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Abstract. A major challenge for next generation sequencing technology is genome assembly. A physical
map could be used as a preliminary step towards genome sequencing in a hybrid approach. In this
paper, we illustrate a robust physical mapping algorithm, GAPM, which could well complement with
the assembly of short fragments. The physical mapping problem (PMP) is to determine the relative
positions of genetic markers (called probes) along the DNA sequences. The presence and absence of
probes in clones can be represented by a 0-1 matrix with rows corresponding to clones and columns
corresponding to probes. A 0-1 matrix satisfies the consecutive ones property (COP) for the rows if there
exists a column permutation such that the ones in each row of the resulting matrix are consecutive. In
the error-free case, the PMP can be reduced to testing the COP of a 0-1 matrix. Lu and Hsu proposed
an iterative clustering algorithm to deal with the following four types of errors: false positives, false
negatives, chimerical clones, and non-unique probes. In this paper, we present a novel genetic algorithm,
called GAPM, with a much better performance. GAPM can be run in parallel and generate approximate
optimal physical maps regardless of the error rates and matrix sizes. Moreover, GAPM is very flexible
in dealing with unknown data. We test 9,000 different cases and compare GAPM with L&H’s method.
The results indicate that GAPM is more robust and reliable for most data.

Key words: sequence assembly, consecutive ones property, physical mapping, probe hybridization,
genetic algorithms

1 Introduction

The fascinating next generation sequencing technologies provide ultra high throughput DNA sequencing.
They produce a huge amount of sequence fragments in the range of 20-300 base pairs. However, as the num-
ber of DNA sequences is rapidly increasing, the new technologies present major bioinformatics challenges,
particularly for genome assembly [1]. Many applications of next generation sequencing require anchoring of
these fragments onto a reference sequence [2]. In the Plant and Animal Genome Meeting (PAG 2008), it was
agreed that a robust physical map should be completed as a preliminary step towards genome sequencing us-
ing a hybrid approach: an optimized BAC pool sequencing strategy coupled with next generation sequencing
technologies. In [3], the authors described a genus-wide comparative framework which is composed of BAC
fingerprints and end-sequenced physical maps. This framework is highly compatible with next generation
sequencing technologies whereby whole genomes can be sequenced in 4-8 Mb chunks [4]. In this paper, we
illustrate a robust physical mapping algorithm, GAPM, which could well complement with the assembly of
short fragments.

In DNA sequence analysis, the physical mapping problem is to determine the relative positions of genetic
markers (called probes) along the DNA sequences. A probe is usually a unique sequence of a few hundred
nucleotides. The resulting maps are used as the basis for DNA sequencing, and for the isolation and charac-
terization of individual genes. The construction of a physical map is generally accomplished as follows. First,
long DNA sequences are separated into smaller fragments (called clones). A number of probes are tested
for their presence or absence in the clones. Given the collection of probes, one tries to order the probes in

? To whom correspondence should be addressed.



such a way that probes attached to the same clone are consecutive. The presence and absence of probes in
clones can be represented by a 0-1 matrix with rows corresponding to clones and columns corresponding
to probes, where a 1 means presence and a 0 absence. A 0-1 matrix satisfies the consecutive ones property
(COP) for the rows if we could find a column permutation such that the ones in each row are consecutive.
The resulting column permutation reflects the ordering of probes that implies the relative positions of the
clones for reconstructing the DNA sequences.

In the error-free case, the physical mapping problem can be transformed into the problem of finding
a column permutation which satisfies the COP. Booth and Lueker proposed a linear time algorithm to
determine whether or not a 0-1 matrix has the COP [5]. Subsequently, Hsu proposed another simpler linear
time algorithm [6]. However, such discrete algorithms can hardly be adapted to data with errors. In the
wet-lab experiments for probes hybridizing with clones, four types of experiment errors inevitably occur,
namely, false positives, false negatives, non-unique probes and chimeric clones. A false positive is a probe
falsely present in a clone. It will result in an entry of 1 that should be 0 in the 0-1 matrix. On the contrary,
a false negative is a probe falsely absent from a clone that results in an entry of 0 that should be 1. A
non-unique probe is a probe whose DNA sequence occurs more than once within a chromosome. It would
bind to multiple clones which are far from each other. This error results in false overlaps among those clones.
Two (or more) clones which connect at their ends form a chimeric clone. It results in a false row being the
union of several rows in the 0-1 matrix.

