

TR-IIS-22-001

 Time-optimized velocity trajectory of a
bounded-input double integrator with uncertainties:

a solution based on PILCO

 Hsuan-Cheng Liao, Wen-ChiehTung, Han-Jung Chou, Jing-Sin Liu

April 6, 2022 || Technical Report No. TR-IIS-22-001

https://www.iis.sinica.edu.tw/zh/page/library/TechReport/2022.html

Time-optimized velocity trajectory of a bounded-input double

integrator with uncertainties: a solution based on PILCO

Hsuan-Cheng Liao, Wen-ChiehTung, Han-Jung Chou, Jing-Sin Liu

Institute of Information Science, Academia Sinica, Nangang, Taipei, Taiwan115, ROC
{brianhcliao,jie1202, r02221012}@gmail.com,

liu@iis.sinica.edu.tw

Abstract. Reinforcement learning(RL) is a promising framework for deeper in-
vestigation of robotics and control on account of challenges from uncertainties.
In this paper, we document a simulation and experiment in applying an existing
model-based RL framework, PILCO, to the problem of state-to-state time-opti-
mal control with bounded input in the presence of uncertainties. In particular,
Gaussian Process is employed to model dynamics, successfully reducing the ef-
fect of model biases. Evaluation of policy, which is implemented in Gaussian
radial basis functions, is done through iterated prediction with Gaussian posteri-
ors and deterministic approximate inference. Finally, analytic gradients are used
for policy improvement. A simulation has shown a successful learning of a dou-
ble integrator completing a rest-to-rest nearly time-optimal locomotion for a pre-
specified stopping distance along a linear track with uniform viscous friction.
Time-optimality and data efficiency of the learning are demonstrated in the re-
sults. In addition, an experimental validation on an inexpensive robot car shows
the generalization potential and consistency of the leveraging model-based RL to
similar systems and similar tasks. Moreover, a rescaling transformation from the
baseline learned triangle velocity profile to a set of safe trapezoid velocity pro-
files is presented, accommodating additional velocity limit.

Keywords: Model-Based Reinforcement Learning, Velocity Learning, Time-
Optimal Trajectory, Data-driven Vehicle Control

1 Introduction

Optimal control based approaches are important for trajectory planning in a lot of
robotics and autonomous driving applications, since the formulations are able to take
into account more general constraints and objectives. To improve the working effi-
ciency and productivity by completing tasks as fast as possible, especially for tasks
involving repetitive state-to-state transfer trajectory execution, Time-Optimal Control
Problems (TOCP) have been illustrated in a mass body of literature[1] related to robot-
ics, autonomous driving or racing. The challenges of the problem lie in several aspects
including complicated system dynamics, multi-dimensional state and control spaces, as
well as various constraints on the robots and the environment and most importantly
uncertainties. The derivation of optimal control and state trajectories are in general very
computationally costly, so that efficiency and accuracy of computational methods

2

adopted to find the optimal state and control trajectories are usually a great concern, as
most practical industrial or engineering systems are required to react to instantly
changes of operating conditions and environments in a short time, or even in real time.
A popular approach to obtain time-optimal motion for a system with known dynamic
model and fixed boundary conditions under the safety and kino-dynamic constraints of
a vehicle is via optimal control or model predictive controlformulations. This approach
requires the derivation of optimality conditions, which is composed of coupled ordi-
nary differential equations or partial differential equations with boundary conditions,
and the help of numerical methods and optimization algorithms.

Learning-based control algorithms for a dynamical system, on the other hand, learn
to generate the desired system behavior without a priori complicated system formalism
and predefined controller parameters, thereby being likely more generalizable and plat-
form-independent. One of the promising approaches in the context of intelligent plan-
ning and control is based on Reinforcement Learning (RL) [2], [3], which can be
viewed as a class of optimal control. RL refers to the learning of a policy, defined as a
mapping from state space to action space, by means of maximizing a reward the agent
receives from the environments it interacts. There are several ways to categorize RL
algorithms, such as either model-based or model-free. With the dynamical system mod-
elled as a reward-maximizing RL agent and the desired behavior expressed as a utility
function, it is possible to train the system for an optimal sequence of actions through its
interactions with the environment. To stay data-efficient, the group of model-
based methods that employ derived or learned system dynamic models are more pref-
erable for diverse robot applications since fewer interactions between the agent and the
environment are required to find better trajectories faster, as compared to the group of
model-free approaches [2],[3]. In general, the intricate transition models can be derived
from deterministic physics-based models or stochastic learning algorithms, and the con-
straints can then be incorporated within the interaction processes to enforce the system
with desirable behaviors.

