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Abstract 

This paper presents the architecture and implementation of an automatic medication 

dispenser specifically for users who take medications without close professional supervision. 

By relieving the users from the error-prone tasks of interpreting medication directions and 

administrating medications accordingly, the device can improve rigor in compliance and 

prevent serious medication errors. By taking advantage of scheduling flexibility provided by 

medication directions, the device makes the user’s medication schedule easy to adhere and 

tolerant to tardiness whenever possible. This work is done collaborative by the medication 

scheduler and dispenser controller in an action-oriented manner. An advantage of the 

action-oriented interface between the components is extensibility, as new functions can be 

added and existing ones removed with little or no need to modify the dispenser control 

structure. The paper first describes the action-oriented design, major components and 

hardware and software structures of the smart device. It then provides an overview of the 

heuristic algorithms used by the medication scheduler and their relative merits. 
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1 Introduction 

Thanks to years of advances in medical and pharmaceutical technologies, more and more drugs 

can cure or control previously fatal diseases and help people live actively for decades longer. The 

benefits of the drugs would be even more wondrous were it not for the high rate of preventable 

medication errors [1-5]. Medication errors are known to occur throughout the medication use 

process of ordering, transcription, dispensing, and administration. They lead to many hundred 

thousands of serious adverse drug events, thousands of deaths and billions of dollars in hospital 

cost each year in US alone. These alarming statistics have motivated numerous efforts in 

research, development and deployment of information technology systems and tools for 

prevention of medication errors (e.g., [6-25]). We now witness increasingly wider use of 

computerized physician order entry (CPOE) systems [6-11] in hospitals and clinics for 

prevention of prescription errors, which account for more than 50% of all errors. Data available 

to date show that together with clinical decision support [6] and electronic patient health and 

medication records (ePHR and eMAR) [7], CPOE systems can help prevent up to 80% of 

prescription errors, i.e., 40% of all errors. 

Next to prescription errors, administration errors (i.e., errors due to failures to compliant to 

medication directions) are the most prevalent: They contribute 25 – 40% of all preventable errors 

and are the cause of 25% of admissions to nursing homes [5]. The smart medication dispenser 

described in this paper is designed to prevent this type of errors. It is primarily for the growing 

population of users who are elderly or have chronicle conditions but are well enough to live 

independently. Such a user may be on many prescribed and over the counter (OTC) medications 

for months and years without close professional supervision.   

Specifically, our smart dispenser is designed to eliminate two most common causes of 

administration error: misunderstanding of medication directions and inconvenience of rigid 

medication schedules. Being almost fully automatic, the dispenser schedules individual doses of 
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the user’s medications under its care based a machine readable medication schedule specification 

(MSS) extracted from the user’s prescriptions and directions. (We will discuss in Sections 2 and 3 

the content and generation of the specification.) It then reminds the user at the times when some 

doses should be taken, monitors user’s response to reminders, adjusts the medication schedule as 

needed when the user is tardy, and when non-compliant becomes unavoidable, sends notification 

in ways specified by the user. In this way, the dispenser helps its user follow directions and stay 

compliant without having to understand the directions. This work is done collaboratively by the 

dispenser controller and medication scheduler in an action-oriented manner. An advantage of this 

design is generality and extensibility: As it will become evident in later sections that actions and 

action handlers can be added or removed to configure the device or to build a different device 

with little or no need for modification of the control structure of the dispenser controller.  

By taking advantage of scheduling flexibility provided by directions of most modern 

medications, the dispenser makes the user’s medication schedule as easy to adhere and tolerate to 

user’s tardiness as possible. It uses two families of heuristic scheduling algorithms for this 

purpose [26, 27]. One-Medication-at-a-Time (OMAT) algorithms produce a full schedule for 

each of the medications listed in the MSS in turn, while One-Dose-at-a-Time (ODAT) algorithms 

schedule the individual doses of the medications one at a time. Performance data obtained via 

simulation show that OMAT algorithms are more likely to succeed in finding schedules that meet 

the constraints defined by the MSS. The dispenser scheduler uses one of these algorithms to 

generate a complete schedule initially. Being on-line, ODAT algorithms offer good alternatives 

when the schedule needs to be adjusted to compensate for user’s tardiness. 

The remainder of the paper is organized as follows: Section 2 presents an overview of tools 

that provide support for smart dispensers and compare our dispenser with other medication usage 

assistance devices. Section 3 presents key assumptions that must be valid for our dispenser to 

work, illustrates its operations by a user scenario and describes the timing and dosage constraints 



 5

parameters defined by MSS. Section 4 presents the architecture and hardware and software 

components of the dispenser. The prototype software of the dispenser has an action-oriented 

structure. Section 5 describes the structure in general, together with the interface and 

communication flow for action-oriented collaboration. Section 6 describes the software control 

structure of the dispenser controller designed to support its action-oriented collaboration with the 

medication scheduler and illustrates their collaboration with an example. Sections 7 provides an 

overview of the OMAT and ODAT algorithms and their relative performance. Section 8 

summarizes the paper and discusses future work.  

2 Related Works  

Figure 1 shows an integrated chain of information systems and tools that complements each 

other to prevent medication errors throughout the medication use process (e.g., [12-14]). CPOE 

systems [6-11] are at the start of the chain. Like other medication administration assistance tools, 

our smart dispenser sits at the end-user end of the chain. Transcription and dispensing stage tools, 

as exemplified by the prescription authoring tool shown in the figure, link dispensers and 

integrate them into the chain.  

ETL (Extract, Transform and Load)

Verifier 

Standard Prescriptions

Drug 
Library

Clinical 
Decision 
Support

Medication Schedule Specification (MSS)

CPOE1 CPOE 2 CPOE n

Prescription 1 Prescription 1 Prescription i 

Compiler 

Prescription Authoring Tool

User’s
eMAR

ePHR

 
Figure 1 Tools for prevention of medication errors 

A typical user is likely to be cared by multiple physicians and given prescriptions ordered via 
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independent CPOE systems. While each of the user’s prescriptions is error free, it may fail to 

account for interactions between medications ordered by different prescriptions. A major 

function of the prescription authoring tool described in [17] is to help user’s pharmacist detect 

and eliminate this kind of error. Another important function of the tool is the generation of 

medication schedule specifications that guide the operations of the dispensers. The tool first 

merges all of user’s prescriptions and OTC medication directions and then translates the merged 

directions thus generated into a MSS, written in XML language, for the user’s dispenser. The 

tool also makes sure that all the constraints defined by MSS for each medication are feasible, i.e., 

there is at least a schedule meeting the constraints if the medication were to be scheduled alone. 

The demand-versus-supply test (DST) described in [18] is for this purpose. 

There are a large variety of medication administration assistance devices for non-professional 

users. Unlike our dispenser, most stand-alone devices (e.g., [19-22]) available today are manual: 

A disadvantage of a manual device is that the user must load the individual doses of medication 

into the device, understand their directions and program the device to send reminders accordingly. 

This manual process frequently introduces errors. 

Like schedules used by our dispenser, medication schedules used by automatic devices and 

scheduling tools such as MEDICATE Tele-assistance System [23, 24] and Magic Medicine 

Cabinet [25] can be adjusted to compensate for user tardiness and condition changes. The 

adjustments are by care providers who monitor and supervise the user via Internet, however. 