In order to reconstruct a correct DNA sequence, errors need to be detected. Karp considered that the
reassembly process of a physical map on a large DNA molecule leads to a number of challenging problems
in computer science [7]. Several related problems have been proved to be NP-complete or NP-hard [8,9,10].
Cuticchia et al. provided a methodology for quickly ordering random clones into a physical map using the
amount of overlaps between any two clones [11]. Alizadeh et al. suggested using maximum-likelihood functions
to model the physical mapping problem and solved this problem based on the local search [12]. Jain and
Myers converted the physical mapping problem into a 0/1 linear programming problem [13]. Mayraz and
Shamir constructed physical maps using a greedy method based on a Bayesian overlap score [14]. Goncalves
et al. applied the Bayes’ theorem to evaluate corresponding posterior probabilities on this problem for
reconstructing the circular genome sequences [15]. Ukkonen narrowed down this problem to find the partial
orders from a unordered 0-1 matrix [16]. Other methods mainly focused on removing typical errors such as
false positives and chimeric clones [17]. However, none of these approaches can deal with all types of errors,
and all of these methods assumed that probes are all unique. L&H modified Hsu’s algorithm and devised
an iterative clustering algorithm for the physical mapping problem [18]. Their method could handle the four
types of errors. However, the performance goes down dramatically when the error rate is increased. Our
GAPM adopts a two stage genetic algorithm with a much better performance.

Furthermore, with a slightly change, GAPM could be also used to solve the problem of sequence assembly
since the 0-1 matrix of the overlapping relationships of the fragments should also satisfy the COP. In this
paper, we only demonstrate the performance of GAPM on the physical mapping problem. The application
of GAPM for the sequence assembly problem will be the topic of another paper.

2 Methods

The workflow of GAPM consists of the following steps: error detection, a two stage genetic algorithm, and
a post-processing step. The error detection step tries to detect three error types, excluding false negatives.
After the error treatment, we generate pseudo clones by merging overlapped clones for recovering the false
negatives. At the first stage of the genetic algorithm, we use GA1 to generate a partial probe ordering for
each pseudo clone, and to detect false negatives within each clone. Then we generate the probe neighborhood
information from multiple runs of GA1, one run for each pseudo clone. This information is used to construct
the whole probe ordering using GA2 at the second stage. Finally, we analyze and report the probe ordering
in the post-processing step. The details of each step are described in the following sub-sections.
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2.1 Error Detection and Treatment

This step first detects non-unique probes, then false positives, followed by chimeric clones. These detected
errors will be treated. Since false negatives can be detected only after a probe ordering is given, instead of
detecting false negatives, we construct a pseudo clone for each clone after the above error treatment. Each
pseudo clone can be treated as a cluster of probes and is used as input for GA1. The details are described
in the following subsections.

The Detection of Non-unique Probes The frequencies of non-unique probes are very likely higher than
those of unique probes since their sequences appear more than once within the whole chromosome. Hence,
we use the frequencies of probes to detect the non-unique probes.

We calculate the frequency of each probe in all clones. Then for each clone, we determine locally whether
there is a non-unique probe by comparing the frequency of each probe in the clone with the clone’s average
frequency, which is calculated from all probe frequencies in the clone excluding the smallest and the highest
frequencies. If the frequency of a probe is higher than a threshold, currently defined as 1.33 times of the
average frequency, the probe is suspected to be a non-unique probe. Each suspect probe Pj within Ci will
be removed from Ci. The above procedure will be repeated until no more suspect probes can be found.

Note that, some unique probes may be falsely suspected and removed due to the effect of multiple errors,
thereby possibly generating more false negatives. These cases can be remedied in the procedure of false
negative detection. On the other hand, some cases cannot be easily detected due to combined errors, and
these hard cases can be regarded as false positives, which are then handled in false positive detection.

C1

C2

C3

C4

C5

C6

C7

Fig. 1. Two possible false positives shown in white and block circles. The probes attached to Ci are usually
attached to several common clones. In contrast, a false positive probe attached to Ci is attached to some
clones that do not belong to these common clones. For example, the black probe is a highly probable false
positive attached to C6.