The effectiveness and performance of RL is task instance-specific, i.e. as a function
of the transition and reward functions induced by the policy being evaluated. Therefore,
to address the practical challenges in facilitating RL algorithms for a wide range of real-
world decision-making problems such as the autonomous vehicles for diverse driving
scenarios, it is generally believed that only specific applications of RL on concrete cases
can better demonstrate related issues. With this aim of study, the velocity learning task
of an autonomous car driving with bounded acceleration along a linear path is investi-
gated empirically. The learning goal is to recover a time-optimal motion to complete a
rest-to-rest linear locomotion along a linear track. The dynamics to be learned is as-
sumed to obey a double integrator-like uncertain dynamics subject to symmetric input
constraint with parametric uncertain parameters of mass and friction. The characteris-
tics of the task is that the vehicle mass is uncertain and the environment characteristics
such as friction is unknown, and both parameters affect the maximum speed along the
path.

Our main contributions include:
1. In this paper, we perform both simulation and sim-to-real validation experiment re-
sults with an existing sample-efficient model-based policy search algorithm,

3

Probabilistic Inference for Learning Control (PILCO) [4]. We apply PILCO to time-
optimal velocity planning problem of state-to-state steer task in simulation and a real-
world sim-to-real experiment. It is empirically shown in simulation that the car, mod-
eled as a constrained double-integrator with uncertain mass and viscous friction, suc-
cessfully accomplishes the learning of near time-optimal triangle velocity profile with
a single switching, while keeping the advantage of data efficiency.
2.Provide assessment and interpretations on the model-based RL planning results
3.Transform the learned triangle velocity profiles in accordance with additional speed
constraints into single or double trapezoid velocity profiles.

The remainder of the article is structured as follows: In section 2 we give an over-
view of the approaches to the time-optimal control problem. The key elements of the
PILCO algorithm are elaborated in Section 3, including dynamics modelling, trajectory
prediction, policy evaluation and policy improvement. In Section4, we present the sim-
ulation results of time-optimal velocity learning for the autonomous vehicle with dou-
ble integrator dynamics, and sim-to-real experimental validation on a simple car along
with discussions. Transforming a triangle velocity to a trapezoid or double trapezoids
velocity for longer traveling time is shown in Section 5. Lastly, we conclude with final
remarks in Section 6.

2 Related Work

There is a wealth of literature with regard to different aspects of TOCP. In this section,
we briefly present the common approaches developed in robotics and autonomous ve-
hicles, followed by those based on reinforcement learning.
2.1 Approaches to TOCP with Known dynamics

Control and trajectory generation and their optimization for the mission to be completed
are typically based on a model of the controlled system, thus platform-specific. Regard-
ing time-optimality, there are two variations of TOCP, namely complete and decoupled.
Complete approaches aim to solve the challenging problem in its entirety of determin-
ing the optimal state and input trajectories simultaneously, in which a number of direct
or indirect numerical methods are developed [6], [12], [25]. On the contrary, the decou-
pled approach, or path-velocity decomposition approach, decomposes the trajec-
tory generation and optimization into two subproblems: the first is the generation of a
geometric path for connecting two configurations without violating geometric con-
straints such as obstacle avoidance or smoothness requirements, and the second
is the design of a time-scaling function of state-to-state transfer along
the planned path, while respecting the given kino-dynamic constraints and fixed bound-
ary conditions (such as the initial and target positions and velocities are precisely spec-
ified). Given a path, the velocity and acceleration of the vehicle on it can be altered by
the design of the time-scaling function compliance with the constraints including
torque, acceleration, velocity [7-10]. The following three conventional methods have
been commonly used for motion planning and optimization of a broad variety of robotic
systems such as robotic manipulators or mobile robots in the robotic community.

