20–31.

[5] ——, “A general completeness theorem for two party
games,” in STOC ’91: Proceedings of the 23rd An-
nual ACM Symposium on Theory of Computing. New
York, NY, USA: ACM, 1991, pp. 553–560.

[6] W. Du, “A study of several specific secure two-party
computation problems,” Ph.D. dissertation, Purdue
University, August 2001.

[7] W. Du and Z. Zhan, “A practical approach to solve
secure multi-party computation problems,” in NSPW
’02: Proceedings of the 2002 Workshop on New Secu-
rity Paradigms. New York, NY, USA: ACM Press,
2002, pp. 127–135.

[8] D. Beaver, “Commodity-based cryptography (ex-
tended abstract),” in STOC ’97: Proceedings of the
29th Annual ACM Symposium on Theory of Comput-
ing. New York, NY, USA: ACM Press, 1997, pp.
446–455.

[9] B. Goethals, S. Laur, H. Lipmaa, and T. Mielikainen,
“On private scalar product computation for privacy-
preserving data mining,” Information Security and
Cryptology V ICISC 2004, pp. 104–120, 2004.

[10] I.-C. Wang, C.-H. Shen, T.-S. Hsu, C.-C. Liau, D.-W.
Wang, and J. Zhan, “Towards empirical aspects of se-
cure scalar product,” in ISA ’08: IEEE International
Conference on Information Security and Assurance,
April 2008, pp. 573–578.

[11] M. J. Atallah and W. Du, “Secure multi-party compu-
tational geometry,” Algorithms and Data Structures,
Lecture Notes in Computer Science, vol. 2125, pp.
165–179, 2000.

[12] W. Du and M. J. Atallah, “Privacy-preserving cooper-
ative statistical analysis,” in ACSAC ’01: Proceedings
of the 17th Annual Computer Security Applications
Conference. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 102–110.

[13] ——, “Privacy-preserving cooperative scientific com-
putations,” in CSFW ’01: Proceedings of the 14th
IEEE Workshop on Computer Security Foundations.
Washington, DC, USA: IEEE Computer Society,
2001, pp. 273–282.

[14] P. Bunn and R. Ostrovsky, “Secure two-party k-means
clustering,” in CCS ’07: Proceedings of the 14th ACM
Conference on Computer and Communications Secu-
rity. New York, NY, USA: ACM, 2007, pp. 486–497.

[15] J. Zhan, I.-C. Wang, C.-L. Hsieh, T.-S. Hsu, C.-J.
Liau, and D.-W. Wang, “Towards efficient privacy-
preserving collaborative recommender systems,” in
GrC ’08: IEEE International Conference on Granu-
lar Computing, Aug. 2008, pp. 778–783.

[16] Y.-T. Chiang, D.-W. Wang, C.-J. Liau, and T.-S. Hsu,
“Secrecy of two-party secure computation,” Data and
Applications Security XIX, Lecture Notes in Computer
Science, vol. 3654, pp. 114–123, 2005.

[17] D.-W. Wang, C.-J. Liau, Y.-T. Chiang, and T.-S. Hsu,
“Information theoretical analysis of two-party secret
computation,” Data and Applications Security XX,
Lecture Notes in Computer Science, vol. 4127, pp.
310–317, 2006.

[18] C.-H. Shen, J. Zhan, D.-W. Wang, T.-S. Hsu, and
C.-J. Liau, “Information-theoretically secure number-
product protocol,” in ICMLC ’07: International Con-
ference on Machine Learning and Cybernetics, vol. 5,
19-22 Aug. 2007, pp. 3006–3011.

[19] J. Algesheimer, J. Camenisch, and V. Shoup, “Effi-
cient computation modulo a shared secret with appli-
cation to the generation of shared safe-prime prod-
ucts,” Advances in Cryptology X CRYPTO 2002, vol.
2442/2002, 2002.