Those devices are better suited for users who need close professional supervision and fully 

integrated health care services. In contrast, our dispenser is a stand-alone tool, capable of making 

schedule adjustments permitted by existing prescriptions. It is for individuals who are well and 

hence do not want to incur the cost of continuous monitoring and care and consequent loss of 

privacy and independence.   
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3 Background and Assumptions 

For any automatic medication dispenser serving a single user at home and work to be effective in 

prevention of medication errors, the following restrictive assumptions must be valid: 

(1) The tool manages all prescribed and OTC medications of the user. 

(2) The medication schedule specification (MSS) used to guide the operations of the 

dispenser is generated based on a complete and current medication record of the user.  

These are our assumptions. Although the dispenser does not handle food, it must schedule meals 

and snacks along with medications when food interferes with some of the user’s medications.  

3.1 A Use Scenario 

A possible scenario for the above mentioned assumptions to be valid is that the user acquires all 

of his/her medication supplies from a single pharmacy, and the pharmacist serving the user has 

access to all of user’s medication-related information (e.g., current prescriptions and allergies). 

When the user comes to fill a new prescription or purchase some OTC drugs and health 

supplements, the pharmacist uses a prescription authoring tool [17] or a similar tool to process 

the user’s new and existing prescriptions and generate a MSS for the user’s dispenser. The 

pharmacist provides the MSS to the user, along with new supplies of medications in containers. 

Each container holds the medication identified by the RFID tag attached to the container.  

   Figure 2 shows the dispenser parts that interact with the user. The MSS is stored in a flash 

disk. The dispenser has on its base a number of sockets, an indicator light around each socket, a 

reminder (i.e., an audio alarm, or a flashing light, or a phone, etc.), a text display, a LED display, 

a Push-To-Dispense (PTD) button, verification boxes, a dispensing drawer and a USB port. The 

RFID reader for reading tags on containers sits inside the base. Containers holding medications 

taken by the user are plugged in sockets. There is a switch inside the base for each socket. The 

switch is closed when a container is plugged in the socket; otherwise it is open.  

1) Set up In order to put new supplies under the care of the dispenser, the user plugs the MSS 
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disk into a USB port of the dispenser and all the new containers into empty sockets in any order. 

The dispenser picks up from the MSS disk the updated medication list and constraints for 

scheduling the new medications along with existing ones. Whenever the dispenser controller 

senses that the state of the switch for a socket (say socket number k) changes from open to close, 

it commands the RFID reader to read the tags on all containers in sockets. Upon discovering a 

new id (say M), it creates and starts to maintain the id-location mapping (M, k) for the new 

medication and locks the container in socket.  

Reminder

Containers

MSS MSS flash disk

PTD Dispensing 
drawer

Verification 
box

Socket
LED display

Text display

Indicator 
light

Dispenser base

RFID tag

 

Figure 2 Parts of a smart dispenser 

   The controller can correctly locate the container for every medication under its care only if it 

disallows multiple containers being plugged in at the same time. In the rare event when it senses 

that the user has plugged in more than one container, the dispenser prompts the user to remove 

the containers involved and plug them back again one at a time. 

  2) Normal Operations Set up completes and normal operations commence when the dispenser 

base holds a container and has the id-location mapping for every medication listed in the MSS. 

The dispenser first computes a medication schedule, which specifies the time instants and dose 

sizes of medications to be taken. We will refer to these time instants as dose times hereafter. 

Shortly before each dose time, the dispenser uses the reminder to tell the user to come to take 

medication(s). In response, the user reports to the dispenser by pushing the PTD button.   
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   Because the time the user takes to respond to a reminder may vary widely, the dispenser 

updates the dose size of each medication due to be taken whenever the PTD button is pushed. 

For each medication due to be taken, the dispenser lights up the indicator light around the socket 

holding the container for the medication and unlocks the socket to allow the removal of the 

container. When the user picks up the container, the LED display shows the dose size to be taken 

at the time. After the user retrieves the indicated dose from the container and puts the container 

back to the socket, the dispenser locks the container in place again. The dispenser and the user 

repeat this collaborative process if there is more medication(s) scheduled to be taken at the time.   

   A dispenser with the verification capability is equipped with a camera to capture the image of 

objects placed in verification boxes. The user needs to put each retrieved dose in a verification 

box. Once there, the dispenser checks visually whether the retrieved dose size is correct. It uses 

the text display to instruct the user when correction is necessary, and when there is no error, 

locks the returned container in place and drops the medication into the dispensing drawer.     

3.2 Medication Schedule Specification 

As we will see in later sections, user’s medication schedule is computed and adjusted by the 

medication scheduler based on the firm and hard timing and dose size constraints given by the 

MSS of the user. Whenever possible, the normal medication schedule is such that all firm 

constraints are met if every dose is indeed retrieved by the user as scheduled. Deviations from 

normal schedule may occur, mostly due to user’s tardiness, and some may lead to violations of 

hard constraints. The dispenser treats each violation of a hard constraint as a non-compliance 

event and is required to take some specified action(s) (e.g., contact a care taker). Specifications 

on the actions required to handle each type of non-compliance events are included in the MSS. 

This aspect is out of the scope here. A smart dispenser may accept user input on preferred times 

and frequencies for taking medications and treats user preferences as soft constraints to be met 

on a best effort basis. Due to space limitation, we do not consider soft constraints here.  
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 Details on the XML-language medication schedule specification [12, 26, 27] are 

unimportant. It suffices to note that the MSS contains a section for each medication. Table 1 

summarizes the key elements in the section for a medication. We note that the section has three 

parts. The first part gives information the dispenser needs to administrate the medication, 

including the name or id (say it is M) of the medication and the duration for the user is to be on 

the medication. The medication comes in granules of size g (granularity); dose size parameters of 

the medication are given in terms of integer multiples of g. The part also provides other relevant 

attributes such as a picture image of the medication for verification purpose. The dispenser uses 

the same time resolution for all medications. All separation parameters expressed are in terms of 

multiples of dispenser time resolution. We use one hour hereafter unless stated otherwise. 

Table 1 Section of MSS for medication M 

M:                 Name of the medication 
g:                  Granularity
[Tmin, Tmax ]: Minimum and maximum durations
Other relevant attributes 
Dosage Parameters (DP)

1. [dmin, dmax ]: Nominal minimum and maximum dose sizes
2. [smin, smax ]: Nominal minimum and maximum separations
3. (B, R):         Maximum intake over a specified time interval given

by budget B and replenishment delay R
4. (L, P):          Minimum intake over a specified time interval given 

by lower bound L and interval length P
5. [Dmin, Dmax ]: Absolute minimum and maximum dose sizes 
6. [Smin, Smax ]: Absolute minimum and maximum separations 
7. Non-compliance event types and corresponding actions.

Special Instructions (SI)
1. N:  Name of an interferer

a. Change list
b. σmin(M, N):  Minimum separation from M to N
c. σmin(N, M):  Minimum separation from N to M

2. L:   Name of another interferer

…  

1) Dosage Parameters (DP) The dosage parameters part specifies constraints on dose size 

and separation (i.e., the length of time interval between any two consecutive doses) for 

scheduling the medication when the medication is taken alone. Specifically, lines labeled 1 and 2 

give nominal dose size range [dmin, dmax] and nominal separation range [smin, smax]. Take the 

direction of Advil for example: Part of it reads “Take 1 gel caplet every 4 to 6 hours. If pain or 

fever does not respond to 1 caplet, 2 caplets may be used.” So, its nominal dose size and 
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separation ranges are [1, 2] and [4, 6], respectively.  

