
TR-IIS-09-006

Data-bandwidth-aware Job Scheduling
Techniques in Distributed Systems

De-Yu Chen, Pangfeng Liu, Jan-Jan Wu

June 17, 2009 || Technical Report No. TR-IIS-09-006
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2009/tr09.html

Data-bandwidth-aware Job Scheduling Techniques in Distributed Systems

De-Yu Chen
Department of Computer Science and Information Engineering

National Taiwan University
Taipei, Taiwan

r96083@csie.ntu.edu.tw

Pangfeng Liu
Department of Computer Science and Information Engineering

Graduate Institute of Networking and Multimedia
National Taiwan University

Taipei, Taiwan

Jan-Jan Wu
Institute of Information Science

Academia Sinica
Nankang, Taiwan

Abstract

This paper introduces techniques in scheduling jobs on a
master/workers platform where the bandwidth is shared by
all workers. The jobs are independent and each job requires
a fixed amount of bandwidth to download input data be-
fore execution. The master can communicate with multiple
workers simultaneously, provided that the bandwidth used
by the master and the workers do not exceed their band-
width limits.

We proposed two models for this limited-bandwidth
problem. If the data transfer cannot be interrupted, then
we prove that the scheduling problem is NP-complete. Nev-
ertheless we propose heuristic algorithms and experimen-
tally test their performance. If the data transfer can be in-
terrupted, we propose an algorithm that produces optimal
makespan. The algorithm is based on a binary search on
the completion time, and an efficient feasibility verification
process for a given completion time.

1 Introduction

Grid computing is becoming more and more popular
in both academic and industry recently. In grid systems,
distributed heterogeneous resources are connected through
local and/or wide area networks. By utilizing the vast
amount of computing and storage resources in grid sys-
tems, many large scale resource-demanding problems can
be solved within a reasonable amount of time. For ex-
ample, the Worldwide Large Hadron Collider Computing
Grid [9] builds and maintains a data storage and analysis

infrastructure for the entire high energy physics commu-
nity. Other organizations like the Biomedical Informatics
Research Network [5] provides a platform for biomedical
scientist to share data and computing resources.

Many applications running on grids are for research pur-
pose, and most of them take large amount of input data and
perform complex computation to produce useful informa-
tion. However, grid systems are often built across the wide
area network and often consist of many sites distributed
around the world. The cost to transfer input data thus plays
an important rule to the overall efficiency of the application.
Due to the heterogeneous nature of the wide area network,
the computing sites in grid systems often differ from each
other on their computing and communication capabilities.
As a result, scheduling jobs in grid systems is always an
important issue.

In this paper, we concentrate on scheduling jobs on a
master/workers platform, where all jobs are initially placed
on the master processor and need to be dispatched to
workers for execution. We adopt the bounded multi-port
model [8]. In this model, the master can communicate with
multiple workers simultaneously, provided that the band-
width used by the master and the workers do not exceed
their bandwidth limits.

The rest of the paper is organized as follows. In Sec-
tion 2, we begin by reviewing related works on scheduling
in system in which computing nodes have communication
bandwidth constraints. In Section 3, we describe our sys-
tem model. We describe two variations of our problem in
detail in Section 4 and Section 5. Finally, we conclude our
works in Section 6.

2 Related Works

Scheduling computational tasks on a given set of proces-
sors is a key issue for parallel and distributed systems. Gen-
eral scheduling problems on multi-processor system has
been showed to be NP-complete [11]. Even if there are
only two processors with identical computing capacity and
jobs do not share data, the problem remains NP-complete
because it is a special case of 2-Partition problem [7].

Most applications deployed in grid systems require in-
put data [6, 2]. The Divisible Load Scheduling model [3]
assumes that the work for an application can be arbitrarily
divided into any number of “chunks”, where each chunk
consists of some amount of input data and some compu-
tation to perform on this data. The problem is proved to
be NP-complete in [12] by Yang et. al. (??? result from
Divisible Load Scheduling here) In [4], Beaumont et. al.
also targeted the bounded multi-port model. The main dif-
ference between our works and the work of Beaumont et.
al. [4] is that they adopted the divisible load model, where
both work and bandwidth can be divided arbitrarily, while
in our model the tasks are not divisible and the bandwidth
can only be divided into pieces of unit sizes. (??? is this
correct?)