The Detection of False Positives The probes attached to Ci are usually attached to several common
clones. However, a false positive probe attached to Ci, could be attached to some clones that do not belong
to these common clones. For example, consider two probes represented by white and black circles in Figure 1
and determine which is more likely a false positive. The white probe, i.e., the probe represented by the
white circle, is not too far from a true positive and attached to some common clones as some probes in C3.
And, the black probe is farther from a true positive and attached to different clones from those that other
probes in C6. Comparing these two probes, the black probe is a highly probable false positive attached to
C6. Motivated from this observation, we define distant clone with respect to a given clone Ci and use the
number of distant clones to determine whether a probe Pj in clone Ci is a false positive.

A clone Ci′ is a clone distant from Ci if the number of probes attached to both clones is less than 3. A
false positive probe Pj with respect to Ci will likely be attached to different clones that other true positive
probes are not. In other words, most clones that Pj attached to are distant from Ci. Specifically, a probe
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Pj is suspected to be a false positive with respect to Ci if more than a portion f of the number of clones
containing Pj are distant from Ci. The threshold f is set to be 0.65. Once a false positive is detected, remove
Pj from Ci. Sequentially, we process all probes attached to Ci. The above procedure is applied to all clones.

The Detection of Chimerical Clones To detect whether a clone Ci is chimeric, we check whether all
of the probes attached to Ci form at least two disjoint sets such that probes in different sets do not attach
to any common clone other than Ci. Any two distinct probes Pj and Pj′ attached to Ci are called strong
neighbors if they are attached to at least one common clone other than Ci. We use this strong neighbor
relation to connect probes into a probe set and determine whether all probes attached to Ci form only one
set.

For each clone Ci, randomly start with a probe Pj to form a probe set S. Then expand S to include one
more probe Pj′ from the remaining probes not in S that is a strong neighbor of any probe in S. Repeat
the expansion of S until no more probes can be included. If the resulting set S does not contain all probes
attached to Ci, then we consider Ci as a chimeric clone and repeat the above procedure to construct other
probe sets S

′
for probes not in S to exhaust all probes attached to Ci.

Once Ci is detected as a chimeric clone, we choose the largest probe set S and replace Ci with a shorter
clone Ci′ with probes in S. Note that some chimeric clones cannot be easily detected when their composing
clones are close in distance. These cases will be treated as regular clones, and the gaps between their com-
posing clones will be considered as false negatives in our probe ordering determination stage. Furthermore,
we use clones with s1 to s2 probes in later probe ordering procedure. The range between s1 and s2 represents
the regular sizes of clones. The size bound s2 can help remove some chimeric clones that cannot be detected
by the procedure.

Pseudo Clones Since we cannot determine whether there is a false negative within a clone before the
true probe ordering is given, false negatives are harder to be detected than the other three types of errors.
Furthermore, arranging the probe ordering for each clone one by one may generate ambiguity in some
probe’s ordering due to false negatives. For example, the best probe ordering for clone A is [Probe1, Probe3,
Probe4], and that for clone B is [Probe1, Probe2, Probe4]. Each of the two clones contains a false negative.
Two possible orders of these probes are [Probe1, Probe2, Probe3, Probe4] and [Probe1, Probe3, Probe2,
Probe4]. In order to reduce the ambiguity in probe ordering caused by false negatives, we generate Pseudo
Clones to replace the original clones for the subsequent genetic algorithm.

A pseudo clone is a synthetic clone which is extended from a specific clone and formed by a union of
several overlapped clones, i.e., clones sharing some common probes. For each clone Ci, we generate a pseudo
clone PCi by the following procedure. Initially, PCi is simply Ci. Then we extend PCi by merging the
neighboring clone Ci′ , which has most probes in common with any clone in PCi. Repeat the pseudo clone
extension until all neighboring clones have been exhausted or the pseudo clone is hybridized with s2 probes
since we only consider clones containing at most s2 probes. Figure 2 shows an example of a pseudo clone
which is generated from the clones below. Each row of white circles represents a clone with or without false
negatives. The row with black circles represents a pseudo clone which is the union of the entire clones. By
merging the probe presence into a pseudo clone and arranging the probe ordering for the pseudo clone rather
than for the original ones, we can greatly reduce the ambiguity. Note that after constructing pseudo clones
from all clones, some pseudo clones are possibly identical, which are removed to perform subsequent genetic
algorithms.