The line labeled 3 specifies the supply rate (B, R): It says that the intake (i.e., the total size 

of all doses) within any time interval of length R must be no more than B. For example, the 

supply rate of Advil is (6, 24) because its direction also says “Do not exceed 6 gel caplets in 24 

hours.” The line labeled 4 specifies the demand rate (L, P) of M: The intake within any interval 

of length P must be at least equal to L. Many medications (e.g., antibiotic and insulin) have 

demand rate constraint to ensure that at least the minimum required amount is at work.  

   The DP part may also include absolute dose size range [Dmin, Dmax] and absolute separation 

range [Smin, Smax]. These constraints are hard. By making the ranges wider than the corresponding 

nominal ranges, the direction allows some flexibility in scheduling.  

   2) Special Instructions (SI) We refer to a medication (or food) that interacts with M to the 

extent as to require some changes in how M is to be administered as an interferer of M. The SI 

part of M has an entry for each of its interferers. The change list in the entry for an interferer (say 

N) specifies changes in one or more dosage parameters of M: The constraints specified by 

parameters given by the change list must be met as long as the user is on both M and N.  

  The entry of an interferer N may also define additional separation constraints, each of which 

specifies a required time separations between each dose of M and any dose of the interferer N. 

Table 1 lists only the minimum separation σmin (M, N) from the medication to interferer for each 

dose M scheduled before any dose of N and the minimum separationσmin (N, M) from the 

interferer to the medication for each dose of N scheduled before some dose of M. Take Fosamax 

as an example. This medication for prevention and treatment of brittle bone decease must be 

taken on empty stomach, and the user should not take anything within 30 minutes after taking the 

medication. Hence the minimum separation parameters to and from any interferer of Fosamax 

are half an hour and 6 hours, respectively. As we will see in Section 7, the required separations 

between doses of interferers make scheduling more difficult.  
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Table 1 leaves off additional constraints due to medication interaction, including precedence 

constraints that restrict the order in which doses of some interacting medications are taken, and 

maximum separation constraints that ensure interferers are taken sufficiently close together. 

These constraints are discussed and illustrated in [28].  

4 Dispenser Architecture 

Figure 3 shows the architecture of the smart dispenser. The dotted box at the bottom encircles its 

hardware components. We have already mentioned them in passing earlier where we described 

set up and normal operations. We will return shortly to provide further details on them. 

PTD
Button

Reminder

RFID Reader
Verification

Device

Display
Units

Binary
Sensor array

MSS
Socket

Microcontroller

User Preferences
MSS

Medication Record

Dispenser
Controller

Compliance
Monitor

Medication
Scheduler

Container

RFID Tag

Container

RFID Tag

Device Drivers

Network
Interface

 

Figure 3 Dispenser Architecture 

4.1 Major Software Components 

The dotted box on the top encircles software components, including the dispenser controller (or 

controller for short) and the medication scheduler (or scheduler). The controller extracts from the 

MSS file the information needed for scheduling, dispensing and compliance monitoring and puts 

the information in a structure convenient for internal use. The scheduler is the only component in 

the dispenser with full knowledge and use of the information in the MSS. In addition to 

computing an initial medication schedule immediately after set up, the component is also 
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responsible for adjusting the schedule when the user is tardy to prevent non-compliance and for 

determining the actions to carry out when a non-compliant event occurs.  

The dispenser controller is also an important component. While the medication scheduler has 

full knowledge of what medication administration related actions should be done at what instants 

of time, it has no knowledge of time. In contrast, the controller is responsible for keeping track of 

time, informing the scheduler the arrivals of time instants for such actions, and overseeing the 

execution of actions requested by the scheduler. We will elaborate in subsequent sections this 

division of labor during action-oriented collaborations between the scheduler and the controller. 

The controller is also responsible for monitoring conditions of all components and handling 

corresponding events indicating the occurrences of the conditions (e.g., insufficient medication 

supply) that warrant actions. In this way, it controls the state of the dispenser.  

The top dotted box also shows compliance monitor, network interface, user preferences, and 

medication (administration) record. Due to space limitation, we will not elaborate further about 

them. For sake of discussion here, it suffices to note that the compliance monitor is responsible 

for generating and sending notifications in specified manners when invoked by the controller to 

do so. The basic version of the dispenser implemented to date relies on a local alarm and a 

dial-up connection for this purpose. An enhanced dispenser can be configured to use Internet and 

to capture user preference and record user behavior in order to better serve the user.  

The current version of the prototype is implemented in C programming language and is 

available under GPL license at http://of.openfoundry.org/projects/dispenser. It is multi-threaded 

and event driven and runs as an application on a desk top PC running Microsoft Windows XP. It 

can be easily ported to an embedded platform like Windows CE and, in general, to any operating 

system that supports threads and allows threads to wait for events and timer expiration.  

4.2 Hardware Components and Driver Interface 

From hardware perspective, the dispenser requires a platform that supports USB and RS232 
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interfaces. The former is for the MSS flash disk, and the latter is for connecting other hardware 

components. The design of host to hardware device interconnection is based on two rationales. 

First, in a device like our smart dispenser, the data rate between the host and each hardware 

device is very low. For this reason, we make all hardware devices, except the MSS disk, share 

the same RS232 connection. Second, hardware devices in the dispenser do not support RS232 

interface. An agent that supports RS232 is needed to facilitate communication for all devices and 

manage their data transmissions to and from the host. The agent is the microcontroller unit as 

shown in Figure 3. The microcontroller forwards commands issued by the device driver of each 

hardware device to the device, and the device driver abstracts low-level instructions of the device 

into general driver functions.  

In general, drivers of hardware components provide the dispenser controller with two kinds 

of facilities: hardware control and event notification. The former consists of commands which 

the controller can call to request services from hardware components. The latter is the primary 

means of communication from hardware to controller. As an example, Part (a) of Figure 4 shows 

the logic diagram of a binary sensor array (BSA), which in the case of the dispenser, implements 

the array of switches illustrated by part (b) of the figure. The BSA driver provides a command to 

reset all switches and clear the array, as well as the bit map used to indicate the current states of 

all switches. It communicates with the dispenser controller via three event objects: OBJECT_IN, 

OBJECT_OUT and STATE_CHANGE. The driver sets the event OBJECT_IN (or OBJECT_OUT) 

when the switch in a socket changes state from 0 to 1 (or 1 to 0) indicating that a container is just 

plugged in (or removed from) the socket. In response the controller calls the handler 

GetPluggedInSocket() (or GetPluggedOutSocket()) to get the index (i.e., location) and current 

state of the socket. The driver sets STATE_CHANGE event when more than one switch change 

state. The controller can determine the switches involves and their current states by invoking the 

function GetSensorStates (char* Buffer) to get the bit map.  
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Similarly, the controller can command the RFID reader to read tags on the containers by 

calling Event ReadTags (char* Buffer, &Status, Timeout). When invoked, the function returns a 

completion event immediately while the device driver commands the RFID reader to read in 

non-addressed mode. When read completes, the driver sets the completion event. The controller 

usually goes to wait for the completion event soon after it issues a read-tag command. When it 

wakes up by the event, it can determine from the returned status whether the read operation 

succeeded and, if the operation succeeded, the ids of tags read and returned by the reader driver. 