4

Hamilton-Jacobi-Bellman (HJB) Equation. To address the optimal control problems
in full generality with the use of optimal control theory such as Pontryagin Maximum
Principle (PMP) or Dynamic Programming Principle (DPP)[11], necessary optimality
conditions for the state trajectories and control policies are derived. This yields the
Two-point Boundary Value Problem of HJB partial differential equations for time-op-
timization of trajectories. HJB approach is a practically useful approach in that many
numerical solvers of HJB equations are developed. The advantage of generality is that
more general state and input constraints and objective functions can be taken into ac-
count. For example, time-optimality can be traded off against energy to yield less ag-
gressive control to move the robots slower but smoother.
Convex Optimization (CO). The Hamiltonian of TOCP for robotic manipulator is
shown to be convex with respect to the control input. TOCP is transformed into a con-
vex optimization problem with a single state through a nonlinear change of variables
[13], where the acceleration and velocity at discretized locations on the path are the
optimization variables. . Then, followed by [14], the work is further extended to meet
speed dependent requirements. Such approach is simple and robust thanks to the exist-
ing convex optimization libraries, yet only convex objective functions can be con-
cerned. However, the convex optimization program contains a large number of varia-
bles and inequality constraints, making it slow and less suitable for real-time applica-
tions.
Numerical Integration (NI). Since the vehicle velocity highly depends on the path to
be followed, the decoupled approach splits the motion planning problems to two sub-
problems as aforementioned to manage the computational complexity. A kinematically
feasible state-to-state transfer path parametrized by a scalar curvilinear abscissa coor-
dinate s, usually the arc length, is first determined. The travel time is determined by the
path velocity 𝑠ሶ along the path or the time scaling function s(t) that is solved by optimi-
zation tools to meet the imposed constraints. Then dynamics expressed as multi-dimen-
sional state space equations is reduced to expressions in phase plane of ሺ𝑠, 𝑠ሶሻof para-
metrized path coordinate 𝑠, and parametric path velocity 𝑠ሶ. By description of the dy-
namics and constraints along the path to be followed on the ሺ𝑠, 𝑠ሶሻphase plane, then this
method generates the velocity limit curve on the phase plane from the velocity and
acceleration bounds. The generation of minimum-time velocity profile along the given
pathis greatly simplified to the determination of switching structure in the phase plane
[1], [11]. Essentially, itsearches for switching points on the phase plane and establishes
the velocity profile by integrating forward with the acceleration limits and backward
with the deceleration limits pivoting from those points. In general, a model predictive
control (MPC) framework can be used in the decoupled approach to generate the safe
velocity profileand the input commands for following a given planned path in terms of
known system dynamics [15].
2.2 Reinforcement learning frameworks

For an autonomous robot or vehicle to perform a mission, the system is composed
of the agent and the real-world environment where it operates. The mission may very
often involve some planning task with time and computational resource budget in real-
time applications. A model therefore is a good informative basis for planning. However,

5

the model of the agent and the environment is uncertain and not accurate due to para-
metric uncertainties and unmodelled dynamics. Sources of uncertainties exist in the
input and perception and agent-environment interaction. Dealing with uncertainties is
one of the most challenging issues in planning and control of unmanned vehicles. The
control should thus be robust to real situations encountered during execution of mission
for safety and performance guarantee. For enhancing autonomous robotic system per-
formance, instead of tuning the behaviors frequently and manually in practical situa-
tions, we may consider the integration of learning and planning due to the capabilities
of tackling the issue of over-simplicity of modeling development due to unmodeled
dynamics and uncertainties. This aim is likely to be alleviated with the advents of RL
frameworks, especially the model-based family [27]. These approaches reformulate the
problem as a Markov Decision Process for the autonomous agent, which maximizes the
long-term rewards and does not necessarily need the transition dynamics beforehand.
While the model-free group of approaches attracts the most scientific interest, the
model-based group is recommended for real robots [2], [3], [28] since the employment
of a learned model of the agent-environment interactions creates an internal simulation
during learning process and reduces physical engagement substantially, decreasing po-
tential hazards and mechanical wear of robots, while improving reliability and robust-
ness in task execution. The suitability is, in addition to data efficiency and the advantage
of less agent-environment interactions, because model-based RL learns a dynamics
model and then the derived characteristics of a learned model is used for generating
trajectories and learning the policy.

