
TR-IIS-08-010

Smart Medication Dispenser:

Design, Architecture and

Implementation

P. H. Tsai, C. Y. Yu, C. S. Shih, Member, IEEE, and
J. W. S. Liu, Fellow, IEEE

October 3, 2008 || Technical Report No. TR-IIS-08-010
http://www.iis.sinica.edu.tw/page/library/LIB/TechReport/tr2008/tr08.html

 1

 Institute of Information Science, Academia Sinica
Technical Report TR-IIS-08-010

Smart Medication Dispenser:

Design, Architecture and Implementation

P. H. Tsai, C. Y. Yu, C. S. Shih, Member, IEEE, and J. W. S. Liu, Fellow, IEEE

Abstract

This paper presents the architecture and implementation of an automatic medication

dispenser specifically for users who take medications without close professional supervision.

By relieving the users from the error-prone tasks of interpreting medication directions and

administrating medications accordingly, the device can improve rigor in compliance and

prevent serious medication errors. By taking advantage of scheduling flexibility provided by

medication directions, the device makes the user’s medication schedule easy to adhere and

tolerant to tardiness whenever possible. This work is done collaborative by the medication

scheduler and dispenser controller in an action-oriented manner. An advantage of the

action-oriented interface between the components is extensibility, as new functions can be

added and existing ones removed with little or no need to modify the dispenser control

structure. The paper first describes the action-oriented design, major components and

hardware and software structures of the smart device. It then provides an overview of the

heuristic algorithms used by the medication scheduler and their relative merits.

Copy right @ October 2008

 P. H. Tsai and C. Y. Yu are affiliated with Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.

Their email addresses are peipei@iis.sinica.edu.tw and rayswin@gmail.com.
C. S. Shih is affiliated with Department of Computer Science and Information Engineering, National Taiwan University. His

email address is cshih@csie.ntu.edu.tw.
J. W. S. Liu is affiliated with Institute of Information Science, Academia Sinica, Nankang, Taipei, Taiwan. Her email address is

janeliu@iis.sinica.edu.tw

 2

Table of Contents

ABSTRACT ...1

1 INTRODUCTION ..3

2 RELATED WORKS...5

3 BACKGROUND AND ASSUMPTIONS ..7

3.1 A USE SCENARIO ...7

3.2 MEDICATION SCHEDULE SPECIFICATION..9

4 DISPENSER ARCHITECTURE...12

4.1 MAJOR SOFTWARE COMPONENTS ..12

4.2 HARDWARE COMPONENTS AND DRIVER INTERFACE ..13

5 ACTION-ORIENTED COLLABORATION ...15

5.1 DECISION MAKER INTERFACE..16

5.2 COMMUNICATION FLOW ..18

6 CONTROLLER AND SCHEDULER COLLABORATION ..19

6.1 CONTROLLER SOFTWARE STRUCTURE ...19

6.2 ILLUSTRATIVE EXAMPLE..22

7 HEURISTIC SCHEDULING ALGORITHMS..25

7.1 UNDERLYING MODEL...25

7.2 ALGORITHM DESCRIPTIONS ...27

7.3 RELATIVE MERITS..29

8 SUMMARY AND FUTURE WORK ..35

ACKNOWLEDGEMENTS ..36

REFERENCES ..36

 3

1 Introduction

Thanks to years of advances in medical and pharmaceutical technologies, more and more drugs

can cure or control previously fatal diseases and help people live actively for decades longer. The

benefits of the drugs would be even more wondrous were it not for the high rate of preventable

medication errors [1-5]. Medication errors are known to occur throughout the medication use

process of ordering, transcription, dispensing, and administration. They lead to many hundred

thousands of serious adverse drug events, thousands of deaths and billions of dollars in hospital

cost each year in US alone. These alarming statistics have motivated numerous efforts in

research, development and deployment of information technology systems and tools for

prevention of medication errors (e.g., [6-25]). We now witness increasingly wider use of

computerized physician order entry (CPOE) systems [6-11] in hospitals and clinics for

prevention of prescription errors, which account for more than 50% of all errors. Data available

to date show that together with clinical decision support [6] and electronic patient health and

medication records (ePHR and eMAR) [7], CPOE systems can help prevent up to 80% of

prescription errors, i.e., 40% of all errors.

Next to prescription errors, administration errors (i.e., errors due to failures to compliant to

medication directions) are the most prevalent: They contribute 25 – 40% of all preventable errors

and are the cause of 25% of admissions to nursing homes [5]. The smart medication dispenser

described in this paper is designed to prevent this type of errors. It is primarily for the growing

population of users who are elderly or have chronicle conditions but are well enough to live

independently. Such a user may be on many prescribed and over the counter (OTC) medications

for months and years without close professional supervision.

Specifically, our smart dispenser is designed to eliminate two most common causes of

administration error: misunderstanding of medication directions and inconvenience of rigid

medication schedules. Being almost fully automatic, the dispenser schedules individual doses of

 4

the user’s medications under its care based a machine readable medication schedule specification

(MSS) extracted from the user’s prescriptions and directions. (We will discuss in Sections 2 and 3

the content and generation of the specification.) It then reminds the user at the times when some

doses should be taken, monitors user’s response to reminders, adjusts the medication schedule as

needed when the user is tardy, and when non-compliant becomes unavoidable, sends notification

in ways specified by the user. In this way, the dispenser helps its user follow directions and stay

compliant without having to understand the directions. This work is done collaboratively by the

dispenser controller and medication scheduler in an action-oriented manner. An advantage of this

design is generality and extensibility: As it will become evident in later sections that actions and

action handlers can be added or removed to configure the device or to build a different device

with little or no need for modification of the control structure of the dispenser controller.

By taking advantage of scheduling flexibility provided by directions of most modern

medications, the dispenser makes the user’s medication schedule as easy to adhere and tolerate to

user’s tardiness as possible. It uses two families of heuristic scheduling algorithms for this

purpose [26, 27]. One-Medication-at-a-Time (OMAT) algorithms produce a full schedule for

each of the medications listed in the MSS in turn, while One-Dose-at-a-Time (ODAT) algorithms

schedule the individual doses of the medications one at a time. Performance data obtained via

simulation show that OMAT algorithms are more likely to succeed in finding schedules that meet

the constraints defined by the MSS. The dispenser scheduler uses one of these algorithms to

generate a complete schedule initially. Being on-line, ODAT algorithms offer good alternatives

when the schedule needs to be adjusted to compensate for user’s tardiness.

The remainder of the paper is organized as follows: Section 2 presents an overview of tools

that provide support for smart dispensers and compare our dispenser with other medication usage

assistance devices. Section 3 presents key assumptions that must be valid for our dispenser to

work, illustrates its operations by a user scenario and describes the timing and dosage constraints

 5

parameters defined by MSS. Section 4 presents the architecture and hardware and software

components of the dispenser. The prototype software of the dispenser has an action-oriented

structure. Section 5 describes the structure in general, together with the interface and

communication flow for action-oriented collaboration. Section 6 describes the software control

structure of the dispenser controller designed to support its action-oriented collaboration with the

medication scheduler and illustrates their collaboration with an example. Sections 7 provides an

overview of the OMAT and ODAT algorithms and their relative performance. Section 8

summarizes the paper and discusses future work.

2 Related Works

Figure 1 shows an integrated chain of information systems and tools that complements each

other to prevent medication errors throughout the medication use process (e.g., [12-14]). CPOE

systems [6-11] are at the start of the chain. Like other medication administration assistance tools,

our smart dispenser sits at the end-user end of the chain. Transcription and dispensing stage tools,

as exemplified by the prescription authoring tool shown in the figure, link dispensers and

integrate them into the chain.

ETL (Extract, Transform and Load)

Verifier

Standard Prescriptions

Drug
Library

Clinical
Decision
Support

Medication Schedule Specification (MSS)

CPOE1 CPOE 2 CPOE n

Prescription 1 Prescription 1 Prescription i

Compiler

Prescription Authoring Tool

User’s
eMAR

ePHR

Figure 1 Tools for prevention of medication errors

A typical user is likely to be cared by multiple physicians and given prescriptions ordered via

 6

independent CPOE systems. While each of the user’s prescriptions is error free, it may fail to

account for interactions between medications ordered by different prescriptions. A major

function of the prescription authoring tool described in [17] is to help user’s pharmacist detect

and eliminate this kind of error. Another important function of the tool is the generation of

medication schedule specifications that guide the operations of the dispensers. The tool first

merges all of user’s prescriptions and OTC medication directions and then translates the merged

directions thus generated into a MSS, written in XML language, for the user’s dispenser. The

tool also makes sure that all the constraints defined by MSS for each medication are feasible, i.e.,

there is at least a schedule meeting the constraints if the medication were to be scheduled alone.

