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Abstract. Reinforcement learning(RL) is a promising framework for deeper in-
vestigation of robotics and control on account of challenges from uncertainties. 
In this paper, we document a simulation and experiment in applying an existing 
model-based RL framework, PILCO, to the problem of state-to-state time-opti-
mal control with bounded input in the presence of uncertainties. In particular, 
Gaussian Process is employed to model dynamics, successfully reducing the ef-
fect of model biases. Evaluation of policy, which is implemented in Gaussian 
radial basis functions, is done through iterated prediction with Gaussian posteri-
ors and deterministic approximate inference. Finally, analytic gradients are used 
for policy improvement. A simulation has shown a successful learning of a dou-
ble integrator completing a rest-to-rest nearly time-optimal locomotion for a pre-
specified stopping distance along a linear track with uniform viscous friction. 
Time-optimality and data efficiency of the learning are demonstrated in the re-
sults. In addition, an experimental validation on an inexpensive robot car shows 
the generalization potential and consistency of the leveraging model-based RL to 
similar systems and similar tasks. Moreover, a rescaling transformation from the 
baseline learned triangle velocity profile to a set of safe trapezoid velocity pro-
files is presented, accommodating additional velocity limit.  

Keywords: Model-Based Reinforcement Learning, Velocity Learning, Time-
Optimal Trajectory, Data-driven Vehicle Control 

1 Introduction 

Optimal control based approaches are important for trajectory planning in a lot of 
robotics and autonomous driving applications, since the formulations are able to take 
into account more general constraints and objectives. To improve the working effi-
ciency and productivity by completing tasks as fast as possible, especially for tasks 
involving repetitive state-to-state transfer trajectory execution, Time-Optimal Control 
Problems (TOCP) have been illustrated in a mass body of literature[1] related to robot-
ics, autonomous  driving or racing. The challenges of the problem lie in several aspects 
including complicated system dynamics, multi-dimensional state and control spaces, as 
well as various constraints on the robots and the environment and most importantly 
uncertainties. The derivation of optimal control and state trajectories are in general very 
computationally costly, so that efficiency and accuracy of computational methods 
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adopted to find the optimal state and control trajectories are usually a great concern, as 
most practical industrial or engineering systems are required to react to instantly 
changes of operating conditions and environments in a short time, or even in real time. 
A popular approach to obtain time-optimal motion for a system with known dynamic 
model and fixed boundary conditions under the safety and kino-dynamic constraints of 
a vehicle is via optimal control or model predictive controlformulations. This approach 
requires the derivation of optimality conditions, which is composed of coupled ordi-
nary differential equations or partial differential equations with boundary conditions,  
and the help of numerical methods and optimization algorithms.  

Learning-based control algorithms for a dynamical system, on the other hand, learn 
to generate the desired system behavior without a priori complicated system formalism 
and predefined controller parameters, thereby being likely more generalizable and plat-
form-independent. One of the promising approaches in the context of intelligent plan-
ning and control is based on Reinforcement Learning (RL) [2], [3], which can be 
viewed as a class of optimal control. RL refers to the learning of a policy,  defined as a 
mapping from state space to action space, by means of maximizing a reward the agent 
receives from the environments it interacts. There are several ways to categorize RL 
algorithms, such as either model-based or model-free. With the dynamical system mod-
elled as a reward-maximizing RL agent and the desired behavior expressed as a utility 
function, it is possible to train the system for an optimal sequence of actions through its 
interactions with the environment. To stay data-efficient, the group of model-
based methods that employ  derived or learned system dynamic models are more pref-
erable for diverse robot applications since fewer interactions between the agent and the 
environment are required to find better trajectories faster, as compared to the group of 
model-free approaches [2],[3]. In general, the intricate transition models can be derived 
from deterministic physics-based models or stochastic learning algorithms, and the con-
straints can then be incorporated within the interaction processes to enforce the system 
with desirable behaviors.  

The effectiveness and performance of RL is task instance-specific, i.e. as a function 
of the transition and reward functions induced by the policy being evaluated. Therefore, 
to address the practical challenges in facilitating RL algorithms for a wide range of real-
world decision-making problems such as the autonomous vehicles for  diverse driving 
scenarios, it is generally believed that only specific applications of RL on concrete cases 
can better demonstrate related issues. With this aim of study, the velocity learning task 
of an autonomous car driving with bounded acceleration along a linear path is investi-
gated empirically. The learning goal is to recover a time-optimal motion to complete a 
rest-to-rest linear locomotion along a linear track. The dynamics to be learned is as-
sumed to obey a double integrator-like uncertain dynamics subject to symmetric input 
constraint with parametric uncertain parameters of mass and friction. The characteris-
tics of the task is that the vehicle mass is uncertain and the environment characteristics 
such as friction is unknown, and both parameters affect the maximum speed along the 
path.  

Our main contributions include: 
1. In this paper, we perform both simulation and sim-to-real validation experiment re-
sults with an existing sample-efficient model-based policy search algorithm, 
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Probabilistic Inference for Learning Control (PILCO) [4]. We apply  PILCO to time-
optimal velocity planning problem of state-to-state steer task in simulation and a real-
world sim-to-real experiment. It is empirically shown in simulation that the car, mod-
eled as a constrained double-integrator with uncertain mass and viscous friction, suc-
cessfully accomplishes the learning of near time-optimal triangle velocity profile with 
a single switching, while keeping the advantage of data efficiency.  
2.Provide  assessment and interpretations on the model-based RL planning results 
3.Transform the learned triangle velocity profiles in accordance with additional speed 
constraints into single or double trapezoid velocity profiles. 

The remainder of the article is structured as follows: In section 2 we give an over-
view of the approaches to the time-optimal control problem. The key elements of the 
PILCO algorithm are elaborated in Section 3, including dynamics modelling, trajectory 
prediction, policy evaluation and policy improvement. In Section4, we present the sim-
ulation results of time-optimal velocity learning for the autonomous vehicle with dou-
ble integrator dynamics, and sim-to-real experimental validation on a simple car along 
with discussions. Transforming a triangle velocity  to a trapezoid or double trapezoids 
velocity for longer traveling time is shown in Section 5. Lastly, we conclude with final 
remarks in Section 6.  

2 Related Work 

There is a wealth of literature with regard to different aspects of TOCP. In this section, 
we briefly present the common approaches developed in robotics and autonomous ve-
hicles, followed by those based on reinforcement learning.  
2.1 Approaches to TOCP with Known dynamics 

Control and trajectory generation and their optimization for the mission to be completed 
are typically based on a model of the controlled system, thus platform-specific. Regard-
ing time-optimality, there are two variations of TOCP, namely complete and decoupled. 
Complete approaches aim to solve the challenging problem in its entirety of determin-
ing the optimal state and input trajectories simultaneously, in which a number of direct 
or indirect numerical methods are developed [6], [12], [25]. On the contrary, the decou-
pled approach, or path-velocity decomposition approach, decomposes the trajec-
tory generation and optimization into two subproblems: the first is the generation of a 
geometric path for connecting two configurations without violating geometric con-
straints such as obstacle avoidance or smoothness requirements, and the second 
is the design of a time-scaling function of state-to-state transfer along 
the planned path, while respecting the given kino-dynamic constraints and fixed bound-
ary conditions (such as the initial and target positions and velocities are precisely spec-
ified).  Given a path, the velocity and acceleration of the vehicle on it can be altered by 
the design of the time-scaling function compliance with the constraints including 
torque, acceleration, velocity [7-10].  The following three conventional methods have 
been commonly used for motion planning and optimization of a broad variety of robotic 
systems such as robotic manipulators or mobile robots in the robotic community. 
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Hamilton-Jacobi-Bellman (HJB) Equation. To address the optimal control problems 
in full generality with the use of optimal control theory such as Pontryagin Maximum 
Principle (PMP) or Dynamic Programming Principle (DPP)[11], necessary optimality 
conditions for the state trajectories and control policies are derived. This yields the 
Two-point Boundary Value Problem of HJB partial differential equations for time-op-
timization of trajectories. HJB approach is a practically useful approach in that many 
numerical solvers of HJB equations are developed. The advantage of generality is that 
more general state and input constraints and objective functions can be taken into ac-
count. For example, time-optimality can be traded off against energy to yield less ag-
gressive control to move the robots slower but smoother.  
Convex Optimization (CO). The Hamiltonian of TOCP for robotic manipulator is 
shown to be convex with respect to the control input. TOCP is transformed into a con-
vex optimization problem with a single state through a nonlinear change of variables 
[13], where the acceleration and velocity at discretized locations on the path are the 
optimization variables. . Then, followed by [14], the work is further extended to meet 
speed dependent requirements. Such approach is simple and robust thanks to the exist-
ing convex optimization libraries, yet only convex objective functions can be con-
cerned. However, the convex optimization program contains a large number of varia-
bles and inequality constraints, making it slow and less suitable for real-time applica-
tions. 
Numerical Integration (NI). Since the vehicle velocity highly depends on the path to 
be followed, the decoupled approach splits the motion planning problems to two sub-
problems as aforementioned to manage  the computational complexity. A kinematically 
feasible state-to-state transfer path parametrized by a scalar curvilinear abscissa coor-
dinate s, usually the arc length, is first determined. The travel time is determined by the 
path velocity 𝑠ሶ along the path or the time scaling function s(t) that is solved by optimi-
zation tools to meet the imposed constraints. Then dynamics expressed as multi-dimen-
sional state space equations is reduced to expressions in phase plane of ሺ𝑠, 𝑠ሶሻof para-
metrized path coordinate 𝑠, and parametric path velocity 𝑠ሶ. By description of the dy-
namics and constraints along the path to be followed on the ሺ𝑠, 𝑠ሶሻphase plane, then this 
method generates the velocity limit curve on the phase plane from the velocity and 
acceleration bounds. The generation of minimum-time velocity profile along the given 
pathis greatly simplified to the determination of switching structure in the phase plane 
[1], [11]. Essentially, itsearches for switching points on the phase plane and establishes 
the velocity profile by integrating forward with the acceleration limits and backward 
with the deceleration limits pivoting from those points. In general, a model predictive 
control (MPC) framework can be used in the decoupled approach to generate the safe 
velocity profileand the input commands for following a given planned path in terms of 
known system dynamics [15]. 
2.2 Reinforcement learning frameworks 

For an autonomous robot or vehicle to perform a mission, the system is composed 
of the agent and the real-world environment where it operates. The mission may very 
often involve some planning task with time and computational resource budget in real-
time applications. A model therefore is a good informative basis for planning. However, 
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the model of the agent and the environment is uncertain and not accurate due to para-
metric uncertainties and unmodelled dynamics. Sources of uncertainties exist in the 
input and perception and agent-environment interaction. Dealing with uncertainties is 
one of the most challenging issues in planning and control of unmanned vehicles. The 
control should thus be robust to real situations encountered during execution of mission 
for safety and performance guarantee. For enhancing autonomous robotic system per-
formance, instead of tuning the behaviors frequently and manually in practical situa-
tions, we may consider the integration of  learning and planning  due to the capabilities 
of tackling the issue of over-simplicity of modeling development due to unmodeled 
dynamics and uncertainties. This aim is likely to be alleviated with the advents of RL 
frameworks, especially the model-based family [27]. These approaches reformulate the 
problem as a Markov Decision Process for the autonomous agent, which maximizes the 
long-term rewards and does not necessarily need the transition dynamics beforehand. 
While the model-free group of approaches attracts the most scientific interest, the 
model-based group is recommended for real robots [2], [3], [28] since the employment 
of a learned model of the agent-environment interactions creates an internal simulation 
during learning process and reduces physical engagement substantially, decreasing po-
tential hazards and mechanical wear of robots, while improving reliability and robust-
ness in task execution. The suitability is, in addition to data efficiency and the advantage 
of less agent-environment interactions,  because model-based RL learns a dynamics 
model and then the derived characteristics of a learned model is used for generating 
trajectories and learning the policy.  