[20] I. Damgård, M. Fitzi, E. Kiltz, J. B. Nielsen,
and T. Toft, “Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits
and exponentiation,” in TCC ’06: Proceedings of the
3rd Theory of Cryptography Conference, 2006, pp.
285–304.

[21] J. D. Nielsen, “Languages for secure multiparty com-
putation and towards strongly typed macros,” Ph.D.
dissertation, Department of Computer Science, Uni-
versity of Aarhus Denmark, February 2009.

[22] O. Goldreich, Foundations of Cryptography, Volume
II Basic Applications, 1st ed. Cambridge University
Press, 2004.

21

[23] R. Canetti, “Security and composition of multi-
party cryptographic protocols,” Journal of Cryptology,
vol. 13, pp. 143–202, 2000.

[24] C.-H. Shen, J. Zhan, T.-S. Hsu, C.-J. Liau, and D.-W.
Wang, “Scalar-product based secure two-party com-
putation,” in GrC ’08: IEEE International Conference
on Granular Computing, Aug. 2008, pp. 556–561.

[25] J. D. Nielsen and M. I. Schwartzbach, “A domain-
specific programming language for secure multiparty
computation,” in PLAS ’07: Proceedings of the 2007
Workshop on Programming Languages and Analysis
for Security. New York, NY, USA: ACM, 2007, pp.
21–30.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, 2nd ed. Cam-
bridge, Massachusetts: The MIT Press, 2001.

Protocol Domain Constituents Times
Zn-to-Z2{k′} Z2 Scalar-Product k′

Z2-to-Zn{k′} Zn Scalar-Product 1
Product Zn Scalar-Product 1

Square Zn Scalar-Product 1

Comparison
Z2 Zn-to-Z2{k} 1
Zn Z2-to-Zn{0} 1

Zero
Zn Product 1
Zn Comparison 2

If-Then-Else Zn Product 1

Shift-Left

Zn Exp(pb, se, ny) ∈ Zn 1
Zn Z2-to-Zn{k} 1
Zn Product 1
Z2 Zn-to-Z2{k} 1

Shift-Right Zn Shift-Left 1

Shift{s} Z2 Zn-to-Z2{k} 1
Zn Z2-to-Zn{k − s} 1

Rotate-Left

Zn Exp(pb, se, ny) ∈ Zn 1
Zn2 Z2-to-Zn2{k} 2
Zn2 Product 1
Z2 Zn-to-Z2{k} 1
Z2 Zn2 -to-Z2{2k + 1} 1

Rotate-Right Zn Rotate-Left 1

Log
Zn Zn-to-Z2{k} 1
Zn Z2-to-Zn{0} k

Zn If-Then-Else k − 1

Div/Rem

Z2 Zn-to-Z2{k} 2
Zn2 Z2-to-Zn2{k} 2
Zn2 Comparison k

Zn2 If-Then-Else k

Function(x) Zn Scalar-Product 1
Function(x, y) Zn Scalar-Product 2k+1 + 1

(flo) Scalar-Product
Zn Scalar-Product 1
Zn Shift 1

(flo) Square
Zn Scalar-Product 1
Zn Shift 1

(flo) Product
Zn Scalar-Product 1
Zn Shift 1

Table 1. Constituents of our protocols

22

Protocol Domain Constituents Times

(secret) Max{d} Zn Comparison d− 1

Zn If-Then-Else d− 1

(secret) Min{d} Zn Comparison d− 1

Zn If-Then-Else d− 1

(secret) Range{d} Zn (secret) Max 1
Zn (secret) Min 1

(secret) Var{d}
Zn Scalar-Product 1

Zn Square 1

Zn Div/Rem 1

(private) Max
Zn Comparison 1
Zn If-Then-Else 1

(private) Min
Zn Comparison 1
Zn If-Then-Else 1

(private) Range
Zn (private) Max 1
Zn (private) Min 1

(private) Var
Zn Product 1

Zn Square 2

Zn Div/Rem 1

Table 3. Constituents of the statistic proto-
cols

Protocol Domain Dimension Times

(secret) Max{d}
Z2 3 k(d− 1)