There are a surging number of researches related to model-based reinforcement
learning over the past decade. Despite its faster convergence over the model-free frame-
works, a severe issue is that any model bias greatly affects the learning performance.
System transition modellingor model fitting techniques range from deterministic meth-
ods such as physics-based formulation, Receptive Field Weighted Regression(RFWR),
to stochastic methods including Expectation Maximization (EM), Deep Neural Net-
works (DNN) and so on. Among which, Gaussian Process (GP) is the state-of-the-art
practice that extracts the information from the sampled data with the highest data effi-
ciency [4]. In contrast to other probabilistic models that maintain a distribution over
random variables, GP builds one over functions. Therefore, it has no prior assumption
on the function mapping current states and actions to future states. The fact makes it an
effective tool, and is employed in this study.

RL for controlling non-linear dynamical models with continuous state and action
space has two method families: value function or policy search.
Value Function.The most widely used one is the value function approaches. This class
of methods estimates an optimal value function of future outcome 𝑄గሺ𝑠,𝑎ሻ, usually
written in the form of equation (1), given the state sof the agent and takes actionaac-
cording to a policy 𝜋ሺ𝑠,𝑎ሻ that results in a sequence of state and action.The policy that
maximizes the long-term reward is consequentlyreconstructed from the sequence of
optimal actions at each state

 𝑄గሺ𝑠,𝑎ሻ ൌ ∑ 𝑃ሺ𝑠ᇱ|𝑠,𝑎ሻሾ𝑅ሺ𝑠ᇱ|𝑠,𝑎ሻ ൅ 𝛾𝑄గሺ𝑠ᇱ,𝑎ᇱሻሿ௦ᇲ (1)

6

This category is widely adopted in model-based RL and particularly implemented with
dynamic programming techniques, which requires known system dynamics. However,
it is not suitable for high dimensional or continuous state and action spaces as the scale
of the value function will be infinite.
Policy Search. Policy search is deemed more natural for robotics learning [41]. Instead
of deriving an optimal policy from the value function, this class of methods keeps a set
of parameters for the policy and directly optimizes it by maximizing the cumulative
reward. Two common techniques involved in policy search are gradient-based ap-
proaches and sampling-based approaches. We have chosen the former because the latter
does not always guarantee a convergence to the optimal policy and the generated tra-
jectory is sometimes far from the observed input-output data collected due to model
biases [2]. More details will be given in the next section.

3 Model-based RL for Time-Optimal Vehicle Motion

The aim is to control the vehicle from an initial state to reach a target state in minimal
time. The existence of time-optimal trajectories is guaranteed by PMP for a vehicle
[16]. In order to find the time-optimal control policy, there are a number of choices of
learning algorithms. An earlier work [17] used Q-learning for car-like vehicle motion
planning. [18] considered the transfer learning of obstacle avoidance behaviors in sim-
ilar environments with similar obstacle patterns, where the state of the environment is
represented by the obstacle pattern. A recent model-free actor-critic RL algorithm is
applied to time-optimal velocity planning along arbitrary path in [19].This work
showed that incorporation of velocity computation by exploiting the vehicle dynamics
model is feasible in practice to enhance the learning outcome to some extent.
The goal of data-driven velocity planning in the form of time scaling function we deal
with is to recover or approximate the optimal time-scaling function for a vehicle with-
out knowing its dynamic model. In this paper, for the specific aggressive velocity plan-
ning problem, we exploit and implement PILCO [4], a data- efficient model-based RL,
first the simulation and then on a real experiment of toy car. PILCO is summarized in
Algorithm 1. PILCO has been tested with success in benchmark tasks at low-dimen-
sional state space such as control of the inverted pendulum and the cart-pole swing-up,
demonstrating unprecedented performance of successful learning outcome. The method
employs the state-of the art non-parametric Gaussian Process (GP) for model learning
of the unknown dynamics and corresponding uncertainty estimates based on probabil-
istic dynamics modelling. It then uses approximate inference for system state trajectory
predictions and policy evaluation. Finally, policy improvement is made with analytic
policy gradients. The core elements of the PILCO framework, including dynamics
modelling, trajectory prediction, policy evaluation and policy optimization, are briefly
described in this section.