There are a surging number of researches related to model-based reinforcement 
learning over the past decade. Despite its faster convergence over the model-free frame-
works, a severe issue is that any model bias greatly affects the learning performance. 
System transition modellingor model fitting techniques range from deterministic meth-
ods such as physics-based formulation, Receptive Field Weighted Regression(RFWR), 
to stochastic methods including Expectation Maximization (EM), Deep Neural Net-
works (DNN) and so on. Among which, Gaussian Process (GP) is the state-of-the-art 
practice that extracts the information from the sampled data with the highest data effi-
ciency [4]. In contrast to other probabilistic models that maintain a distribution over 
random variables, GP builds one over functions. Therefore, it has no prior assumption 
on the function mapping current states and actions to future states. The fact makes it an 
effective tool, and is employed in this study.  

RL for controlling non-linear dynamical models with continuous state and action 
space has two method families: value function or policy search. 
Value Function.The most widely used one is the value function approaches. This class 
of methods estimates an optimal value function of future outcome 𝑄గሺ𝑠,𝑎ሻ, usually 
written in the form of equation (1), given the state sof the agent and takes actionaac-
cording to a policy 𝜋ሺ𝑠,𝑎ሻ that results in a sequence of state and action.The policy that 
maximizes the long-term reward is consequentlyreconstructed from the sequence of 
optimal actions at each state  

 𝑄గሺ𝑠,𝑎ሻ ൌ ∑ 𝑃ሺ𝑠ᇱ|𝑠,𝑎ሻሾ𝑅ሺ𝑠ᇱ|𝑠,𝑎ሻ ൅ 𝛾𝑄గሺ𝑠ᇱ,𝑎ᇱሻሿ௦ᇲ  (1) 
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This category is widely adopted in model-based RL and particularly implemented with 
dynamic programming techniques, which requires known system dynamics. However, 
it is not suitable for high dimensional or continuous state and action spaces as the scale 
of the value function will be infinite.  
Policy Search. Policy search is deemed more natural for robotics learning [41]. Instead 
of deriving an optimal policy from the value function, this class of methods keeps a set 
of parameters for the policy and directly optimizes it by maximizing the cumulative 
reward. Two common techniques involved in policy search are gradient-based ap-
proaches and sampling-based approaches. We have chosen the former because the latter 
does not always guarantee a convergence to the optimal policy and the generated tra-
jectory is sometimes far from the observed input-output data collected due to model 
biases [2]. More details will be given in the next section. 

3 Model-based RL for Time-Optimal Vehicle Motion 

The aim is to control the vehicle from an initial state to reach a target state in minimal 
time. The existence of time-optimal trajectories is guaranteed by PMP for a vehicle 
[16]. In order to find the time-optimal control policy, there are a number of choices of 
learning algorithms. An earlier work [17] used Q-learning for car-like vehicle motion 
planning. [18] considered the transfer learning of obstacle avoidance behaviors in sim-
ilar environments with similar obstacle patterns, where the state of the environment is 
represented by the obstacle pattern. A recent model-free actor-critic RL algorithm is 
applied to time-optimal velocity planning along arbitrary path in [19].This work 
showed that incorporation of velocity computation by exploiting the vehicle dynamics 
model is feasible in practice to enhance the learning outcome to some extent.  
The goal of data-driven velocity planning in the form of time scaling function we deal 
with is to recover or approximate the optimal time-scaling function for a vehicle with-
out knowing its dynamic model. In this paper, for the specific aggressive velocity plan-
ning problem,  we exploit and implement PILCO [4], a data- efficient model-based RL, 
first the simulation and then on a real experiment of toy car. PILCO is summarized in 
Algorithm 1. PILCO has been tested with success in benchmark tasks at low-dimen-
sional state space such as control of the inverted pendulum and the cart-pole swing-up, 
demonstrating unprecedented performance of successful learning outcome. The method 
employs the state-of the art non-parametric Gaussian Process (GP) for model learning 
of the unknown dynamics and corresponding uncertainty estimates based on probabil-
istic dynamics modelling. It then uses approximate inference for system state trajectory 
predictions and policy evaluation. Finally, policy improvement is made with analytic 
policy gradients. The core elements of the PILCO framework, including dynamics 
modelling, trajectory prediction, policy evaluation and policy optimization, are briefly 
described in this section. 

 

Algorithm 1 PILCO  
1: Define parametrized policy:𝜋: 𝑧௧ ൈ 𝜃 → 𝑢௧ 
2: Initialize parameters 𝜃 randomly 
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3: Execute system and record data 
4: repeat 
5: Learn system dynamics model with GP 
6:Predict system trajectories  
7:Evaluate policy: 𝐽గሺ𝜃ሻ ൌ ∑ 𝛾௧𝔼௑ሾ𝑐𝑜𝑠𝑡ሺ𝑋௧ሻ|𝜃ሿ

்
௧ୀ଴  

8: Update parameters by gradients d𝐽గሺ𝜃ሻ/d𝜃 
9:  Execute system and record data 

10: until task completed 
3.1 Dynamics modelling 

In real world, model uncertainties and model errors are inevitable in the process of 
modeling a dynamic system. As mentioned, there are various methods to model and 
learn the unknown system dynamics [2]. It is important that the model learning algo-
rithm can cope with the uncertainty and noise in collected data. PILCO adopts GP prob-
abilistic modelling and inference to learn the transition dynamics of real-world agent 
(Algorithm 1, line 5) as a prediction model of the system to control. Therefore, it effec-
tively handles the input uncertainties and reduces the effect of model errors or simpli-
fication for the system dynamics derived through non-trivial mathematics and physics 
equations, eliminating the common drawback of model-based frameworks. 
The training inputs are data in the form of the state-action (x,u) pairs generated by the 
dynamics of agent-environment interaction: 

 𝑥෤௧ ൌ ቂ
𝑥௧
𝑢௧
ቃ ∈ ℝ஽ାி, (2) 

and the target is the difference between consecutive states: 

 ∆௧ൌ 𝑥௧ାଵ െ 𝑥௧ ∈ ℝ஽. (3) 

In this paper, a common choice of the mean and variance of a multivariate Gaussian is 
a zero mean function and a squared exponential covariance function defined as: 

 𝑘൫𝑥෤௜ , 𝑥෤௝൯ ൌ 𝜎௙
ଶexp ሺെ

ଵ

ଶ
൫𝑥෤௜ െ 𝑥෤௝൯

୘
Λିଵ൫𝑥෤௜ െ 𝑥෤௝൯ሻ, (4) 

where variance of the function 𝜎௙
ଶ  and Λ ≔ diagሺሾ𝑙ଵଶ, 𝑙ଶ

ଶ, … , 𝑙஽ାி
ଶ ሿሻ  depends on the 

length scales. With 𝑛 training samples 𝑋෨:ൌ ሾ𝑥෤ଵ, … , 𝑥෤௡ሿ and y:ൌ ሾ∆ଵ, … ,∆௡ሿ, the poste-
rior GP hyper-parameters are learned through evidence maximization and describes a 
one-step prediction model of state trajectory generation: 
posterior state distribution 

 𝑝ሺ𝑋௧ାଵ|𝑋௧,𝑈௧ሻ ൌ 𝒩ሺ𝑋௧ାଵ|𝜇௧ାଵ,∑௧ାଵሻ, (5) 

mean  

𝜇௧ାଵ ൌ 𝑋௧ ൅ 𝔼௙ሾ∆௧ሿ, (6) 

variance 

 ∑௧ାଵ ൌ var௙ሾ∆௧ሿ, (7) 
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where capitals represent random variables. In practice, the computationally tractable 
mean  and variance are used for further decision making. 

3.2 Deterministic Trajectory Prediction 

With the model uncertainty handled by GP, PILCO employs model-based policy search 
for planning and uses analytic gradients of closed form solutions for optimization. For 
the later policy evaluation, PILCO first predicts long-term system trajectories with the 
learnt transition dynamics (Algorithm 1, line 6).To such end, the one-step prediction 
process is cascaded from 𝑋଴to 𝑋ଵ,𝑋ଵ to 𝑋ଶ, and up to 𝑋், generating a T-step-ahead 
prediction which forms a distribution over the system trajectories in which the uncer-
tainties are handled by introducing the noise which contaminates the states. The distri-
bution of state 𝑋௧  at time t is assumed Gaussian with mean 𝜇௧ and variance 𝛴௧  , 
𝑝ሺ𝑋௧ሻ~𝒩ሺ𝜇௧,𝛴௧ሻ, and subsequently approximated by moment matching or lineariza-
tion of the posterior mean and covariance for further computation during policy opti-
mization. 