Zn 1 (d− 1)

Zn 2 (d− 1)

(secret) Min{d}
Z2 3 k(d− 1)

Zn 1 (d− 1)

Zn 2 (d− 1)

(secret) Range{d}
Z2 3 2k(d− 1)

Zn 1 2(d− 1)

Zn 2 2(d− 1)

(secret) Var{d}
Z2 3 k(k − ky)

Zn 1 k − ky + 1

Zn 2 k − ky

Zn d 1

(private) Max
Z2 3 k

Zn 1 1
Zn 2 1

(private) Min
Z2 3 k

Zn 1 1
Zn 2 1

(private) Range
Z2 3 2k

Zn 1 2
Zn 2 2

(private) Var

Z2 3 2k2 + 3k

Zn 1 1
Zn 2 1
Zn2 1 k

Zn2 2 k

Zn2 k + 1 2

Table 4. The Complexity of the statistic proto-
cols

23

Protocol Domain Constituents Times

Exp(sb, se, nx, ny)

Z2 Zn-to-Z2{kx} 1
Z2 Zn-to-Z2{ky} 1

Znx
ny Z2-to-Znx

ny {kx} 1

∈ Znx
ny

Znx
ny Z2-to-Znx

ny {0} ky + 1

Znx
ny If-Then-Else ky + 1

Znx
ny Square ky

Znx
ny Product ky

Exp(sb, se)

Z2 Zn-to-Z2{k} 2
Znn Z2-to-Znn{k} 1
Znn Z2-to-Znn{0} k + 1

∈ Znn Znn If-Then-Else k + 1

Znn Square k

Znn Product k

Exp(sb, se, nx)

Z2 Zn-to-Z2{kx} 1
Z2 Zn-to-Z2{k} 1
Znx

n Z2-to-Znx
n{kx} 1

∈ Znx
n

Znx
n Z2-to-Znx

n{0} k + 1

Znx
n If-Then-Else k + 1

Znx
n Square k

Znx
n Product k

Exp(sb, se, ny)

Z2 Zn-to-Z2{k} 1
Z2 Zn-to-Z2{ky} 1
Znny Z2-to-Znny {k} 1

∈ Znny
Znny Z2-to-Znny {0} ky + 1

Znny If-Then-Else ky + 1

Znny Square ky

Znny Product ky

Exp(pb x, se)
Z2 Zn-to-Z2{k} 1

∈ Zxn
Zxn Z2-to-Zxn{0} k + 1

Zxn If-Then-Else k

Exp(sb, pe y)
Z2 Zn-to-Z2{k} 1

Zny Z2-to-Zny{k} 1

∈ Zny Zny Square ky

Zny Product ky

Exp(pb x, se, ny)
Z2 Zn-to-Z2{ky} 1

∈ Zxny
Zxny Z2-to-Zxny {0} ky + 1

Zxny If-Then-Else ky

Exp(sb, pe y, nx)
Z2 Zn-to-Z2{kx} 1

Znx
y Z2-to-Znx

y{kx} 1

∈ Znx
y Znx

y Square ky

Znx
y Product ky

Table 5. Constituents of the Exponentiation
tradeoff protocols

Protocol Domain Constituents Times

Exp(sb, se, nx, ny)

Z2 Zn-to-Z2{ky} 1

∈ Zn

Zn Z2-to-Zn{0} ky + 1

Zn If-Then-Else ky + 1

Zn Square ky

Zn Product ky

Exp(sb, se)

Z2 Zn-to-Z2{k} 1

∈ Zn

Zn Z2-to-Zn{0} k + 1

Zn If-Then-Else k + 1

Zn Square k

Zn Product k

Exp(sb, se, nx)

Z2 Zn-to-Z2{ky} 1

∈ Zn

Zn Z2-to-Zn{0} ky + 1

Zn If-Then-Else ky + 1

Zn Square ky

Zn Product ky

Exp(sb, se, ny)