2.2 Two Stage Genetic Algorithms to Generate Probe Ordering

In order to obtain a good ordering of probes, we use two stage genetic algorithms. The first stage genetic
algorithm, GA1, uses pseudo clones to generate some good partial orders of probes which serve as constraints
on the probe connection for the second stage genetic algorithm. The second stage genetic algorithm, GA2,
aims to generate a good global ordering of probes.
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The First Stage of the GAPM(GA1) For each pseudo clone PCi, GA1 aims to generate the best
probe ordering for the probes contained in PCi based on a defined fitness function. Note that if there are
m′ pseudo clones (m′ � m, m: the number of original clones), we perform m′ times of GA1 to generate a
collection of partial orders of probes. A genetic algorithm usually comprises the following steps: chromosome
initialization, reproduction, crossover, mutation operation and uses a fitness function to determine a good
solution. Details of GA1 are described below.

Chromosome Initialization Each chromosome in GA1 represents a possible probe order. To expedite the
execution of GA1, instead of randomly initializing a chromosome as in most genetic algorithms we initialize
the chromosome from a possibly good probe order.

In general, the size of CloneList (Pj , Pj′ ), which is defined as the set of clones containing both Pj and Pj′ ,
is related to the distance between the two probes in the ordering. The closer the two probes are, the more
common clones they may have. We define the probability for probes, Pj and Pj′ to be adjacent, denoted by
Adj (Pj , Pj′ ), as follows:

Adj(Pj , Pj′ ) =
| CloneList(Pj , Pj′ ) |3∑
j′′ | CloneList(Pj , Pj′′ ) |3

To initialize the chromosome, we randomly select a probe chromosome Pj as the first locus of the chro-
mosome. Given the probe Pj located at the previous locus, an unselected probe Pj′ is chosen according to
Adj (Pj , Pj′ ) and assigned to the next locus. The assignment continues until all l probes have been chosen
and assigned on the chromosome.

Fitness Function GA1 evaluates the fitness score of each chromosome using a fitness function. Given an
ordering of l probes represented by a chromosome, we generate a k×l 0-1 matrix M with k clones overlapping
with the psudo clone PCi as rows and columns arranged according to the probe order. We use M [i] to denote
the i-th row of M . The fitness function is defined on M , denoted by f(M), which depends on the length
of consecutive ones in the matrix, as an aggregation of two fitness subfunctions: f1 and f2. The function f1

evaluates the fitness score before the detection of false negatives. Since false negatives can be determined
given the probe order, the function f2 evaluates fitness score after the detection of false negatives.

The fitness function f1(M) evaluates the lengths of consecutive ones in M subtracted by incurred penal-
ties. For each each M [i] with r consecutive one segments, its ConsecutiveOnes score is given by

∑r
p=1

∑lp
q=1 q,

where lp denotes the length of segment p. For example, the row (11101101) has three consecutive-one seg-
ments having length 3, 2 and 1, respectively. The row’s ConsecutiveOnes score is 10 (= 6+3+1). Then
ConsecutiveOnes(M) is the sum of the ConsecutiveOnes scores of all rows in M . Since each clone is in size
between s1 and s2, rows in M with the numbers of 1’s less than s1 should not be fully included by the
pseudo clone PCi. Based on that fact, we give a penalty for those rows with the number of 1’s less than
s1 which are fully included by PCi. We say a row is fully included which means none of the 1’s located at
either of the two ends. The penalty function, called IslandPenalty is defined as follows. IslandPenalty(M [i])
= [s1 −NumOnes(M [i])]2×d2

i , where NumOnes returns the number of 1’s in the M [i] and di is the shortest
distance of the 1’s to either of the two ends of M [i]. Note that NumOnes always returns s1 if the number
of 1’s is greater than s1. For example, given s1= 4, the row (0110100) has NumOnes = 3 and d = 1 since
the leftmost 1 is at distance 1 from the left-end and the rightmost 1 is at distance 2 from the right-end. The
IslandPenalty of that row is 1. Therefore the fitness function f1(M) is defined as below.

f1(M) = ConsecutiveOnes(M)−
k∑

i=1

IslandPenalty(M [i])

While f1 does not consider the false negatives, function f2 does. To detect false negatives, we use a sliding
window of 3 columns to form a k × 3 submatrix of M . For each of the k × 3 submatrix, if among these k
rows the number of 111 rows is greater than the number of 101 rows by at least a threshold t, we consider
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that the 101 rows likely have a false negative and then replace these rows by 111. Given the threshold t =
6, Figure 3 shows an example of false negative. In the indicated k × 3 submatrix, there are seven 111 rows
and only one 101 row. Thus a false negative at the 101 row is detected and the middle entry of the row is
replaced by 1. Similarly, we detect two successive false negatives in k× 4 submatrix of M by comparing the
numbers of 1111 rows and 1001 rows.

