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Abstract 

This report presents two families of algorithms for scheduling medications that interact 
with each other. All algorithms accept as input medication directions that have been 
compiled into a machine readable form. One family of algorithms is called 
One-Medication-at-a-Time, or OMAT. As the name implies, an OMAT algorithm produces 
a full schedule for each of the user’s medication in turn. Algorithms in the other family are 
called One-Dose-at-a-Time (ODAT) algorithms. An ODAT algorithm schedules one dose 
at a time without prior knowledge, or with limited knowledge, about future doses. It may 
fail to make good scheduling decisions compared with OMAT algorithms but can better 
accommodate dynamic variations in user behavior. Both OMAT and ODAT algorithms 
apply a variety of priority assignments as well refinements such as letting the user take 
medications as soon as possible or as late as possible. Data presented here on performance 
of the scheduling algorithms in terms of success rate and schedule quality can help builders 
of smart medication dispensers and scheduling tools choose among algorithms and tradeoff 
merits along different dimensions. 
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1 Introduction 

Statistics on health care quality indicates that medication misuse has led to loss of thousands of 

lives and billions of dollars each year in United States alone [1-6]. By medications here, we mean 

prescription medications, over-the-counter drugs and nutritional supplements. Medication 

administration is the last stage of medication process. Administration errors due to failures to 

follow medication directions contribute approximately 25 to 40 percent of all medication errors 

and major causes of administration errors include user’s misinterpretation of directions and 

forgetfulness and inability to follow rigid schedules. This fact has motivated the advent and use of 

medication dispensers and scheduling tools that are designed to help users in compliance to 

directions (e.g. [7, 8]). An automatic (medication) dispenser such as the one described in [7] 

relieves the user of the burden to manually interpret medication directions, schedules the user’s 

medications, reminds the user at times when medications should be taken, controls the dosages 

dispensed each time, dynamically readjusts the medication schedule to stay compliant when the 

user is tardy, and when compliance becomes impossible, sends appropriate notifications to 

designated person(s) or tool(s). Scheduling tools [8] are software programs that can be installed in 

devices such as medication dispensers or PDA or are provided as web services to help the user with 

medication scheduling.  

The direction of a medication specifies constraints on how the medication should be 

administered. Constraint parameters include ranges of dose size, temporal separation between 

doses, maximum and minimum dosage over some time intervals, and so on. Some medications 

interact with each other or with food. Directions of interacting medications impose additional 

constraints on how the medications are to be scheduled when the user is taking them at the same 

time. Scheduling flexibility comes from the sizable ranges in constraint parameters typically 

provided by directions of modern medications. By exploiting this flexibility, an automatic 

medication dispenser or scheduling tool can give its user more leeway in response to reminders 

and thus make the medication schedules it produces user friendlier. This paper focuses on 

scheduling algorithms that a dispenser or tool needs for such exploitation.  

Specifically, we present here two families of algorithms for scheduling interacting medications. 

All algorithms accept as input medication directions that have been compiled into a machine 

readable form, called medication schedule specification (MSS) [9, 10]. In particular, the MSS for a 

user specifies requirements and constraints derived from directions of all medications taken by the 
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user. One family of algorithms is called One-Medication-at-a-Time, or OMAT. As the name 

implies, an OMAT algorithm produces a full schedule for each of the user’s medication in turn. 

Because they are off-line, OMAT algorithms can be more complex. They tend to produce better 

schedules. Algorithms in the other family are called One-Dose-at-a-Time (ODAT) algorithms. An 

ODAT algorithm schedules one dose at a time with no prior knowledge or limited knowledge 

about future doses. It may fail to make good scheduling decisions compared with OMAT 

algorithms but can better accommodate dynamic variations in user behavior. Both OMAT and 

ODAT algorithms apply a variety of priority assignments including the Earliest-Deadline-First 

(EDF) and Rate-Monotonic (RM) schemes [11]. The algorithms also incorporate refinement 

strategies such as letting the user take medications as soon as possible or as late as possible. 

We measure the performance of a medication scheduling algorithm in terms of success rate and 

schedule quality. The success rate of an algorithm is the percentage time the algorithm succeeds in 

finding a schedule of user’s medications meeting all hard constraints specified by the given MSS. 

Schedule quality is measured in terms of several criteria, including percentage deviation and 

normalized allowed tardiness. Roughly, the former measures the rigor in compliance while the 

latter measures user friendliness of the schedule. We will return later to define these metrics 

precisely, as well as the division of constraints into hard and firm types. The performance data on 

different priority assignments and refinements presented here can help builders of smart dispensers 

and scheduling tools choose among the scheduling algorithms and tradeoff their merits along 

different dimensions. 

In the remainder of the paper, Section 2 presents the scheduling constraints given by MSS. 

Section 3 describes the major steps in medication scheduling and the underlying resource model. It 

also describes an algorithm for selecting dose sizes of individual medications and defines the 

performance metrics mentioned earlier. Section 4 describes basic and enhanced versions of 

algorithms in the OMAT and ODAT families. Section 5 describes simulation experiments 

conducted for the purpose of their evaluation and the performance data obtained from the 

experiments. Section 6 summaries our results and presents future works.  

2 Medication Schedule Specification 

Again, the constraints of medication schedules defined by the user’s MSS capture the 

directions of user’s medications. Medication directions can be in various forms: hand written or 

printed, in natural language or tabular form, on-line from some prescription order entry system 
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(POES) or drug libraries and so on. Without loss of generality, we assume that the user’s 

pharmacist has used a transcription tool such as the one described in [12] and translated and 

compiled the directions into a machine-readable specification after making sure that all effects of 

drug interactions have been properly taken into account. Hereafter, we speak solely of medication 

dispensers and their schedules. Clearly, all our discussions on algorithms and their performance 

apply equally well to scheduling software tools.  

The specific about the data structure of MSS provided to the dispenser is unimportant for our 

discussion here. It suffices to say that MSS is composed of two parts: dosage parameters and 

special instructions. For each medication taken by the user, the dosage parameters (DP) part 

contains constraints on how the medication is to be administrated when the medication is taken 

alone. If the medication interacts with any other medication taken by the user or with food, the 

special instructions (SI) part specifies how the administration of the medication is to be modified 

because of the interaction. 