 𝜇௧ାଵ ൌ 𝜇௧ ൅ 𝜇௱, (8) 

 ∑௧ାଵ ൌ 𝛴௧ ൅ 𝛴௱ ൅ 𝑐𝑜𝑣ሾ𝑋௧ ,𝛥௧ାଵሿ ൅ 𝑐𝑜𝑣ሾ𝛥௧ାଵ,𝑋௧ሿ, (9) 

 𝑐𝑜𝑣ሾ𝑋௧ ,𝛥௧ାଵሿ ൌ 𝑐𝑜𝑣ሾ𝑋௧,𝑈௧ሿ𝛴௨ିଵ𝑐𝑜𝑣ሾ𝑈௧ ,𝛥௧ାଵሿ. (10) 

3.3 Policy evaluation 

Having retrieved the predictive trajectories, it remains computing the expected long-
term cost for policy evaluation. Given the entire experience time in each episode as a 

fixed length of horizonT୪ୣୟ୰୬, let ∆T ൌ
୘ౢ౛౗౨౤
ே

be the sampling time so that [0,T୪ୣୟ୰୬] is 

uniformly sampled into equally-spaced N time steps {t∆T, 𝑡 ൌ 0,1, … , N}. PILCO ap-
plies the discounted cost function (11) along  the learned state trajectory ሼ𝑋௧, 𝑡 ൌ
0,1, … , N,𝑋଴ given ሽ  for the sequence of actions generated by the control policy 
{𝑎௧ , 𝑡 ൌ 0,1, … , N െ 1}to state distributions at each time step   

 𝐽ሺ𝜃ሻ ൌ ∑ 𝛾௧𝔼௑ሾcostሺ𝑋௧ሻ|𝜃ሿ୒
௧ୀ଴                                               (11) 

where 𝛾 is the future discount factor, 

𝔼௑ሾcostሺ𝑋௧ሻ|𝜃ሿ ൌ ׬ costሺ𝑋௧ሻ𝒩ሺ𝑋௧|𝜇௧,∑௧ሻd𝑋௧, (12) 

and 𝜃 is the given policy parameter for the control policy. The reinforcement learning 
strategy is to iteratively refine a simulation-learned control policy that minimizes the 
fiexed learning horizon cumulative discounted cost (11)-(12) directly through the 
learned model as the model of the system is updated during learning episode when more 
information is acquired over eipsodes. In general, there are quite a number of cost func-
tions possible for the reward of RL, yet the effectiveness depends on the applications 
indeed. For example, a parametric cost function [20] can be used to switch the cost from 
a quadratic cost function to a time-optimal cost during learning to come up with differ-
ent feedback control in response to different events. Likewise, [21] utilizes a progress 
maximizing cost function, ensuring the learning agent drives as far as possible within 
every time step. Here, the cost function such that the integral in (12) can be analytically 
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calculated based on the trajectory (from the given initial state to the final state the sys-
tem actually reaches) is suitable to avoid the pitfall.Note that a large 𝛾 will cause the 
accumulated cost (11) calculated at the end of episode to reduce more slowly in late 
time as time index t→ N. A small 𝛾 would thus be good for uniform convergence. 

Remark. Since the learning reward (11)-(12) does not include the control regularization 
term (such as using L1, L2 or mixed L1- L2 norm regularization as additional sparsity-
inducing cost for (11)-(12) [30]), it allows gradient computation for model-based opti-
mization described in the following subsection.  
  
3.4 Policy optimization 

The policy is improved episodically through the gradient information of (11) (Algo-
rithm 1, line 8): the update steps are in the gradient directions toward high rewards. For 
analytical tractability, it is required that the expected cost in (12) is differentiable about 
the state distribution moments, and that the moments of the controller distribution are 
differentiable with respect to the policy parameter 𝜃. PILCO, a model-based RL, ex-
plicitly takes into account the model uncertainty for prediction and analytic policy gra-
dient computation, which is available since the reward function and transition function 
are differentiable. Thorough analytic computation of the gradient d 𝐽గሺ𝜃ሻ/d𝜃, which 
involves several applications of chain rule, is documented in [4]. Finally, An advantage 
of PILCO is that thanks to the analytic expression of the policy gradient with respect to 
policy parameters, any standard gradient-based optimization method such as CG or 
BFGS can be implemented to search for the optimal policy parameter 𝜃 with thousands 
of parameters which minimizes the total cost 𝐽గሺ𝜃ሻ so as to obtain desired state trajec-
tory. 

4 Results and Discussions 

The effectiveness and performance of a model-based reinforcement learning algorithm 
can be scenario (problem instance) dependent and platform-specific (in terms of dy-
namics model and parameters).  The task demonstrated in this paper is to learn a veloc-
ity function for a vehicle with second order system dynamics so that the completion 
time of a rest-to-rest steer from origin to a state 𝐱୲ୟ୰୥ୣ୲  along a linear path with un-
known friction characteristics is as short as possible under the physical constraint of 
vehicle. The existence of a time-optimal velocity and input so that the target is achieved 
as fast as possible is guaranteed by PMP. The analytical or learned time-optimal veloc-
ity solution is both platform and path dependent. Control bounds, different boundary 
conditions or paths with different curvature profiles and lengths,  and various choices 
of the physical parameters such as mass, friction,  can produce different velocity solu-
tions. As a result, different maximum velocities and different travel times are produced. 
A lower bound of the travel time can be calculated considering the path is a straight 
line as studied here. 
For this task, both the state and the input can be observed to collect the data. Since the 
measured data x, xሶ  and the associated  trajectory cost for a given policy have errors due 
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to model uncertainties and disturbances, model error is detrimental to task performance 
executed by a control policy [26]. Disturbances affect the stability of system to reach 
the target. Uncertainties, caused by lateral drift of the vehicle, physical properties such 
as inertia and  friction etc., make the prediction of the sampled states on the linear track 
under the input ambiguous.  The learning control algorithm should effectively mitigate 
the uncertainty propagation to accurately estimate the uncertainty of the dynamics when 
restricted for the specific state-to-state transfer task with given goal-reaching path to 
yield an accurate state-to-state time-optimal velocity solution along the linear track. In 
the following, to apply PILCO to time-optimal state-to-state transfer task along a linear 
path, we describe the test setup, simulation and experiment results, followed by some 
discussions.  
The simulation consists in executing different control policies on  the double integrator 
from the same rest state to reach a target state, and records the resulting state input pair 
and the cost at sampling times. We formulize the stage cost in (11) as related to an  
exponential function of the Euclidean distance to the target state 𝐱୲ୟ୰୥ୣ୲ from the cur-
rent state 𝑋௧ ൌ 𝐱ሺtሻ at time t and  tune the cost width with 𝜎௖ as shown in (13).  

 costሺ𝑋௧ሻ ൌ 1 െ exp ቀെ
ଵ

ଶఙ೎
మ ฮ𝑋௧ െ  𝐱୲ୟ୰୥ୣ୲ฮ

ଶ
ቁ ∈ ሾ0,1ሿ (13) 

This task-specific cost function measures how fast the vehicle progresses on the track 
to reach the target (subject to tolerance) within the learning horizon in each simulated 
episode. It has a shape of quadratic functions around the target state yet smoothens out 
at unity in distant states, and it is the only feedback information the vehicle receives 
during the vehicle-environment interaction. The parametrized policy is defined with a 
full state (position and velocity) feedback in the form of Gaussian Radial Basis Func-
tion (RBF) controller [4] as  

uሺ𝐱, θሻ ൌ ∑ 𝑤௜𝜑௜
 ௡್
௜ୀଵ ሺ𝐱ሻ                                                                                                    (14) 

with 

𝜑௜ሺ𝐱ሻ ൌ exp ሺെ
ଵ

ଶ
ሺ𝐱 െ 𝜇௜ሻ்∆ିଵሺ𝐱 െ 𝜇௜ሻ,                                                             (15) 

where 𝑛௕ is the total number of basis functions, and θ ൌ ሾ𝑤௜ , 𝜇௜ ,∆ሿ  represents the pol-
icy parameter vector of the weight, mean, and covariance of each Gaussian RBF. The 
choice of parametric controller (14)-(15) in the form of linear combination of Gaussian 
RBFs lies in its function approximation property and good generalization property, 
where the controller parameter values and the number of basis functions can be opti-
mized using various methods. This implies robustness to vehicle parametric uncertain-
ties and disturbances in learning. Since the optimal control is generally unknown,  
 𝑛௕ ൌ 100  is chosen to be sufficiently large, thus θ ∈ 𝑅ସ଴ଷ, to allow an accurate ap-
proximation. 
4.1 Simulation 
Setup. We take 0 as the initial time and rest state (0, 0) as the initial state. The final 
state to be reached is assumed to be a known target position at a distance L at rest. The 
environment is visualized in Fig. 1, where the autonomous car is drawn as the black 
box.  The vehicle has a horizontal length of 30 centimeters and a mass of 0.5kg. In 
addition, in order to mimic a real vehicle on the road, a friction coefficient of μ ൌ0.1is 
assumed between the ground and the car, and there is a symmetric bound ofേ4m/sଶon 
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the acceleration control. It can move forward and backward. The simulation is on 
MATLAB with Intel i7 core and 16 GB RAM. For our simulation purpose, we use the 
double integrator to simulate behavior of real vehicle traveling along a straight line on 
the flat ground with viscous friction. Essentially for a point moving on a planar path, it 
can be considered as a double integrator or a canonical spring-damper-mass system, 
therefore a one-dimensional motion planning problem along a curved path. The time-
optimal control for double integrator is solved in [25] as the trajectory optimization via 
barrier function. Let x(t) denote the distance traveled by a point mass m on a frictional 
ground controlled by an applied throttle(proportional to forward acceleration) u with 
symmetric constraint u ∈ Uୟୢ ൌ ሾെu୫ୟ୶, u୫ୟ୶ሿ  where Uୟୢis an admissible control set 
(a convex polytope). We assume that u୫ୟ୶ is not less than the static friction force, 
whereby the initial velocity is zero. To avoid slipping, the acceleration bound should 
satisfy u୫ୟ୶ ൑ μg, g=9.8m/s2 is the gravitational acceleration.  Defining x=ሾx, xሶ ሿ୘ as 
the state vector of simulated vehicle, the state equations for the vehicle dynamics can 
be written as 

 
𝐱ሶ ൌ 𝐀x ൅ 𝐛u, 𝐱ሺ0ሻ ൌ 0           ሺ16ሻ 

where𝐀 ൌ ቈ
0    1
0 െ

ୡ

୫
቉ ,𝐛 ൌ ൤଴భ

ౣ
൨,m is the vehicle mass, c ൒ 0 is the viscous friction coef-

ficient, u ൌ uሺ𝐱ሺ𝐭ሻ, θሺtሻሻ. 
The action space for the vehicle is the convex and compact set Uୟୢ. Since the vehicle 
(16) is controllable, the existence of a control input with at most one switching to steer 
the vehicle from a rest state 𝐱ሺ0ሻ ൌ 0  at time zero to a neighborhood of another state 
𝐱ሺtሻ in a given time t is ensured by controllability; in our case, to a target state 
𝐱୲ୟ୰୥ୣ୲ ൌ ሾ5 0ሿ୘in minimum time T is ensured by PMP. Under nominal operating con-
ditions with no constraints imposed on the motion profiles and no disturbance, the state 
response of (16) for an arbitrary piecewise continuous input function u(t) is precisely: 
 

x(t)=׬ e𝐀த
୲
଴ 𝐛uሺt െ τሻdτ  

=Cz(t)                                                                                             (17) 
where 

 e𝐀୲ ൌ α଴ሺtሻI ൅ αଵሺtሻ𝐀, 
z(t) =ሾ zଵzଶሿ୘,  z୧ሺtሻ=׬ α୧ሺtሻuሺt െ

୲
଴ τሻdτ, i=1,2 

C= [b Ab]=controllability matrix 
There exist a lot of candidate control algorithms that realize the required state-to-state 
steering task under nominal and perturbed operating conditions. Each requires the con-
trol algorithm to tune the corresponding controller parameters according to different 
system parameters or operating conditions. In this study, the learning-based control 
policy tries to find the policy that decreases the accumulated expected cost (13) of pair-
wise distance between the vehicle achieved progress at each sampling time and the  
target. Here an episode is considered where the vehicle is returned to the same initial 
state after executing a policy. The motion starts from rest at the origin, moves along a 
linear track for a fixed duration T୪ୣୟ୰୬ ൌ 4 by applying a policy. Each episode lasts a 
fixed duration T୪ୣୟ୰୬ via repeated traversal along the linear track from the same initial 
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state while reaching finally a position by applying a policy, as shown in Fig. 1. It is 
desired that xሺTሻ ൌ L  , xሶ ሺTሻ ൌ 0  for a prescribed distance L=5 with T ൑ T୪ୣୟ୰୬ as 
small as possible, 
i.e. the policy determines the maximum xሶ  for each point x on the prespecified path and 
a T for task completion. The choice of the learning time T୪ୣୟ୰୬ ൌ 4 in one episode for 
the simulations reported here is a tradeoff of the amount of data collected (computa-
tional load) and performance, where too small/largeT୪ୣୟ୰୬ results in aggressive/relaxed 
learning.  
 