The demand-versus-supply test (DST) described in [18] is for this purpose.

There are a large variety of medication administration assistance devices for non-professional

users. Unlike our dispenser, most stand-alone devices (e.g., [19-22]) available today are manual:

A disadvantage of a manual device is that the user must load the individual doses of medication

into the device, understand their directions and program the device to send reminders accordingly.

This manual process frequently introduces errors.

Like schedules used by our dispenser, medication schedules used by automatic devices and

scheduling tools such as MEDICATE Tele-assistance System [23, 24] and Magic Medicine

Cabinet [25] can be adjusted to compensate for user tardiness and condition changes. The

adjustments are by care providers who monitor and supervise the user via Internet, however.

Those devices are better suited for users who need close professional supervision and fully

integrated health care services. In contrast, our dispenser is a stand-alone tool, capable of making

schedule adjustments permitted by existing prescriptions. It is for individuals who are well and

hence do not want to incur the cost of continuous monitoring and care and consequent loss of

privacy and independence.

 7

3 Background and Assumptions

For any automatic medication dispenser serving a single user at home and work to be effective in

prevention of medication errors, the following restrictive assumptions must be valid:

(1) The tool manages all prescribed and OTC medications of the user.

(2) The medication schedule specification (MSS) used to guide the operations of the

dispenser is generated based on a complete and current medication record of the user.

These are our assumptions. Although the dispenser does not handle food, it must schedule meals

and snacks along with medications when food interferes with some of the user’s medications.

3.1 A Use Scenario

A possible scenario for the above mentioned assumptions to be valid is that the user acquires all

of his/her medication supplies from a single pharmacy, and the pharmacist serving the user has

access to all of user’s medication-related information (e.g., current prescriptions and allergies).

When the user comes to fill a new prescription or purchase some OTC drugs and health

supplements, the pharmacist uses a prescription authoring tool [17] or a similar tool to process

the user’s new and existing prescriptions and generate a MSS for the user’s dispenser. The

pharmacist provides the MSS to the user, along with new supplies of medications in containers.

Each container holds the medication identified by the RFID tag attached to the container.

 Figure 2 shows the dispenser parts that interact with the user. The MSS is stored in a flash

disk. The dispenser has on its base a number of sockets, an indicator light around each socket, a

reminder (i.e., an audio alarm, or a flashing light, or a phone, etc.), a text display, a LED display,

a Push-To-Dispense (PTD) button, verification boxes, a dispensing drawer and a USB port. The

RFID reader for reading tags on containers sits inside the base. Containers holding medications

taken by the user are plugged in sockets. There is a switch inside the base for each socket. The

switch is closed when a container is plugged in the socket; otherwise it is open.

1) Set up In order to put new supplies under the care of the dispenser, the user plugs the MSS

 8

disk into a USB port of the dispenser and all the new containers into empty sockets in any order.

The dispenser picks up from the MSS disk the updated medication list and constraints for

scheduling the new medications along with existing ones. Whenever the dispenser controller

senses that the state of the switch for a socket (say socket number k) changes from open to close,

it commands the RFID reader to read the tags on all containers in sockets. Upon discovering a

new id (say M), it creates and starts to maintain the id-location mapping (M, k) for the new

medication and locks the container in socket.

Reminder

Containers

MSS MSS flash disk

PTD Dispensing
drawer

Verification
box

Socket
LED display

Text display

Indicator
light

Dispenser base

RFID tag

Figure 2 Parts of a smart dispenser

 The controller can correctly locate the container for every medication under its care only if it

disallows multiple containers being plugged in at the same time. In the rare event when it senses

that the user has plugged in more than one container, the dispenser prompts the user to remove

the containers involved and plug them back again one at a time.

 2) Normal Operations Set up completes and normal operations commence when the dispenser

base holds a container and has the id-location mapping for every medication listed in the MSS.

The dispenser first computes a medication schedule, which specifies the time instants and dose

sizes of medications to be taken. We will refer to these time instants as dose times hereafter.

Shortly before each dose time, the dispenser uses the reminder to tell the user to come to take

medication(s). In response, the user reports to the dispenser by pushing the PTD button.

 9

 Because the time the user takes to respond to a reminder may vary widely, the dispenser

updates the dose size of each medication due to be taken whenever the PTD button is pushed.

For each medication due to be taken, the dispenser lights up the indicator light around the socket

holding the container for the medication and unlocks the socket to allow the removal of the

container. When the user picks up the container, the LED display shows the dose size to be taken

at the time. After the user retrieves the indicated dose from the container and puts the container

back to the socket, the dispenser locks the container in place again. The dispenser and the user

repeat this collaborative process if there is more medication(s) scheduled to be taken at the time.

 A dispenser with the verification capability is equipped with a camera to capture the image of

objects placed in verification boxes. The user needs to put each retrieved dose in a verification

box. Once there, the dispenser checks visually whether the retrieved dose size is correct. It uses

the text display to instruct the user when correction is necessary, and when there is no error,

locks the returned container in place and drops the medication into the dispensing drawer.

3.2 Medication Schedule Specification

As we will see in later sections, user’s medication schedule is computed and adjusted by the

medication scheduler based on the firm and hard timing and dose size constraints given by the

MSS of the user. Whenever possible, the normal medication schedule is such that all firm

constraints are met if every dose is indeed retrieved by the user as scheduled. Deviations from

normal schedule may occur, mostly due to user’s tardiness, and some may lead to violations of

hard constraints. The dispenser treats each violation of a hard constraint as a non-compliance

event and is required to take some specified action(s) (e.g., contact a care taker). Specifications

on the actions required to handle each type of non-compliance events are included in the MSS.

This aspect is out of the scope here. A smart dispenser may accept user input on preferred times

and frequencies for taking medications and treats user preferences as soft constraints to be met

on a best effort basis. Due to space limitation, we do not consider soft constraints here.

 10

 Details on the XML-language medication schedule specification [12, 26, 27] are

unimportant. It suffices to note that the MSS contains a section for each medication. Table 1

summarizes the key elements in the section for a medication. We note that the section has three

parts. The first part gives information the dispenser needs to administrate the medication,

including the name or id (say it is M) of the medication and the duration for the user is to be on

the medication. The medication comes in granules of size g (granularity); dose size parameters of

the medication are given in terms of integer multiples of g. The part also provides other relevant

attributes such as a picture image of the medication for verification purpose. The dispenser uses

the same time resolution for all medications. All separation parameters expressed are in terms of

multiples of dispenser time resolution. We use one hour hereafter unless stated otherwise.

Table 1 Section of MSS for medication M

M: Name of the medication
g: Granularity
[Tmin, Tmax]: Minimum and maximum durations
Other relevant attributes
Dosage Parameters (DP)

1. [dmin, dmax]: Nominal minimum and maximum dose sizes
2. [smin, smax]: Nominal minimum and maximum separations
3. (B, R): Maximum intake over a specified time interval given

by budget B and replenishment delay R
4. (L, P): Minimum intake over a specified time interval given

by lower bound L and interval length P
5. [Dmin, Dmax]: Absolute minimum and maximum dose sizes
6. [Smin, Smax]: Absolute minimum and maximum separations
7. Non-compliance event types and corresponding actions.

Special Instructions (SI)
1. N: Name of an interferer

a. Change list
b. σmin(M, N): Minimum separation from M to N
c. σmin(N, M): Minimum separation from N to M

2. L: Name of another interferer

…

1) Dosage Parameters (DP) The dosage parameters part specifies constraints on dose size

and separation (i.e., the length of time interval between any two consecutive doses) for

scheduling the medication when the medication is taken alone. Specifically, lines labeled 1 and 2

give nominal dose size range [dmin, dmax] and nominal separation range [smin, smax]. Take the

direction of Advil for example: Part of it reads “Take 1 gel caplet every 4 to 6 hours. If pain or

fever does not respond to 1 caplet, 2 caplets may be used.” So, its nominal dose size and

 11

separation ranges are [1, 2] and [4, 6], respectively.