2.1 Dosage Parameters 

Figure 1 lists the constraint parameters in the DP part for a medication named M. The 

medication comes in granules of size g. g is the smallest dose size in milligram, tablet, or some 

other unit. In subsequent discussions, dose sizes have integer values: By dose size k, we mean k
granules of the specified granularity g. Similarly, time instants have integer values: Time instant j
means j times the time granularity used by the scheduler from the start of the schedule. Hereafter, 

we use one-hour as time granularity except where it is stated otherwise.  

M: Name of the medication
g: Granularity
[Tmin, Tmax]: Minimum and maximum duration over which the

medication is administered
[dmin, dmax]: Nominal minimum and maximum dose size
[smin, smax]:  Nominal minimum and maximum separations between 

(consecutive) doses
[Dmin, Dmax]: Absolute minimum and maximum dose sizes
[Smin, Smax]: Absolute minimum and maximum separations
(B,R): Maximum intake over a specified time interval given by 

budget B and replenishment delay R
(L,P):            Minimum intake over a specified time interval  given by 

lower bound L and interval length P

Figure 1 Dosage parameters 

Nominal dose size range [dmin, dmax] and nominal separation range [smin, smax] listed in lines 4 
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and 5 in Figure 1 say that, usually, the size of each dose should be in the range delimited by 

nominal minimal dose size dmin and maximum dose size dmax and time separation between 

consecutive doses should be in the range delimited by the nominal minimum separation smin and 

maximum separation smax. Take Vicodin [13] as an example. The medication is a combination of 

painkiller and cough suppresser. Its direction says “All forms of Vicodin are taken 4 to 6 hours as 
needed for pain. The usual dose of Vicodin is 1 or 2 tablets, up to a maximum of 8 tablets per day.”
Hence, the DP part of Vicodin specifies the nominal dose size range [1, 2] and nominal separation 

range [4, 6]. 

Constraints such as “up to a maximum of 8 tablets per day” in direction of Vicodin are 

specified in terms of supply rate: Supply rate (B, R) constraints the total size of all doses over any 

time interval of length R to be no more than B. So, the supply rate of Vicodin is (B, R) = (8, 24). 

Similarly, the demand rate (L, P) listed in line 9 in Figure 1 requires that the total size of all doses 

in every interval of length P to be at least equal to L. This constraint ensures that a certain amount 

of the medication is at work at all times. As examples, medications used for treatments of 

infections and high blood pressure typically have demand rate constraints. 

It is not always possible, and often not necessary, for the scheduler to keep dose sizes and 

separations within their nominal ranges. Absolute dose size range [Dmin, Dmax] and absolute 
separation range [Smin, Smax] intend to provide scheduling flexibility when it is safe to do so. In 

general, [dmin, dmax] and [smin, smax] are contained in [Dmin, Dmax] and [Smin, Smax], respectively. For 

example, the direction of Fosamax [13] says: “The usual dose of Fosamax is 10 milligram once a 
day or 70 milligram once a week”. Its nominal dose range and separation range are [1, 1] and [24, 

24], respectively, for granularity of 10-milligram tablet. Its absolute dose size and absolute 

separation ranges are [1, 7] and [24, 168], respectively. It supply rate is (B, R) = (7, 168). 

We note that some constraints specified by the DP part of MSS are firm, and some are hard. 

Specifically, nominal dosage parameters (i.e. dose size and separation ranges) are firm constraints:

The scheduler tries to meet them whenever possible. Similarly, it is not always possible for the 

supply and demand rate constraints to be met strictly. The scheduler may use a schedule as long as 

the actual supply and actual demand according to the schedule are within tolerable ranges of the 

respective specified values B and L. In contrast, absolute dosage parameters and tolerable supply 

and demand ranges impose hard constraints: The scheduler considers a failure to meet a hard 
constraint as a non-compliance event that requires a specified action.  



7

2.2 Special Instructions  

For each medication M that interacts with other medications or food, the MSS contains a SI 

part. The part defines additional constraints on separations between doses and changes in dosage 

parameters of interacting medications. We call interacting medications interferers. For each 

interferer N of M, the separation part for M gives the required temporal separations between each 

dose of M and any dose of the interferer. We use min(N, M) to denote the minimum separation to 

dispense a dose of M after dispensing a dose of N. Typically, min(N, M) min(M, N). For 

example, because Fosamax has to be taken on empty stomach and at least 30 minutes before any 

food and drink, min(Fosamax, Food) is 0.5 and min(Food, Fosamax) is 6.  

The change list part indicates the required changes, if any, in dosage parameters of M when 

some interferer affects M. The parameters given by change lists take precedence over dosage 

parameters of M specified in its DP section as long as the user is taking both M and the interferer. 

As an example, taking Fosamax in doses of size larger than 10 mg per day with aspirin may 

increase the likelihood of stomach upset. For this reason, the change list for Fosamax has absolute 

dose size and separation ranges of [1, 1] and [24, 24], respectively; the flexibility provided by 

absolute ranges [1, 7] and [24, 168] in the DP part of Fosamax is no longer allowed as long as the 

user is taking aspirin as well.  

We ignore in this paper constraints such as precedence constraint and maximum separation. 

Precedence constraints restrict the order in which doses of some interacting medications are taken. 

Maximum separation constraints ensure that some medications are taken sufficiently close 

together. Our report on a general model of medication scheduling [9] discusses these and other 

additional constraints. 

3 Major Steps and Performance Criteria 

Scheduling of interacting medications is done in two major steps. When presented with a MSS, 

the dispenser scheduler ignores separation constraints between interacting medications in the first 

step and finds a feasible schedule for every medication M: A feasible schedule defines a usage 
separation range [umin(M), umax(M)] which is such that [umin(M), umax(M)]  [smin(M), smax(M)] of 

M and there is a dose size in the nominal dose size range of M meeting the supply rate and demand 

rate of M. The set of feasible schedules selected in this step defines a complete schedule if none of 

the user’s medications has inter-medication separation constraint. The second step is carried out 
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only when some medications interact and impose inter-medication separation constraints. The 

OMAT and ODAT algorithms described in Section 4 are used in the second step to take into 

account these constraints. They are the focus of this paper. 

3.1 Consistency and Feasibility 

For sake of completeness, we summarize here the work done by the scheduler in the first step: 

Again, the scheduler ignores in this step the separation constraints listed in the SI part of the MSS. 

It can use the demand-versus-supply test (DST) [14] described by Figure 2 to check nominal 

dosage parameters and rate constraints of each medication for consistency and to find a feasible 

schedule for the medication if such a schedule exists. 