Fig. 2. An example of a pseudo clone which is gener-
ated from the clones below, where the first clone is the
initial seed to generate the pseudo clone.

Fig. 3. Detecting false negatives by screening the
difference between 111’s and 101’s within a slid-
ing window.

Let M
′

represent the resultant k × l matrix after the false negative recovery. The fitness function f2 is
defined on M

′
. Since the recoveries of false negatives increase ConsecutiveOnes(M

′
), in order to prevent

the population in the evolutionary procedure from generating many false recoveries, we define a penalty for
such recoveries, called RecoveryPenalty, as follows: RecoveryPenalty(M

′
) = 5 ×

(∑fnr1
r=1 r +

∑3×fnr2

r′=1
r

′
)

,
where fnr1 and fnr2 are the numbers of false negative recoveries for 101 and 1001, respectively. The penalty
increases more rapidly when the number of recoveries is getting larger. We also consider another penalty
in f2, called DistancePenalty, which incur to rows having scattered 1’s. We define DistancePenalty =
5 ×

∑k
i=1 ProbeDistanceSum(M

′
[i]) , in which the function ProbeDistanceSum calculates the sum of dis-

tances between any pair of 1’s which are separated by 0’s. For example, the row (1001100101) has the
ProbeDistanceSum of 5 (=2+2+1). Finally, f2 is defined as follows: .

f2(M) = ConsecutiveOnes(M
′
)−DistancePenalty(M

′
)−RecoveryPenalty(M

′
)

When the score of f2(M
′
) is negative, it is reset to be 0. In the first few generations, f2 usually returns

a negative score; as probe ordering is improving in the evolution, a chromosome will likely get a bonus from
f2.

Reproduction Operation The population for the next generation is generated as follows. After ranking
all chromosomes by fitness scores, the top half of population are kept for the next generation. The other half
are discarded and we generate new chromosomes using either the crossover operation or the chromosome
initialization, depending on the CrossoverRate, which denotes the proportion of new chromosomes produced
by the crossover operation. For example, if the CrossoverRate is 0.7, then 70% of new chromosomes are
produced by the crossover operation, and 30% are produced by the chromosome initialization.

Chromosomes in the first half of population serve as parent candidates in the crossover operation. We
randomly select two distinct candidates, say parent1 and parent2, and a cut point cp to produce an offspring
ch. To compose ch, the probe arrangement before the cp is copied from parent1 and is sequentially extended
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by probes in parent2 that have not yet been included in ch. Figure 4 shows an example of an offspring
produced by the crossover operation.

The mutation operation in GA provides the population a reasonable diversity and prevents the offspring
from resembling their parents. The MutationRate is a parameter which denotes the probability of a locus
being mutated. For example, if the MutationRate is 0.005, then each locus in a chromosome has a probability
0.5% to be mutated. If a locus is going to be mutated, another locus is randomly selected and we exchange
the probes of the two loci.

Probe Adjacency Lists Generated from the GA1 results GA1 would return one or more probe orders
with the highest fitness score for each pseudo clone. We do not use GA1’s results of different pseudo clones
directly since pseudo clones may overlap in some probes and these overlapping probes may have inconsistent
ordering in different runs of GA1. Therefore we generate a probe adjacency list, denoted as AdjacentList [Pj ],
for each probe Pj . A probe Pj′ is listed in the AdjacentList [Pj ] if Pj and Pj′ are adjacent in any one of
the returned probe orders and CloneList (Pj , Pj′ ) is not empty. The adjacency relation is symmetric which
means if Pj′ is in the AdjacentList [Pj ] then the Pj is also in the AdjacentList [Pj′ ].