Binary sensors

int

ackdata

Serialize Output IC

1 2 15

Microcontroller

Output FF FF FF

FF = D Flip-Flop

Bit map

 
(a) 

PTD

RFID Reader

Socket
Switch
(binary 
sensor)

 

 (b) 

Figure 4 Binary Sensor Array 

    The reminder used by the dispenser may be a sophisticated device or a simple one. The 

prototype uses an audio device capable of playing different tones or voice messages to indicate 

the urgency of the reminder. Its driver provides control functions ReminderOn (int urgency) and 

ReminderOff () for turning the device on and off, and when turned on, play different tones (or 

voice messages) depending on the urgency of the reminder. Finally, the driver of the PTD button 

provides no command function. It communicates with the controller via two event objects, one 

for pressing down the button and the other for releasing the button. 

5 Action-Oriented Collaboration 

As stated earlier, the controller and the scheduler collaborate in an action-oriented manner. By an 

action, we mean an atomic unit of work carried out by an action handler function (or simply, 
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action handler). Actions may be prioritized. Their action handlers are executed as work items by 

worker threads at the priorities of the actions. 

Figure 5 shows the operation cycle of a collaborative process based on the action-oriented 

model in general. Each of the collaborative entities plays one of two roles: decision maker or 

action executor. There may be more than one action executor. For obvious reasons, there should 

be either only one decision maker, or a group of entities jointly serves as one decision maker. In 

our smart dispenser prototype, the dispenser controller is the one and only action executor, the 

medication scheduler is the decision maker.  

NHST arrives or
Action completed

Decision maker 
(Medication 
Scheduler)

Request action(s)
Specify NHST 

Query next action(s)
Report action complete

Work dispatcher Workers carrying out actions

Action Executor (Dispenser Controller)  

Figure 5 Action-oriented collaboration 

5.1 Decision Maker Interface 

We adopt here the variant of the model where the executor plays a purely passive role. It is only 

time keeper in the system. While it is aware of the time, it relies completely on the decision 

maker to specify the time instants for it to query for actions, the actions it is to execute at those 

instants, and so on. We call the nearest future time instant at which the decision maker requests 

the executor to query for actions the next hand shake time (NHST). When given a NHST, the 

executor sets a timer to expire at that time, waits until then to query the decision maker for action. 

In response, the decision maker may request new action(s) to be executed, provides the executor 

with a new NHST, and thus enables the repetition of the operation cycle.  
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Table 2 lists the basic API functions provided by the interface of the component serving as 

the decision maker, which is referred to as the DM in the table to save space. The functions 

SetInformation ( ) and GetInformation ( ) allow the caller to deliver and get various types of 

information to and from the decision maker.  

Table 2 Decision-Maker API functions 

Void SetInformation (InformationType, InformationData): This 
function allows the executor to deliver information to the DM.

InformationType gives the type of data structure containing 
the information to be delivered.
InformationData supplies a pointer to the data structure 
holding the information to be delivered.

Void GetInformation (InformationType, InformationData): This 
function allows the caller to get information from the DM. 
Parameters are of the same types as those of SetInformation ( ) 
except that they are for data to be returned from the DM.
ActionDescription GetNextAction (SystemTime CurrentTime): 
This function allows the caller to query the DM for actions to be 
performed by the caller. 

CurrentTime provides the current system time.
The function returns a pointer to a structure of type 
ActionDescription {ActionList, NextHandShakeTime} 

ActionDescription ActionComplete (ActionType, ActionResult): 
This function allows the caller to notify the DM that the specified 
action is completed. 

ActionType specifies the type of completed action.
ActionResult provides a pointer to result of the completed 
action.

Void EventNotify (EventType, EventParameters) This function 
allows the caller to notify the DM of occurrences of an event of a
specified type.

EventType specifies the type of event.
EventParameters supplies a pointer to parameters that the 
DM needs to decide how to handle the event.  

The work horse is GetNextAction (CurrentTime). By calling this function, the executor 

queries the decision maker for the actions to carry out, while informing the decision maker of the 

current time. GetNextAction ( ) always returns a future time, called the next handshake time 

(NHST). It also returns an action description. The action description structure contains an action 

list. The value of the field is NULL when the decision maker requests no action; otherwise, it is 

the head of a list of ActionItem structures. Each action item structure specifies an action to be 

executed: Specifically, the fields of each ActionItem structure include the name of an action and a 

pointer to parameters to be passed to the action handler, and the priority of the action. The 

structure also contains a Report flag, which indicates whether the result produced by the action is 

to be returned to the decision maker, and a pointer to the location for the returned result. 
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The executor calls ActionComplete ( ) to report the completion of a specified action and to 

deliver the result produced by the action. The function also serves as a query for next actions as it 

also returns an action description and NHST.  

The executor is also the component in the system that monitors all events in the system that 

warrants attention. It can call the API function EventNotify() to inform the decision maker of 

occurrences of events that the decision maker needs to participate in handling. The executor calls 

GetNextAction() immediately after it calls EventNotify() so that actions the decision maker wants 

to be carried out in response to the event(s) are handled promptly.  

5.2 Communication Flow  

Figure 6 illustrates the protocol governing the communication between the executor and the 

decision maker. It also illustrates how the functions GetNextAction() and ActionComplete() are 

used to support their communication.  

Executor Decision Maker

Action List 1

NHST = t_1

GetNextAction()

t_1

ActionComplete()

Action List 2

NHST = t_2

t_2 GetNextAction()

Action List 3 

NHST = t_3

Set timer to expire 
at t_1 
Queue work items

Report action 
complete

Set timer to 
expire at t_2
Queue work 
item for new 
action 

 
Figure 6 Executor-decision-maker communication 

In the timing diagram, time flows downward. The exchange between the components starts 

from a call of GetNextAction( ) by the executor. When the function returns, the executor first sets 

the NHST timer to expire at the time (say t_1) given by the value of NHST returned by the 

function, along with an action list. When the action list is not NULL, the executor creates a work 
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item for each action in the list and queues the item for execution at the priority of the action. We 

will return in the next section to describe how this is done by the dispenser controller.  

   Suppose that one of the actions completes before t_1, and the action result is supposed to be 

returned to the decision maker. The executor calls ActionComplete() to report action complete 

and to deliver the result. The figure shows the case where the decision maker decides to request a 

new action and specifies a later NHST of t_2. The executor, therefore, resets the timer to expire 

at t_2, and creates and queues a work item for the new action.  

Now, suppose that all the pending actions remain incomplete when the timer expires at t_2. 

Since t_2 is the appointed time for the executor to query for action again, the executor does so as 

requested by the decision maker. The figure shows the case where the action list returned at the 

time is NULL. So, the executor queues no work item, but reset the NHST timer to t_3.  

6 Controller and Scheduler Collaboration 

Again, when applied the action-oriented model to our smart dispenser, the medication scheduler 

is the decision maker and dispenser controller is the sole executor. We have found that this 

division of labor simplifies the design and implementation of both components. In particular, 

having the controller to be the only time keeper makes ordering actions in time, as the dispenser 

often needs to do, straightforward. The design also relieves the medication scheduler from the 

need to monitor time and external events. It now only needs to provide the API functions listed in 

Table 2 and works when its API functions are called.    