Demand-Versus-Supply  Test (MD parameters of M)
Input: dose-size range [dmin, dmax], separation range [smin, smax]

supply rate (B, R) and demand rate (L, P) constraints,
duration range [Tmin, Tmax]

Output: feasible = TRUE;
feasible_schedule = {NULL};

1. Check input parameters for validity condition listed below:
– Valid ranges: 0 dmin dmax and 0 smin smax
– Valid limits: dmax B and smax P Tmin
– Feasible supply rate: dmin Floor[R/smax] B
– Feasible demand rate: Ceil[L/dmax] Floor[P/smin]
– Consistent rate limits: B/R L/P
if  any condition above is not met, feasible = FALSE; return;

2. L/P = 0, or B/R = , return;
3. Carry out steps of one of the following cases:

a. If R P: find the minimum_demand_schedule and the 
required_supply of the schedule;

if required_supply B, feasible = FALSE;
else feasible_schedule = minimum_demand_schedule;

b. If R P: find the maximum_supply_schedule and the 
available_supply of the schedule;

if available_supply L, feasible = FALSE;
else feasible_schedule = maximum_supply_schedule;

return;

Figure 2 Demand-Versus-Supply Test 

The constraints given by the MSS for a medication M are consistent when they do not conflict 

with each other, i.e., the parameters specifying them meet the necessary conditions checked in 

Step 1 of DST. Step 1 returns and reports that the MSS is not feasible if the parameters fail to meet 

any of the necessary conditions. The set of conditions are both necessary and sufficient for several 

special cases, one of which is that the medication does not have both supply rate constraint and 

demand rate constraint. This is the reason for Step 2 of the DST test. 

In Step 3 of the DST, the scheduler tries to find a feasible periodic schedule that meets the dose 
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size, separation and rate constraints. We call a schedule according to which k doses are scheduled 

per period a k-dose schedule. It is a valid k-dose schedule if all dose sizes and separations meet the 

dose size and separation constraints. 

In the case where supply rate interval R is equal to or larger than the demand rate interval P, the 

test tries to find a feasible periodic schedule called minimum demand schedule in Step 3a. This 

schedule has the longest period and the smallest total dose size among all valid k-dose schedules 

which are such that (k) P and (k) L where (k) denotes the period of the schedule and (k)
denotes the total dose size per period according to the schedule. In essence, a minimum demand 

schedule meets the demand rate constraint and the total size of doses in any interval no longer than 

P is as small as possible. The test returns the schedule if the total size of all doses within any 

interval of length R is no greater than the supply constraint B; otherwise, the test declares failure to 

find a feasible schedule for the medication under consideration and the MSS infeasible. 

Step 3b handles the case when the demand rate interval P is larger than the supply constraint 

interval R in an analogous way. A maximum supply schedule has the smallest period and 

maximum total dose size per period among all k-dose valid schedules which are such that (k) R
and (k) B. In other words, the schedule satisfies the supply rate constraint. If the total size of all 
doses in any interval of length P is at least equal to L, Step 3b returns the schedule; otherwise, it 

declares the MSS infeasible.  

DST is not optimal in the sense that it may declare a MSS infeasible incorrectly. It has been 

shown in [14] that if Step 3 of DST fails, there is no feasible periodic dosage schedule for the 

medication. However, we do not know wherever there are non-periodic feasible schedules for the 

medication. 

3.2 Resource Model 

For the sake of clarity and to save space, we consider hereafter only those MSS that have 

feasible schedules for all medications when inter-medication separations are ignored. This way, 

we can concentrate on the operations and merits of algorithms that deal with additional constraints 

due to medication interactions. The OMAT and ODAT algorithms described in Section 4 are such 

algorithms. The rules of these algorithms and operations of the scheduler are based on a resource 

model according to which the user is the only scarce resource. The scheduler uses two types of 

virtual resources to manage contention for the user and allocates these entities as if they were 
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physical processors and resources. There is a processor PM for every medication M. The scheduler 

uses PM to maintain correct separation between doses of M. If M has interferers, then there is also a 

resource RM for M. The scheduler uses RM to maintain the required minimum separations between 

doses of M and doses of its interferers. 

The administration of doses of M are modeled as non-preemptable jobs JM(i), for i =1, 2,…, on 

PM. The execution time of the jobs is in the range [Smin(M), smin(M)]. Whenever possible, the 

scheduler uses the minimal nominal separation smin(M) as execution time. It may make the 

execution time as small as the minimum absolute separation when it is impossible to allocate the 

job smin(M) units of time.  

A job starts when the dose it models is released to the user. The first job of each medication M
is scheduled to start at some specified time or on best effort basis. In general, the start times of 

subsequent jobs of M are constrained by two types of deadlines: First, the inter-stream relative 
deadline of JM(i) with respect to the previous job JM(i-1) of M is equal to their maximum absolute 

separation Smax(M). Second, JM(i) may be required to start by the end of the current demand-rate 

constraint interval. This requirement imposes an effective demand-rate deadline on the job. The 

absolute start time deadline of JM(i) is the earliest absolute deadline computed from these relative 

deadlines. OMAT and ODAT algorithms treat rate constraints as firm constraints; they work only 

with inter-stream relative deadlines, treating effective demand-rate deadline as infinite. 

Some variants of OMAT and ODAT algorithms treat the sequence of jobs of each medication 

M as a periodic task or sporadic task [9] on PM. The inter-arrival interval time M between 

consecutive jobs of the task is in the range [smin(M), smax(M)]. The task is periodic if smin(M) is 

larger than zero and smax(M) is finite. Otherwise, the task is sporadic. The separation in start times 

of jobs in consecutive periods of a periodic task must be no greater than the relative deadline 

Smax(M). This requirement is equivalent to a jitter constraint. Take as an example a medication with 

nominal separation range [12, 24] and absolute separation range [8, 28]. We can model the 

sequence of doses of the medication as periodic task with execution time 12 (or 8) and period 18. 

The deadline for completing the job in each period is the end of the period. Precise definitions and 

additional illustrative examples can be found in [9]. Observation 1 follows straightforwardly. 

Observation 1 All separation constraints of every medication M are met when jobs modeling 
their doses are scheduled on PM as described above. 
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The scheduler uses the resource RM in its effort to maintain the required minimum separation 

between doses of M and doses of its interferers. It follows two rules: 

Every job of an interferer N ( M) of M requires the resource RM on a shared basis for min(N, M)

units of time beginning from when the job starts. An arbitrary number of jobs of medications other 

than M can share the resource RM.. The resource is no longer free for the duration when it is thus 

allocated.  