Z2 Zn-to-Z2{ky} 1

∈ Zn

Zn Z2-to-Zn{0} ky + 1

Zn If-Then-Else ky + 1

Zn Square ky

Zn Product ky

Exp(pb x, se)
Z2 Zn-to-Z2{ky} 1

∈ Zn
Zn Z2-to-Zn{0} ky + 1

Zn If-Then-Else ky

Exp(sb, pe y) Zn Square ky

∈ Zn Zn Product ky

Exp(pb x, se, ny)
Z2 Zn-to-Z2{ky} 1

∈ Zn
Zn Z2-to-Zn{0} ky + 1

Zn If-Then-Else ky

Exp(sb, pe y, nx) Zn Square blog2 yc
∈ Zn Zn Product blog2 yc

Table 6. Constituents of the Exponentiation
tradeoff protocols

24

Protocol Domain Dimension Times

Exp(sb, se, nx, ny)
Z2 3 kx + ky

Znx
ny 1 2ky + 1

∈ Znx
ny Znx

ny 2 2ky + 1

Znx
ny kx + 1 1

Exp(sb, se)
Z2 3 2k

Znn 1 2k + 1

∈ Znn Znn 2 2k + 1

Znn k + 1 1

Exp(sb, se, nx)
Z2 3 kx + k

Znx
n 1 2k + 1

∈ Znx
n Znx

n 2 2k + 1

Znx
n kx + 1 1

Exp(sb, se, ny)
Z2 3 k + ky

Znny 1 2ky + 1

∈ Znny Znny 2 2ky + 1

Znny k + 1 1

Exp(pb x, se)
Z2 3 k

∈ Zxn
Zxn 1 k + 1

Zxn 2 k

Exp(sb, pe y)
Z2 3 k

Zny 1 ky

∈ Zny Zny 2 ky

Zny k + 1 1

Exp(pb x, se, ny)
Z2 3 ky

∈ Zxny
Zxny 1 ky + 1

Zxny 2 ky

Exp(sb, pe y, nx)
Z2 3 kx

Znx
y 1 ky

∈ Znx
y Znx

y 2 ky

Znx
y kx + 1 1

Table 7. The Complexity of the Exponentia-
tion tradeoff protocols

Protocol Domain Dimension Times

Exp(sb, se, nx)
Z2 3 ky

∈ Zn
Zn 1 2ky + 1

Zn 2 2ky + 1

Exp(sb, se, ny)
Z2 3 ky

∈ Zn
Zn 1 2ky + 1

Zn 2 2ky + 1

Exp(sb, se, nx, ny)
Z2 3 ky

∈ Zn
Zn 1 2ky + 1

Zn 2 2ky + 1

Exp(pb x, se)
Z2 3 ky

∈ Zn
Zn 1 ky + 1

Zn 2 ky

Exp(pb x, se, ny)
Z2 3 ky

∈ Zn
Zn 1 ky + 1

Zn 2 ky

Exp(sb, pe y) Zn 1 ky

∈ Zn Zn 2 ky

Exp(sb, pe y, nx) Zn 1 ky

∈ Zn Zn 2 ky

Exp(sb, se)
Z2 3 k

∈ Zn
Zn 1 2k + 1

Zn 2 2k + 1

Table 8. The Complexity of the Exponentia-
tion tradeoff protocols

Protocol Domain Constituents Times

Div/Rem

Z2 Zn-to-Z2{kx} 1

{kx, ky}

Z2 Zn-to-Z2{ky} 1
Znx·ny Z2-to-Znx·ny{kx} 1
Znx·ny Z2-to-Znx·ny{ky} 1
Znx·ny Comparison kx