Results.  
Dataset preparation. We use trajectory planning for data collection over [0, T୪ୣୟ୰୬ ൌ
4]. Applying a given policy in the form of () to drive on the linear track from the rest 
produces specific sequence of states (positions and velocities). The collected dataset 
for learning the dynamics model holds only for the given path and task. In running each 
episode, the vehicle starts from the same initial state (zero state at rest) at t=0. We col-
lect in one control cycle for each maneuver policy a batch of trajectory data recorded 
for vehicle motion based on simple point mass vehicle model given by (16) respecting 
the acceleration limits at sampling times 0.1, 0.2,⋯ ,3.9, 4  over the time horizon ሾ0,4ሿ.  
Therefore, a total of 16 episodes (including an initial random-policy round) are exe-
cuted, each of which has a total of N=40 samples of state-control pairs. Suppose we 
have a sequence of 40 admissible control inputs satisfying the control bound Uୟୢ at the 
jth learning episode 
 

uଵ
ሺ୨ሻ ൌ 𝜋ሺ𝐱ଵ

ሺ୨ିଵሻ
, θሺjെ1ሻሻ,⋯ , uସ଴

ሺ୨ሻ ൌ 𝜋ሺ𝐱ସ଴
ሺ୨ିଵሻ

, θሺjെ1ሻሻ(18) 
 

where u଴
ሺ୨ሻ

is an initial input for arbitrary initial exploration. The constant size dataset  
D୧ is composed of a sequence of precisely 40 state-action pairs with the corresponding 
state being visited by the vehicle and the corresponding control input  
 

D୨ ൌ ൬ቀ𝐱1
ሺjሻ, u1

ሺjሻቁ ,⋯ , ቀ𝐱୒౪౗౨ౝ౛౪
ሺjሻ , u୒౪౗౨ౝ౛౪

ሺjሻ ቁ ,⋯ , ቀ𝐱40
ሺjሻ, u40

ሺjሻቁ൰,                                 (19) 

where 𝐱଴
ሺ୨ሻ ൌ 𝐱଴ . Here N୲ୟ୰୥ୣ୲ ൑ N ൌ 40 denote the first sampling time at which the 

car passes through the target region.  The state transition rule of (16) that maps current 
state and action to the next state  
 

𝐱୩ାଵ
ሺ୨ሻ ൌ 𝐱ሺjሻ(0.1ሺk ൅ 1ሻ)=𝐱ሺjሻ(0.1k)+0.1C𝐳ሺjሻ  (0.1k)=𝐱୩

ሺ୨ሻ ൅ 0.1 𝐂𝐳୩
ሺ୨ሻ, k=0, ⋯ , 

39, ሺ𝐱଴
ሺ୨ሻ ൌ 𝐱0 , u଴

ሺ୨ሻሻ given, 
 
defines the set of reachable state from a given initial state. These 40 state-control pairs 
collected at different sampling times are correlated via state transition rules. The j-th 
episode learning data are to be used as demonstration via the reward in its next (j+1)-
th learning cycle so that the policy is revised with online estimation of vehicle model 
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based on the batch of collected data (for the whole episode completed) during the learn-
ing process.  
Performance. The learning performance was evaluated by computing the trajectory 
cost function (11)-(13) over the entirety of trial state and control trajectories in each 
trial. The dataset D୧ of 40 data in each trial records how the vehicle modifies its input 
at each sampled point of the path in accordance with the trajectory cost function as the 
feedback the vehicle receives. The outcome of learning shown in Fig. 2 is encouraging. 
Given the trajectory cost function, though not monotonic over episodes, the state and 
control trajectories are  improved by PILCO, which learns to utilize more force to reach 
the maximum velocity faster and the target faster as the model is updated when more 
information is acquired. The learned control policy exhibits desirable property of min-
imizing the hitting time  N୲ୟ୰୥ୣ୲: the car drives forwards at the maximum acceleration 
from the start at rest to reach a suitable maximum speed depending on the boundary 
conditions of the path and knows when to slow down with the maximum deceleration 
for speed reduction to reach the target at rest.  The input is always on values in proxim-
ity to the boundary of admissible control set Uୟୢ , i.e. bang-bang control. Though the 
maneuver time minimization is not directly involved in the cost (13),   by interacting 
with the environment during each episode (Algorithm 1, line 3/9), the agent in every 
possible state performs aggressive actions of bang-bang control according to a policy 
that achieves the target as maximum progress as possible. The resulting velocity profile 
forms a triangle with one switching point whose height and position are, respectively, 
the maximum allowed velocity and half-travel time from the initial to the target under 
symmetric acceleration constraint. 
In summary, the simulation illustrates that PILCO, a model-based reinforcement learn-
ing that explicitly takes into account model uncertainty, is a viable approach to learning 
the desired property of time-optimal state and input trajectories of  linear uncertain sec-
ond- order systems from scratch.  
Discussions and Analyses. We provide further discussions and analyses in the follow-
ing. 
Verifying Time-Optimality. Time-optimal control solution to double integrator with in-
put constraint and/or velocity constraint can be found in the literature, where time-to-
go function (the minimum time) is calculated through the application of PMP [6] or 
numerical optimization [25]. More specifically, given a priori rest-to-rest triangle ve-
locity profile, we have zero velocity at both ends of motion. There are in general two 
unknowns that can be used to parametrize a triangle velocity profile: the total motion 
duration T and the single switching time Tsw. Considering the symmetric acceleration 
bounds and rest-to-rest boundary conditions, the only unknown for triangle velocity is 
the switching time Tୱ୵ ൌ T/2. The switching point in this case also determines the bot-
tom edge length (the minimal travel time T) of velocity-time plot uniquely. Theoreti-
cally, in ideal situations of no external disturbances and no model errors, by taking into 
account the input constraints, the triangle velocity profile is the intersection of forward 
integration along maximum acceleration curve from the initial and backward integra-
tion along the maximum deceleration curve from the target. That is, it is the velocity 
trajectory obtained by integrating the equation of a double integrator or second-order 
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mass-spring-damper system when the time-optimal input is a bang-bang control [11] 
(i.e. it is a piecewise constant േu୫ୟ୶ at all time) with one sign change. 
Given that the area L of triangle is equal to the travel distance between the initial and 
the target, there is a switch from acceleration to deceleration for a triangle velocity 
profile, i.e. the intersection of the line of positive acceleration forward from the initial 
state and the line of negative acceleration backward from the target state in the phase 
plane of (position, velocity). Denote by time Tୱ୵ and by velocity (height) h at the switch 
point of the triangle. Let T denote the travel time (the bottom length), then T (thus 
Tୱ୵ ൌ T/2 ) and h of switch point can be analytically computed (see Appendix). Equiv-
alently, the time-optimal control needs to compute the distance needed to accelerate 
and T decelerate along the path. Note that in the case of double-integrator (14) with 
m=0.5, c=0, u୫ୟ୶ ൌ 4, it is a second order system without damping. The position tra-
jectory is oscillating. It requires a minimum of  

𝑇 ൌ 2ඨ
mL

u୫ୟ୶
ൌ √2.5  ൌ 1.58  

of time for traveling L=5 along a straight line with maximum acceleration/deceleration 
of 4 that achieves a highest speed of h= 6.32 in our case (see Appendix, Problem 1), as 
Fig. 3(b) shows. The switching from maximum acceleration to maximum deceleration 
is at half the total motion duration due to the symmetry of acceleration bounds. The 
switching time Tୱ୵ is computed as the time from highest velocity to zero or equiva-
lently from zero to highest velocity: 