The resource RM is treated as a permit for jobs of M to start. In other words, a job of M can start 

at a time instant only if RM is free at the instant. 

Because of rule (2), a job of N can block a job of M for min(N, M) units of time. We call this 

time blocking time of M by N. The worst case blocking time of a medication M is equal to the 

maximum blocking time of M over all its interferers. The observation below follows as a direct 

consequence. 

Observation 2 Minimum separation constraints specified for all interacting medications are 
met when resources are allocated to jobs according to Rules (1) and (2). 

3.3 Performance Metrics 

As we mentioned earlier, the merits of a medication scheduling algorithm are measured from 

two perspectives: From the perspective of the system whether an algorithm can find a feasible 

schedule that meets all the constraints specified by the given MSS is important. The parameter we 

use to measure this dimension of performance is success rate. i.e., the chance the algorithm finds a 

feasible schedule. From the user’s perspective, quality of medication schedules is important. We 

measure schedule quality along two dimensions: adherence to medication directions and user 

friendliness. These dimensions are in conflict, meaning it is not possible to optimize a schedule 

along both dimensions.  

Adherence to Medication directions Several figures of merit measure how close the schedule 

adheres to medication directions. They include dose-size variation, separation jitter, and deviation 

from nominal parameter ranges [9, 10]. In this paper, we measure this aspect of schedule quality by 

variation and deviation from supply rate and demand rate. As stated earlier, algorithms for 

scheduling interacting medications cannot always adhere to the rate constraints strictly as they try 

to satisfy inter-medication separation constraints. This is why OMAT and ODAT families of 
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algorithms treat supply and demand rates as firm constraints: They temporarily ignore these 

constraints but check to be sure that the schedules generated by them meet the constraints 

reasonably closely. Closeness is measured in terms of the actual intake within the specified rate 

intervals: The total intake (or intake for short) of a medication according to a schedule is the actual 

total dose size of the medication scheduled over the respective rate interval. 

For a given schedule, the supply rate variation of a medication M with supply rate (B, R) is the 

difference between the maximum intake and minimum intake of M within any interval of length R,

normalized with respect to the supply B. The supply rate variation of a schedule is the maximum 

supply rate variation over all medications according to the schedule. The supply rate deviation of a
medication M in MSS according to a schedule is equal to the difference between the maximum 

intake of M within any interval of length R and the supply B, if the difference is positive; it is equal 

to zero if the difference is zero or negative. The supply rate deviation of a schedule is the 

maximum supply rate deviation over all medications according to schedule. In essence, the supply 

rate deviation measures how well the schedule adheres to the supply rate constraint while the 

supply rate variation measures how widely dose size and separation vary.  

Similarly, the demand rate variation of a medication M with demand rate (L, P) is the 

difference between the maximum intake and the minimum intake within any interval length of L.
The demand rate variation of a schedule is the maximum demand rate variation over all 

medications according to the schedule. The demand rate deviation of a medication M according to 

a schedule is the difference between the demand L and the minimum total intake in any interval of 

length P if the difference is positive, and is equal to zero if the difference is zero or negative. The 

demand rate deviation of a schedule is the maximum demand rate deviation over all medications 

according to the schedule. 

User Friendliness We quantify user friendliness by normalized allowed tardiness. The 

allowed tardiness (AT) of a dose k of medication M according to a schedule is the maximum length 

of time the dose can be delayed without leading to non-compliance. The normalized allowed 
tardiness (NAT) of a dose k of medication M is the ratio of AT and the difference between smax(M)

and smin(M). We say an algorithm is unfriendly to a dose of the medication if the NAT of the dose 

is zero, somewhat friendly if the NAT is between 0 and 0.3, friendly if the NAT is between 0.3 

and 0.7, and very friendly if the NAT is between 0.7 and 1. In the data presented in Section 5.3, 

we call the corresponding ranges of NAT unfriendly, somewhat friendly, friendly and very 
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friendly NAT, respectively. 

4 OMAT and ODAT Algorithms  

Both OMAT and ODAT families of algorithms make use of priorities. When the scheduler 

works according to OMAT algorithms, it first assigns priorities to individual medications. It then 

schedules the medications in priority order, one at the time for the entire duration of each 

medication. In contrast, when working according to ODAT algorithms, the scheduler assigns 

priorities to individual doses in individual medications and then schedules doses that are ready to 

be dispensed in priority order. The scheduler may use a fixed priority scheme that assigns the same 

priority to all doses in each medication. It may also choose to use a dynamic priority scheme [11], 

i.e., giving possibly different priorities to individual doses in each medication. Clearly, 

dynamic-priority scheme is suitable for ODAT algorithms only. 

The priority schemes considered here include the ones listed below: 

MVF (most-victimized-first) scheme gives priorities to tasks, modeling sequences of jobs 

dispensing doses of medications, based on their worst case blocking times; the longer the 

worst case blocking time, the higher the priority. 

MIF (most-interactions-first) scheme gives priorities to tasks based on the numbers of 

interferers of the corresponding medications; the larger the number, the higher the priority. 

SSDF (shortest-separation-difference-first) scheme gives priorities to tasks based on the 

differences between the maximum and minimum nominal separations of the corresponding 

medications; the shorter the separation difference, the higher the priority.  

RM (rate-monotonic) scheme gives priorities to medication tasks based on their periods; 

the shorter the period, the higher the priority.  

EDF (earliest deadline first) scheme is a dynamic-priority scheme. It gives priorities to 

jobs based on their absolute deadlines; the earlier the deadline, the higher the priority.   

4.1 Major Data structures   

Figure 3 gives data structures used by our scheduling algorithms. The four classes 

MedicationDirections, DosageParameters, SpecialInstructions and Interferer in Part 1 of Figure 3 

are used to record direction and special instruction parameters. The scheduler creates an instance 

of each class for every medication (say M) in a MSS and initializes the variables in it according to 

MSS. Specifically, elements of the instance of DosageParameters for medication M hold values 
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delimiting the ranges of duration (t), nominal dose size (nd), nominal separation (ns), absolute 

dose size (ad), and absolute separation (as), as well as supply rate parameters (b, r) and demand 

rate parameters (l, p) of the medication. The elements min_to_interferer and min_from_interferer of

the instance of Interferer created for an interferer N of the medication M hold values of minimum 

separations min(M, N) and min(N, M), respectively.  