Algorithm 1 PILCO
1: Define parametrized policy:𝜋: 𝑧௧ ൈ 𝜃 → 𝑢௧
2: Initialize parameters 𝜃 randomly

7

3: Execute system and record data
4: repeat
5: Learn system dynamics model with GP
6:Predict system trajectories
7:Evaluate policy: 𝐽గሺ𝜃ሻ ൌ ∑ 𝛾௧𝔼௑ሾ𝑐𝑜𝑠𝑡ሺ𝑋௧ሻ|𝜃ሿ

்
௧ୀ଴

8: Update parameters by gradients d𝐽గሺ𝜃ሻ/d𝜃
9: Execute system and record data

10: until task completed
3.1 Dynamics modelling

In real world, model uncertainties and model errors are inevitable in the process of
modeling a dynamic system. As mentioned, there are various methods to model and
learn the unknown system dynamics [2]. It is important that the model learning algo-
rithm can cope with the uncertainty and noise in collected data. PILCO adopts GP prob-
abilistic modelling and inference to learn the transition dynamics of real-world agent
(Algorithm 1, line 5) as a prediction model of the system to control. Therefore, it effec-
tively handles the input uncertainties and reduces the effect of model errors or simpli-
fication for the system dynamics derived through non-trivial mathematics and physics
equations, eliminating the common drawback of model-based frameworks.
The training inputs are data in the form of the state-action (x,u) pairs generated by the
dynamics of agent-environment interaction:

 𝑥෤௧ ൌ ቂ
𝑥௧
𝑢௧
ቃ ∈ ℝ஽ାி, (2)

and the target is the difference between consecutive states:

 ∆௧ൌ 𝑥௧ାଵ െ 𝑥௧ ∈ ℝ஽. (3)

In this paper, a common choice of the mean and variance of a multivariate Gaussian is
a zero mean function and a squared exponential covariance function defined as:

 𝑘൫𝑥෤௜ , 𝑥෤௝൯ ൌ 𝜎௙
ଶexp ሺെ

ଵ

ଶ
൫𝑥෤௜ െ 𝑥෤௝൯

୘
Λିଵ൫𝑥෤௜ െ 𝑥෤௝൯ሻ, (4)

where variance of the function 𝜎௙
ଶ and Λ ≔ diagሺሾ𝑙ଵଶ, 𝑙ଶ

ଶ, … , 𝑙஽ାி
ଶ ሿሻ depends on the

length scales. With 𝑛 training samples 𝑋෨:ൌ ሾ𝑥෤ଵ, … , 𝑥෤௡ሿ and y:ൌ ሾ∆ଵ, … ,∆௡ሿ, the poste-
rior GP hyper-parameters are learned through evidence maximization and describes a
one-step prediction model of state trajectory generation:
posterior state distribution

 𝑝ሺ𝑋௧ାଵ|𝑋௧,𝑈௧ሻ ൌ 𝒩ሺ𝑋௧ାଵ|𝜇௧ାଵ,∑௧ାଵሻ, (5)

mean

𝜇௧ାଵ ൌ 𝑋௧ ൅ 𝔼௙ሾ∆௧ሿ, (6)

variance

 ∑௧ାଵ ൌ var௙ሾ∆௧ሿ, (7)

8

where capitals represent random variables. In practice, the computationally tractable
mean and variance are used for further decision making.