6.1 Controller Software Structure 

Figure 7 shows the control structure of the prototype dispenser controller and its connection with 

the medication scheduler. The controller relies on an extensible library of action handler 

functions to carry out actions. By adding and exporting new handler functions to the library, a 

developer can make the dispenser capable of new actions or enhanced versions of existing 
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actions with little or no change to the control structure of the controller.     

Medication Scheduler

Medication timetable

MSSMedication Record

Dispenser Controller

Action handler
dynamic link library

Work item
dispatcher

Work queues

Monitor threads

Thread pool

Events or Results GetNextAction()
Actions

Next handshake time

 
Figure 7 Dispenser controller structure 

The majority of actions done during normal operation of the dispenser are for medication 

administration purpose. These actions are requested by the scheduler in manner illustrated by 

Figure 6. The dispenser controller also initiates actions in response to occurrence of events 

indicating conditions that warrant attention. Each action is assigned a priority by the component 

that requests the action. Whenever possible, executions of action handlers on the CPU are 

scheduled preemptively according to priorities of the actions. 

1) Work Queues and Worker Threads The structure of the controller is based on a variation of 

the well known leader/follower pattern [28]. During initialization, the controller (main) thread 

creates several FIFO work queues of different priorities and a pool of worker threads. Work 

items inserted into each queue are processed by worker threads at the priority of the queue.   

One of the responsibilities of the controller thread is to serve as the work item dispatcher. 

When the dispatcher gets one or more actions from the scheduler or initiates actions on its own, 

it looks up the action handler functions that carry out the actions and the priorities of the actions. 

It wraps the pointer to each function in an instance of WorkItem data structure, along with 
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pointers to a structure of function parameters and where result is to be returned. The WorkItem 

structure also includes the Report flag, which the dispatcher sets to the value provided by the 

Report field of the corresponding action item. The dispatcher then inserts the work item into one 

of the queues according to the priority of the corresponding action. Upon finishing its duty as a 

dispatcher, the controller thread returns to wait for the completion of the actions and other events 

that require its attention. 

At any time, each of the work queues is monitored by a work thread, called the monitor 

thread of the queue in Figure 7. When the thread finds work item(s) in the queue, it removes the 

one at the head of the queue. Because the execution of the work item may take some time, the 

monitor thread wakes up a worker thread in the pool to serve as the monitor thread of the queue 

and then call the action handler function pointed to by the work item. When the function returns, 

the thread notifies the controller thread that the work has been completed and returns to wait in 

the thread pool. If the Report flag is set, the controller thread returns the result produced by the 

action handler function to the medication scheduler. 

2) Event Notification The controller uses events to notify the medication scheduler of 

conditions that requires attention of the scheduler, as illustrated by Figure 7. Examples include 

that the PTD button is pressed. In response, the scheduler checks the existing medication 

schedule and makes adjustment in dose size(s) if needed.  

   Like controllers of typical smart devices, the dispenser controller is also responsible for 

monitoring all device conditions. In addition to general conditions (e.g., power on/off), 

dispenser-specific conditions monitored by sensors include the ones concerning medication 

supplies, MSS and BSA. The sensor threads within the controller set events when the supply in 

some container is running low, the MSS flash disk has been plugged in and MSS file read and 

some container has been plugged in or removed. The events used for this purpose are 

MedicationInsufficient, MSSChanged, and BSAStatusChanged, respectively. The occurrences of 
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the conditions signaled by these events may warrant that the user be alerted, the medication 

schedule be re-computed, and sometimes even a professional care taker to be alerted, and so on. 

The controller uses the scheduler API function EventNotify( ) to notify the medication scheduler 

whenever it cannot handle the event without the assistance of the scheduler. 

6.2 Illustrative Example  

To illustrate the collaboration between the controller and the scheduler in action-oriented manner, 

as well as how the dispenser works to prevent serious medication administration error, we 

consider a simple example in which the user takes 20 mg of vitamin once daily and 10 mg of 

insulin every 4 hours. Without loss of generality, suppose that the dispenser is set up prior to 8:00 

o’clock. According to the schedule computed by the medication scheduler immediately after set 

up operation completes, the user is to take the daily dose of vitamin at 8:00 and 10 mg doses of 

insulin at 9:00, 13:00, 17:00, and so on. Vitamin, being a supplement, can be skipped with little 

or no consequence. In contrast, doses of insulin cannot be skipped arbitrarily. Its direction says:  

1. When the user is tardy for more than 4 hours, the pending dose is cancelled, and a 

double-size dose of 20 mg is scheduled at the next dose time.  

2. Contact the user’s doctor if the user has not taken insulin for 10 hours or more.  

We note that the relaxation from a dose every 4 hour schedule allowed by the first rule permits 

the user to have 8 hours for uninterrupted sleep. The second rule defines a non-compliant event 

and intends to prevent serious omission error.   

   Figure 8 shows the interaction between the controller and the scheduler. Again, time flows 

downwards and is not drawn in scale. Part (a) of the figure illustrates the case when the user 

responds promptly to reminder and retrieves a scheduled dose on time. Part (b) illustrates what 

happens when the user is tardy to the extent that the dispenser has to handle a non-compliance 

event. The wiggly lines at the left edge of each part represent running worker threads: The fat 

and short one turns the reminder on or off; the long and thin one monitors user response and 
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helps the user retrieve a dose, and widely wiggly one handles the non-compliance event. The 

operation starts from the controller making a GetNextAction( ) call in part (a). In response, the 

scheduler requests no action, only asked to be queried again at 8:00 o’clock, the dose time for 

vitamin. The controller sets the NHST timer to expire at 8:00 and goes to wait:  

GetNextAction()9:00

Controller Scheduler

GetNextAction()

NHST = 8:00

8:00 GetNextAction()

Action list:
1.SetAlarm
(on, persistence = 0)

2.SetUserResponse(on)
3. * DoseAfterResponse

(vitamins = 20mg)

NHST = 9:00

8:10

Action list:
1.SetAlarm
(off, persistence = 0)

2.SetUserResponse(off)

NHST = 9:00

o
n

o
f
f

ActionComplete() Dose time = 8:10

 
(a)  

Controller Scheduler

GetNextAction()13:00

GetNextAction()

Action list:
1.SetAlarm
(on, persistence = 1)

2.SetUserResponse(on)
3. *DoseAfterResponse

(insulin = 10mg)

NHST = 17:00

17:00

Action list:
1. *CancelDose

NHST = 17:00
ActionComplete()

Action list:
1. *DoseAfterResponse

(insulin = 20mg)

NHST = 19:00

19:00 GetNextAction()

Action list:
1. *Call doctor

NHST = 8:00

o
n

 
(b)  

Figure 8 An illustrative example 

 At 8:00 when the NHST timer expires, the controller queries the scheduler for action, 

telling the scheduler that the current time is 8:00 o’clock. The NHST = 9:00 returned by the 

scheduler is the next dose time for insulin. The action list returned by the scheduler 

specifies three actions: The SetAlarm (on, 0) action turns on the reminder. Since vitamin 

may be skipped, the scheduler sets the persistence parameter to 0, telling the controller that 

the reminder can be turned off automatically after a brief interval of time. The second and 

third actions in the list starts the controller to monitor the PTD button and when the user 

responds by pushing the button, dispense 20 mg of vitamin as described in the Section 3.1. 
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To safe space in the figure, we put a “*” in front of an action name to indicate that the 

scheduler wants the result of the action return. After queuing work items for the actions, the 

controller sets the NHST timer to expire at 9:00 and returns to wait for the timer.  