Data Structures of OMAT and ODAT algorithms

Part 1: Data structures for recording  the information of each 

medication in a MSS

Class MedicationDirections{
int med_id;      DosageParameters dp;      SpecialInstructions si;

}
Class DosageParameters{

int t_min, t_max;
int ns_min, ns_max, as_min, as_max;       
int nd_min, nd_max, ad_min, ad_max;
int b, r, l, p;

}
Class SpecialInstructions{

List<Interferer> drug_and_food_interaction;
List<DosageParameters> change_lists;

}
Class Interferer{

int med_id;    int min_to_interferer;    int min_fr_interferer;
}

Part 2: Data structures of resource model for each medication 

in a MSS

Class ResourceModel{
int[] resource = new int[t_min];   int[] processor = new int[t_min];
bool feasible = TRUE;   List<int> schedule = NULL;
int priority = 0;

}
Class JobModel{

int  release_time = 0;   int execution_time = ns_min;   
int deadline = release_time + execution_time;

}

Part 3: Data structure of priority schemes

enum PrioritySchemes{ RM, MVF, MIF, SSDF, EDF};

Figure 3 Data structures of scheduling algorithms 

Class ResourceModel in Part 2 is used to implement the resource model described in Section 

3.2. resource and processor are both integer arrays of size equal to the minimum duration over 

which the medication is administered. The values of resource[k] and processor[k] for M tell the 

scheduler whether RM and PM, respectively, are free or allocated (indicated by values 0 and 1, 

respectively) at time k since the beginning of the schedule (i.e., since time 0).  

Medication M is feasible if the scheduler can find a valid start time, satisfying all hard 

constraints, for every job of the medication task M. Whether M is feasible is indicated by the value 

of the variable feasible in ResourceModel; the value is TRUE if M is feasible and is FALSE
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otherwise. schedule is the head of a sorted linked list of integers; each integer in the list gives the 

start time of a job of M. priority is an integer variable whose value represents the priority of the 

medication: The smaller the value, the higher the priority. The value of priority for M is chosen 

according to PrioritySchemes listed in Part 3 in Figure 3. 

The class JobModel gives the real-time workload parameters of the jobs in the medication task 

M. The value of release_time is the release time of a job JM(i), i.e., the instant of time when job is 

ready for execution. We consider here only the case where the release time of the first job JM(0) is 

at the beginning of the schedule for every medication. The release time of each job JM(i) for i > 0 is 

the time when JM(i-1) completes. As it will become evident shortly, extension of the algorithms to 

handle the general case where the first jobs are released at arbitrary times is straightforward. 

execution_time of M is the amount of time jobs of task M occupies PM once the job starts. 

execution_time is the range delimited by the minimum absolute separation and the minimum 

nominal separation of M. The initial value of this variable is the minimum nominal separation 

because the scheduler uses this value usually. It uses values a smaller value in the allowed range 

only when it cannot find a feasible schedule of M without doing so. deadline of JM(i) here is the 

inter-stream relative deadline of the job. 

4.2 Scheduling Operations 

Figures 4 and 5 give pseudo-code descriptions of basic versions of OMAT and ODAT 

algorithms, respectively. 

The inputs of the algorithms are MedicationDirections of all medications in a MSS and

PrioritySchemes used by the algorithms. As output, an algorithm returns the value of the Boolean 

variable feasible, which indicates whether the MSS is feasible. The feasible_schedule [ ] array of

schedule lists, also returned as output, contains a schedule list head (hence, the schedule) for each 

of the medications in the MSS if the algorithm finds the specification feasible. 

The first step of basic OMAT and ODAT algorithms is to create an instance of ResourceModel

and an instance of JobModel for each medication in MSS. The variables within the instances are 

initialized as shown.  

Major Steps of Basic OMAT Algorithms Using a basic OMAT algorithm, the scheduler 

assigns a priority to each medication according to PrioritySchemes in Step 2. The bulk of the work 

is done in Step 3. 
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One-Medication-At-A-Time

Input: List<MedicationDirections> MSS, PrioritySchemes;
Output : feasible = TRUE;

feasible_schedule [number_medications] = {NULL}; 
1. For every medication listed in MSS,  create an instance of 

JobModel, ResourceModel and list head schedule.
2. Assign priority to each medication according to PrioritySchemes.
3. For each medication Mi from the one with the highest priority to 

lowest, do the following:
latest_start_time = 0; current_medication_feasible = TRUE;
do while ( current_medication_feasible == TRUE ) { 

A. Call FindAvailableTime ( ) to get the earliest available 
time instant x

B. if x is found, 
if ( x >= t_min of Mi ) break;
Insert x into the start time list schedule of Mi
for ( x <= k < x + ns_min of Mi )

processor[k] =1;
for every interferer N of Mi listed in MSS

for(x – min_to_interferer N <= k < x +
min_fr_interferer N ) set resource[k] of N to 1;

latest_start_time = x;
C. else x is not found 

current_medication_feasible = FALSE; 
feasible = FALSE;

}
if feasible == TRUE, feasible_schedule[Mi] = schedule of Mi

4. Return feasible and feasible_schedule[number_medications]

One-Dose-At-A-Time

Input: List<MedicationDirections> MSS, PrioritySchemes;
Output : feasible = TRUE;

feasible_schedule [number_medications]= {NULL}; 
1. For every medication listed in MSS,  create an instance of 

JobModel, ResourceModel and list head schedule.
2. schedule_complete = 0;

release_time_current_jobs[number_medications] = {0};
While (feasible == TRUE) and 

(schedule_complete < number_medications){
A. Determine based on release_time_current_jobs[ ] the current 

job j with the earliest release time and highest priority among 
current jobs of all medications , say j is of medication Mi

B. do
a. Call FindAvailableTime ( ) to get the earliest available 

time instant x.
b. if x is found, 

if ( x >= t_min of Mi ) schedule_complete++ break;
Insert x into the start time list schedule of Mi
for ( x <= k < x + ns_min of Mi ) processor[k] =1;
for every interferer N of Mi listed in MSS

for ( x – min_to_interferer N <= k < x +
min_fr_interferer N ) set resource[k] of N to 1;

release_time of Mi’s current job = x + ns_min.
c. else x is not found

feasible = FALSE.
}

3. Return feasible and feasible_schedule[number_medications].

Figure 4 Basic OMAT algorithms      Figure 5 Basic ODAT algorithms 

In Step 3, the scheduler considers medications in priority order one at a time: For each 

medication M, the scheduler schedules jobs (i.e., doses) of M one at time, starting from the first job 

until it finds either M is not feasible or the possible start time of the current job (i.e., the job being 

scheduled) is larger than the minimum duration of M. For the current job, the scheduler calls 