3.2 Deterministic Trajectory Prediction

With the model uncertainty handled by GP, PILCO employs model-based policy search
for planning and uses analytic gradients of closed form solutions for optimization. For
the later policy evaluation, PILCO first predicts long-term system trajectories with the
learnt transition dynamics (Algorithm 1, line 6).To such end, the one-step prediction
process is cascaded from 𝑋଴to 𝑋ଵ,𝑋ଵ to 𝑋ଶ, and up to 𝑋், generating a T-step-ahead
prediction which forms a distribution over the system trajectories in which the uncer-
tainties are handled by introducing the noise which contaminates the states. The distri-
bution of state 𝑋௧ at time t is assumed Gaussian with mean 𝜇௧ and variance 𝛴௧ ,
𝑝ሺ𝑋௧ሻ~𝒩ሺ𝜇௧,𝛴௧ሻ, and subsequently approximated by moment matching or lineariza-
tion of the posterior mean and covariance for further computation during policy opti-
mization.

 𝜇௧ାଵ ൌ 𝜇௧ ൅ 𝜇௱, (8)

 ∑௧ାଵ ൌ 𝛴௧ ൅ 𝛴௱ ൅ 𝑐𝑜𝑣ሾ𝑋௧ ,𝛥௧ାଵሿ ൅ 𝑐𝑜𝑣ሾ𝛥௧ାଵ,𝑋௧ሿ, (9)

 𝑐𝑜𝑣ሾ𝑋௧ ,𝛥௧ାଵሿ ൌ 𝑐𝑜𝑣ሾ𝑋௧,𝑈௧ሿ𝛴௨ିଵ𝑐𝑜𝑣ሾ𝑈௧ ,𝛥௧ାଵሿ. (10)

3.3 Policy evaluation

Having retrieved the predictive trajectories, it remains computing the expected long-
term cost for policy evaluation. Given the entire experience time in each episode as a

fixed length of horizonT୪ୣୟ୰୬, let ∆T ൌ
୘ౢ౛౗౨౤
ே

be the sampling time so that [0,T୪ୣୟ୰୬] is

uniformly sampled into equally-spaced N time steps {t∆T, 𝑡 ൌ 0,1, … , N}. PILCO ap-
plies the discounted cost function (11) along the learned state trajectory ሼ𝑋௧, 𝑡 ൌ
0,1, … , N,𝑋଴ given ሽ for the sequence of actions generated by the control policy
{𝑎௧ , 𝑡 ൌ 0,1, … , N െ 1}to state distributions at each time step

 𝐽ሺ𝜃ሻ ൌ ∑ 𝛾௧𝔼௑ሾcostሺ𝑋௧ሻ|𝜃ሿ୒
௧ୀ଴ (11)

where 𝛾 is the future discount factor,

𝔼௑ሾcostሺ𝑋௧ሻ|𝜃ሿ ൌ ׬ costሺ𝑋௧ሻ𝒩ሺ𝑋௧|𝜇௧,∑௧ሻd𝑋௧, (12)

and 𝜃 is the given policy parameter for the control policy. The reinforcement learning
strategy is to iteratively refine a simulation-learned control policy that minimizes the
fiexed learning horizon cumulative discounted cost (11)-(12) directly through the
learned model as the model of the system is updated during learning episode when more
information is acquired over eipsodes. In general, there are quite a number of cost func-
tions possible for the reward of RL, yet the effectiveness depends on the applications
indeed. For example, a parametric cost function [20] can be used to switch the cost from
a quadratic cost function to a time-optimal cost during learning to come up with differ-
ent feedback control in response to different events. Likewise, [21] utilizes a progress
maximizing cost function, ensuring the learning agent drives as far as possible within
every time step. Here, the cost function such that the integral in (12) can be analytically

9

calculated based on the trajectory (from the given initial state to the final state the sys-
tem actually reaches) is suitable to avoid the pitfall.Note that a large 𝛾 will cause the
accumulated cost (11) calculated at the end of episode to reduce more slowly in late
time as time index t→ N. A small 𝛾 would thus be good for uniform convergence.