 Suppose the user responds to the reminder and push the PTD button at 8:10, while the 

reminder is still on. The controller helps the user retrieves from the vitamin container a 20 

mg tablet and then calls ActionComplete( ) to return the actual dose time of 8:10. As this 

function is also a query for the next action, the scheduler returns two actions: They turn off 

the reminder and stop monitoring the PTD button. After these actions are dispatched, the 

controller goes to wait for the NHST timer to expire at 9:00. 

 Suppose that all went well prior to 13:00. In particular, the user promptly retrieved the 9:00 

dose of insulin. In response to the GetNextAction() call from the controller at 13:00, the 

scheduler requests that the reminder be turned on, this time persistently until the scheduler 

requests for it to be turned off. Then the controller is to start monitoring the PTD button 

and prepared to help the user retrieve a 10 mg dose of insulin when the user pushes the 

button. After it dispatched the work items for these actions, the controller sets the NHST 

timer to expire at 17:00 and goes to wait. 

 At 17:00, the user still has not responded. When the controller calls GetNextAction(), the 

scheduler can determine from the fact that the controller has not yet reported the 

completion of the DoseAfterResponse action it requested at 13:00, the dose scheduled at 

that time is still pending. Moreover 4 hours has elapsed. The schedule needs to be adjusted. 

Hence, the scheduler requests that the pending dose be cancelled, while it consults the 

medication schedule specification and adjusts the schedule. When the controller reports the 

completion of CancelDose, the scheduler requests that a 20 mg dose is to be given to the 

user when the user responds. There is no need for turning on the reminder because it is still 

on, and the controller is still monitoring the PTD button. The value of NHST returned by 
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the scheduler this time is 19:00. By then, 10 hours will have been elapsed since the user 

took the latest dose of insulin. If the user still has not come to push the PTD button by 

19:00, the scheduler will request that the controller calls the designated care taker to report 

the non-compliance event. The value of NHST is 8:00, the time for dose of vitamin for the 

next day. In the meantime the 20 mg dose of insulin is still pending.  

7 Heuristic Scheduling Algorithms  

This section provides an overview of the algorithms [27] for scheduling multiple medications. The 

algorithms work with fixed dose sizes. As stated earlier, that a valid dose size exists has already 

been assured when the user’s MSS was generated. By first choosing a valid dose size for each 

medication, the scheduler then focuses on finding times for individual doses to meet all 

intra-medication and inter-medication separation constraints. 

7.1 Underlying Model 

The design of the scheduler is based on the resource model [26, 27] that uses a virtual processor 

PM and a virtual resource RM for each medication M to keep track of when the user is available to 

take the medication. When computing a schedule, the scheduler treats each dose of each 

medication M as if it is a job on processor PM and the sequence of doses of the medication as a task 

M. A job starts when the corresponding dose should be retrieved by the user. A schedule for the 

medication is a list of the time instants at which jobs of task M start. Figure 9 shows the data 

structures used by the scheduler. Part 1 holds values of constraints parameters of each medication. 

In addition, the scheduler maintains integer arrays processor and resource for each medication 

M. The initial values of all elements of the arrays are 0, indicating that PM and RM are free. When 

it schedules a job of M on the virtual processor (or allocates the resource to the job) at time k 

since the start of the schedule, the scheduler sets the value of the k-th element of the 

corresponding array to 1, indicating that the processor (or the resource) is occupied.  
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 Part 1: Internal data structures for information on each medication
Class MedicationDirections{

int med_id;      DosageParameters dp;      SpecialInstructions si;
}
Class DosageParameters{

int t_min, t_max;
int ns_min, ns_max, as_min, as_max;       
int nd_min, nd_max, ad_min, ad_max;
int b, r, l, p;

}
Class SpecialInstructions{

List<Interferer> drug_and_food_interaction;
List<DosageParameters> change_lists;

}
Class Interferer{

int med_id;    int min_to_interferer;    int min_fr_interferer;
}

Part 2: Resource model data structures for each medication
Class ResourceModel{

int[] resource = new int[t_min];   int[] processor = new int[t_min];
bool feasible = TRUE;   List<int> schedule = NULL;
int priority = 0;

}
Class JobModel{

int release_time = 0;   int execution_time = ns_min;   
int deadline = release_time + execution_time;

}

Part 3: Data structure of priority schemes

enum PrioritySchemes{ RM, MVF, MIF, SSDF, EDF};
 

Figure 9 Data structure for medication M 

   1) Processor Scheduling and Resource Allocation Rules The scheduler uses an instance of the 

structure JobModel to hold the parameters of jobs of each medication M. The execution_time 

field of the structure is initially set to the nominal minimum separation smin(M) of M. The 

scheduler maintains correct separations between doses of M by scheduling each of the 

corresponding jobs non-preemptively on PM for this amount of time whenever possible, but it 

may schedule the job for a smaller amount time in the range from the absolute minimum 

separation Smin(M) of M to smin(M). In addition, the maximum absolute separation between 

consecutive doses of M is enforced by imposing a relative deadline for each of the jobs.  

   For each medication M that has interferers, the scheduler uses the virtual resource RM and 

resources of the interferers to help it maintain inter-medication separations. Simply put, a job of 

M can start at a time t only when the resource RM is free at t. The scheduler allocates the resource 

RM to each job of N for σmin(N, M) units of time each time when it schedules a job on PN. Thus, 

each job of the interferer blocks jobs of M from starting for this amount of time. The worst-case 
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blocking time of the medication M is the maximum over all of its interferers of the minimum 

separations from interferer to M.  

2) Priority Schemes Again, both OMAT and ODAT algorithms use priorities. As we will see 

shortly, one of the better priority schemes is the Most Victimized First (MVF) scheme which 

gives priorities to tasks based on their worst case blocking times; the longer the worst case 

blocking time, the higher the priority.  

Other priority schemes based on separation and interference characteristics of the medications 

include the Most Interferers First (MIF) scheme and the Shortest Separation Difference First 

(SSDF) schemes. They give higher priorities to tasks corresponding to medications with larger 

numbers of interferers or larger differences between the maximum and minimum nominal 

separations, respectively. We also experimented with the classical real-time priority schemes 

Rate Monotonic (RM) and Earliest Deadline First (EDF) schemes. The former gives higher 

priorities to tasks with shorter periods. The latter gives priorities to jobs based on their absolute 

deadlines; the earlier the deadline, the higher the priority. Clearly, EDF scheme is suitable for 

ODAT algorithms only. 

7.2 Algorithm Descriptions 

Figure 10 gives pseudo-code descriptions of basic versions of OMAT and ODAT algorithms. The 

inputs are MedicationDirections of all medications in a MSS and PrioritySchemes used by the 

algorithm. The value of the Boolean output variable feasible indicates whether the algorithm 

succeeded in finding a feasible schedule when it terminates. If it succeeded (i.e., feasible is 

TRUE), the elements of the feasible_schedule [ ] array point to the schedules (i.e., lists of job 

start time instants) of all medication in the MSS.  