The best case is that each probe only has two adjacent probes excluding the head and the tail probes.
However, the false negatives and the probe ordering inconsistency would result in long adjacency lists for
some probes. We use GA2 to generate the whole probe ordering according to those adjacency lists.

2.3 The Second Stage of the GAPM (GA2)

Most operations of GA2 are similar to those of GA1 except the chromosome initialization, mutation and
fitness function. We describe the details of these operations in the following sub-sections.

Chromosome Initialization In order to expedite the termination of GA2, we generate contigs, which are
a set of probes arranged in a specific order such that two consecutive probes are adjacent which means one
can be found in AdjacentList of the other to initialize a chromosome. Each probe which has only one adjacent
probe is in turn used to initiate a contig. If no such probe can be found, i.e., all probes have at least two
adjacent probes, all probes could be used to initiate contigs. Let Pj be selected as the head probe to initiate
a contig. We extend the contig from Pj by randomly selecting an unused probe Pj′ from the AdjacentList [Pj ]
and then we use Pj′ for further extension. The extension continues until no more unused probe can be found
from the adjacent list of the last probe to be included into the contig. Another contig is then initiated if
there are other unused probes. Finally a chromosome is completed with one or more contigs to exhaust all
probes.

Fitness Function Given a probe ordering PR with n probes, we generate the corresponding 0-1 matrix
M

′
. The fitness function f3 defined on PR considers not only the resulting ConsecutiveOnes score but also

the score of probe adjacency in the given probe ordering and is given as follows:

cut point

offspring 1 3 2 4 5 6 7

parent2 2 5 6 1 3 4 7

parent1 1 3 2 4 5 7 6

Fig. 4. An example showing how a offspring being produced from two parents using single cut point in the
crossover operation of GA1.

7



f3(PR) = ConsecutiveOnes(M
′
) +

i=n∑
s1=0,i=2

si,

{
si = si−1 + 1, if PR[i− 1]↔ PR[i]
si = 0, otherwise

where the symbol ↔ represents the adjacency relation.

Mutation Operation Given a chromosome ch, let mch denote the mutant of ch. Initially, all the loci of mch
are undefined and then determined as follows: The mutation operation starts with the first locus, i.e., locus
is 1. If the ch[locus] is going to be mutated, select a probe not yet included in mch to assign to mch[locus].
Then a new contig is generated beginning with mch[locus] to include into mch. The next locus in ch to
consider for mutation is the one next to the last probe of the newly generated contig. If ch[locus] does not
mutate and has not yet included in mch, then ch[locus] is directly assigned to mch[locus]. If ch[locus] has
been included in mch, we arbitrarily choose a probe not yet included in mch to initiate a new contig. We
repeat the operation until all probes are assigned in mch.

2.4 Post-processing

GA2 will return one or more probe orders with the highest fitness score. The probe orders may consist of
several contigs due to either the probe deletions in error treatment or the imperfect probe arrangement.
However, if some marginal probes of two contigs may actually coexist in the same clone before the error
treatment, we then connect these two contigs.

Only the contigs with at least 10 probes are considered for possible connection. For any pair of contigs,
say Contig1 and Contig2, we check their possible connections Contig12 and Contig21, which means Contig1
followed by Contig2 and Contig2 followed by Contig1, respectively, by confidence scores defined as follows.
Specifically, to determine whether Contig12 can be formed, we check whether some clones Ci (the original
clones before error detection and treatment) contain some probes from TailProbeSet1, i.e., the last five
probes of Contig1, and HeadProbeSet2, i.e., the first five probes of Contig2. If a clone Ci contains n1 probes in
TailProbeSet1 and n2 probes in HeadProbeSet2, we assign a confidence score of min (n1, n2) to Contig12. The
confidence score of forming Contig12, denoted by Score(Contig12 ), is defined as the sum of confidence scores
of all such Ci’s. Similarly, we can calculate confidence score of forming Contig21, denoted by Score(Contig21 ),
with respect to the last five probes of Contig2 and the first five probes of Contig1.

If Score(Contig12 ),and Score(Contig21 ) differ by at least 5, we connect the two contigs with higher score;
otherwise, we leave them unconnected. We repeat the contig connection procedure until no more contigs can
be connected. Then the resulting contigs and the contigs with 3-9 probes from GA2 output are reported as
the final solution for probe ordering.