FindAvailableTime( ) shown in Figure 6 to find the earliest available time instant x, which is the 

earliest time instant between the release time and deadline of the job at which both RM and PM are 

free. If an instant x is found, the scheduler schedules the job to start at x, and adds x to the start time 

list schedule of M. When the job starts, it occupies PM for execution_time units of time; the 

scheduler updates the processor array of M accordingly. The job does not actually hold RM as the 

allocation rule described in Section 3.2 requires only that the resource is free at x. However, if M
has interferers, the scheduler marks resource array of each interferer N are allocated according to 

rules of the resource model. (We note that the pseudo code also states that time units of resource 

array of N from min_to_interferer of N to x are also marked as occupied. This is done to simplify 

FindAvailableTime( ) function.) The scheduler then moves on to schedule the next job in M. If the 

scheduler successfully schedules all the jobs within the duration of M, it set the element in

feasible_schedule [ ] for M to the list head schedule.

A failure of FindAvailableTime( ) to return an earliest available time indicates that the 
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medication M is not feasible. The variable feasible is set to FALSE. The value of this variable 

indicates whether that the basic version of OMAT algorithm has succeeded or failed after all 

medications in a MSS are scheduled. Again, the array feasible_schedule [ ] provides the heads of 

schedule lists of all the medications if the algorithm succeeded. 

FindAvailableTime( )
Input: JobModel and  ResourceModel
Output: feasible and available time x
1. From the time of the job is released to the job’s deadline, 

a. if there is a time such that resource[i] == 0 and processor[i]
== 0, x = ; feasible = TRUE;

b. else feasible = FALSE;
2. Return feasible and x.

Figure 6 FindAvailableTime function 

Major Steps of ODAT Algorithms When the scheduler uses an ODAT algorithm, the 
scheduler assigns priorities to jobs according to PrioritySchemes when the jobs are released. It 

schedules released jobs in priority order. Step 2A in Figure 5 is a way to implement this strategy 

efficiently: The scheduler uses the array release_times_current_jobs [ ] to keep track when the 

current job(s) of some medication(s) is released and ready to be scheduled, rather than checking 

each time instant for released current job(s).   

We say that the schedule of a medication M is complete when the possible start time of the 

current job of M is later than the minimum duration of M. The scheduler continues to schedule jobs 

as they are released in priority order until either it fails to find a possible start time for the job 

currently being scheduled or the schedules of all medications in the given MSS are complete.  

This work is done in Step 2. Step 2B is similar to Step 3 of OMAT algorithms. 

Advanced OMAT Algorithms We will see in the next section that in terms of success rate, 

basic ODAT algorithms outperform basic OMAT algorithms consistently. By examining sample 

schedules generated by basic OMAT algorithms in simulation experiments, we found that doses of 

high priority medications are scheduled either as soon as they are released or shortly afterward. 

Consequently, doses of higher priority medications are scheduled close together. Resources of 

interfering medications of lower priorities are more likely to be occupied when the scheduler tries 

to find available start times for them. This is usually why the basic OMAT algorithms fail to 

schedule medications of lower priorities for all priority schemes. 

The advance OMAT algorithm is designed to solve this problem. Unlike the basic algorithm, 
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the advanced OMAT algorithm schedules doses of medications as close to their respective 

deadlines as possible. As data on success rate presented in the next section show, with this 

enhancement, one medication at a time indeed is a better strategy than one dose at a time.  

5 Performance Evaluation 

We conducted several simulation experiments to determine how well basic OMAT and ODAT 

algorithms perform for a variety of sample MSS’s and how their performance depend on the 

choice of priority scheme. We also wanted to experiment with a way to enhance the algorithms and 

determine its effectiveness. This section first describes how sample MSS’s were generated. It then 

describes data on success rate and schedule quality. 

5.1 Simulation Experiments 

The sample medication schedule specifications (MSS) used in our simulation experiments is 

characterized by several parameters. They include number of medications, dose frequency, 

interference probability and interference severity. For each simulation run, we generated 1,000 

MSS samples. Sample data collected during all runs indicated that this number is large enough to 

yield 95 percent confidence. 

Number of Medications While experimenting with the number n of medications listed in MSS, 

we found that specifications (i.e., MSS) with fewer than 3 medications are almost always feasible. 

In contrast, the specifications with more than 20 medications are almost always not feasible. For 

this reason, we narrow the range of this parameter to [3, 20].  

In all experiments, we started with n = 3. We then increased the value of this parameter by one 

per step until n =20.  

Dose Frequency In subsequent discussion, we divide medications into three categories 

depending on how frequent they are taken. The categories are frequent, typical, and infrequent. A 

medication is in the frequent category if it is taken more than four times a day. A medication in the

typical category is taken one to four times a day. As its name implies, a medication in the 

infrequent category is taken at most once per day and may even be as infrequently as once a month.  

For the same reason, we generated separation constraint parameters of medications in MSS 

samples from different probability distributions for different categories of medication. Nominal 

and absolute separations and values delimiting their ranges are related as described below. The 
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even distributions from which sample values were selected are listed in Table 1. The times 

delimiting the ranges are in minutes. 

Table 1 Distributions of separation parameters 

Frequent Typical Infrequent

smin

NSRW
DNAMIS
DNAMAS

[1, 360] [360, 1440] [1440, 43200]
[1, 120]

[1, 120]

[1, 120]

[120, 480]

[1, 120]

[120, 480]

[480, 14400]

[480, 14400]
[480, 14400]

The minimum nominal separation smin for each sample medication was selected 

independently from the specified distribution. 

The maximum nominal separation smax for the sample medication equals to smin + NSRW. 

The parameter NSRW (nominal separation range width) was selected from the distribution 

listed in the table. 

The minimum absolute separation Smin is equal to max (smin – DNAMIS, 0). DNAMIS 

(difference between nominal and absolute minimum separations) was selected independently 

from the specified distributions. 

The maximum absolute separation Smax is equal to smax + DNAMAS where DNAMAS 

(difference between absolute and nominal maximum separations) was selected 

independently from the specified even distribution.  