h/ሺu୫ୟ୶/mሻ=6.32/8= 1.58/2=T/2=Tୱ୵,  
as claimed. This requires N୲ୟ୰୥ୣ୲ ൌ 16 for a sampling time of 0.1. The characteristics 
of exact solution are learned: the learned triangle velocity profile nearly coincides with 
the time-optimal triangle profile.  
PILCO Algorithm for model learning. PILCO uses GPs for model learning of the un-
known dynamics (mass and friction coefficient). In our task, the GPs only learn from 
the collected dataset only valid for the given path and task, while prior knowledge about 
the dynamics based on physics, which have a general validity and is consistent across 
the tasks, is not available. The specific state response is derived from measured data for 
applying a given policy in the parametric form of (14)-(15) to the simulated model. In 
the second episode, nearly correct state response is generated without being concerned 
with the true parameters c/m and 1/m. The friction coefficient c can’t be estimated in-
dependently of the mass m from the trajectory. The GP model is then used to form an 
estimator for the (approximate) posterior for optimal policy search. This makes the al-
gorithm perform efficiently in velocity learning task for a specific platform, and the 
resulting policy encodes the desirable spatial and temporal correlations.  However, it is 
also observed that sometimes the algorithm, in spite of the natural exploitation-explo-
ration characteristics of the saturating cost function, is not guaranteed to be globally 
optimal. It is stuck in local optimum since the optimization problem is not convex [4, 
18]. 
1.Efficiency.We further investigate the efficiency of the algorithm. As shown in Fig. 4, 
the agent can indeed be brought to rest at the destination from the initially rest condition 
within 2 episodes by an optimal action which achieves the transfer in the smallest 
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amount of time with practically a time-optimal trajectory. We can see two very different 
trajectory behaviors. The first trajectory is counter-intuitive in that it drives in reverse 
to the destination. This unusual behavior has a high trajectory cost due to divergence 
from the target, causing the rest of the trajectories across the second episode to the last 
one switching direction of motion by traveling toward the target from the start. The 
same implication has been drawn from the cost vs. episode plot of Fig. 5, where we 
observed that the learning converges after 2 episodes. The learning is successful as 
validated by the decreasing of state trajectory cost function value with the number of 
episodes shown in Fig. 5. After a certain number of learning episodes, the learned ve-
locity trajectories are the same. In the first episode, the total cost is 40 on account of 
the unity saturating function, yet at the second episode, a new speed profile is found 
that can steer the car to the target with reduced cost and consistently with the reduced 
motion duration. The learning behavior from second episode until the final one is rela-
tively identical with small steady-state oscillation. When overshoot occurs, turn-back 
is observed during learning. The policy is updated and exploration is terminated to 
maintain the cost at its lowest throughout the remaining learning episodes. Fig. 6 are 
the learning curves in the position-velocity phase plane, showing the maximization of 
reward with respect to time complexity in terms of the number of episodes. 
2.Cost Function.Time-optimality is not imposed explicitly in the cost function (11) - 
(13).In the initial stages of learning, the predictive state mean is far from the target and 
the distribution is looser due to propagation of model uncertainties, so the cost function 
guides the agent towards the less unexplored regions. As the learned model that con-
tains uncertainty becomes more accurate with the mean approaching to the target and 
the distribution tightened, the agent exploits the local regions for policy optimization. 
In fact, via minimization of (11) - (13) over the entire horizon [0,T୪ୣୟ୰୬] of learning 
episode, the maneuver or control policy tends to achieve a maximum progress per sam-
pling time so that higher immediate reward is encouraged during the learning. This is 
because decaying factor to the power of t𝛾௧in the time-accumulated trajectory cost sum 
(11) favors the immediate distance cost (13) to drive toward the target, encouraging the 
goal- reaching to be achieved with large progression so as to deliver a lower total tra-
jectory cost. A metric of the error caused by the uncertainty in the learned model is 
comparing the predicted state response based on learned model with the state response 
of simulated system. The performance is gradually improved over episode as the speed 
of target reaching is increased by the cost optimization, validated in Fig. 5. 
3.Constraints.Apart from hard control boundaries, equality or inequality (possibly non-
linear, nonconvex) state constraints such as the limit on the travel distance or upper and 
lower limits on the vehicle position, obstacle avoidance or maximum velocity limits are 
very common to autonomous systems for safe operation. These requirements are not 
taken into consideration by PILCO in current form, in particular goal reaching is not 
imposed as the boundary constraint, ensuring parameter perturbations do not violate 
constraints during trajectory learning. Due to the objective function does not enforce 
the vehicle to stop at the target after the target is reached (without imposing equality 
constraint of reaching the target or boundary conditions at the target), in the simulation 
the vehicle has recovered a near time-optimal rest-to-rest linear locomotion. However, 
the vehicle did not converge precisely to the target state, but oscillated around the 



16 

neighborhood of the target state, since there is no terminal cost imposed on the cost 
function. A few trials are carried out to implement a maximum velocity on the autono-
mous vehicle through some tuning on the cost function. It tends to compromise to some 
extent and balance the cost generated from the target state and the penalties given for 
violating the constraints because it looks at the full horizon for policy evaluation. It 
shows that current method is more restricted and can only handle a limited set of ob-
jective functions and constraints. 
 
4.2 Sim-to-Real Policy Transfer Experiment  
In order to test the learned policy in a real-world environment, this section presents a 
sim-to-real validation experiment we conduct with a low-cost Raspberry Pi-controlled 
small car, AlphaBot, as shown in Fig. 7. The simple car is equipped with photo inter-
rupters and ultrasonic sensors for state measurements. It can be controlled to accelerate 
and brake. We assume that the model of car belongs to a similar second-order dynamics 
with slightly changed model parameters, which is universal due to its base on first prin-
ciples or physics. The learning task is the same time-optimal rest-to-rest steering along 
a linear track. This allows the reuse of the learning control obtained from the simulation. 
The low-cost vehicle has uncertainties in inertial and friction parameters, suitable for 
testing the uncertainty handling capability of learning control algorithm. 
In contrast to simulation scenario setup, there is an additional velocity limit for experi-
mental car, which is a state constraint. The velocity limit stems from the electronic 
voltage constraints on board, and therefore is not directly handled by the control signal. 
Setup. The small car is designated to begin its route at a distance of 180 cm from the 
wall and end at 50 cm. Its heading is fixed at zero angle of forward-looking for straight 
line motion. In the experiment,  prior knowledge about the dynamics model (a detailed 
description of the dynamics that contain uncertainties) is not available or is not required. 
Instead, these are learnt through the Gaussian Processes. We reuse the same RBF con-
troller that was used in the simulation in Sec. 4.1 to provide a feedback from actual 
vehicle state to a control input to the actual vehicle. When applied to a real vehicle, the 
learned policy from simulation runs thus can be viewed as an optimal demonstration of 
time-optimal control solution to double integrator via PMP. The control signal gener-
ated from the RL algorithm ranges from -2 to 2, and is translated into change rate of 
duty cycles of the motor PWM signal on board. In addition, the learning controller is 
data-driven in that it can directly process the sensory data to produce a maneuvering 
action for the vehicle motion. 
Results. The experimental result is shown in Fig. 8. The car moves forward until the 
target is arrived. The vehicle drives at each point on the path with its allowable highest 
velocity, very similar to that of simulation. Fig. 8(a) shows that the real model car under 
the same control policy obtained by simulation reaches the desired target in the real-
world experiment. The end position, despite having no overshooting and fluctuation, is 
slightly off the targeted 50 cm partly because of modeling uncertainties and localization 
errors due to lateral tracking error and sensor inaccuracies. It is observed that the vehi-
cle follows a nearly a time-optimal velocity along the track as the desired control goal 
to attain. The velocity limit stems from the electronic voltage constraints on the robot, 
and therefore is not directly handled by the robot control signal. The learning curve is 
illustrated in Fig. 8(b). The total cost starts from 40 in the beginning trial of the task for 
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the saturating cost function. It attains a lowest cost of about 16 and a travel time of 
about 2.2 seconds at the seventh episode with a total experience time of 28 seconds. 
This is deemed very efficient since a very small number of trials is executed for suc-
cessful learning. In Fig. 8(c), immediate cost at every time step in various episodes is 
plotted, showing the learning process and the arrival time being reduced over episodes. 
The decrease is, however, not monotonic, so the intermediate trajectories before the 
learning is complete may not be acceptable until a nearly time-optimal control input is 
finally obtained at convergence. It is clear that the design of reward will affect signifi-
cantly the outcome of policy learning. In our case, the decrease of distance to target is 
directly related to reduction of travel time. The data-driven learned  maneuver  effec-
tively mitigates the uncertainty propagation to accurately estimate the uncertainty of 
the dynamics.  Accordingly, the control policy automatically   tune the parameters from 
the recorded data accurately when restricted for the specific state-to-state transfer task 
with given goal-reaching path to yield an accurate state-to-state time-optimal velocity 
solution along the linear track. The learning achieves the goal of reaching the target as 
soon as possible.  
Discussions and Analyses. 
Differences between Simulation and Experiment. The learning task of nearly 
time-optimal state-to-state transfer in a scenario of short-distance driving on a linear 
path is the same for both simulation and experiment. The control (14)-(15) obtained 
from simulation of linear system is shown also effective to steer the real vehicle as fast 
as possible for state-to-state transfer. Both simulation and experiment show the learning 
reduces the accumulated distance to the target until no significant reduction of the ac-
cumulated distance, thus contributing to reduce the travel time. However, the conver-
gence in the simulation is faster, which possibly stems from the following major differ-
ences. 
The first important difference is that the learning experiment is on the basis of more 
complicated vehicle dynamics. In fact, in the presence of the inherent factors confronted 
during real world experiment that cannot be neglected oraccounted for in a simple phys-
ical model (16) pose, some extent of unknown nonlinearities and uncertainties to the 
actual system, the near time-optimality is much harder to ensure. In real world experi-
ment, a more general uncertain nonlinear model is not easily available or too compli-
cated for the design of state-to-state steer maneuvers and in the presence of parameter 
uncertainties as well as sensor measurement errors, or unknown external forces inherent 
in the vehicle-terrain interaction. In a vehicle hardware, there is an additional velocity 
limit (the electronic voltage bounds) to assure that fast motion does not cause harmful 
effect or instability on the vehicle in each trial. Other causes of discrepancies between 
simulation and experiment are introduced by external disturbances as a result of the 
inaccuracy of sensor measurements, motor characteristics and torque disturbances and 
variation of environment interactions such as uneven ground, drag force, complicated 

friction characteristics (such as Coulomb friction proportional to sign(xሶ ) and aerody-

namic drag force proportional toxሶ ଶ , in addition to viscous friction proportional to xሶ ) 
and wheel sideslip.All the aforementioned factors cause the deviation of state trajectory 
in real experiment from that of the simulation under the same control. Since the task 
characteristics (system dynamics along a linear track on a frictional plane) and the en-
vironment for learning in simulation and experiment are very similar, a sim-to-real 
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transfer experiment that attempts to use the same data-driven control learned from sim-
ulation that works well as the motion policy is performed on a low-cost car. This vali-
dates the slight generalization capability (robustness and stability) of the model-based 
RL algorithm with Gaussian radial basis function kernel encountered for similar dy-
namics and task constraints. 
Furthermore, due to the low-cost robot units, low PWM duty cycles translated from the 
control signals might not be able to drive the car, affecting the complexity of the task 
as well.In the experiment performed, we ascertain that the robot hasenough power 
available to travel a distance of L along the linear track to reach the target. Finally, we 
remark that the steady-state error can be corrected by switching from the learning con-
trol to a linear stabilizing controller in a neighborhood of the target position. 