Bags-of-tasks [1] is another popular model for schedul-
ing tasks on parallel and distributed systems. In Bags-
of-tasks model, an application is a collection of indepen-
dent and identical tasks. In [10], Legrand et. al. stud-
ied the scheduling of bags-of-tasks on master-worker plat-
forms. They also assumed a multi-port model which is sim-
ilar to our communication model. However, in their model
the bandwidth of the master is shared fairly by all ongoing
communications. On the other hand we focus on allocating
bandwidth for tasks so that the the entire execution time is
minimized in our model.

Master/workers model is freqently adopted for schedul-
ing tasks on grid systems.

3 System Model

We consider a grid system as a collection of a master
processor M0 and n workers processors M1, . . . , Mn. All
the processors are connected by a logical star topology, with
the master in the center.

Each processor Mi has a communication bandwidth
bound Bi, which limits the bandwidth it can use to
send/receive data to/from other processors, and processors
may have different communication bandwidth bounds. We
assume that all Bi are integers so that we can divide the
bandwidth into pieces of unit sizes. In addition we assume
that the master can communicate with multiple workers si-
multaneously, as long as the total communication band-

width used by the master does not exceed the master’s band-
width bound B0.

3.1 Jobs

There are n jobs to process and worker Mi will process
job Ji, for i from 1 to n. A task is for processor to per-
form computations on its input data. Initially all jobs are
placed on the master and will be dispatched to workers for
computation.

Job Ji has two integer attributes – input data size Di and
computation time Ti. The data size Di is measured in terms
of the amount of data that can be sent using one unit of
bandwidth in one unit of time. At any given time step the
communication bandwidth used by the master to send data
to worker Ji can be an arbitrary integer not exceeding the
bound Bi. For example, if Di is 6, then job Di can finish
its communication by allocating two units of bandwidth in
the current unit time step, and four units of bandwidth in the
next unit time step, assuming its communication bandwidth
bound Mi is at least four.

The computation time Ti is measured in terms of unit
time steps for Ji to complete its computing. Note that a
worker has to wait for all of its input data before it can start
a job, and after the worker collects all of its input data, the
computation will finish in Ti unit time steps, regardless the
situation on other processors. Note that our model can also
apply to systems in which processors have different com-
putation abilities since the time Ti is defined as the time
for Mi to execute Ji. We also assume that the master pro-
cessor does not perform any computation because it is only
responsible for sending input data to workers.

3.2 Problem Definition

A bandwidth block bij is the i-th unit bandwidth the mas-
ter can provide at time t, and there are M0 of them for ev-
ery time step. We can think of these “blocks” as commodi-
ties that the master can provide M0 of them per time step.
Please refer for Figure 1 for an illustration. A schedule Ψ is
a function that maps each bandwidth block to a job. In other
words, a schedule determines how the master allocates its
communication bandwidth among jobs at every time step.

Given a schedule Ψ we can determine ready time and
completion time for all jobs. A job Ji is ready at time k
when it has accumulated enough bandwidth for its data size
Di, i.e., till time k the mapping function Ψ has mapped Di

bandwidth blocks for Ji. Therefore the ready time of a job
Ji under Ψ is the earliest time when job Ji is ready. We use
Ri(Ψ) to denote the ready time of Ji under Ψ. A worker
begins processing its job immediately after the job is ready.
Consequently the completion time of job Ji is the sum of

its ready time Ri(Ψ) and its computation time Ti. We use
Ci(Ψ) to denote the completion time of Ji under Ψ.

The makespan of a schedule is defined as the maximum
completion time of all jobs, denoted by C(Ψ). Our goal is
to find a schedule that minimizes the makespan. This sched-
ule will be refereed to as as the optimal schedule, denoted
by Ψ∗. We also use C∗ to denote this minimum possible
makespan, or optimal makespan.

Figure 1 illustrates an example of schedule. Each col-
ored blocks indicates the bandwidth blocks allocated to a
job, and Each dotted lines at the end of a colored block
represents the computation phases of that job. For exam-
ple, at the first time step the master allocates two blocks
to J1, two blocks to J2, and one block to J3. At time 6
J1 becomes ready since the master has already allocated
D1 = 12 blocks to it, so that J1 can start computing. The
computing ends at time 11 since the computing time T1 is
5, and the ready time R1(Ψ) is 6, so the completion time
C1(Ψ) is 11.