1) OMAT Algorithms. After creating instances of data structures described above, the 

scheduler considers medications in non-increasing priority order: It schedules jobs (i.e., doses) of 

each medication M one at time, starting from the first job until it either fails to find an available 
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(start) time for some job of M before the minimum duration t_min of the medication or has 

successfully generated a list of start times for all the jobs within the duration. (An available time 

for a job is an instant between the release time and deadline of the job at which both PM and RM 

are free. The search for the earliest of such instants and the bookkeeping chores of the scheduler 

are described by Step 3 in part (a) of the figure.) In the former case, the scheduler returns 

immediately, with feasible set to FALSE. In the latter case, it sets the element in 

feasible_schedule [ ] for the medication to point to the newly generated list and then move on to 

work on the medication next in priority order.  

Input: List<MedicationDirections> MSS, PrioritySchemes;

Output : feasible = TRUE;
feasible_schedule [number_medications] = {NULL}; 

1.For every medication listed in MSS,  create an instance of JobModel, 
ResourceModel and list head schedule.

2.Assign priority to each medication according to PrioritySchemes.
3.For each medication Mi from the one with the highest priority to 

lowest, do the following:
latest_start_time = 0; current_medication_feasible = TRUE;
do while ( current_medication_feasible == TRUE ) { 

A. Call FindAvailableTime ( ) to get the earliest available 
time instant x

B. if x is found, 
if ( x >= t_min of Mi ) break;
Insert x into the start time list schedule of Mi
for ( x <= k < x + ns_min of Mi ) 

processor[k] =1;
for every interferer N of Mi listed in MSS

for (x <= k < x + ns_min of Mi ) 
set resource[k] of N to 1;
latest_start_time = x;

C. else x is not found 
current_medication_feasible = FALSE; 
feasible = FALSE;

}
if feasible == TRUE, feasible_schedule[Mi] = schedule of Mi

4.Return feasible and feasible_schedule[number_medications]

Input: List<MedicationDirections> MSS, PrioritySchemes;

Output : feasible = TRUE;
feasible_schedule [number_medications]= {NULL}; 

1.For every medication listed in MSS,  create an instance of JobModel, 
ResourceModel and list head schedule.

2.schedule_complete = 0;
release_time_current_jobs[number_medications] = {0};
While (feasible == TRUE) and 

(schedule_complete < number_medications) {
A. Determine based on release_time_current_jobs[ ] the current job 

j with the earliest release time and highest priority among current 
jobs of all medications , say j is of medication Mi

B. do
a. Call FindAvailableTime ( ) to get the earliest available time 

instant x.
b. if x is found, 

if ( x >= t_min of Mi ) schedule_complete++ break;
Insert x into the start time list schedule of Mi
for ( x <= k < x + ns_min of Mi ) processor[k] =1;
for every interferer N of Mi listed in MSS

for ( x <= k < x + ns_min of Mi )
set resource[k] of N to 1;

release_time of Mi’s current job = x + ns_min.
c. else x is not found  

feasible = FALSE.
}

3.Return feasible and feasible_schedule[number_medications].

(a) One-Medication-At-a-Time (b) One-Dose-At-a-Time  

Figure 10 Description of heuristic scheduling algorithms 

Basic OMAT algorithms tend to schedule doses of higher priority medications close together, 

leaving little or no time for doses of lower priority medications. A simple enhancement is to 

schedule doses of medications as close as to their respective deadlines as possible. We call 

algorithms with this enhancement advanced OMAT algorithms. 

2) ODAT Algorithms From Step 2B of ODAT algorithms in part (b), we can see that the 

scheduler does the same work to schedule individual jobs regardless of the algorithm it uses. An 
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ODAT scheduler assigns priorities to jobs according to PrioritySchemes when the jobs are 

released. It uses the array release_times_current_jobs [ ] to keep track when the current job of 

each medication is released and ready to be scheduled. The schedule of a medication M is 

complete when the possible start time of the job of M currently being scheduled is later than the 

minimum duration of M. The scheduler continues to schedule jobs as they are released in priority 

order until either it fails to find a possible start time for the job currently being scheduled or the 

schedules of all medications in the given MSS are complete.  

7.3 Relative Merits 

To determine their relative merits, we used OMAT and ODAT algorithms to schedule a 

variety of MSS samples in several simulation experiments. For each simulation run, we 

generated 1000 MSS samples, which we found are sufficient to yield a 95 percent confidence. 

We present here a summary of the experiments and performance data. Further details on 

generation of MSS samples, experiment coverage and additional data can be found in [27].  

1) Performance Measures We measure the performance of each algorithm along two 

dimensions: success rate and schedule quality. The success rate of an algorithm is the chance the 

algorithm finds a feasible schedule. The quality of medication schedules generated by an 

algorithm is measured in part by how user friendly the schedules are. User friendliness is 

quantified by the distribution of the normalized allowed tardiness (NAT) of the schedules: The 

allowed tardiness (AT) of a dose k of medication M according to a schedule is the maximum 

length of time the dose can be delayed without leading to non-compliance. The NAT of a dose k 

of medication M is the ratio of the AT and the width of nominal separation range. 

A good schedule should not only be user friendly but also closely adhere to medication 

directions. We measure this aspect of schedule quality by two quantities: supply rate deviation 

and demand rate deviation: The supply rate deviation of a medication M with supply rate (B, R) 

according to a schedule is equal to the difference between the total intake of M within any 
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interval of length R and the supply B, if the difference is positive; it is equal to zero if the 

difference is zero or negative. The supply rate deviation of a schedule is the maximum supply 

rate deviation over all medications according to schedule. Similarly, the demand rate deviation of 

a medication M with demand rate (L, P) is the difference between the demand L and the 

minimum intake in any interval of length P if the difference is positive, and is equal to zero if the 

difference is zero or negative. The demand rate deviation of a schedule is the maximum demand 

rate deviation over all medications according to the schedule. 

2) Parameters of Sample Medications Each sample medication schedule specifications (MSS) 

used in our simulation experiments is characterized by a number of parameters, including the 

number n of medications in the MSS and the degree medications in it interact with each other. 

The latter is quantified in part by the interference probability ρ which is the probability that 

any medication interferes with some other medications in MSS. For a medication M that 

interferes with another medication N, we capture the effect of interference by interference 

severity: 

δ(M, N) = [σmin(M, N) + σmin(N, M)] / max (Smax(M), Smax(N)) 

It is easy to see that the larger this ratio, the more constrained the schedule, and it is impossible 

to maintain separations between doses of M and N without violating the maximum absolute 

separation of one or both medications when this ratio is larger than 1. 

Other parameters characterizing each medication are its separation, dose size and rate 

constraint parameters. After many initial experiments, we found that the algorithms show 

differentiating performance when these parameters were generated in the following manner. To 

ensure that separation parameters of each medication in the MSS are meaningful, we generated 

them by first selecting independently the value of its minimum nominal separation smin from the 

even distribution [1, 14400]. We then categorized the medication based on the selected value as 

frequent (4 or more times per day), typical (1 – 4 times per day) or infrequent (at most once per 
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day). Table 3 lists the distributions of nominal separation range width (NSRW), difference 

between nominal and absolute minimum separations (DNAMIS) and difference between 

absolute and nominal maximum separations (DNAMAS) for different categories of medications. 