3 Results

GAPM is developed as a parallel computing program under Linux environment. It is implemented using
the C++ and MPICH library. The parameters are as follows: the population size is 800, the number of
generations is 600, CrossoverRate is 0.7 and MutationRate is 0.005. Since it is difficult to obtain abundant
wet-lab data, we conduct experiments on the synthetic data for evaluating the performance of GAPM and
compare with L&H’s method using the same dataset.

3.1 Dataset

To generate a synthetic data, we simulate the process of restriction enzyme digestion on a DNA sequence. A
DNA sequence is a string of n 1’s, each representing a probe, and we can assume without loss of generality
that the correct probe ordering is 1, 2, ...,n. We randomly cut the sequence into several fragments of size of 5
to 15, called clones. We repeat the digestions using more duplicate DNA sequences until there are m clones.
Then we generate an m× n 0-1 matrix and alter the entries randomly to simulate the four types of errors.
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We follow L&H’s design to generate noisy data. The errors of false positives and false negatives are at
three different levels, 3%, 5% and 10%. Within each error rate, the ratio of false positives to false negatives
is set to be 1 to 4. For example, let the total number of 1’s in a 100×100 matrix be k. We will generate 0.02k
false positives by randomly changing the same number of 0’s to 1’s if the error rate is 10%. Similarly, we
will generate 0.08k false negatives by randomly changing the same number of 1’s to 0’s. We also randomly
generate additional 2% chimeric clones (0.02m) and 2% non-unique probes (0.02n) for each matrix. To
generate a chimeric clone, we make a copy of the 1’s of a row to the other by randomly selecting two different
rows. To generate a non-unique probe, we make a copy of 1’s of a column to the other by randomly selecting
two different columns. We generate 1000 matrices of sizes 100 × 100, 200 × 200, and 400 × 400 for each
false-positive and false-negative error rate given the same error rates for the other two errors, respectively
(i.e., 9000 matrices totally).

3.2 Performance Evaluation

We also follow the evaluation method proposed by L&H. For a probe v, let d1 be the number of probes
ordered to the left of v but whose indices are greater than v, and d2, the number of probes ordered to the
right of v whose indices are less than v. Let the displacement d(v) be the larger of d1 and d2 of probe v.

The displacement d(v) gives an approximate measure of the distance of probe v from its correct position.
L&H proposed the following three measures for estimating the total deviation of the resulting probe orders:

1. The average displacement of a probe ordering is the average of the displacement of all probes.
2. If the displacement of a probe v is more than 4, we say v is a jump probe. The jump percentage is the

number of jump probes divided by the total number of probes.
3. The average difference of a probe ordering is the average of the difference in the probe indices of adjacent

probes.

For example, given the probe ordering shown in Figure 5, d(2) = 6 (there are 6 probes ordered to the left
of probe 2 whose indices are greater than 2), d(6) = 1, and d(8) = 6 (there are 6 probes ordered to the right
of probe 8 whose indices are less than 8). Thus, both probe 2 and probe 8 are jump probes. The average
displacement is 1.7, and the average difference is 3.2.

1 8 3 4 5 7 6 2 9 10

Jump probe

Jump probe

Fig. 5. Jump probes.

3.3 Experiment Results

We evaluated the performance of GAPM and L&H method using the above three measures. Each experiment
result is evaluated from 1000 different cases of different matrix sizes and error rates. (Since all test sets have
the same error rates for chimeric clones and non-unique probes, henceforth say different error rates simply
mean different rates of false positives and false negatives.) The jump percentage of GAPM and L&H on
different test sets are shown in Figure 6, in which the x-axis represents different test sets, e.g., M100 ER10%
represents the test sets in size of 100 × 100 and 10% of error rate. The results show that GAPM has much
smaller jump percentage than L&H for different test sets. For example, the average jump percentage of
GAPM is 0.15% for M400 ER10%, which means there is around 0.6 jump probe in average for arranging 400
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probes with 10% of error rate. Most of probes are arranged in or near their correct positions. However, the
average jump percentage of L&H for the same test sets is 4.17%. It implies there are 16.68 probes in average
being arranged far from their correct positions.