1

2

4

5

3

3 4 5 6 7 8 9 11 time10210

J2

J1

J3

J4

C1R2 R3 R1 R4 C2C4C3

B0

b1,11

Figure 1. An example of schedule

We formally define the problem Limited-Bandwidth-
Scheduling (LBS) as follows.

Definition 1 (LBS). Given the bandwidth bounds of a mas-
ter processor M0 and n worker processors M1, . . . , Mn, a
set of n jobs Ji, and the data size Di and computing time
Ti, find a schedule Ψ that minimizes the makespan.

A job Ji is interrupted in a schedule Ψ if there exist time
steps t1 < t2 < t3 such that Ψ assign bandwidth blocks
to Ji at time t1 and t3, but none at time t2. In practice
certain applications do not allow data transfer to be inter-
rupted, therefore we formulate the uninterrupted variation
of Limited-Bandwidth-Scheduling.

Definition 2 (LBS-Uninterruptible). Given the bandwidth
bounds of a master processor M0 and n worker processors
M1, . . . , Mn, a set of n jobs Ji, and the data size Di and
computing time Ti, find a schedule Ψ that minimizes the
makespan and no job was interrupted.

3.3 Notations

Table 1 summarizes the notations in our system model.

Notation Description
M0 the master processor
Mi i-th worker processor
B0 outgoing bandwidth bound of the master
Bi incoming bandwidth bound of i-th worker
Ji job for i-th worker
Di input data size of Ji

Ti computation time of Ji

Ψ a schedule
Ψ∗ an optimal schedule
bij i-th unit of communication bandwidth of the master in j-th time slot

Ri(Ψ) ready time of Ji under Ψ
Ci(Ψ) completion time of Ji under Ψ
C(Ψ) makespan of Ψ
C∗ the optimal makespan

Table 1. Notations used in the system model

4 Scheduling with Uninterruptible Commu-
nication

In this section, we study a variation of limited-
bandwidth-scheduling in which the data transfer of jobs
cannot be interrupted. We refer to this problem as LBS-
Uninterruptible. We first prove that LBS-Uninterruptible
is NP-complete, then we describe a special case of LBS-
Uninterruptible in which an optimal solution can be easily
found. Finally, we propose heuristic algorithms that can
find efficient schedules for LBS-Uninterruptible.

4.1 NP-Completeness

Theorem 1. The uninterruptible limited-bandwidth-
scheduling problem is NP-complete.

Proof. It is trivial that uninterruptible limited-bandwidth-
scheduling problem is in NP since a non-deterministic Tur-
ing machine can easily determine the mapping function, and
verify the answer in polynomial time.

We prove that uninterruptible limited-bandwidth-
scheduling problem is NP-hard by reducing from
2-Partition [7]. Let I = (ai)1≤i≤n be an instance of
2-Partition, such that

∑
ai = 2A. A solution to this

instance is a partition of the ai’s into two groups G1 and
G2 such that

∑
i∈G1

ai =
∑

i∈G2
ai = A. We build an

instance I ′ of LBS-Uninterruptible with two workers and n
jobs, where B1 = B2 = 1, B0 = 2, Di = ai, and Ti = 0.

If there is a solution for the 2-Partition instance I , we can
easily construct a schedule for LBS-Uninterruptible I ′ with
makespan of A. We reserve one row of bandwidth blocks
for jobs in G1, and the other row of bandwidth blocks for
jobs in G2. The job sequence in the first row is arbitrarily
taken from G1 as long as consecutive blocks are allocated
to the same job. We repeat this process for the second row

and we have a solution for LBS-Uninterruptible problem
instance I ′

We observe that since the bandwidth bound for every job
is 1, and the data transfer cannot be interrupted, we can allo-
cate a time interval of length Di in which the schedule maps
exactly one block to Ji for every time step in this interval.
Also notice that master must allocates exactly two blocks to
jobs in order to meet the time bound.