The line labeled 3 specifies the supply rate (B, R): It says that the intake (i.e., the total size

of all doses) within any time interval of length R must be no more than B. For example, the

supply rate of Advil is (6, 24) because its direction also says “Do not exceed 6 gel caplets in 24

hours.” The line labeled 4 specifies the demand rate (L, P) of M: The intake within any interval

of length P must be at least equal to L. Many medications (e.g., antibiotic and insulin) have

demand rate constraint to ensure that at least the minimum required amount is at work.

 The DP part may also include absolute dose size range [Dmin, Dmax] and absolute separation

range [Smin, Smax]. These constraints are hard. By making the ranges wider than the corresponding

nominal ranges, the direction allows some flexibility in scheduling.

 2) Special Instructions (SI) We refer to a medication (or food) that interacts with M to the

extent as to require some changes in how M is to be administered as an interferer of M. The SI

part of M has an entry for each of its interferers. The change list in the entry for an interferer (say

N) specifies changes in one or more dosage parameters of M: The constraints specified by

parameters given by the change list must be met as long as the user is on both M and N.

 The entry of an interferer N may also define additional separation constraints, each of which

specifies a required time separations between each dose of M and any dose of the interferer N.

Table 1 lists only the minimum separation σmin (M, N) from the medication to interferer for each

dose M scheduled before any dose of N and the minimum separationσmin (N, M) from the

interferer to the medication for each dose of N scheduled before some dose of M. Take Fosamax

as an example. This medication for prevention and treatment of brittle bone decease must be

taken on empty stomach, and the user should not take anything within 30 minutes after taking the

medication. Hence the minimum separation parameters to and from any interferer of Fosamax

are half an hour and 6 hours, respectively. As we will see in Section 7, the required separations

between doses of interferers make scheduling more difficult.

 12

Table 1 leaves off additional constraints due to medication interaction, including precedence

constraints that restrict the order in which doses of some interacting medications are taken, and

maximum separation constraints that ensure interferers are taken sufficiently close together.

These constraints are discussed and illustrated in [28].

4 Dispenser Architecture

Figure 3 shows the architecture of the smart dispenser. The dotted box at the bottom encircles its

hardware components. We have already mentioned them in passing earlier where we described

set up and normal operations. We will return shortly to provide further details on them.

PTD
Button

Reminder

RFID Reader
Verification

Device

Display
Units

Binary
Sensor array

MSS
Socket

Microcontroller

User Preferences
MSS

Medication Record

Dispenser
Controller

Compliance
Monitor

Medication
Scheduler

Container

RFID Tag

Container

RFID Tag

Device Drivers

Network
Interface

Figure 3 Dispenser Architecture

4.1 Major Software Components

The dotted box on the top encircles software components, including the dispenser controller (or

controller for short) and the medication scheduler (or scheduler). The controller extracts from the

MSS file the information needed for scheduling, dispensing and compliance monitoring and puts

the information in a structure convenient for internal use. The scheduler is the only component in

the dispenser with full knowledge and use of the information in the MSS. In addition to

computing an initial medication schedule immediately after set up, the component is also

 13

responsible for adjusting the schedule when the user is tardy to prevent non-compliance and for

determining the actions to carry out when a non-compliant event occurs.

The dispenser controller is also an important component. While the medication scheduler has

full knowledge of what medication administration related actions should be done at what instants

of time, it has no knowledge of time. In contrast, the controller is responsible for keeping track of

time, informing the scheduler the arrivals of time instants for such actions, and overseeing the

execution of actions requested by the scheduler. We will elaborate in subsequent sections this

division of labor during action-oriented collaborations between the scheduler and the controller.

The controller is also responsible for monitoring conditions of all components and handling

corresponding events indicating the occurrences of the conditions (e.g., insufficient medication

supply) that warrant actions. In this way, it controls the state of the dispenser.

The top dotted box also shows compliance monitor, network interface, user preferences, and

medication (administration) record. Due to space limitation, we will not elaborate further about

them. For sake of discussion here, it suffices to note that the compliance monitor is responsible

for generating and sending notifications in specified manners when invoked by the controller to

do so. The basic version of the dispenser implemented to date relies on a local alarm and a

dial-up connection for this purpose. An enhanced dispenser can be configured to use Internet and

to capture user preference and record user behavior in order to better serve the user.

The current version of the prototype is implemented in C programming language and is

available under GPL license at http://of.openfoundry.org/projects/dispenser. It is multi-threaded

and event driven and runs as an application on a desk top PC running Microsoft Windows XP. It

can be easily ported to an embedded platform like Windows CE and, in general, to any operating

system that supports threads and allows threads to wait for events and timer expiration.

4.2 Hardware Components and Driver Interface

From hardware perspective, the dispenser requires a platform that supports USB and RS232

 14

interfaces. The former is for the MSS flash disk, and the latter is for connecting other hardware

components. The design of host to hardware device interconnection is based on two rationales.

First, in a device like our smart dispenser, the data rate between the host and each hardware

device is very low. For this reason, we make all hardware devices, except the MSS disk, share

the same RS232 connection. Second, hardware devices in the dispenser do not support RS232

interface. An agent that supports RS232 is needed to facilitate communication for all devices and

manage their data transmissions to and from the host. The agent is the microcontroller unit as

shown in Figure 3. The microcontroller forwards commands issued by the device driver of each

hardware device to the device, and the device driver abstracts low-level instructions of the device

into general driver functions.

In general, drivers of hardware components provide the dispenser controller with two kinds

of facilities: hardware control and event notification. The former consists of commands which

the controller can call to request services from hardware components. The latter is the primary

means of communication from hardware to controller. As an example, Part (a) of Figure 4 shows

the logic diagram of a binary sensor array (BSA), which in the case of the dispenser, implements

the array of switches illustrated by part (b) of the figure. The BSA driver provides a command to

reset all switches and clear the array, as well as the bit map used to indicate the current states of

all switches. It communicates with the dispenser controller via three event objects: OBJECT_IN,

OBJECT_OUT and STATE_CHANGE. The driver sets the event OBJECT_IN (or OBJECT_OUT)

when the switch in a socket changes state from 0 to 1 (or 1 to 0) indicating that a container is just

plugged in (or removed from) the socket. In response the controller calls the handler

GetPluggedInSocket() (or GetPluggedOutSocket()) to get the index (i.e., location) and current

state of the socket. The driver sets STATE_CHANGE event when more than one switch change

state. The controller can determine the switches involves and their current states by invoking the

function GetSensorStates (char* Buffer) to get the bit map.

 15

Similarly, the controller can command the RFID reader to read tags on the containers by

calling Event ReadTags (char* Buffer, &Status, Timeout). When invoked, the function returns a

completion event immediately while the device driver commands the RFID reader to read in

non-addressed mode. When read completes, the driver sets the completion event. The controller

usually goes to wait for the completion event soon after it issues a read-tag command. When it

wakes up by the event, it can determine from the returned status whether the read operation

succeeded and, if the operation succeeded, the ids of tags read and returned by the reader driver.

Binary sensors

int

ackdata

Serialize Output IC

1 2 15

Microcontroller

Output FF FF FF

FF = D Flip-Flop

Bit map

(a)

PTD

RFID Reader

Socket
Switch
(binary
sensor)

 (b)

Figure 4 Binary Sensor Array

 The reminder used by the dispenser may be a sophisticated device or a simple one. The

prototype uses an audio device capable of playing different tones or voice messages to indicate

the urgency of the reminder. Its driver provides control functions ReminderOn (int urgency) and

ReminderOff () for turning the device on and off, and when turned on, play different tones (or

voice messages) depending on the urgency of the reminder. Finally, the driver of the PTD button

provides no command function. It communicates with the controller via two event objects, one

for pressing down the button and the other for releasing the button.

5 Action-Oriented Collaboration

As stated earlier, the controller and the scheduler collaborate in an action-oriented manner. By an

action, we mean an atomic unit of work carried out by an action handler function (or simply,

 16

action handler). Actions may be prioritized. Their action handlers are executed as work items by

worker threads at the priorities of the actions.