We see that the learning control method to realize the time-optimal state-to-state 
steer control in a simulated model is a good approximated time-optimal control of ac-
tual system with similar dynamics and task characteristics. Instead of providing an an-
alytical and thorough proof of the control performance demonstrated by simulation and 
experiment, we give some interpretations or explanations. 
 Interpretation 1. A simple interpretation that follows the formulation of time-optimal 
point-to-point control with nonlinear model predictive control [29] that complements 
the experimentis as follows. Let (x(t), u(t)=u(x(t))) be the time-optimal state-input tra-
jectories of simulation model (16). The demonstration by the simulated system (16) 
provides a good understanding of the time-optimal vehicle motion with only input con-
straint under no disturbance and no state constraint. For successful sim-to-real experi-
ment, we assume that the simulation model (16) can be extended to the actual system 
(20) in real experiment 

 
 𝐱ୟሶ ൌ 𝐀𝐱ୟ ൅ 𝐛uୟ ൅ 𝐝ሺ𝐱ୟ, tሻ, 𝐱ୟሺ0ሻ ൌ 0, 𝐱ୟሶ ൑ v୫ୟ୶, u ∈ Uୟୢ ൌ ሾെu୫ୟ୶, u୫ୟ୶ሿ                          

(20) 
 

 
where 𝐱ୟሺtሻ is the actual state, uୟሺtሻ ൌ uሺ𝐱ୟሺtሻ,θୟሺtሻሻ is the same time-optimal con-
trol (14) leaned from (16),  𝐝ሺ𝐱ୟ, tሻ ∈ 𝐃 is a bounded additive disturbance represented 
as a priori unknown function with 𝐃 a bounded set, v୫ୟ୶ is the maximum velocity lim-
itation (or state constraint) due to hardware setting. The system (20) is assumed a slight 
perturbation of (16) due to small disturbance or unmodeled dynamics. To simplified 
analysis and gain some intuition, we can view 𝐝ሺtሻ ൌ 𝐝ሺ𝐱ୟ, tሻ in (20) as the lumped 
model-mismatch effect of the unmodeled dynamics with respect to the simulated sys-
tem model (16) used for optimal demonstration. Thus, 𝐱ୟሺtሻ is the actual state trajec-
tory in the presence of adverse disturbance effect of 𝐝ሺtሻ as the same nominal state 
feedback control (16)-(17) used for (16) is also used for (20).  From (20),we have 
 

𝐱ୟ(t) =𝐂𝐳ୟሺ𝐭ሻ ൅ ׬ e𝐀த
୲
଴ 𝐝ሺτሻdτ  

=   𝐂𝐳ሺ𝐭ሻ ൅ ׬ e𝐀தሺ
୲
଴ bδuሺτሻ ൅ 𝐝ሺτሻሻdτ   (21) 
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where δuሺtሻ ൌ uୟሺ𝐱ୟሺtሻ,θୟሺtሻሻ െ uሺ𝐱ሺ𝐭ሻ, θሺtሻሻ. Given that the actual system is a slight 
perturbation of simulated system, the consistency or similarity of the task characteris-
tics assumes that the Lipschitz condition 

 
|δuሺtሻ| ൑ k୶‖𝐱ୟሺtሻ െ 𝐱ሺtሻ‖+ k஘‖θୟሺtሻ െ θሺtሻ‖   (22) 
 
holds for some constantsk୶ ൐ 0,  k஘ ൐ 0 .   This is a reasonable assumption that small 
deviation in state yields a small fluctuation of control action. As seen from (21),(22), 
since the matrix A is stable, the difference between x(t) and 𝐱ୟሺtሻ is thus bounded by 
the discrepancy 𝐝ሺtሻbetween the model and actual system, the variation of controller 
parameters and how much the differential state-feedback control δuሺtሻ can attenuate 
the disturbance, i.e. when the disturbance is large/small,  the counterbalancing control 
magnitude is also large/small correspondingly. Theoretically, if we assume that disturb-
ance is bounded during motion, the system (20) can be controlled to steer to the target 
region using the nominal control uሺtሻlearned from simulated vehicle dynamics (16) in 
near minimum time even in the presence of external disturbance. That is, the deviation 
of experimental state trajectory (20) from nominal time-optimal state trajectory of (16) 
is such that ‖𝐱ୟሺtሻ െ 𝐱ሺtሻ‖ ൑ ϵ  and 𝐱ୟ൫Tୟ,୲ୟ୰୥ୣ୲൯ ൎ 𝐱൫T୲ୟ୰୥ୣ୲൯ ൎ a given target at rest 
in the reachable set with the first target hitting timeTୟ,୲ୟ୰୥ୣ୲of (20) largerthan  T୲ୟ୰୥ୣ୲of 
(18).The deviation ϵenters the cost function (11) for the actual vehicle dynamics (20), 
thus it also depends on the sensitivity of the cost function on the discount factor. We 
can choose a discount factor 𝛾(0 ൏ 𝛾 ൏ γ∗ሻ of cost function that guarantees the state 
trajectory of (20) exhibits small perturbation from time-optimal trajectory of model (16) 
under the same nominal time-optimal control [29] if there exists a γ∗such that the gra-
dient of the cost (11) with respect to the deviation ϵ is upper bounded. Validity of the 
above consistency/similarity property that guarantees the actual system performance 
using the same control obtained from simulation is supported by comparing Fig. 9 and 
Fig. 10. Therefore, it allows the transfer of command input learned on the basis of sim-
ulated model to a similar, real kinematic vehicle driving on a linear short-distance path 
in real environment.  
Interpretation 2. The parametric model uncertainty and external uncertainty causes the 
actual trajectory executed by the vehicle not exactly predictable. The equation of mo-
tion (16) with unknown but bounded additive disturbance (20) can be discretized using 
the Euler method as 
                                           v୧ ൌ

୶౟ି୶౟షభ
୦

,  (23) 

                                                           
a୧ ൌ

୴౟ି୴౟షభ
୦

ൌ െ
ୡ

୫
v୧ ൅

ଵ

୫
u୧ ൅

ଵ

୫
d୧   (24) 

where v, a denote the velocity and acceleration of the simulated second-order system, 
h is the step size,   i=1,…,N, x଴ ൌ 0, v଴ ൌ 0, a଴ ൌ 0.The optimality condition of bang-
bang control requires that the acceleration input  after substituting (23) into (24) 
୶౟ିଶ୶౟షభା୶౟షమ

୦మ
ൌ േu୫ୟ୶ (25) 

or 
୶౟ିଶ୶౟షభା୶౟షమ

୦మ
ൌ െ

ୡ

୫

୶౟ି୶౟షభ
୦

േ
ଵ

୫
u୫ୟ୶ ൅

ଵ

୫
d୧ (26) 
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holds for the uncertain system (20) moving along a linear track to reach 𝐱୒౪౗౨ౝ౛౪ ൎ
𝐱୲ୟ୰୥ୣ୲. This is the optimality relation in the form 
                                           v୧ାଵ ൌ fሺx୧, v୧, u୧ ሺx୧, v୧ሻ ൌ േu୫ୟ୶, m, c, d୧ሻ (27) 
Note that though the function f  is valid and consistent across the tasks [27]. The model-
based RL needs to learn the function f via (27) with optimality guarantee, i.e. the one 
that achieves the time-optimal control performance, from the dataset. In addition, we 
construct the aggressive policy which robustly steers the uncertain system from the in-
itial state to the target as fast as possible along the trajectory predicted by the learned 
model f with errors caused by the uncertainty and disturbance to accurately match the 
time-optimal trajectories u୧ ൌ േu୫ୟ୶, with x୧ confined to an interval on the linear one-
dimensional line.  The validity of GP prediction model of vehicle-terrain interaction 
sticks to the data points restricted to a linear path, while prior knowledge about the 
uncertain dynamics of a simple double-integrator based on physics is not availa-
ble.  With updated policy (state feedback), a new velocity is generated, we see in Fig. 
that the modeling error is reduced in subsequent episodes in which  the learned state 
response  (new velocity) from the initial to the final state is updated and coincides 
nearly with the time-optimal state response of simulated system. Therefore, the learned 
model is sufficiently accurate to capture the properties of the vehicle for specific path 
following task. 

 
 

5. Rescaling the Velocity Profile as Expert Knowledge 
Adaptability in the task of speed regulation, which is complex and varied, according to 
comfort, safety concerns and the path properties such as length and maximum curvature 
is a key feature of human driving behavior that has robustness to uncertainties. In plan-
ning a new safe velocity profile, the first step is to generate time-optimal velocity pro-
file for the system as the reference velocity profile with the learning techniques, since 
it is well-known that the travel time affects the motion profile. It is necessary to know 
a priori the lower bound on travel time required by a given state-to-state steering task. 
Having attained a time-optimal velocity profile along a specified path, to trade off the 
time for smoothness thus energy consumption, there are a variety of safe speed profiles 
meeting the most restrictive a priori upper bound of speed and acceleration for each 
point on the path  with less aggressive use of the admissible input that can be planned 
to reduce other cost such as energy consumption. Nevertheless, an increase in travel 
time is caused by a potential reduction in the achievable highest speed due to additional 
velocity or smoothness constraints. The new velocity profile makes the vehicle motion 
slower but likely smoother and energy-saving, as classical kinematics suggests. 
By rescaling or regularization in time subject to the dynamic constraints, we can obtain 
a nearly time optimal velocity profile [22-24].Suppose the velocity has only cruise and 
constant acceleration sections, and we consider only triangle and trapezoid velocity 
profiles. A trapezoidal velocity profile （T profile) for transition between two bound-
ary velocities consists of two ramp phases with constant acceleration/ deceleration and 
one cruise phase with constant speed.Triangle is a special case of trapezoid. Applying 
the rescaling approach to reduce the complexity of learning new motion profiles, we 
are particularly interested in how the learned triangle speed profile that has no constant 
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speed section along a linear path can be transformed to an arbitrary speed profile com-
posed by single trapezoid or double trapezoids with cruising phases, denoted by T-
profile and T2-profile, respectively. In the whole state-to-state transfer motion duration, 
it is known that T-profiles are commonly used velocity schedules that result from the 
solution to the optimization of cost function defined by mixed time and energy, so that 
the resulting analytical velocity profile is a smooth trapezoid-like U shape under the 
condition of only acceleration constraint without velocity limit, or approximation to 
time-optimal velocity profiles with arbitrary boundary conditions, other than rest-to-
rest [23]. Therefore, driving with a T-profile will take a longer travel time than with a 
triangle velocity for the same travel distance. T-profile consists of three phases: accel-
eration, cruising and deceleration. The acceleration can reach an appropriate cruise 
speed equal to or less than allowable maximum speed, requested by the user or limited 
by vehicle characteristics, that depends on the travel time or distance. Then, it is fol-
lowed by a tunable duration of cruising constant speed, and a deceleration stage re-
specting the acceleration bounds. As another example, the triangle can be transformed 
into double trapezoids, so that a ladder-type trapezoid velocity profile (T2- profile) is 
produced. T2-profile enables the use of different cruise speeds, which lets the vehicle 
to select multiple durations of different constant transition speeds that are varied, and 
there is an additional acceleration in the middle of movement. Using an algebraic trans-
formation (provided in Appendix), we can transform a triangle to a T-, T2- profile under 
different situations for a given distance and a corresponding triangle velocity profile 
covering the distance without maximum velocity constraint. These families of velocity 
profiles based on T- or T2- profiles are parametrized by a finite number of user-defined 
parameters that affect the highest speed, durations of constant speed and overall travel 
time. A few examples of T-, T2- profiles are depicted in the Fig. 11, covering the same 
travel distance of the corresponding triangle velocity profile. 
We point out that T- profile could be easily generated from this parametric speed family 
by assigning its respective defining parameter values complying with the specifications. 
The specifications can be designed by the user. In many applications, the motion exe-
cution time Tex can be imposed, for example as multiple times of the minimal time 
traveled by the triangle velocity on the given path with fixed distance. The imposition 
of trajectory duration results in distinct velocity profiles guaranteeing that the travel 
time of the same distance on a given path is exactly Tex. Another alternative is to set 
the highest velocity of T- profile a ratio of the maximum velocity bound, such as limited 
by traffic rules or on different terrain. Both have the effect of rescaling a given triangle 
velocity profile to make the motion slower. Similar reasoning can be applied to design 
a T2- profile from a triangle or a T- profile. A detailed derivation is provided in Appen-
dix. Rescaling examples following these alternatives for speed scheduling of the double 
integrator are depicted in Fig. 12 and Fig. 13.  
In summary, instead of learning a new safe speed profile from scratch, the aforemen-
tioned easy-to-implement rescaling approach exploiting generated safe velocity pro-
files or human driver demonstrations as expert knowledge could accelerate the learning 
process for a wide range of safe speed profiles or may yield better learning results for 
complicated, high-dimensional vehicle dynamics in challenging scenarios such as slip-
pery road. From our study here, the family of trapezoidal velocity profiles at the 
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expense of longer travel time can be deduced from the learned triangle velocity that is 
obtained from the maximum progress cost of reaching the goal independent of velocity. 
This eliminates the need to design new cost function and the gradient computation, and 
restart the whole learning episodes. Having obtained the learned minimum-time veloc-
ity profile, the transformations mentioned above are the expert knowledge that can be 
exploited to obtain a new safe speed profile. 