Now if we have a solution for LBS-Uninterruptible prob-
lem instance I ′, we can derive a solution for the 2-Partition
instance I . We derive this by mapping the time interval
windows of jobs to either “upper” or “lower” row of band-
width blocks. The rule is that if two windows overlap, then
they must be assigned differently as “upper” and “lower”.
We first arbitrarily pick one of the two jobs that starts at
time 0 as “upper”, and the other as “lower”. Without lose
of generality we assume that the “upper” job J has a longer
computing time. Now we assign those windows that over-
lap with J as “lower”. Eventually one such job J ′ will have
a larger ready time than J , then we repeat this process on
J ′, and assign every jobs that overlap with J ′ as “upper”.
Since every job must be a window and there is no “hole” in
the schedule, we can repeat this process until all jobs are as-
signed. This will be a solution for the 2-Partition instance I
since the sums of window lengths from both the upper and
lower rows are both A.

4.2 Unlimited Model

Despite the NP-completeness of general LBS-
Uninterruptible problem, we can still find optimal
solutions for LBS-Uninterruptible in special cases. For
example, we will consider a special case in which the
communication bandwidth bound of each worker is at least
the communication bandwidth bound of the master, and
derive the optimal solution. We will refer to this model as
unlimited model.

We now define a sequence schedule in the unlimited
model. Since the number of blocks that can be assigned to a
job per time step is only limited to the bandwidth bound of
the master, we can define a special class of scheduling that
allocates all blocks of every time step to the first job until
it has all the data, then allocates blocks to the second job,
and so on. Therefore the scheduling can be described as
a sequence of jobs, and the master will allocate blocks ac-
cording to this sequence. Note that the sequence scheduling
is possible in the unlimited model since there is no band-
width bound placed on jobs.

We establish the following lemma, which states that we
can always find an optimal schedule that is also a sequence
schedule.

Lemma 1. Given an problem instance in the unlimited

LBS-Uninterruptible model, there exists an optimal sched-
ule that is also a sequence schedule.

Proof. Let Ψ∗ be an optimal schedule. We will convert Ψ∗

into a sequence schedule without increasing the makespan.
The transformation works as follow. We first sort jobs

according to their ready time under the schedule Ψ∗, and
denote the job that has i-th earliest ready time as J1. If the
master allocates bandwidth blocks to jobs other than J1 be-
fore J1 is ready (at time Ri(Ψ

∗)), we switch these blocks
with those allocated to J1 at R1(Ψ

∗). Note that this will not
delay the ready time of J1 since the blocks it has at Ri(Ψ

∗))
will only be moved earlier in time. On the other hand, let
Ji be the job that was allocated blocks before R1(Ψ

∗), the
ready time of J1 under R1(Ψ

∗). This switch will not de-
lay the ready time of Ji either since the ready time of Ji

is at least R1(Ψ
∗), by the definition that J1 has the earli-

est ready time. We repeat the switching until no block was
allocated to jobs other than J1 before J1 is ready. After fin-
ishing moving all blocks of job J1 forward we can move
the blocks of J2, and so on. Eventually we have a sequence
schedule. Since we did not delay ready time for any job
during the transformation, the makespan will not increase
and the resulting sequence schedule is also optimal.

With Lemma 1 in place we know that we can construct
an optimal schedule for the unlimited model by focusing on
only sequence schedules. That is we want to find a good
sequence of jobs for the master to transfer data to. The fol-
lowing theorem establishes the optimal job sequence.

Theorem 2. Given an instance of LBS-Uninterruptible
in the unlimited model. the sequence schedule in which
the master allocates blocks to jobs in the order of non-
increasing computation time, has the minimum makespan.

Proof. According to Lemma 1, there exist an optimal
schedule Ψ∗ where the master sends the jobs as a sequence
π. Let Jπi

be the i-th job in this sequence π. We want
to argue that if there are two consecutive jobs in π that
are “out of order”, i.e. the job with longer computing ap-
pears later in π, then we can switch them without increas-
ing the makespan. If this is true then we can repeatedly
switch those jobs that are out of order in π, and derive a
sequence schedule Ψ′ that is the same as the schedule that
follows the computing time order, and without increasing
the makespan. Since Ψ∗ is already an optimal schedule, Ψ′

is also an optimal schedule.
Let Jπi

and Jπi+1
be two successive jobs in π, and Jπi

has a shorter computation time than Jπi+1
, i.e. Tπi

< Tπi+1
.