Figure 5 shows the operation cycle of a collaborative process based on the action-oriented

model in general. Each of the collaborative entities plays one of two roles: decision maker or

action executor. There may be more than one action executor. For obvious reasons, there should

be either only one decision maker, or a group of entities jointly serves as one decision maker. In

our smart dispenser prototype, the dispenser controller is the one and only action executor, the

medication scheduler is the decision maker.

NHST arrives or
Action completed

Decision maker
(Medication
Scheduler)

Request action(s)
Specify NHST

Query next action(s)
Report action complete

Work dispatcher Workers carrying out actions

Action Executor (Dispenser Controller)

Figure 5 Action-oriented collaboration

5.1 Decision Maker Interface

We adopt here the variant of the model where the executor plays a purely passive role. It is only

time keeper in the system. While it is aware of the time, it relies completely on the decision

maker to specify the time instants for it to query for actions, the actions it is to execute at those

instants, and so on. We call the nearest future time instant at which the decision maker requests

the executor to query for actions the next hand shake time (NHST). When given a NHST, the

executor sets a timer to expire at that time, waits until then to query the decision maker for action.

In response, the decision maker may request new action(s) to be executed, provides the executor

with a new NHST, and thus enables the repetition of the operation cycle.

 17

Table 2 lists the basic API functions provided by the interface of the component serving as

the decision maker, which is referred to as the DM in the table to save space. The functions

SetInformation () and GetInformation () allow the caller to deliver and get various types of

information to and from the decision maker.

Table 2 Decision-Maker API functions

Void SetInformation (InformationType, InformationData): This
function allows the executor to deliver information to the DM.

InformationType gives the type of data structure containing
the information to be delivered.
InformationData supplies a pointer to the data structure
holding the information to be delivered.

Void GetInformation (InformationType, InformationData): This
function allows the caller to get information from the DM.
Parameters are of the same types as those of SetInformation ()
except that they are for data to be returned from the DM.
ActionDescription GetNextAction (SystemTime CurrentTime):
This function allows the caller to query the DM for actions to be
performed by the caller.

CurrentTime provides the current system time.
The function returns a pointer to a structure of type
ActionDescription {ActionList, NextHandShakeTime}

ActionDescription ActionComplete (ActionType, ActionResult):
This function allows the caller to notify the DM that the specified
action is completed.

ActionType specifies the type of completed action.
ActionResult provides a pointer to result of the completed
action.

Void EventNotify (EventType, EventParameters) This function
allows the caller to notify the DM of occurrences of an event of a
specified type.

EventType specifies the type of event.
EventParameters supplies a pointer to parameters that the
DM needs to decide how to handle the event.

The work horse is GetNextAction (CurrentTime). By calling this function, the executor

queries the decision maker for the actions to carry out, while informing the decision maker of the

current time. GetNextAction () always returns a future time, called the next handshake time

(NHST). It also returns an action description. The action description structure contains an action

list. The value of the field is NULL when the decision maker requests no action; otherwise, it is

the head of a list of ActionItem structures. Each action item structure specifies an action to be

executed: Specifically, the fields of each ActionItem structure include the name of an action and a

pointer to parameters to be passed to the action handler, and the priority of the action. The

structure also contains a Report flag, which indicates whether the result produced by the action is

to be returned to the decision maker, and a pointer to the location for the returned result.

 18

The executor calls ActionComplete () to report the completion of a specified action and to

deliver the result produced by the action. The function also serves as a query for next actions as it

also returns an action description and NHST.

The executor is also the component in the system that monitors all events in the system that

warrants attention. It can call the API function EventNotify() to inform the decision maker of

occurrences of events that the decision maker needs to participate in handling. The executor calls

GetNextAction() immediately after it calls EventNotify() so that actions the decision maker wants

to be carried out in response to the event(s) are handled promptly.

5.2 Communication Flow

Figure 6 illustrates the protocol governing the communication between the executor and the

decision maker. It also illustrates how the functions GetNextAction() and ActionComplete() are

used to support their communication.

Executor Decision Maker

Action List 1

NHST = t_1

GetNextAction()

t_1

ActionComplete()

Action List 2

NHST = t_2

t_2 GetNextAction()

Action List 3

NHST = t_3

Set timer to expire
at t_1
Queue work items

Report action
complete

Set timer to
expire at t_2
Queue work
item for new
action

Figure 6 Executor-decision-maker communication

In the timing diagram, time flows downward. The exchange between the components starts

from a call of GetNextAction() by the executor. When the function returns, the executor first sets

the NHST timer to expire at the time (say t_1) given by the value of NHST returned by the

function, along with an action list. When the action list is not NULL, the executor creates a work

 19

item for each action in the list and queues the item for execution at the priority of the action. We

will return in the next section to describe how this is done by the dispenser controller.

 Suppose that one of the actions completes before t_1, and the action result is supposed to be

returned to the decision maker. The executor calls ActionComplete() to report action complete

and to deliver the result. The figure shows the case where the decision maker decides to request a

new action and specifies a later NHST of t_2. The executor, therefore, resets the timer to expire

at t_2, and creates and queues a work item for the new action.

Now, suppose that all the pending actions remain incomplete when the timer expires at t_2.

Since t_2 is the appointed time for the executor to query for action again, the executor does so as

requested by the decision maker. The figure shows the case where the action list returned at the

time is NULL. So, the executor queues no work item, but reset the NHST timer to t_3.

6 Controller and Scheduler Collaboration

Again, when applied the action-oriented model to our smart dispenser, the medication scheduler

is the decision maker and dispenser controller is the sole executor. We have found that this

division of labor simplifies the design and implementation of both components. In particular,

having the controller to be the only time keeper makes ordering actions in time, as the dispenser

often needs to do, straightforward. The design also relieves the medication scheduler from the

need to monitor time and external events. It now only needs to provide the API functions listed in

Table 2 and works when its API functions are called.

6.1 Controller Software Structure

Figure 7 shows the control structure of the prototype dispenser controller and its connection with

the medication scheduler. The controller relies on an extensible library of action handler

functions to carry out actions. By adding and exporting new handler functions to the library, a

developer can make the dispenser capable of new actions or enhanced versions of existing

 20

actions with little or no change to the control structure of the controller.

Medication Scheduler

Medication timetable

MSSMedication Record

Dispenser Controller

Action handler
dynamic link library

Work item
dispatcher

Work queues

Monitor threads

Thread pool

Events or Results GetNextAction()
Actions

Next handshake time

Figure 7 Dispenser controller structure

The majority of actions done during normal operation of the dispenser are for medication

administration purpose. These actions are requested by the scheduler in manner illustrated by

Figure 6. The dispenser controller also initiates actions in response to occurrence of events

indicating conditions that warrant attention. Each action is assigned a priority by the component

that requests the action. Whenever possible, executions of action handlers on the CPU are

scheduled preemptively according to priorities of the actions.

1) Work Queues and Worker Threads The structure of the controller is based on a variation of

the well known leader/follower pattern [28]. During initialization, the controller (main) thread

creates several FIFO work queues of different priorities and a pool of worker threads. Work

items inserted into each queue are processed by worker threads at the priority of the queue.

One of the responsibilities of the controller thread is to serve as the work item dispatcher.

When the dispatcher gets one or more actions from the scheduler or initiates actions on its own,

it looks up the action handler functions that carry out the actions and the priorities of the actions.

It wraps the pointer to each function in an instance of WorkItem data structure, along with

 21

pointers to a structure of function parameters and where result is to be returned. The WorkItem

structure also includes the Report flag, which the dispatcher sets to the value provided by the

Report field of the corresponding action item. The dispatcher then inserts the work item into one

of the queues according to the priority of the corresponding action. Upon finishing its duty as a

dispatcher, the controller thread returns to wait for the completion of the actions and other events

that require its attention.

At any time, each of the work queues is monitored by a work thread, called the monitor

thread of the queue in Figure 7. When the thread finds work item(s) in the queue, it removes the

one at the head of the queue. Because the execution of the work item may take some time, the

monitor thread wakes up a worker thread in the pool to serve as the monitor thread of the queue

and then call the action handler function pointed to by the work item. When the function returns,

the thread notifies the controller thread that the work has been completed and returns to wait in

the thread pool. If the Report flag is set, the controller thread returns the result produced by the

action handler function to the medication scheduler.