6. Conclusion 

Minimal-time velocity profile along a prespecified curve, as a subclass of time-
optimal control problems subject to hard control constraints resulting from input satu-
ration, state constraints and external disturbance, finds applications in a variety of au-
tonomous systems such as autonomous driving and robotics. The imperfect modeling 
of system dynamics and perception of environment with significant noise makes ma-
chine learning a powerful approach to the practical, near minimum-time velocity plan-
ning for autonomous systems that do not rely on heavy dynamic model-based compu-
tations. An important aspect of this paper is adopting PILCO, an existing  model-based 
RL which holds the state-of-the-art data efficiency, to learn a near time-optimal velocity 
for rest-to-rest state-to-state steer along a linear path by a vehicle with acceleration or 
velocity limits. The policy learned from simulation is implemented on a sim-to-real 
experiment with a similar vehicle path following task to illustrate the consistency of 
learned velocity profile closer to that obtained by time-optimal control. Our case study 
expands the scope of problems that can be successfully solved by model-based RL 
(such as PILCO) from scratch (without identification of physical parameters of vehicle 
motion, a priori task environment characteristics human demonstration and deriving the 
optimality conditions), and shows the capability of accounting for and compensating 
uncertainties and external disturbances. We illustrate  that the safe velocity learning on 
different road topology and traffic flow is feasible for the challenging applications of 
RL algorithms, serving as a robust adaptive optimal control algorithm.  

The study inspires several future researches. Firstly, one potential framework is to 
extend the predicted system trajectory in PILCO into Model Predictive Control and 
utilize Sequential Quadratic Programming to effectively deal with the constraints. De-
spite the one-dimensional problem we tackle here, the framework is to be examined in 
high-dimensional complex systems with sophisticated switching structures, similar to 
what NI methods do for the high-dimensional systems with complex known dynamics. 
Secondly, the algorithm now performs policy evaluation and optimization offline. It is 
crucial for future approaches to take these online since most real-world applications 
encourage real-time operation. Thirdly, time-optimality is forced by the long-term sat-
urating cost in our experiment. It is suggested that future studies inspect the possibility 
of incorporating Pontryagin Maximum Principle into policy learning, which is a prin-
cipled method with more theoretical supports. 
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Appendix 
Appendix contains two Euclidean geometry problems related to transforming an isos-
celes triangle to a single trapezoid or double trapezoids with the same area.  
Problem 1: An isosceles triangle with given area L and slope u of isosceles, find the 
bottom length T. 
Denote the height of switch point from acceleration to deceleration (or height of the 

triangle) by h.  Then h=
୘

ଶ
u. Thus, 

L ൌ
ଵ

ଶ
T ൈ

୘

ଶ
u ,  

or 

Tଶ ൌ 4
୐

୳
(A1) 

Thus, 

T ൌ 2ට
୐

୳
(A2) 

The total traversal time T increases with the travel distance L and decreases with the 
acceleration u.  Note that (A1) can be solved iteratively by Newton method 

Tሺn ൅  1ሻ  ൌ  
1
2
∗  ሺTሺnሻ  ൅  

4L
uTሺnሻ

 ሻ 

 
Problem 2: Transformation of a triangle to a single or double trapezoids 
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Anisosceles triangle with given bottom length Tand height h, and an isosceles trap-
ezoid with the same base angle (That is to say, the isosceles triangle and isosceles 
trapezoid have the same slope of side). We want to calculate the upper line length 
and the lower line length of the trapezoid necessary to make its area 𝑟஺times as the 
area of the isosceles triangle. 

Two cases are considered. 
Case 1. trapezoid’s height is given 
(a) Transform to single trapezoid (Fig. 14) 
Refer to Fig. 14. Assume the ratio of the height ratio of trapezoid to the triangle is 𝑟௛, 
and the upper line length of the trapezoid is𝛼.  Let the area of the trapezoid be 𝑟஺ times 
the area of triangle. For our purpose, 𝑟஺ ൌ 1. 

The bottom length of the triangle in thetrapezoid is 𝑟௛ℎ ൈ
்

௛
ൌ 𝑟௛𝑇, and the lower line 

length of the trapezoidൌ  𝛼 ൅ 𝑟௛𝑇 

The area of the trapezoidൌ  
ሺఈ ା ሺఈ ା ௥೓்ሻሻ ൈ௥೓௛

ଶ
 

ൌ  𝑟஺ ൈ The area of the triangle ൌ  𝑟஺ ൈ
1
2
𝑇ℎ 

By multiplying
ଶ

௛
on both side, we get𝑟௛ሺ2𝛼 ൅  𝑟௛𝑇ሻ  ൌ  𝑟஺𝑇, 2𝛼 ൌ  

௥ಲ்

௥೓
െ 𝑟௛𝑇,𝛼 ൌ

 
ଵ

ଶ
ሺ
௥ಲ
௥೓
െ 𝑟௛ሻ𝑇 

Therefore, the upper line length of the trapezoid ൌ 𝛼 ൌ  
ଵ

ଶ
ሺ
௥ಲ
௥೓
െ 𝑟௛ሻ𝑇 , and the 

lowerline lengthൌ  𝛼 ൅  𝑟௛𝑇 ൌ  
ଵ

ଶ
ሺ
௥ಲ
௥೓

 ൅  𝑟௛ሻ𝑇 

 
(b) Transform to double trapezoids 

Refer to Fig. 15. Similar to Fig. 14, denote the defining ratios  𝑟஺, 𝑟௛of single trapezoid 
as 𝑟஺భ , 𝑟௛భ for the upper trapezoid and𝑟஺మ , 𝑟௛మ for the lower trapezoid.There are four 
constraints: 

1. 𝛼ଵ ൒  0 

2. The lower line length of the upper trapezoid ≤ The upper line length of 

the lower trapezoid→
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 ൅  𝑟௛ଵ൰𝛼  ൑
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 െ  𝑟௛ଶ൰𝛼 

3. 𝑟஺ଵ ൅ 𝑟஺ଶ ൌ 1 

4. ℎଵ ൅ ℎଶ ൑ 𝑉௠௔௫ ⟶ 𝑟௛ଵ ൅ 𝑟௛ଶ ൑
௏೘ೌೣ

௛
 

We can generate a solution by guessing a𝑟஺భfirst, and 𝑟஺మ  ൌ  1 െ 𝑟஺భ. Then for such 

𝑟஺భ , 𝑟஺మ, check if there is any feasible 𝑟௛భ , 𝑟௛మsatisfying other three constraints  listed 

above. This process is iterated until 𝑟௛భ , 𝑟௛మ are found. 

We can formulate the following optimization problem for the transformations. 
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i)Minimizing the lower line (bottom) length 
௥ಲ
௥೓
 െ  𝑟௛  ൐  0 ⟶ 𝑟௛ ൑ √𝑟஺ .

௥ಲ
௥೓
൅ 𝑟௛ is a decreasingfunction when  𝑟௛ ൏ √𝑟஺ with its 

minimaൌ  2√𝑟஺ happens when 𝑟௛  ൌ  √𝑟஺ .  Therefore, this problem is equivalent to 
maximizing𝑟௛. 
௥ಲభ
௥೓భ

൅ 𝑟௛ଵ ൑
௥ಲమ
௥೓మ

െ 𝑟௛ଶ, if 𝑟஺ଵ, 𝑟஺ଶ, 𝑟௛ଵ ൅ 𝑟௛ଶ:ൌ 𝐻 ൌ
௏೘ೌೣ

௕
is given, we can rewrite the in-

equality as 𝑟௛ଵ ൅ 𝑟௛ଶ ൌ 𝐻 ൑
௥ಲమ
௥೓మ

െ
௥ಲభ
௥೓భ

ൌ
௥ಲమ௥೓భି௥ಲభ௥೓మ

௥೓భ௥೓మ
 

⟶𝐻𝑟௛ଵ𝑟௛ଶ ൌ 𝐻൫𝐻 െ 𝑟௛ଶ൯𝑟௛ଶ ൑ 𝑟஺ଶ𝑟௛ଵ െ 𝑟஺ଵ𝑟௛ଶ ൌ 𝑟஺ଶ൫𝐻 െ 𝑟௛ଶ൯ െ 𝑟஺ଵ𝑟௛ଶ 

⟶𝐻ଶ𝑟௛ଶ െ 𝐻𝑟௛ଶ
ଶ ൑ 𝐻𝑟஺ଶ െ ൫𝑟஺ଵ ൅ 𝑟஺ଶ൯𝑟௛ଶ 

⟶ 𝑟௛ଶ
ଶ െ ቀ𝐻 ൅

௥ಲభା௥ಲమ
ு

ቁ 𝑟௛ଶ ൅ 𝑟஺ଶ ൒ 0(A3) 

We can solve the equation to get one constraint on the range of 𝑟௛ଶ  ( 𝑟௛ଶ ൒
 the larger root  or𝑟௛ଶ ൑  the smaller root  of (A3) with equality), along with 𝑟௛ଶ  ൑

ඥ𝑟஺ଶ  and 𝑟௛ଵ ൌ 𝐻 െ 𝑟௛ଶ ൑ ඥ𝑟஺ଵ ⟶ 𝑟௛ଶ ൒ 𝐻 െ ඥ𝑟஺ଵ , we know the feasible range 
for 𝑟௛ଶ. To minimize the lower line length, we have to pick the largest𝑟௛ଶin the feasible 
range. 
ii)Minimizing the lower line length 
௥ಲ
௥೓
 െ  𝑟௛  ൐  0 ⟶ 𝑟௛ ൑ √𝑟஺ .