Exchanging them in the allocation will not increase the
makespan, as suggested by the following inequality. Note
that Ψ′ denotes the new schedule after exchanging Jπi

and
Jπi+1

.

max(Cπi
(Ψ∗), Cπi+1

(Ψ∗)) (1)

= max(Rπi
(Ψ∗) + Tπi

, Rπi+1
(Ψ∗) + Tπi+1

) (2)

= Rπi+1
(Ψ∗) + Tπi+1

(3)

≥ max(Rπi+1
(Ψ∗) + Tπi

, Rπi+1
(Ψ′) + Tπi+1

) (4)

= max(Rπi
(Ψ′) + Tπi

, Rπi+1
(Ψ′) + Tπi+1

) (5)

= max(Cπi
(Ψ′), Cπi+1

(Ψ′)) (6)

Equation 3 holds because Jπi+1
has a later ready time

and a longer execution time than Jπi
in Ψ∗. Inequality 4

holds because Tπi+1
is longer than Tπi

, and the ready time
of Jπi+1

was moved earlier in Ψ′. Finally it is easy to see
that the ready time of Jπi+1

in Ψ∗ is the same as the ready
time of Jπi

in Ψ′, i.e., Rπi+1
(Ψ∗) = Rπi

(Ψ′), therefore we
have Equation 5.

4.3 Heuristic Algorithms

In this section, we propose heuristic algorithms that
find good schedules for LBS-Uninterruptible problem. The
heuristic is inspired by the optimal algorithm for unlimited
model from Theorem 2. We first sort the jobs in according
to a given priority metric, then construct a schedule by allo-
cating as many bandwidth blocks as possible to the job that
has the highest priority, until all of it data is avail and it is
ready for execution. By adopting this greedy scheme, vari-
ous schedules can be constructed based on different priority
metric. For example the optimal algorithm for unlimited
model uses non-decreasing computing time order.

4.3.1 Non-Increasing Ti

The first priority metric we tested is the same non-
increasing computing time order we used in Section 4.2 to
construct an optimal schedule for the unlimited model. A
job with a long computation time is likely to has a large
completion time and thus is more likely to increase the
makespan, therefore by it ready as early as possible might
be helpful in reducing makespan.

4.3.2 Non-Increasing Di/Bi Ratio

The general case of LBS-Uninterruptible differs from the
unlimited model in Section 4.2 in the bandwidth bounds of
the workers. If a job has a large Di/Bi ratio, i.e. it requires
a large amount of data but it has only limited bandwidth to
download them, then it is very likely its ready time will be
delayed. As a result we should schedule such jobs as early
as possible.

4.3.3 Non-Increasing Di/Bi + Ti

The total processing time of a job is the summation of its
data downloading time and computing time, and the data
downloading time of Ji is about Di/Bi if the bandwidth is
not shared by other jobs. Di/Bi + Ti thus may be a good
approximation for the total processing time of Ji, and a job
with larger total processing time should be scheduled earlier
in order to reduce the makespan. ??? How?

4.4 Performance Evaluation

In this section we compare the performances of the
heuristics. We run the heuristics on problem sizes for
which we can use exhaustive search to compute the opti-
mal makespans. Then we compute the performance of the
heuristic algorithm against the optimal solution.

In the first set of experiments we set the bandwidth limit
B0 = 10 for the master, and Bi’s randomly from 1 to 10 for
the workers. For each job Ji, we set the data requirement
Di randomly from 1 to 15 and the execution time Ti ran-
domly from 1 to 10. Figure 2 shows that by setting the pri-
ority metric to be non-increasing Di/Bi + Ti, we can con-
struct schedules with almost optimal makespan, even when
the number of jobs is increasing.

 1

 1.02

 1.04

 1.06

 1.08

 1.1

 1.12

 1.14

 1 2 3 4 5 6 7 8

R
at

io
 o

f R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Jobs

non-increasing Ti
non-increasing Di/Bi

non-increasing Di/Bi+Ti

Figure 2. Relative performances of the
heuristics.