2) Event Notification The controller uses events to notify the medication scheduler of

conditions that requires attention of the scheduler, as illustrated by Figure 7. Examples include

that the PTD button is pressed. In response, the scheduler checks the existing medication

schedule and makes adjustment in dose size(s) if needed.

 Like controllers of typical smart devices, the dispenser controller is also responsible for

monitoring all device conditions. In addition to general conditions (e.g., power on/off),

dispenser-specific conditions monitored by sensors include the ones concerning medication

supplies, MSS and BSA. The sensor threads within the controller set events when the supply in

some container is running low, the MSS flash disk has been plugged in and MSS file read and

some container has been plugged in or removed. The events used for this purpose are

MedicationInsufficient, MSSChanged, and BSAStatusChanged, respectively. The occurrences of

 22

the conditions signaled by these events may warrant that the user be alerted, the medication

schedule be re-computed, and sometimes even a professional care taker to be alerted, and so on.

The controller uses the scheduler API function EventNotify() to notify the medication scheduler

whenever it cannot handle the event without the assistance of the scheduler.

6.2 Illustrative Example

To illustrate the collaboration between the controller and the scheduler in action-oriented manner,

as well as how the dispenser works to prevent serious medication administration error, we

consider a simple example in which the user takes 20 mg of vitamin once daily and 10 mg of

insulin every 4 hours. Without loss of generality, suppose that the dispenser is set up prior to 8:00

o’clock. According to the schedule computed by the medication scheduler immediately after set

up operation completes, the user is to take the daily dose of vitamin at 8:00 and 10 mg doses of

insulin at 9:00, 13:00, 17:00, and so on. Vitamin, being a supplement, can be skipped with little

or no consequence. In contrast, doses of insulin cannot be skipped arbitrarily. Its direction says:

1. When the user is tardy for more than 4 hours, the pending dose is cancelled, and a

double-size dose of 20 mg is scheduled at the next dose time.

2. Contact the user’s doctor if the user has not taken insulin for 10 hours or more.

We note that the relaxation from a dose every 4 hour schedule allowed by the first rule permits

the user to have 8 hours for uninterrupted sleep. The second rule defines a non-compliant event

and intends to prevent serious omission error.

 Figure 8 shows the interaction between the controller and the scheduler. Again, time flows

downwards and is not drawn in scale. Part (a) of the figure illustrates the case when the user

responds promptly to reminder and retrieves a scheduled dose on time. Part (b) illustrates what

happens when the user is tardy to the extent that the dispenser has to handle a non-compliance

event. The wiggly lines at the left edge of each part represent running worker threads: The fat

and short one turns the reminder on or off; the long and thin one monitors user response and

 23

helps the user retrieve a dose, and widely wiggly one handles the non-compliance event. The

operation starts from the controller making a GetNextAction() call in part (a). In response, the

scheduler requests no action, only asked to be queried again at 8:00 o’clock, the dose time for

vitamin. The controller sets the NHST timer to expire at 8:00 and goes to wait:

GetNextAction()9:00

Controller Scheduler

GetNextAction()

NHST = 8:00

8:00 GetNextAction()

Action list:
1.SetAlarm
(on, persistence = 0)

2.SetUserResponse(on)
3. * DoseAfterResponse

(vitamins = 20mg)

NHST = 9:00

8:10

Action list:
1.SetAlarm
(off, persistence = 0)

2.SetUserResponse(off)

NHST = 9:00

o
n

o
f
f

ActionComplete() Dose time = 8:10

(a)

Controller Scheduler

GetNextAction()13:00

GetNextAction()

Action list:
1.SetAlarm
(on, persistence = 1)

2.SetUserResponse(on)
3. *DoseAfterResponse

(insulin = 10mg)

NHST = 17:00

17:00

Action list:
1. *CancelDose

NHST = 17:00
ActionComplete()

Action list:
1. *DoseAfterResponse

(insulin = 20mg)

NHST = 19:00

19:00 GetNextAction()

Action list:
1. *Call doctor

NHST = 8:00

o
n

(b)

Figure 8 An illustrative example

 At 8:00 when the NHST timer expires, the controller queries the scheduler for action,

telling the scheduler that the current time is 8:00 o’clock. The NHST = 9:00 returned by the

scheduler is the next dose time for insulin. The action list returned by the scheduler

specifies three actions: The SetAlarm (on, 0) action turns on the reminder. Since vitamin

may be skipped, the scheduler sets the persistence parameter to 0, telling the controller that

the reminder can be turned off automatically after a brief interval of time. The second and

third actions in the list starts the controller to monitor the PTD button and when the user

responds by pushing the button, dispense 20 mg of vitamin as described in the Section 3.1.

 24

To safe space in the figure, we put a “*” in front of an action name to indicate that the

scheduler wants the result of the action return. After queuing work items for the actions, the

controller sets the NHST timer to expire at 9:00 and returns to wait for the timer.

 Suppose the user responds to the reminder and push the PTD button at 8:10, while the

reminder is still on. The controller helps the user retrieves from the vitamin container a 20

mg tablet and then calls ActionComplete() to return the actual dose time of 8:10. As this

function is also a query for the next action, the scheduler returns two actions: They turn off

the reminder and stop monitoring the PTD button. After these actions are dispatched, the

controller goes to wait for the NHST timer to expire at 9:00.

 Suppose that all went well prior to 13:00. In particular, the user promptly retrieved the 9:00

dose of insulin. In response to the GetNextAction() call from the controller at 13:00, the

scheduler requests that the reminder be turned on, this time persistently until the scheduler

requests for it to be turned off. Then the controller is to start monitoring the PTD button

and prepared to help the user retrieve a 10 mg dose of insulin when the user pushes the

button. After it dispatched the work items for these actions, the controller sets the NHST

timer to expire at 17:00 and goes to wait.

 At 17:00, the user still has not responded. When the controller calls GetNextAction(), the

scheduler can determine from the fact that the controller has not yet reported the

completion of the DoseAfterResponse action it requested at 13:00, the dose scheduled at

that time is still pending. Moreover 4 hours has elapsed. The schedule needs to be adjusted.

Hence, the scheduler requests that the pending dose be cancelled, while it consults the

medication schedule specification and adjusts the schedule. When the controller reports the

completion of CancelDose, the scheduler requests that a 20 mg dose is to be given to the

user when the user responds. There is no need for turning on the reminder because it is still

on, and the controller is still monitoring the PTD button. The value of NHST returned by

 25

the scheduler this time is 19:00. By then, 10 hours will have been elapsed since the user

took the latest dose of insulin. If the user still has not come to push the PTD button by

19:00, the scheduler will request that the controller calls the designated care taker to report

the non-compliance event. The value of NHST is 8:00, the time for dose of vitamin for the

next day. In the meantime the 20 mg dose of insulin is still pending.

7 Heuristic Scheduling Algorithms

This section provides an overview of the algorithms [27] for scheduling multiple medications. The

algorithms work with fixed dose sizes. As stated earlier, that a valid dose size exists has already

been assured when the user’s MSS was generated. By first choosing a valid dose size for each

medication, the scheduler then focuses on finding times for individual doses to meet all

intra-medication and inter-medication separation constraints.

7.1 Underlying Model

The design of the scheduler is based on the resource model [26, 27] that uses a virtual processor

PM and a virtual resource RM for each medication M to keep track of when the user is available to

take the medication. When computing a schedule, the scheduler treats each dose of each

medication M as if it is a job on processor PM and the sequence of doses of the medication as a task

M. A job starts when the corresponding dose should be retrieved by the user. A schedule for the

medication is a list of the time instants at which jobs of task M start. Figure 9 shows the data

structures used by the scheduler. Part 1 holds values of constraints parameters of each medication.

In addition, the scheduler maintains integer arrays processor and resource for each medication

M. The initial values of all elements of the arrays are 0, indicating that PM and RM are free. When

it schedules a job of M on the virtual processor (or allocates the resource to the job) at time k

since the start of the schedule, the scheduler sets the value of the k-th element of the

corresponding array to 1, indicating that the processor (or the resource) is occupied.