௥ಲ
௥೓
൅ 𝑟௛ is a decreasingfunction when  𝑟௛ ൏ √𝑟஺ with its 

minimaൌ  2√𝑟஺ happens when 𝑟௛  ൌ  √𝑟஺ .  Therefore, this problem is equivalent to 
maximizing𝑟௛. 
௥ಲభ
௥೓భ

൅ 𝑟௛ଵ ൑
௥ಲమ
௥೓మ

െ 𝑟௛ଶ, if 𝑟஺ଵ, 𝑟஺ଶ, 𝑟௛ଵ ൅ 𝑟௛ଶ:ൌ 𝐻 ൌ
௏೘ೌೣ

௛
is given, we can rewrite the in-

equality as 𝑟௛ଵ ൅ 𝑟௛ଶ ൌ 𝐻 ൑
௥ಲమ
௥೓మ

െ
௥ಲభ
௥೓భ

ൌ
௥ಲమ௥೓భି௥ಲభ௥೓మ

௥೓భ௥೓మ
 

⟶𝐻𝑟௛ଵ𝑟௛ଶ ൌ 𝐻൫𝐻 െ 𝑟௛ଶ൯𝑟௛ଶ ൑ 𝑟஺ଶ𝑟௛ଵ െ 𝑟஺ଵ𝑟௛ଶ ൌ 𝑟஺ଶ൫𝐻 െ 𝑟௛ଶ൯ െ 𝑟஺ଵ𝑟௛ଶ 

⟶𝐻ଶ𝑟௛ଶ െ 𝐻𝑟௛ଶ
ଶ ൑ 𝐻𝑟஺ଶ െ ൫𝑟஺ଵ ൅ 𝑟஺ଶ൯𝑟௛ଶ 

⟶ 𝑟௛ଶ
ଶ െ ൬𝐻 ൅

𝑟஺ଵ ൅ 𝑟஺ଶ
𝐻

൰ 𝑟௛ଶ ൅ 𝑟஺ଶ ൒ 0 

We can solve the equation to get one constraint on the range of 𝑟௛ଶ  ( 𝑟௛ଶ ൒
 the larger root  or𝑟௛ଶ ൑  the smaller root ), along with 𝑟௛ଶ  ൑ ඥ𝑟஺ଶ  and 𝑟௛ଵ ൌ 𝐻 െ
𝑟௛ଶ ൑ ඥ𝑟஺ଵ ⟶ 𝑟௛ଶ ൒ 𝐻 െඥ𝑟஺ଵ, we know the feasible range for𝑟௛ଶ. To minimize the 
lower line length, we have to pick the largest  𝑟௛ଶin the feasible range.  
For anisosceles triangle with given slope of legs m and area A and let its bottom length 

to be 𝑥. From 
ଵ

ଶ
ൈ 𝑥 ൈ ሺ

௫

ଶ
ൈ 𝑚ሻ  ൌ  

௠௫మ

ସ
 ൌ  𝐴,𝑥 ൌ  2ට

஺

௠
, we can choose a close initial 

value 𝑥଴, then use Newton-Raphson method𝑥௡ାଵ  ൌ  
ଵ

ଶ
ሺ𝑥௡ ൅

ସ஺

௠௫೙
ሻ to update its value 

iteratively to find a better approximation to𝑥.Suppose we have an approximation to 𝑥. 
Single trapezoid  
If 𝑟஺  ൌ  1, and an approximation to 𝑥 is available 

The upper line length of the trapezoid =
ଵ

ଶ
ሺ
ଵ

௥೓
െ 𝑟௛ሻ𝑥 

The lower line length ൌ
ଵ

ଶ
ሺ
ଵ

௥೓
 ൅  𝑟௛ሻ𝑥 

Ladder (double) trapezoids 
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The upper line length of the upper trapezoid = 
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 െ  𝑟௛ଵ൰ 𝑥 

The lower line length of the upper trapezoid = 
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 ൅  𝑟௛ଵ൰ 𝑥 

The upper line length of the lower trapezoid = 
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 െ  𝑟௛ଶ൰ 𝑥 

The lower line length of the lowertrapezoid = 
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 ൅  𝑟௛ଶ൰ 𝑥 

where 𝑟஺భ , 𝑟஺మ , 𝑟௛భ , 𝑟௛మmust satisfy the constraints 

 
Case 2. Trapezoid’s bottom is given. Let T be the bottom length of triangle. 
For single trapezoid, suppose the lower line length is given by𝜆𝑇. We have 

ଵ

ଶ
ሺ
௥ಲ
௥೓

 ൅

 𝑟௛ሻ𝑇 ൌ  𝜆𝑇 , i.e.𝑟௛ଶ െ 2𝜆𝑟௛ ൅ 𝑟஺ ൌ 0.Let the discriminant = 4𝜆ଶ െ 4𝑟஺ ൒ 0, orλ ൒
√𝑟஺ for existence of real solutions. Solving the quadratic equation, we get 𝑟௛ ൌ  𝜆 േ

ඥ𝜆ଶ െ 𝑟஺ . For the upper line length = 
ଵ

ଶ
ቀ
௥ಲ
௥೓
െ 𝑟௛ቁ 𝑇 ൒ 0 ,𝑟௛ଶ ൑ 𝑟஺ ൑ 𝜆ଶ ,so the 𝜆 ൅

ඥ𝜆ଶ െ 𝑟஺solution is not possible. Therefore, we have 𝑟௛ ൌ  𝜆 െ ඥ𝜆ଶ െ 𝑟஺. Therefore, 
we obtain the trapezoid 
Height = 𝑟௛ℎ ൌ ൫𝜆 െ ඥ𝜆ଶ െ 𝑟஺൯ℎ 

The upper line length = 
ଵ

ଶ
ቀ
௥ಲ
௥೓
െ 𝑟௛ቁ 𝑇 ൌ  

ଵ

ଶ
൫ሺ𝜆 ൅ ඥ𝜆ଶ െ 𝑟஺ሻ െ ሺ𝜆 െ ඥ𝜆ଶ െ 𝑟஺ሻ൯𝑇 ൌ

 ඥ𝜆ଶ െ 𝑟஺𝑇 
 
For T2 profile, if the lower bottom length of the upper trapezoid is 𝜆ଵT, and the lower 
bottom length of the lower trapezoid is 𝜆ଶT, we can get result analogous to the single 
trapezoid case: 
Upper trapezoid: 

λଵ ൒ ඥ𝑟஺ଵ,Height = ቆλଵ െ ටλଵ
ଶ െ 𝑟஺ଵቇ ℎ,The upper line length = ටλଵ

ଶ െ 𝑟஺ଵ𝑇 

Lower trapezoid: 

λଶ ൒ ඥ𝑟஺ଶ,Height = ቆλଶ െ ටλଶ
ଶ െ 𝑟஺ଶቇ ℎ,The upper line length = ටλଶ

ଶ െ 𝑟஺ଶ𝑇 

Since the lower bottom length of the upper trapezoid൑The upper line length of the 
lower trapezoid, wehave an additional constraint between λଵand λଶ:  

𝜆ଵ ൑ ටλଶ
ଶ െ 𝑟஺ଶ. 
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Fig. 1. Setup of one-dimensional state-to-state transfer task. The black box depicts the 
car, which is modeled using a point-mass double integrator. The car begins moving 
from the origin (green star) at rest along a straight line to reach the target (red star) 
along a rough plane. The task involved the execution of different acceleration control 
policies on the double integrator with embedded uncertainties from the same rest state 
to reach a target state. The resulting state–input pair and cost at each sampling time 
point were recorded.

 

Fig. 2.Total cost vs. episode. The cost is reduced until (near) convergence is achieved 
at the second episode, and is stable after convergence. 
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(a) 

  

(b) 

Fig.3. Learned response in time and phase plane. Episode 1 features the car reversing. 
In Episode 2, a correct, nearly time-optimal motion toward the target was produced. (a) 
Vehicle position at each episode over 40 sampling time steps spanning a time horizon 
of 4 s. (b) Predicted position–velocity trajectories in the phase plane through application 
of data-driven control on learned model for the goal-reaching task along a linear track. 
The state trajectories became more accurate (time-optimal) with respect to the predicted 
velocity trajectory as the model was updated during learning. The time-optimal velocity 
trajectory upon convergence with one instance of switching is shown. 
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(a) 

 
(b) 

Fig. 4.(a)Converged learning outcome of state (position, velocity) and input (accelera-
tion) trajectories of the vehicle. After reaching the neighborhood of target, the vehicle 
tries to stay at the target at rest. There is little steady- state oscillation around the target 
since the vehicle can’t decelerate fast enough to rest at the target. (b) The analytical 
solution with minimum time 1.58443.We see that the temporal characteristics of time-
optimal trajectories is learned: the velocity profile is a triangle and the acceleration 
input exhibit the bang-bang control. The discrepancy is due to the mismatch between 
the objective and time optimality.  



32 

 

 
Fig. 5. The low-cost model car AlphaBot for experiment (left photo) and the experi-
mental set-up of driving a AlphaBot along a linear track. 

 

(a) 
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(b) 

 

 

(c) 
 

Fig.6. Experimental results. (a) Graph of total cost against episodes.The trajectory cost 
decreased after some transients until convergence at the 7th episode where a travel time 
of approximately 2s was achieved. (b)Intermediate costs in selected episodes.(c) Out-
come with respect to learning state and control trajectories. 
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(a) 

 
(b) 

Fig. 7. Transformation of a triangular speed profile with symmetric acceleration 
bound to different trapezoid speed profiles with an additional velocity limit in the 
velocity–time plane considered. (a) Examples of T (trapezoidal) profile: trapezoid 
with one span of time of constant speed at a height equal to the maximum velocity 
and with sides whose slopes are equal to the maximum acceleration and decelera-
tion. (b) Examples of a T2 (double trapezoidal) profile: a ladder-type velocity profile 
with spans of time of constant speed and with sides whose slopes are equal to the 
maximum acceleration and deceleration. The total distances traveled by the new ve-
locity profiles are the same as those of their triangular counterparts (for the travel 
distance L). The constant velocity section in T velocity profiles must be lower than 
the maximum velocity.   
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S  

Fig. 8 (left) A triangle and (right) a trapezoid of the same area or known area ratio 

 

 
Fig. 9 A triangle (left) and double trapezoid (right) of the same area or known 

area ratio 
 

 
Table 1. shows the switching time tୱ୵,  minimum time T∗  of the triangle 
profile in the presence of ∓4% deviation of  both mass and friction co-
efficient simultaneously  with accurate c=0.1, m=0.5 for given L=5 and 
u୫ୟ୶ ൌ 4. For comparison,  tୱ୵ ൌ 0.79057, T∗ ൌ 2tୱ୵ ൌ 1.58114 for 
the case of m=0.5, c=0. It indicates the friction clearly slows down the 
fastest motion. 
 

m, c 
 
 
 
Time    
    

m=0.5 
c=0 

m=0.5 
c=0.1 

m=0.5 
c=0.096 

m=0.5 
c=0.104 

m=0.48 
c =0.1 

m=0.52 
c=0.1 

tୱ୵  0.79057  0.854717  0.852088  0.857352  0.836147  0.872974 

T∗  1.58114  1.58443  1.58418  1.5847  1.55229  1.61595 

 
 