Znx·ny If-Then-Else kx

Div/Rem Zn Comparison k − ky

{divisor ky} Zn If-Then-Else k − ky

Div/Rem
Z2 Zn-to-Z2{k} 1

{dividend kx}
Zn·nx Z2-to-Zn·nx{k} 1
Zn·nx Comparison kx

Zn·nx If-Then-Else kx

Table 9. Constituents of the Div/Rem tradeoff
protocols

25

Protocol Domain Dimension Times

Div/Rem

Z2 3
kx

2 + kxky+

{kx, ky}

2kx + ky

Znx·ny 1 kx

Znx·ny 2 kx

Znx·ny kx + 1 1

Znx·ny ky + 1 1

Div/Rem
Z2 3 k(k − ky)

{divisor ky} Zn 1 k − ky

Zn 2 k − ky

Div/Rem
Z2 3

kx
2 + kkx+

{dividend kx}
k + kx

Zn·nx 1 kx

Zn·nx 2 kx

Zn·nx k + 1 1

Table 10. The Scalar-Product Complexity of
the Div/Rem tradeoff protocols

k Experimental Time Estimated Time
9 5.08 4.02
10 7.50 7.88
11 27.65 26.50
12 129.21 119.66

Table 13. Experimental and estimated time
(seconds) of the Exp(sb, se) ∈ Znn protocol

26

Protocol Domain Dimension Times
Zn-to-Z2{k′} Z2 3 k′

Z2-to-Zn{k′} Zn k′ + 1 1
Product Zn 2 1
Square Zn 1 1

Comparison
Z2 3 k

Zn 1 1

Zero
Z2 3 2k

Zn 1 2
Zn 2 1

If-Then-Else Zn 2 1

Shift-Left

Z2 3 dlog (k + 1)e+ k

Zn 1 dlog (k + 1)e+ 1

Zn 2 dlog (k + 1)e+ 1

Zn k + 1 1

Shift-Right

Z2 3 dlog (k + 1)e+ k

Zn 1 dlog (k + 1)e+ 1

Zn 2 dlog (k + 1)e+ 1

Zn k + 1 1

Shift{s} Z2 3 k

Zn k − s + 1 1

Rotate-Left

Z2 3 dlog (k + 1)e+ 3k + 1

Zn 1 dlog (k + 1)e+ 1

Zn 2 dlog (k + 1)e
Zn2 2 1
Zn2 k + 1 2

Rotate-Right

Z2 3 dlog (k + 1)e+ 3k + 1

Zn 1 dlog (k + 1)e+ 1

Zn 2 dlog (k + 1)e
Zn2 2 1
Zn2 k + 1 2

Div/Rem

Z2 3 2k2 + 3k

Zn2 1 k

Zn2 2 k

Zn2 k + 1 2
Function(x) Zn 2k+1 1

Function(x, y) Zn 2k+1 2k+1 + 1

(flo) Scalar-Product
Z2 3 2k

Zn d 1
Zn 1 2

(flo) Square
Z2 3 2k

Zn 1 3

(flo) Product
Z2 3 2k

Zn 2 1
Zn 1 2

Table 2. The Complexity of our protocols

27

Role CPU Operating System RAM

Commodity Server
Two AMD Opteron™ 2220 SE FreeBSD DDR2 667

2.81GHz (Dual-Core) 7.0-STABLE 20GB

Party 1
Two Intel® Xeon® X5365 FreeBSD DDR2 667

3.00GHz (Quad-Core) 7.0-STABLE 48GB

Party 2
Two Intel® Xeon® X5482 Ubuntu DDR2 800

3.20GHz (Quad-Core) 2.6.24-16-server 64GB

Table 11. The environment of our experiments

Dimension
k 1 2 3 4 5 8 16 32
0 0.0027 0.0028 0.0035 0.0029 0.0030 0.0030 0.0033 0.0037
1 0.0027 0.0028 0.0031 0.0029 0.0029 0.0030 0.0033 0.0037
2 0.0027 0.0028 0.0029 0.0028 0.0028 0.0030 0.0033 0.0036
3 0.0027 0.0028 0.0029 0.0030 0.0030 0.0031 0.0032 0.0036
4 0.0027 0.0028 0.0029 0.0030 0.0030 0.0030 0.0032 0.0036
7 0.0027 0.0028 0.0029 0.0030 0.0029 0.0030 0.0034 0.0036