In the second set of experiments we try tighter bandwidth
bounds of the processors. In particular we set the bandwidth
limit B0 = 5 for the master and Bi randomly from 1 to 5
for workers. Figure 3 shows that while the non-increasing
Di/Bi + Ti metric is still performs best, all heuristics per-
form worse than they did under larger bandwidth bounds as
in Figure 2.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1 2 3 4 5 6 7 8

R
at

io
 o

f R
el

at
iv

e
P

er
fo

rm
an

ce

Number of Jobs

non-increasing Ti
non-increasing Di/Bi

non-increasing Di/Bi+Ti

Figure 3. Relative performances of the
heuristics.

5 Scheduling with Interruptible Communi-
cation

in this section we study the general limited-bandwidth-
scheduling (LBS) problem. Unlike the uninterruptable ver-
sion we discussed in Section 4, now the the data transfers
of jobs can be interrupted. While uninterrupted version of
limited-bandwidth-scheduling is NP-Complete, we can find
optimal schedule for limited-bandwidth-scheduling if now
interruption in data transfer is allowed. We will first de-
scribe our algorithm in details, then prove that the schedule
constructed by the algorithm is indeed optimal.

5.1 The Algorithm

Our limited-bandwidth-scheduling algorithm works in
phases and each phase has two steps. In the first step we
“guess” a completion time. In the second step, we verify
that the guessed completion time is feasible or not. By a
binary search on the completion time, where each phase in
our algorithm is a step in the binary search, we will be able
to find the minimum completion time while there still does
exist a feasible schedule.

5.1.1 Completion Time Guessing

We now describe the first step for each phase of the algo-
rithm – completion time guessing. Before actually allocat-
ing bandwidth blocks to jobs, we guess a completion time
Ct for the entire execution. Once we have a Ct for our
schedule, the latest ready time Li for each job Ji can be
derived as Li = Ct − Ti. Li is the deadline for job Ji to
start execution, otherwise the completion time Ct cannot be
accomplished. Figure 4 gives an illustration of Ct and Li’s.

1

2

4

5

3

0

B0

T2

L4 CtL1 L3L2

T4

T3

T1

Figure 4. An illustration of Ct and Li’s.

5.1.2 Feasibility Verification

Given the deadlines for the jobs to collect all the data and
start execution, we verify if we can allocate bandwidth to
jobs so that every job can meet its deadline. The main idea
of our bandwidth allocation process is to keep the allocated
bandwidth blocks as “flat” as possible at all time. That is,
we will use roughly the same amount of bandwidth at all
time.

We first determine the order of bandwidth alloca-
tion. Without lose of generality we assume that the jobs
J1, . . . , Jn are indexed according to a non-decreasing order
of their deadlines, i.e. L1 ≤ · · · ≤ Ln. The algorithm
will first allocate bandwidth for the first job J1, then for the
next job J2, and so on, until all jobs are allocated enough
bandwidth. If at any time the algorithm finds that it cannot
allocate enough bandwidth before the deadline of the cur-
rent job, it report failure and we know the current guessed
completion time is not feasible.

We allocate bandwidth to the jobs as follows. For the
purpose of correctness proof we assume that the algorithm
allocates one bandwidth block at a time for a job Ji until it
gets enough bandwidth to transfer its input data. The algo-
rithm allocates a bandwidth block bjk to Ji if the allocation
of bjk satisfies the following three conditions.

• bjk is not yet allocated to any job.

• The block bjk is earlier than Li, i.e. k ≤ Li.

• Allocating bjk to Ji does not violate the bandwidth
constraint of Ji, i.e. the number of blocks at time k
that have been allocated to job Ji is no more than the
bandwidth limit Bi of job Ji.

If no such bandwidth block can be found, then the al-
gorithm returns failure and we conclude that no feasible
schedule with completion time Ct can be found. If there
are more than one bandwidth blocks which satisfy all of the
conditions, we choose the one with smallest j among those
bandwidth blocks. If there are more than one bandwidth

blocks with the same smallest j, choose the one with small-
est k. In other words, we first allocate blocks in the row
with the minimum row index, and within each row we se-
lect blocks in increasing time order until the deadline or the
bandwidth constraint is violated. We will refer to this allo-
cation as “min-row-first” method. Please refer to Figure 5
for an example.

1

2

4

5

3

0 1 2 3 4 5 6 7 8 9 10 11 Time

B0

L4 CtL3L2

J1

J2

J3

L1

J4

Figure 5. An example of min-row-first
scheduling.