 26

 Part 1: Internal data structures for information on each medication
Class MedicationDirections{

int med_id; DosageParameters dp; SpecialInstructions si;
}
Class DosageParameters{

int t_min, t_max;
int ns_min, ns_max, as_min, as_max;
int nd_min, nd_max, ad_min, ad_max;
int b, r, l, p;

}
Class SpecialInstructions{

List<Interferer> drug_and_food_interaction;
List<DosageParameters> change_lists;

}
Class Interferer{

int med_id; int min_to_interferer; int min_fr_interferer;
}

Part 2: Resource model data structures for each medication
Class ResourceModel{

int[] resource = new int[t_min]; int[] processor = new int[t_min];
bool feasible = TRUE; List<int> schedule = NULL;
int priority = 0;

}
Class JobModel{

int release_time = 0; int execution_time = ns_min;
int deadline = release_time + execution_time;

}

Part 3: Data structure of priority schemes

enum PrioritySchemes{ RM, MVF, MIF, SSDF, EDF};

Figure 9 Data structure for medication M

 1) Processor Scheduling and Resource Allocation Rules The scheduler uses an instance of the

structure JobModel to hold the parameters of jobs of each medication M. The execution_time

field of the structure is initially set to the nominal minimum separation smin(M) of M. The

scheduler maintains correct separations between doses of M by scheduling each of the

corresponding jobs non-preemptively on PM for this amount of time whenever possible, but it

may schedule the job for a smaller amount time in the range from the absolute minimum

separation Smin(M) of M to smin(M). In addition, the maximum absolute separation between

consecutive doses of M is enforced by imposing a relative deadline for each of the jobs.

 For each medication M that has interferers, the scheduler uses the virtual resource RM and

resources of the interferers to help it maintain inter-medication separations. Simply put, a job of

M can start at a time t only when the resource RM is free at t. The scheduler allocates the resource

RM to each job of N for σmin(N, M) units of time each time when it schedules a job on PN. Thus,

each job of the interferer blocks jobs of M from starting for this amount of time. The worst-case

 27

blocking time of the medication M is the maximum over all of its interferers of the minimum

separations from interferer to M.

2) Priority Schemes Again, both OMAT and ODAT algorithms use priorities. As we will see

shortly, one of the better priority schemes is the Most Victimized First (MVF) scheme which

gives priorities to tasks based on their worst case blocking times; the longer the worst case

blocking time, the higher the priority.

Other priority schemes based on separation and interference characteristics of the medications

include the Most Interferers First (MIF) scheme and the Shortest Separation Difference First

(SSDF) schemes. They give higher priorities to tasks corresponding to medications with larger

numbers of interferers or larger differences between the maximum and minimum nominal

separations, respectively. We also experimented with the classical real-time priority schemes

Rate Monotonic (RM) and Earliest Deadline First (EDF) schemes. The former gives higher

priorities to tasks with shorter periods. The latter gives priorities to jobs based on their absolute

deadlines; the earlier the deadline, the higher the priority. Clearly, EDF scheme is suitable for

ODAT algorithms only.

7.2 Algorithm Descriptions

Figure 10 gives pseudo-code descriptions of basic versions of OMAT and ODAT algorithms. The

inputs are MedicationDirections of all medications in a MSS and PrioritySchemes used by the

algorithm. The value of the Boolean output variable feasible indicates whether the algorithm

succeeded in finding a feasible schedule when it terminates. If it succeeded (i.e., feasible is

TRUE), the elements of the feasible_schedule [] array point to the schedules (i.e., lists of job

start time instants) of all medication in the MSS.

1) OMAT Algorithms. After creating instances of data structures described above, the

scheduler considers medications in non-increasing priority order: It schedules jobs (i.e., doses) of

each medication M one at time, starting from the first job until it either fails to find an available

 28

(start) time for some job of M before the minimum duration t_min of the medication or has

successfully generated a list of start times for all the jobs within the duration. (An available time

for a job is an instant between the release time and deadline of the job at which both PM and RM

are free. The search for the earliest of such instants and the bookkeeping chores of the scheduler

are described by Step 3 in part (a) of the figure.) In the former case, the scheduler returns

immediately, with feasible set to FALSE. In the latter case, it sets the element in

feasible_schedule [] for the medication to point to the newly generated list and then move on to

work on the medication next in priority order.

Input: List<MedicationDirections> MSS, PrioritySchemes;

Output : feasible = TRUE;
feasible_schedule [number_medications] = {NULL};

1.For every medication listed in MSS, create an instance of JobModel,
ResourceModel and list head schedule.

2.Assign priority to each medication according to PrioritySchemes.
3.For each medication Mi from the one with the highest priority to

lowest, do the following:
latest_start_time = 0; current_medication_feasible = TRUE;
do while (current_medication_feasible == TRUE) {

A. Call FindAvailableTime () to get the earliest available
time instant x

B. if x is found,
if (x >= t_min of Mi) break;
Insert x into the start time list schedule of Mi
for (x <= k < x + ns_min of Mi)

processor[k] =1;
for every interferer N of Mi listed in MSS

for (x <= k < x + ns_min of Mi)
set resource[k] of N to 1;
latest_start_time = x;

C. else x is not found
current_medication_feasible = FALSE;
feasible = FALSE;

}
if feasible == TRUE, feasible_schedule[Mi] = schedule of Mi

4.Return feasible and feasible_schedule[number_medications]

Input: List<MedicationDirections> MSS, PrioritySchemes;

Output : feasible = TRUE;
feasible_schedule [number_medications]= {NULL};

1.For every medication listed in MSS, create an instance of JobModel,
ResourceModel and list head schedule.

2.schedule_complete = 0;
release_time_current_jobs[number_medications] = {0};
While (feasible == TRUE) and

(schedule_complete < number_medications) {
A. Determine based on release_time_current_jobs[] the current job

j with the earliest release time and highest priority among current
jobs of all medications , say j is of medication Mi

B. do
a. Call FindAvailableTime () to get the earliest available time

instant x.
b. if x is found,

if (x >= t_min of Mi) schedule_complete++ break;
Insert x into the start time list schedule of Mi
for (x <= k < x + ns_min of Mi) processor[k] =1;
for every interferer N of Mi listed in MSS

for (x <= k < x + ns_min of Mi)
set resource[k] of N to 1;

release_time of Mi’s current job = x + ns_min.
c. else x is not found

feasible = FALSE.
}

3.Return feasible and feasible_schedule[number_medications].

(a) One-Medication-At-a-Time (b) One-Dose-At-a-Time

Figure 10 Description of heuristic scheduling algorithms

Basic OMAT algorithms tend to schedule doses of higher priority medications close together,

leaving little or no time for doses of lower priority medications. A simple enhancement is to

schedule doses of medications as close as to their respective deadlines as possible. We call

algorithms with this enhancement advanced OMAT algorithms.

2) ODAT Algorithms From Step 2B of ODAT algorithms in part (b), we can see that the

scheduler does the same work to schedule individual jobs regardless of the algorithm it uses. An

 29

ODAT scheduler assigns priorities to jobs according to PrioritySchemes when the jobs are

released. It uses the array release_times_current_jobs [] to keep track when the current job of

each medication is released and ready to be scheduled. The schedule of a medication M is

complete when the possible start time of the job of M currently being scheduled is later than the

minimum duration of M. The scheduler continues to schedule jobs as they are released in priority

order until either it fails to find a possible start time for the job currently being scheduled or the

schedules of all medications in the given MSS are complete.

7.3 Relative Merits

To determine their relative merits, we used OMAT and ODAT algorithms to schedule a

variety of MSS samples in several simulation experiments. For each simulation run, we

generated 1000 MSS samples, which we found are sufficient to yield a 95 percent confidence.

We present here a summary of the experiments and performance data. Further details on

generation of MSS samples, experiment coverage and additional data can be found in [27].

1) Performance Measures We measure the performance of each algorithm along two

dimensions: success rate and schedule quality. The success rate of an algorithm is the chance the

algorithm finds a feasible schedule. The quality of medication schedules generated by an

algorithm is measured in part by how user friendly the schedules are. User friendliness is

quantified by the distribution of the normalized allowed tardiness (NAT) of the schedules: The

allowed tardiness (AT) of a dose k of medication M according to a schedule is the maximum

length of time the dose can be delayed without leading to non-compliance. The NAT of a dose k

of medication M is the ratio of the AT and the width of nominal separation range.