We generated the other separation parameters of the sample medication by selecting 

independently values of these random variables from the respective distributions listed in the 

table and then computing the separation parameters from the sample value of smin accordingly. 

Table 3 Distributions of separation parameters 

Frequent Typical Infrequent

smin

NSRW
DNAMIS
DNAMAS

[1, 360] [360, 1440] [1440, 43200]
[1, 120]

[1, 120]

[1, 120]

[120, 480]

[1, 120]

[120, 480]

[480, 14400]

[480, 14400]
[480, 14400]  

To generate the dose size and rate constraint parameters of each sample medication, we first 

selected the total intake parameters B and L independently from the even distribution [1, 100]. 

After the value of absolute maximum separation Smax of the medication was selected, rate 

intervals R and P were independently selected from the even distribution [Smax, 86400]. We then 

used the DST algorithm [18] to find a feasible dose size of the medication and used the dose size 

throughout the schedule. The samples failing the consistency test of DST or failing to yield a 

feasible dose size were thrown away. 

3) Data on Success Rates To determine how success rates of our algorithms depend on the 

number n of medications, we stepped n by 1 from 3 to 20. ρand δ were selected independently 

from the even distribution over the range [0.1, 1]. 

As we can see from Figure 11 that the success rates achieved by all of our algorithms are 

poor for n = 5 or larger when the scheduler works with nominal separation ranges of all 

medications. In contrast, Figure 12 shows that the scheduler is much more likely to find feasible 

schedules meeting the more relaxed timing constraints imposed by the wider absolute separation 

ranges. As we can see from these figures that the advanced OMAT algorithm with MVF priority 
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scheme typically out performs other algorithms. For this reason, we chose to study it further in 

more depth than other algorithms.  
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Figure 11 Success rates of schedules meeting nominal separation constraints 
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Figure 12 Success rates of schedules meeting absolute separation constraints 

In simulation experiments to determine how the success rate depends on interference 

probability ρ and severity δ, we initialized the parameters at 0.1, and then increased them 

independently by 0.2 per step until their values become 1. The success rates achieved by the 

advance OMAT algorithm with MVF scheme for different values of ρ and δ tell us that the 

difficulty in finding feasible schedules is largely due to inter-medication separation constraints. 

When medications rarely interact (e.g., ρ or δ are 0.1), the algorithm can achieve the high success 

rate of 90% even when there are 10 or more medications to schedule. Even when ρ and δ are 

both 0.3, the success rate is still more than 75%. However, the success rate degrades to a few 
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percent to around 20 % when both ρ and δ are 0.7, even when there are only 5 medications in the 

MSS to schedule.  

4) Data on Schedule Quality Figure 13 plots the percentage of doses with different ranges of 

normalized allowed tardiness (NAT) according to the schedules generated by the algorithms. An 

algorithm is said to be unfriendly to a dose if the NAT of the dose is zero, somewhat friendly if 

the NAT is between 0 and 0.3, friendly if the NAT is between 0.3 and 0.7, and very friendly if 

the NAT is between 0.7 and 1. We can see that the advanced OMAT algorithms consistently out 

perform algorithms in other families as they are friendly or very friendly to higher percentages of 

doses than other algorithms. On the other hand, priority schemes do not affect the performance 

significantly in this respect.  
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 Figure 13 NAT of schedules meeting absolute separation constraints when n = 5 

   Figures 14 and 15 show the mean supply rate deviations and mean demand rate deviations, 

respectively, of schedules produced by different algorithms to meet absolute separation 



 34

constraints. We can see from Figure 14 that ODAT algorithms have the worst performance in this 

respect. This is because ODAT algorithms schedule doses at a higher frequency than algorithms 

in OMAT families. Consequently, the intake for each medication scheduled in a supply interval 

by ODAT algorithms is larger. Because advanced OMAT algorithms schedule doses as late as 

possible, the intake of each medication scheduled by advanced OMAT algorithms are less than 

the other two algorithm families. Consequently, they have the lowest supply rate deviations.  
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Figure 14 Supply rate deviations of schedules meeting absolute separation constraints 
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Figure 15 Demand rate deviations of schedules meeting absolute separation constraints 

For the same reason, we can reach the opposite conclusion on the relative performance of 

ODAT and advanced OMAT algorithms when the criterion of comparison is demand rate 

deviation. As Figure 15 shows, ODAT algorithms have the lowest demand rate deviations among 

the algorithms while the advanced OMAT algorithms have the highest demand rate deviations.  
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8 Summary and Future Work 

Previous sections described the design and operations of a smart medication dispenser. Except 

for set up operation and retrieval of individual doses from medication containers, the dispenser is 

fully automatic. By monitoring the user’s actions during set up, the dispenser prevents errors in 

medication identification. By automating the choices of dose sizes and times according to a 

machine readable MSS, the dispenser relieves the user from the burden of interpreting 

medication directions and special administration instructions and thus prevents the common 

errors due to misinterpretation. By using algorithms that can take advantage of the scheduling 

flexibility provided by the sizable ranges of dosage parameters of modern medications, the 

scheduler can often adjust dose times of medications to keep compliance when the user is tardy.  

The bulk of the critical work in medication administration is done collaboratively by the 

dispenser controller and medication scheduler. The interface and communication flows between 

the components are based on the general action-oriented collaboration scheme described in 

Section 5. As pointed earlier, generality of the interface is an advantage of this design. By 

replacing the decision maker and action handlers, one can build a different device using more or 

less the same action executor. Similar, we can easily enhance and configure the medication 

dispenser by adding new and enhance action handlers into the action handler library. Indeed, we 

plan to use the action-oriented design to build medication dispensers for hospital and clinic use.  

The dispenser controller and the medication scheduler in the current prototype run on the 

same computer. The overhead incurred in their communication is minimal. An alternative design 

is to have the controller run on the local embedded machine but have the scheduler runs on a 

networked server. In that case, we can link multiple dispensers to a single scheduler server 

through the network and the single scheduler can compute medication timetables for multiple 

persons and request corresponding actions to be carried out by multiple dispensers. While this 

alternative appears to be suitable dispensers for hospital and clinics, factors such as high 
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communication overheads and lower than ideal network availability may rule out its use. We are 

investigating this issue.   

Many functions can be added to the dispenser to improve its user friendliness and 

effectiveness. An example is to enable the use of user’s recorded music or voice messages as 

reminders. The current prototype does not support the capture and use of user preferences. The 

medication scheduling algorithms need to be modified to take into account the soft constraints 

defined by the user preference parameters. The compliance monitor in the current prototype is 

designed to perform basic non-compliance notification (e.g., call a care taker). In addition to 

enabling it to send non-compliance notifications using multiple media, we also want the monitor 

to record actual sizes and times of individual doses of all medications taken by the user, and thus 

generate a local medication record for the user. Finally, the current prototype needs the user to 

retrieve doses from containers manually. We are searching for a device that can dispense doses of 

specified sizes from containers automatically. The challenge is how to dispense correct dose size 

of each medication given that medications can come in arbitrary shapes and forms.  
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