If we can allocate enough blocks for every job with the
min-row-first method, we have a feasible schedule. The fea-
sibility of the resulting schedule can be easily checked since
we only allocate bandwidth blocks within the bandwidth
constraint and every job meets its data collection deadline.

If we cannot allocate enough blocks for any job using the
min-row-first method, we want to conclude that there will
be no feasible schedule under the current completion time
assumption. That is, we want to prove that the min-row-
first can find an optimal schedule for limited-bandwidth-
scheduling problem, if one does exist.

Theorem 3. There exists a feasible schedule Ψ with
makespan C(Ψ) if and only if the min-row-first algorithm
return success with completion time set to C(Ψ).

Proof. We have already showed in Section 5.1.2 that the
schedule returned by our algorithm is always feasible, so
we only need to prove the “only if” part of the theorem by
showing that given an arbitrary schedule Ψ with makespan
C(Ψ), we can transform it into the schedule Ψ′ return by
the min-row-first algorithm, when the completion time Ct

is set to be C(Ψ).
An important observation in the block bandwidth model

is that there is no difference between blocks from the same
time step. As long as blocks are from the same time step, it
does not matter which block is allocated to which job. For
ease of explanation we assume that those allocated to jobs
with smallest job index will appear in rows with smallest in-
dex. We will refer to this convention as the early-job-lower-
row convention. Figure 6 illustrates the same schedule in
Figure 1 following this assumption. From now on we will
assume that all the scheduling will follow this convention.

1

2

4

5

3

3 4 5 6 7 8 9 11 time10210

J4B0

J3

J2

J1

Figure 6. A schedule that puts job with
smaller index into rows with smaller index
(early-job-lower-row convention)

We consider two schedules – Ψ and Ψ′, where Ψ is
any feasible schedule for completion time C(Ψ), and Ψ′ is
the schedule produced by the min-row-first algorithm under
completion time C(Ψ). We will show that we can always
convert Ψ into Ψ′ without increasing the completion time.

We will convert the allocation one job at a time in or-
der as J1, . . . , Jn, where we assume the jobs are indexed
according to a non-decreasing order of their deadlines, i.e.
L1 ≤ · · · ≤ Ln. Without lose of generality we assume that
we are converting blocks allocated to Ji, and both sched-
ules follows the convention that smaller indexed jobs go to
smaller indexed rows.

We now focus on the “first” block that was allocated to Ji

by Ψ′ but was allocated to another job by Ψ. We assume that
this block is brt. Now consider the block that was allocated
to Ji by Ψ that has the largest row index, or the largest time
step if there are more than one block allocated to Ji at that
row. Let this block be br′t′ . We conclude that r′ ≥ r. That
is, block br′t′ is at a row with a larger or equal index than
brt since Ψ′ is the result of the min-row-first algorithm.

We consider those blocks at a time step that are assigned
to jobs other than J1, . . . , Ji by Ψ, and refer to them as free
blocks at that time step. Let St be the set of free blocks at
time t and St′ be the set of free blocks at time t′. Since r′

is no less than r, the number of free blocks at time step t
is at least one larger than the number of free blocks in time
step t′, i.e. |St| ≥ |St′ | + 1. The reason is that because
we follow the early-job-lower-row convention, and the fact
that Ψ allocates at least one more blocks to jobs J1, . . . , Ji

at time step t′ than at time step t.
We now want to switch the allocations for blocks brt

and br′t′ in Ψ, so the allocations becomes the same for this
block. We claim that there must exist a job Jk that was
allocated at least a block in St, and the same job Jk was
allocated at most Bk − 1 blocks in St′ . If this is not the
case, then every job Jk that has been allocated blocks from
St will have Bk blocks in St′ . which is impossible since the
size of St is at least |St′ |+1 from previous discussion. As a

result we switch the allocation so that Ψ allocates brt to job
Ji and br′t′ to Jk. The new allocation will not violate the
bandwidth constraint for Ji since brt was allocated to Ψ′,
and there are at most Bk − 1 blocks allocated to Jk before
the switch. Please refer to Figure 7 for an example.