15 0.0028 0.0029 0.0029 0.0029 0.0030 0.0030 0.0033 0.0038
31 0.0027 0.0027 0.0028 0.0030 0.0029 0.0032 0.0031 0.0040
63 0.0027 0.0029 0.0029 0.0029 0.0030 0.0031 0.0034 0.0046

127 0.0027 0.0030 0.0029 0.0030 0.0030 0.0031 0.0034 0.0041
255 0.0028 0.0030 0.0031 0.0031 0.0032 0.0031 0.0035 0.0042
511 0.0029 0.0030 0.0030 0.0032 0.0033 0.0033 0.0036 0.0042
1023 0.0033 0.0034 0.0034 0.0034 0.0034 0.0037 0.0039 0.0046
2047 0.3066 0.3063 0.3064 0.3063 0.3067 0.3067 0.3068 0.3076
4095 0.3099 0.3098 0.3099 0.3100 0.3099 0.3100 0.3106 0.3111
8191 0.2205 0.2205 0.2203 0.2204 0.2204 0.2205 0.2215 0.2215

16383 0.1823 0.2305 0.2647 0.2058 0.2253 0.2205 0.2645 0.2310
32767 0.3956 0.3898 0.3943 0.4198 0.4010 0.4098 0.4395 0.4270
65535 1.0598 1.0599 1.0618 1.0627 1.0726 1.0612 1.0604 1.0612

131071 4.2073 4.2026 4.2080 4.2186 4.2222 4.2114 4.2212 4.2219
262143 16.9002 16.8916 16.8791 16.8730 16.9086 16.8971 16.8941 16.8636

Table 12. The timings(seconds) of the commodity-based Scalar-Product protocol with different k and
different dimensions

28

k 12 15 17 19 20 22 24
Exp(sb,se) ∈ Znn 2 minutes 3 hours 3 days 2 months 1 year 2 decades 4 centuries

Exp(sb,se,nx) ∈ Znx
n 45 seconds 58 minutes 21 hours 20 days 1 season 5 years 1 century

Exp(pb x,se) ∈ Zxn 22 seconds 28 minutes 10 hours 9 days 1 month 2 years 5 decades
Exp(pb x,se,ny) ∈ Zxny 11 seconds 13 minutes 5 hours 4 days 25 days 1 year 3 decades
Exp(sb,se,ny) ∈ Znny 7 seconds 8 seconds 10 seconds 14 seconds 28 seconds 1 minute 7 minutes

Exp(sb,pe y) ∈ Zny 4 seconds 5 seconds 5 seconds 7 seconds 14 seconds 48 seconds 3 minutes
Exp(sb,pe y, nx) ∈ Znx

y 3 seconds 3 seconds 4 seconds 6 seconds 13 seconds 46 seconds 3 minutes
Exp(sb,se,nx, ny) ∈ Znx

ny 6 seconds 7 seconds 8 seconds 10 seconds 14 seconds 34 seconds 2 minutes
Exp(sb,se) ∈ Zn 10 seconds 12 seconds 14 seconds 15 seconds 16 seconds 18 seconds 20 seconds

Exp(sb,se,ny) ∈ Zn 5 seconds 6 seconds 6 seconds 7 seconds 8 seconds 9 seconds 10 seconds
Exp(sb,pe y) ∈ Zn 1 second 2 seconds 2 seconds 2 seconds 3 seconds 3 seconds 3 seconds

Exp(sb,pe y, nx) ∈ Zn 1 second 2 seconds 2 seconds 2 seconds 3 seconds 3 seconds 3 seconds
Exp(sb,se,nx) ∈ Zn < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second

Exp(sb,se,nx, ny) ∈ Zn < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second
Exp(pb x,se) ∈ Zn < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second

Exp(pb x,se,ny) ∈ Zn < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second < 1 second

Table 14. The time cost of the tradeoff exponentiation protocols with given k

29