Interference Probability Each sample medication in a MSS interferes with other medications 

with interference probability . That interference probabilities of all medications are identical is a 

reasonably accurate model of medication interactions.  

In the experiments described below, we begin with  = 0.1 (i.e., medications rarely interfere). 

We then increase this parameter by 0.2 per step until  = 1 (i.e., medications always interfere). 

Interference Severity For a medication M that interferes with another medication N, we 

capture how severe the effect of interference by interference severity (M, N). Given the minimum 

inter-medication separations min(M, N) and min(N, M) of the medications, (M, N) is the ratio 

(M, N) = [ min(M, N) + min(N, M)] / max (Smax(M), Smax(N)) 

It is easy to see that the larger this ratio, the more constrained the schedule. Indeed, the 

scheduler cannot maintain separations between doses of M and N without violating the maximum 
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absolute separation of one or both medications when this ratio is larger than 1. So, we initialized 

this parameter for each pair of interfering medications M and N at 0.1, and then increased it by 0.2 

per step until the ratio becomes 1.  

Dose Size and Rate Constraint Parameters To increase the chance that individual sample 

medications are consistent and feasible, we first generated sample values of their rate constraint 

parameters. We then used the DST algorithm described in Figure 2 to find a feasible dose size of 

the medication and use the dose throughout the schedule. This is consistent with the major steps of 

scheduling described earlier in Section 3.1.  

Specifically, we first selected for each sample medication the total intake parameters B and L
independently from the even distribution [1, 100]. Rate intervals R and P were independently 

selected from the even distribution [Smax, 86400]. The samples failing the consistency test of DST 

or failing to yield a feasible dose size were thrown away. 

5.2 Data on Success Rate 

Data collection on success rates in a series of experiments are shown in Figures 7-11. They 

show how the rates depend on medication types, number of medications and priority scheme and 

interference probability and severity. 

Dependency on Medication Type In order to keep the number of parameter combinations from 

being overwhelming large, one of the first experiments we did was aimed at determining how easy 

or difficult different categories of medications are to schedule. For this experiment, sample 

medications selected for each simulation run are of the same category. Figure 7 summarizes the 

data collected from the simulation run where the priority scheme used by algorithms is MVF and 

the number of medications is 5. From the data, we can see that dose frequency has noticeable 

effect on success rate. The success rates of all OMAT and ODAT algorithms are higher for sample 

medications with lower dose frequency. Since lower dose frequency means larger separations 

between doses, this behavior is an expected one. 

Dependency on Number of Medications and Priority Scheme To determine how success rate 

depends on number of medications, we generated MSS with medications of mixed category. 

Specifically, we selected the nominal minimum separation smin for each sample medication from 

the even distribution [1, 14400]. We then categorized the sample and selected the other constraint 

parameters of the sample in relationship to smin according to Table 1.  and  were selected 
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independently from even distribution over the range [0.1, 1]. 
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Figure 7 Success rates of different medication categories 

We compare the success rates achieved by our algorithms when the scheduler works with 

strictly smaller nominal separation ranges of all medications with the success rates achieved 

when the scheduler works with longer absolute separation ranges. Data on success rates for the 

two cases are shown in Figure 8 and Figure 9, respectively. We can see from the data that by 

taking advantage of the more relaxed timing constraints, the scheduler can successfully find 

schedules in many cases where it would fail if it were restricted by the more stringent constraints. 

Unfortunately, as we will see later in this section, the gain in success rate is obtained at the 

expense of user friendliness. The schedules that meet the absolute separation constraints but not 

nominal separation constraints are less tolerant to user tardiness.  

Specially, the number n of medications in a MSS in parts of Figure 8 and Figure 9  equal to 3, 

5, 10, and 15. These figures show that as number n of medications increases, success rates 

decrease for all algorithms. This is especially true for basic OMAT algorithms. When number n of 

medications is more than 10, success rates of finding schedules meeting nominal separation 

constraints are almost 0, except for advanced OMAT algorithms. Success rates are more than 

60% if we accept schedules that may violate nominal separation constraints but meet all the 

absolute separation constraints. Both Figure 8 and Figure 9 show that advanced OMAT 

algorithms have higher success rates than the corresponding algorithms in the other two families. 
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Figure 8 shows clearly that SSDF priority scheme has the highest success rates compared 

with other priority schemes for all algorithm families. In this case, available start times for jobs 

of medications are decided by their nominal separations. The smaller the difference between 

nominal separations, the harder it is to find available start times for jobs of the medication. It 

makes sense to give medications with smaller separation differences higher priorities. The data 

indeed validate the common sense strategy. Figure 9 does not show SSDF scheme the clear 

winner. Rather, the figure points out that the MVF priority scheme consistently performs well, 

especially when the number of medications in a MSS sample is large. It is harder to find available 

start times for jobs (i.e., doses) of medications whose resources are occupied by longer jobs of 

their interferers. Compared with other priority schemes, MVF priority scheme keeps the fraction 

of time when their resources are occupied small.  

Compared with OMAT algorithm families, the differences in success rates of ODAT 

algorithms using different priority schemes are relatively small. The reason is that doses of 

different medications are seldom ready to be scheduled at the same time. Hence, the order in which 

doses are scheduled according to an ODAT algorithm is often determined by their release time. 
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Figure 8 Success rates of schedules meeting nominal separation constraints 
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Figure 9 Success rates of schedules meeting absolute separation constraints 

Dependency on Interference Probability and Severity To determine how success rate depends 

on interference probability and severity, we used the same MSS samples as the ones used for 

Figure 8 and Figure 9 but gave  and  different values. Specifically, the values of these 

parameters were initialized at 0.1, and then increased independently by 0.2 per step until the values 

become 1. In this and subsequent experiments, we allows the scheduler to use the more relax 

constraints imposed by absolute separations, except where it is stated otherwise. The advanced 

OMAT algorithm with MVF priority scheme was used here because of it achieved the highest 

success rate amongst all priority schemes considered here.  

Figure 10 shows that when the values of  or  are 0.1, success rates for different numbers of 

medications in a MSS are almost 90%. In this case, medications rarely interfere with each other. 