1

2

4

5

3

0 1 2 3 4 5 6 7 8 9 10 11 Time

B0

L4 CtL3L2L1

JiJ1, . . . , Ji−1

brt br′t′

Ji+1, . . . , Jn

St St′

Figure 7. An illustration of brt, br′t′ , St and St′ .

After establishing that we can switch brt and br′t, we
can repeat this process until Ψ and Ψ′ becomes the same.
The reason is that if Ψ and Ψ′ differ, then there must be
a br′t′ that is located at the same or lower row, since the
number of the blocks in Ψ and Ψ′ are the same, and Ψ′ uses
the min-row-first algorithm to allocate blocks. The theorem
follows.

With Theorem 3 in place we are certain that if there ex-
ists a feasible schedule with a given completion time, the
min-row-first algorithm is able to find it. Therefore by a bi-
nary search on the completion time we will be able to find
the minimum completion time while there still does exist a
feasible schedule. However, we need to specify the upper
bound for starting the binary search. It is easy to see that
Ct =

∑n

i=1
�Di/ min(B0, Bi)�, is a trivial upper bound

of the minimum completion time such that we can start the
binary search.

6 Conclusions

This paper introduces techniques in scheduling jobs on a
master/workers platform where the bandwidth is shared by
all workers. The jobs are independent and each job requires
a fixed amount of bandwidth to download input data be-
fore execution. The master can communicate with multiple
workers simultaneously, provided that the bandwidth used
by the master and the workers do not exceed their band-
width limits.

We proposed two models for this limited-bandwidth
problem. If the data transfer cannot be interrupted, then we
prove that the scheduling problem is NP-complete. Nev-
ertheless we propose heuristic algorithms and experimen-
tally test their performance. If the data transfer can be in-
terrupted, we propose an algorithm that produces optimal

makespan. The algorithm is based on a binary search on
the completion time, and an efficient feasibility verification
process for a given completion time.

The authors would like to further investigate possible ef-
ficient algorithms in both models. Despite the fact that it is
NP-complete to find the optimal solution when we do not
allow data transfer interruption, it is still possible to find
dynamic programming or approximation algorithm for the
scheduling problem. Another possible future work is to im-
prove the optimal algorithm for the model that allows inter-
ruption, since the current algorithm requires a binary search
on the completion time.

References

[1] M. Adler, Y. Gong, and A. L. Rosenberg. Optimal sharing
of bags of tasks in heterogeneous clusters. In 15th ACM
Symposium on Parallel Algorithms and Architectures, pages
1–10, 2003.

[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J.
Lipman. Basic local alignment search tool. Journal of
Molecular Biology, 215(3):403–410, 1990.

[3] V. Bahradwaj, D. Ghose, V. Mani, and T. G. Robertazzi.
Scheduling Divisible Loads in Parallel and Distributed Sys-
tems. IEEE Computer Society Press, 1996.

[4] O. Beaumont, N. Bonichon, and L. Eyraud-Dubois.
Scheduling divisible workloads on heterogeneous platforms
under bounded multi-port model. In 22nd IEEE Inter-
national Parallel and Distributed Processing Symposium,
2008.

[5] BIRN: The Biomedical Informatics Research Network.
http://www.nbirn.net/.

[6] H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The
apples parameter sweep template: user-level middleware for
the grid. In Proceedings of the ACM/IEEE conference on
Supercomputing, pages 75–76, 2000.

[7] M. Garey and D. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. WH Freeman and
Co. New York, NY, USA., 1979.

[8] B. Hong and V. Prasanna. Distributed adaptive task alloca-
tion in heterogeneous computing environments to maximize
throughput. In 18th IEEE International Parallel and Dis-
tributed Processing Symposium, 2004.

[9] LCG: LHC Computing Grid. http://lcg.web.cern.ch/LCG/.
[10] A. Legrand and C. Touati. Non-cooperative scheduling

of multiple bag-of-task applications. In 26th IEEE Inter-
national Conference on Computer Communications, pages
427–435, 2007.

[11] J. D. Ullman. Np-complete scheduling problems. Journal
of Computer and System Sciences, 10(3):384–393, 1975.

[12] Y. Yang, H. Casanova, M. Drozdowski, M. Lawenda, and
A. Legrand. On the complexity of multi-round divisible load
scheduling. Technical report, 2007.