A good schedule should not only be user friendly but also closely adhere to medication

directions. We measure this aspect of schedule quality by two quantities: supply rate deviation

and demand rate deviation: The supply rate deviation of a medication M with supply rate (B, R)

according to a schedule is equal to the difference between the total intake of M within any

 30

interval of length R and the supply B, if the difference is positive; it is equal to zero if the

difference is zero or negative. The supply rate deviation of a schedule is the maximum supply

rate deviation over all medications according to schedule. Similarly, the demand rate deviation of

a medication M with demand rate (L, P) is the difference between the demand L and the

minimum intake in any interval of length P if the difference is positive, and is equal to zero if the

difference is zero or negative. The demand rate deviation of a schedule is the maximum demand

rate deviation over all medications according to the schedule.

2) Parameters of Sample Medications Each sample medication schedule specifications (MSS)

used in our simulation experiments is characterized by a number of parameters, including the

number n of medications in the MSS and the degree medications in it interact with each other.

The latter is quantified in part by the interference probability ρ which is the probability that

any medication interferes with some other medications in MSS. For a medication M that

interferes with another medication N, we capture the effect of interference by interference

severity:

δ(M, N) = [σmin(M, N) + σmin(N, M)] / max (Smax(M), Smax(N))

It is easy to see that the larger this ratio, the more constrained the schedule, and it is impossible

to maintain separations between doses of M and N without violating the maximum absolute

separation of one or both medications when this ratio is larger than 1.

Other parameters characterizing each medication are its separation, dose size and rate

constraint parameters. After many initial experiments, we found that the algorithms show

differentiating performance when these parameters were generated in the following manner. To

ensure that separation parameters of each medication in the MSS are meaningful, we generated

them by first selecting independently the value of its minimum nominal separation smin from the

even distribution [1, 14400]. We then categorized the medication based on the selected value as

frequent (4 or more times per day), typical (1 – 4 times per day) or infrequent (at most once per

 31

day). Table 3 lists the distributions of nominal separation range width (NSRW), difference

between nominal and absolute minimum separations (DNAMIS) and difference between

absolute and nominal maximum separations (DNAMAS) for different categories of medications.

We generated the other separation parameters of the sample medication by selecting

independently values of these random variables from the respective distributions listed in the

table and then computing the separation parameters from the sample value of smin accordingly.

Table 3 Distributions of separation parameters

Frequent Typical Infrequent

smin

NSRW
DNAMIS
DNAMAS

[1, 360] [360, 1440] [1440, 43200]
[1, 120]

[1, 120]

[1, 120]

[120, 480]

[1, 120]

[120, 480]

[480, 14400]

[480, 14400]
[480, 14400]

To generate the dose size and rate constraint parameters of each sample medication, we first

selected the total intake parameters B and L independently from the even distribution [1, 100].

After the value of absolute maximum separation Smax of the medication was selected, rate

intervals R and P were independently selected from the even distribution [Smax, 86400]. We then

used the DST algorithm [18] to find a feasible dose size of the medication and used the dose size

throughout the schedule. The samples failing the consistency test of DST or failing to yield a

feasible dose size were thrown away.

3) Data on Success Rates To determine how success rates of our algorithms depend on the

number n of medications, we stepped n by 1 from 3 to 20. ρand δ were selected independently

from the even distribution over the range [0.1, 1].

As we can see from Figure 11 that the success rates achieved by all of our algorithms are

poor for n = 5 or larger when the scheduler works with nominal separation ranges of all

medications. In contrast, Figure 12 shows that the scheduler is much more likely to find feasible

schedules meeting the more relaxed timing constraints imposed by the wider absolute separation

ranges. As we can see from these figures that the advanced OMAT algorithm with MVF priority

 32

scheme typically out performs other algorithms. For this reason, we chose to study it further in

more depth than other algorithms.

M
ea

n
S

uc
ce

ss
 R

at
e

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT

M
ea

n
S

uc
ce

ss
 R

at
e

0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
(a) n = 5

Basic OMAT ODAT Advanced OMAT
Algorithms
(b) n = 10

Priority schemes MIF MVF RM SSDF EDF
Figure 11 Success rates of schedules meeting nominal separation constraints

M
ea

n
S

uc
ce

ss
 R

at
e

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT

M
ea

n
S

uc
ce

ss
 R

at
e

0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
(a) n = 5

Basic OMAT ODAT Advanced OMAT
Algorithms
(b) n = 10

Priority schemes MIF MVF RM SSDF EDF

Figure 12 Success rates of schedules meeting absolute separation constraints

In simulation experiments to determine how the success rate depends on interference

probability ρ and severity δ, we initialized the parameters at 0.1, and then increased them

independently by 0.2 per step until their values become 1. The success rates achieved by the

advance OMAT algorithm with MVF scheme for different values of ρ and δ tell us that the

difficulty in finding feasible schedules is largely due to inter-medication separation constraints.

When medications rarely interact (e.g., ρ or δ are 0.1), the algorithm can achieve the high success

rate of 90% even when there are 10 or more medications to schedule. Even when ρ and δ are

both 0.3, the success rate is still more than 75%. However, the success rate degrades to a few

 33

percent to around 20 % when both ρ and δ are 0.7, even when there are only 5 medications in the

MSS to schedule.

4) Data on Schedule Quality Figure 13 plots the percentage of doses with different ranges of

normalized allowed tardiness (NAT) according to the schedules generated by the algorithms. An

algorithm is said to be unfriendly to a dose if the NAT of the dose is zero, somewhat friendly if

the NAT is between 0 and 0.3, friendly if the NAT is between 0.3 and 0.7, and very friendly if

the NAT is between 0.7 and 1. We can see that the advanced OMAT algorithms consistently out

perform algorithms in other families as they are friendly or very friendly to higher percentages of

doses than other algorithms. On the other hand, priority schemes do not affect the performance

significantly in this respect.

P
er

ce
nt

ag
e

of
 d

os
es

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT
Algorithms

Basic OMAT ODAT Advanced OMAT
Algorithms

0.00

1.00

0.60

0.40

0.20

0.80

P
er

ce
nt

ag
e

of
 d

os
es

(a) unfriendly (b) somewhat friendly

P
er

ce
nt

ag
e

of
 d

os
es

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT
Algorithms

Basic OMAT ODAT Advanced OMAT
Algorithms

0.00

1.00

0.60

0.40

0.20

0.80

P
er

ce
nt

ag
e

of
 d

os
es

Priority schemes MIF MVF RM SSDF EDF

(d) very friendly(c) friendly

 Figure 13 NAT of schedules meeting absolute separation constraints when n = 5

 Figures 14 and 15 show the mean supply rate deviations and mean demand rate deviations,

respectively, of schedules produced by different algorithms to meet absolute separation

 34

constraints. We can see from Figure 14 that ODAT algorithms have the worst performance in this

respect. This is because ODAT algorithms schedule doses at a higher frequency than algorithms

in OMAT families. Consequently, the intake for each medication scheduled in a supply interval

by ODAT algorithms is larger. Because advanced OMAT algorithms schedule doses as late as

possible, the intake of each medication scheduled by advanced OMAT algorithms are less than

the other two algorithm families. Consequently, they have the lowest supply rate deviations.

M
ea

n
S

up
pl

y
R

at
e

D
ev

ia
tio

n

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT

M
ea

n
S

up
pl

y
R

at
e

D
ev

ia
tio

n

0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
(a) n = 5

Basic OMAT ODAT Advanced OMAT
Algorithms
(b) n = 10

Priority schemes MIF MVF RM SSDF EDF

Figure 14 Supply rate deviations of schedules meeting absolute separation constraints

0.00

1.00

0.60

0.40

0.20

0.80

Basic OMAT ODAT Advanced OMAT
0.00

1.00

0.60

0.40

0.20

0.80

Algorithms
Basic OMAT ODAT Advanced OMAT

Algorithms

Priority schemes MIF MVF RM SSDF EDF

(a) n = 5 (b) n = 10

M
ea

n
D

em
an

d
R

at
e

D
ev

ia
tio

n

M
ea

n
D

em
an

d
R

at
e

D
ev

ia
tio

n

Figure 15 Demand rate deviations of schedules meeting absolute separation constraints

For the same reason, we can reach the opposite conclusion on the relative performance of

ODAT and advanced OMAT algorithms when the criterion of comparison is demand rate

deviation. As Figure 15 shows, ODAT algorithms have the lowest demand rate deviations among

the algorithms while the advanced OMAT algorithms have the highest demand rate deviations.