Average displacements of GAPM and L&H on different test sets are shown in Figure 7. GAPM generates
probe orders with smaller displacement than L&H. For example, the average displacement of GAPM is 0.41
in M400 ER10%, whereas that of L&H is 0.83. The smaller the displacement, the closer each probe is to its
correct position. The comparison results imply that the probe orders reported by GAPM are more reliable
than those by L&H.

Average differences of GAPM and L&H on different test sets are reported in Figure 8. The measure
estimates the difference in the probe indices of adjacent probes. GAPM generates probe orders with smaller
difference than L&H, whereas a correct probe ordering gives an average difference of 1. For example, the
average difference of GAPM is 1.51 for the matrices in M400 ER10%, better than 2.1 reported by L&H. It
implies that more probes are arranged together with their nearest neighbors by GAPM.

L&H method removes probes during the process of probe ordering according to their rules. In contrast,
GAPM removes probes during error detection and treatment and probes in the contigs generated by GA2
with at most two probes. Figure 9 shows the comparison results of the percentage of deleted probes between
GAPM and L&H. GAPM deleted much less probes. Furthermore, the number of deleted probes is relatively
stable for different error rate. In contrast, the number of deleted probes by L&H increases when the error
rate is increased, i.e., there is a positive correlation between the percentage of deleted probes and the error
rate in the results of L&H. For example, the average percentage of deleted probes in M100 ER03% of L&H is
12.69%, and it increases to22.33% and 48.54% when the error rate is increased to 5% and 10%, respectively.
Noteworthy, those of GAPM are 1.88%, 1.89% and 2.01%, respectively. It strongly implies that GAPM is
less sensitive to the error rate.

The final probe orders may consist of several contigs due to either the probe deletions in error treatment
or the imperfect probe arrangement, whereas the correct probe ordering contains only one contig. Therefore
the number of contigs is also an important measure for evaluating the performance. Figure 10 shows the
comparison results between GAPM and L&H in terms of the average number of contigs. L&H generates more
contigs than GAPM. It could be easily observed that there is a positive correlation between the number of
contigs and the number of probes in the results of L&H. For example, the average numbers of contigs
generated by L&H using the matrices in sizes of 100×100, 200×200 and 400×400 with 3% of error rate are
2.27, 3.93 and 7.00 respectively. However, those by GAPM are 1.01, 1.04, and 1.11 respectively. It strongly
implies that GAPM is relatively robust when the size of matrices increases.

Fig. 6. The comparison of jump percentage. Fig. 7. The comparison of average displacements.
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Fig. 8. The comparison of average difference. Fig. 9. The comparison of average number of deleted
probes.

Fig. 10. The comparison of average number of contigs.

4 Conclusions

In this paper, we propose a novel approach for constructing physical maps. Since different types of error
are inevitable in datasets, we use the cross reference of probe-clone relationships for error detection without
complicated rules. As the experiment result shows, most errors can be removed. After the initial error
reduction, we use a two stage genetic algorithm which greatly reduces the search space from n! possible
probe orderings to a much smaller one. Specifically, we cluster the probes into several groups and each
group contains at most 15 probes. Then using each group of probes, we form pseudo clones, which aim to
dilute the effect of false negatives. Then GA1 uses each pseudo clone as input for chromosome initialization
and subsequent procedures. The small size of a pseudo clone makes it easier to find a good probe ordering
in GA1. Noteworthy, the fitness function used in GA1 is an aggregation of two functions, which takes
into consideration of not only the COP but also the effect of false negatives. The fitness function helps the
population gradually improve during the evolution. After a good ordering for each pseudo clone is determined
by GA1, we generate the probe neighborhood information, which provides the probe ordering constraint for
GA2 and then determine an overall good probe ordering.

We simulate the process of restriction enzyme digestion on DNA sequences and generate a huge amount
of synthetic data for evaluating the performance of GAPM. By introducing those four types of errors, GAPM
could still generate satisfactory probe orderings. According to the experiment results, GAPM is more reliable
and robust than the L&H’s method. It is also less sensitive to the error rate and the size of matrices. The
physical map generated could be a reference sequence for anchoring the short DNA sequence fragments
produced by the next generation sequencing technologies.
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Because GAPM is very modular, it can be easily modified. The fitness function is one example. The effect
of different designs of the fitness function could be easily checked through the evolution of the population. In
fact, any problem which could be modeled as an optimization problem on 0-1 matrices satisfying the COP
could be a potential application of GAPM.
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