When the values of  and  are both 0.3, success rates are still more than 75%. Even when  and 

are 0.3, resources of individual medications are free most of the time, allowing their own jobs to 

start most of the time.  
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However, as part (f) of Figure 10 shows that when the values of  or  are larger than 0.5, the 

success rate is almost zero for all cases except when n is small. For example, we can see from 

parts (c), (d) and (e) that when the values of  and  are both 0.5, success rate is only 50% when n
= 7. The success rate decreases to almost 0 when n becomes 10 or larger. This is because as 

increases resources of individual medications are more and more likely to be allocated and are 

allocated for longer and longer time as  increases. The effects of these increases becomes more 

serious when n is larger. Part (b) of Figure 10 supports this explanation: It shows that as long as 

one of  and  is less than 0.5 and the other is less than 0.7, the success rate with n = 5 can more 

than 50%. When n = 3, the success rate is still more than 40%, even when  and  are both 0.9. 

5.3 Data on Schedule Quality 

As stated in Section 3.3, we measure the quality of schedules by four criteria: normalized 

allowed tardiness (NAT), variations of supply rates and demand rates, deviations of supply rates 

and demand rates. Results are shown in Figures 11-22. 

Figures 11-14 show the percentage of doses with different ranges of NAT categories achieved 

by scheduling algorithms. The MSS samples used in this experiment are generated with same 

way as the ones used to produce the data shown in Figures 8 and 9. We can see that the 

percentages of doses to which the advanced OMAT algorithms are friendly and very friendly are 

consistently larger than the percentages of doses with NAT in these ranges achieved by 

algorithms in other families. In short, advanced OMAT algorithms are more user friendly, 

largely because they schedules doses later. On the other hand, priority schemes do not affect the 

performance in this respect. Moreover, whether the scheduler works with smaller nominal 

separation ranges or larger absolute separation ranges makes no noticeable difference. Finally, 

the percentage of doses with NAT equal to zero increases with n as expected. 

Figure 15 and Figure 16 show the mean supply rate deviations achieved by the scheduling 

algorithms for number n of medications in a MSS equal to 3, 5, 10 and 15, respectively. We can 

see that ODAT algorithms have the highest supply rate deviation. Analysis of sample schedules 

show that ODAT algorithms schedule doses at a higher frequency than algorithms in OMAT 

families. Consequently, the total intake for each medication scheduled by ODAT algorithms is 

larger. Advanced OMAT algorithms have the lowest supply rate deviations. Because these 

algorithms schedule medications as late as possible, the total intake of each medication 
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scheduled by advanced OMAT algorithms are less than the other two algorithms. Figure 17 and 

Figure 18 show the mean demand rate deviations achieved by the scheduling algorithms for 

number n of medications in a MSS equal to 3, 5, 10 and 15, respectively. For the same reasons 

stated above, ODAT algorithms have the lowest demand rate deviations and advanced OMAT 

algorithms have the highest demand rate deviations among the algorithms. 

Figure 19 and Figure 20 show the mean supply rate variations achieved by scheduling 

algorithms, and Figure 21 and Figure 22 show the mean demand rate variations achieved by 

scheduling algorithms, for number n of medications in a MSS equal to 3, 5, 10 and 15. Compared 

with other algorithms, advanced OMAT algorithms have the lowest values in both supply rate 

variation and demand rate variation. This is because the schedules achieved by advanced OMAT 

algorithms are close to be periodic. Basic OMAT algorithms have the higher variations in both 

supply rate and demand rate because the resources and processors are likely occupied and it is 

harder to make the schedule periodic. Therefore, the total intakes of a medication in different 

time slots vary more widely. 
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Figure 11 NAT of schedules meeting nominal separation constraints when n = 3 
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Figure 12 NAT of schedules meeting absolute separation constraints when n = 3 
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0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT
0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
Basic OMAT ODAT Advanced OMAT

Algorithms

M
ea

n 
S

up
pl

y 
R

at
e 

D
ev

ia
tio

n

M
ea

n 
S

up
pl

y 
R

at
e 

D
ev

ia
tio

n

(a) n = 3 (b)  n = 5

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT
0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
Basic OMAT ODAT Advanced OMAT

Algorithms
(c) n = 10 (d)  n = 15

Priority schemes MIF MVF RM SSDF EDF

M
ea

n 
S

up
pl

y 
R

at
e 

D
ev

ia
tio

n

M
ea

n 
S

up
pl

y 
R

at
e 

D
ev

ia
tio

n

Figure 15 Supply rate deviations of schedules meeting nominal separation constraints 
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Figure 22 Demand rate variations of schedules meeting absolute separation constraints 

6 Summary 

This paper focuses on OMAT and ODAT families of scheduling algorithms for multiple 

interacting medications. OMAT algorithms generate a full schedule for each of the user’s 

medication in turn while ODAT algorithms schedule one dose at a time without prior knowledge, 

or with limited knowledge, about future doses. A variety of priority assignments are applied on 

them and refinements are applied as well. Through several simulation experiments, we evaluated 

the algorithms from two perspectives: success rate and schedule quality. Schedule quality is 

measured in terms of two criteria, adherence to medication directions and user friendless.  

Data obtained from simulation show that performance of the algorithms depends on values of  

four parameters of MSS: number of medications, dose frequency, interference frequency and 

interference severity. Specifically, the data show that the advanced OMAT with SSDF priority 

algorithm has the highest success rate among all evaluated algorithms when the scheduler works 

with the nominal separation ranges of all medications. However, when the number n of 

medications increases to more than 10, none of the algorithms can achieve an acceptable success 
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rate without allowing the scheduler to use the more relaxed absolute separation ranges. When 

number n of medications is more than 5, the advance OMAT algorithm with MVF priority 

scheme has the highest success rate among all evaluated algorithms when the scheduler works 

with absolute separation ranges. One reason is that MVF priority scheme keeps the fraction of 

time when resources of interfering medications are occupied small. Another reason is that the 

advanced OMAT algorithm keeps separations between doses large, i.e., keeping the number of 

doses scheduled small.  

In our future works, we will experiment with advanced ODAT algorithm which schedule 

medications one dose at a time as late as possible. Besides, we take additional constraints into 

account, including the maximum separations between doses of interfering medications which is 

also often defined by medication directions. Thus far, we have ignored user preferences. The 

user may prefer to take medication as infrequently as possible, or take few medications as any 

dose time, or avoid taking medication in specified time intervals and so on. A smart dispenser 

typically allows the user to provide these additional scheduling constraints and try to meet them 

in best effort bases. 

Finally, the medication scheduling problem can be expanded to schedule medications of 

multiple users. Nurses can be offered the efficient route to deliver medications in hospital or 

nursing home.  
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