 35

8 Summary and Future Work

Previous sections described the design and operations of a smart medication dispenser. Except

for set up operation and retrieval of individual doses from medication containers, the dispenser is

fully automatic. By monitoring the user’s actions during set up, the dispenser prevents errors in

medication identification. By automating the choices of dose sizes and times according to a

machine readable MSS, the dispenser relieves the user from the burden of interpreting

medication directions and special administration instructions and thus prevents the common

errors due to misinterpretation. By using algorithms that can take advantage of the scheduling

flexibility provided by the sizable ranges of dosage parameters of modern medications, the

scheduler can often adjust dose times of medications to keep compliance when the user is tardy.

The bulk of the critical work in medication administration is done collaboratively by the

dispenser controller and medication scheduler. The interface and communication flows between

the components are based on the general action-oriented collaboration scheme described in

Section 5. As pointed earlier, generality of the interface is an advantage of this design. By

replacing the decision maker and action handlers, one can build a different device using more or

less the same action executor. Similar, we can easily enhance and configure the medication

dispenser by adding new and enhance action handlers into the action handler library. Indeed, we

plan to use the action-oriented design to build medication dispensers for hospital and clinic use.

The dispenser controller and the medication scheduler in the current prototype run on the

same computer. The overhead incurred in their communication is minimal. An alternative design

is to have the controller run on the local embedded machine but have the scheduler runs on a

networked server. In that case, we can link multiple dispensers to a single scheduler server

through the network and the single scheduler can compute medication timetables for multiple

persons and request corresponding actions to be carried out by multiple dispensers. While this

alternative appears to be suitable dispensers for hospital and clinics, factors such as high

 36

communication overheads and lower than ideal network availability may rule out its use. We are

investigating this issue.

Many functions can be added to the dispenser to improve its user friendliness and

effectiveness. An example is to enable the use of user’s recorded music or voice messages as

reminders. The current prototype does not support the capture and use of user preferences. The

medication scheduling algorithms need to be modified to take into account the soft constraints

defined by the user preference parameters. The compliance monitor in the current prototype is

designed to perform basic non-compliance notification (e.g., call a care taker). In addition to

enabling it to send non-compliance notifications using multiple media, we also want the monitor

to record actual sizes and times of individual doses of all medications taken by the user, and thus

generate a local medication record for the user. Finally, the current prototype needs the user to

retrieve doses from containers manually. We are searching for a device that can dispense doses of

specified sizes from containers automatically. The challenge is how to dispense correct dose size

of each medication given that medications can come in arbitrary shapes and forms.

Acknowledgements

This work is partially supported by Taiwan Academia Sinica thematic project SISARL. The

authors wish to thank members of SISARL medical advisory board, listed at http://sisarl.org, and

Dr. D. H. Burkhardt for their critiques and suggestions.

References

[1] Veacez, P. J., “An individual based framework for a study on medical error,” International Journal for Quality in
Health Care, Vol. 18, No. 4, May 2006.

[2] “Preventing medication errors,” Report Brief, Institute of Medicine of the National Academies,
http://www.iom.edu/Object.File/Master/35/943/medication%20errors%20new.pdf,

[3] Lisby, M., L. P. Nielsen and J. Mainz, “Errors in the medication process: frequency, type, and potential clinical
consequences,” International Journal for Quality in Health Care, Vol. 17, No. 1, 2005.

[4] Law, A. V., M. D. Ray, K. K. Knapp, and J. K. Balesh, “Unmet needs in medication use process: perceptions of
physician, pharmacists, and patients,” Journal of the American Pharmaceutical Association, Vol. 43, No 3, 2003.

[5] Wertheimer,A. I, and T. M. Santella, “Medication compliance research,” Jr. of App. Res. in Clinical and
Experimental Therapeutics, 2003.

 37

[6] Kuperman, G. J., A. Bobb, T. H. Payne et al. “Medication related clinical decision support in computerized
provider order entry systems: A Review” J. Am. Med. Inform. Assoc. 2007.

[7] Health Information Systems: http://www.hhs.gov/healthit/ahic.html, and Baron, R. J., E. L. Fabens, M.
Schiffman and E. Wolf, “Electronic health records: just around the corner? Or over the cliff?,” Annuals of
Internal Medicine, 2005.

[8] D. M. Cutler, N. E. Feldman, and J. R. Horwitz, “U. S. Adoption of Computerized Physician Order Entry
Systems,” Health Affairs, Vol. 24, No. 6, 2005.

[9] R. L. Davis, “Computerized Physician Order Entry Systems: The Coming of Age for Outpatient Medicine,”
PLoS Medicine, September 2005.

[10] B. Koppel, et al., “Role of Computerized Physician Order Entry Systems in Facilitating Medication Errors,”
Journal of AMA, Vol. 293, No. 10, 2005.

[11] King W. J., N. Paice, et al. “The effect of computerized physician order entry on medication errors and adverse
drug events in pediatric inpatients.” Pediatrics, September 2003.

[12] J. W. S. Liu, C. S. Shih, P. H. Tsai, H. C. Yeh, P. C. Hsiu, C. Y. Yu, and W. H. Chang, “End-User Support for
Error Free Medication Process,” Proceedings of High-Confidence Medication Device Software and Systems and
Universal Plug-and-Play Workshop, pp. 34 – 45, June 2007.

[13] Smaling, J. and M. A. Holt, “Integration and automation transform medication administration safety,” Health
Care Management Technology, April 2005.

[14] P. Bonnabry, “Information technologies for the prevention of medication errors,” European Pharmacotherapy,
2003.

[15] S. C. Dursco, “Technological Advances in Improving Medication Adherence in the Elderly,” Annals of
Long-Term Care: Clinical Care and Aging, Vol. 9, No. 4, 2001.

[16] PDRHealth, Drug Information, http://www.pdrhealth.com/drug_info/
[17] H. C. Yeh, P. C. Hsiu, C. S. Shih, P. H. Tsai and J. W. S. Liu, “APAMAT: A Prescription Algebra for Medication

Authoring Tool,” Proceedings of IEEE International Conference on Systems, Man and Cybernetics, October
2006.

[18] Tsai, P. H. and J. W. S. Liu, “Consistency and feasibility of flexible demand-supply constraints,” Institute of
Information Science, Academia Sinica, Taiwan, Technical Report TR-IIS-07-001, January 2007.

[19] e-pill, Pill Dispenser: http://www.epill.com/dispenser.html and MD 2: http://www.epill.com/md2.html
[20] Pill boxes: http://www.dynamic-living.com/automated_medication_dispenser.htm
[21] My Pill Box at http://www.mypillbox.org/mypillbox.php
[22] Rx Showcase, http://www.rxinsider.com/prescription_dispensing_automation.htm
[23] M.Governo, V. Riva, P. Fiorini, and C. Nugent “MEDICATE Teleassistance System” The 11th International

Conference on Advance Robotics. June 2003.
[24] Murray, M. D., “Automated medication dispensing devices,” Chapter 11 in Making health care safer: a critical

analysis of patient safety, 01-E58, Agent for Healthcare Research and Quality, 2001.
[25] Wan, D., “Magic Medicaine Cabinet: A situated portal for consumer healthcare,” Proceedings of First

International Symposium on Handheld and Ubiquitous Computing (HUC ’99), September 1999.
[26] P. H. Tsai, H. C. Yeh, C. Y. Yu, P. C. Hsiu, C. S. Shih and J. W. S. Liu (2006), Compliance Enforcement of

Temporal and Dosage Constraints, Proceedings of IEEE Real-Time Systems Symposium, December 2006.
[27] Tsai, P. H., C. S. Shih, and J. W. S. Liu, “Algorithms for scheduling multiple interacting medications,” Institute

of Information Science, Academia Sinica, Taiwan, Technical Report TR-IIS-08-001, April 2008.
[28] Schmidt, D. C. et. al, “Leader/Followers: A Design Pattern for Efficient Multithreaded Event De-multiplexing

and Dispatching,”
[29] Hsiu, P. C., H. C. Yeh, P. H. Tsai, C. S. Shih, D. H. Burkhardt, T. W. Kuo, J. W. S. Liu, T. Y. Huang, “A General

Model for Medication Scheduling,” Institute of Information Science, Academia Sinica, Taiwan, Technical
Report TR-IIS-05-008, July 2005.