Remark. Since the learning reward (11)-(12) does not include the control regularization
term (such as using L1, L2 or mixed L1- L2 norm regularization as additional sparsity-
inducing cost for (11)-(12) [30]), it allows gradient computation for model-based opti-
mization described in the following subsection.

3.4 Policy optimization

The policy is improved episodically through the gradient information of (11) (Algo-
rithm 1, line 8): the update steps are in the gradient directions toward high rewards. For
analytical tractability, it is required that the expected cost in (12) is differentiable about
the state distribution moments, and that the moments of the controller distribution are
differentiable with respect to the policy parameter 𝜃. PILCO, a model-based RL, ex-
plicitly takes into account the model uncertainty for prediction and analytic policy gra-
dient computation, which is available since the reward function and transition function
are differentiable. Thorough analytic computation of the gradient d 𝐽గሺ𝜃ሻ/d𝜃, which
involves several applications of chain rule, is documented in [4]. Finally, An advantage
of PILCO is that thanks to the analytic expression of the policy gradient with respect to
policy parameters, any standard gradient-based optimization method such as CG or
BFGS can be implemented to search for the optimal policy parameter 𝜃 with thousands
of parameters which minimizes the total cost 𝐽గሺ𝜃ሻ so as to obtain desired state trajec-
tory.

4 Results and Discussions

The effectiveness and performance of a model-based reinforcement learning algorithm
can be scenario (problem instance) dependent and platform-specific (in terms of dy-
namics model and parameters). The task demonstrated in this paper is to learn a veloc-
ity function for a vehicle with second order system dynamics so that the completion
time of a rest-to-rest steer from origin to a state 𝐱୲ୟ୰୥ୣ୲ along a linear path with un-
known friction characteristics is as short as possible under the physical constraint of
vehicle. The existence of a time-optimal velocity and input so that the target is achieved
as fast as possible is guaranteed by PMP. The analytical or learned time-optimal veloc-
ity solution is both platform and path dependent. Control bounds, different boundary
conditions or paths with different curvature profiles and lengths, and various choices
of the physical parameters such as mass, friction, can produce different velocity solu-
tions. As a result, different maximum velocities and different travel times are produced.
A lower bound of the travel time can be calculated considering the path is a straight
line as studied here.
For this task, both the state and the input can be observed to collect the data. Since the
measured data x, xሶ and the associated trajectory cost for a given policy have errors due

10

to model uncertainties and disturbances, model error is detrimental to task performance
executed by a control policy [26]. Disturbances affect the stability of system to reach
the target. Uncertainties, caused by lateral drift of the vehicle, physical properties such
as inertia and friction etc., make the prediction of the sampled states on the linear track
under the input ambiguous. The learning control algorithm should effectively mitigate
the uncertainty propagation to accurately estimate the uncertainty of the dynamics when
restricted for the specific state-to-state transfer task with given goal-reaching path to
yield an accurate state-to-state time-optimal velocity solution along the linear track. In
the following, to apply PILCO to time-optimal state-to-state transfer task along a linear
path, we describe the test setup, simulation and experiment results, followed by some
discussions.
The simulation consists in executing different control policies on the double integrator
from the same rest state to reach a target state, and records the resulting state input pair
and the cost at sampling times. We formulize the stage cost in (11) as related to an
exponential function of the Euclidean distance to the target state 𝐱୲ୟ୰୥ୣ୲ from the cur-
rent state 𝑋௧ ൌ 𝐱ሺtሻ at time t and tune the cost width with 𝜎௖ as shown in (13).

 costሺ𝑋௧ሻ ൌ 1 െ exp ቀെ
ଵ

ଶఙ೎
మ ฮ𝑋௧ െ 𝐱୲ୟ୰୥ୣ୲ฮ

ଶ
ቁ ∈ ሾ0,1ሿ (13)

This task-specific cost function measures how fast the vehicle progresses on the track
to reach the target (subject to tolerance) within the learning horizon in each simulated
episode. It has a shape of quadratic functions around the target state yet smoothens out
at unity in distant states, and it is the only feedback information the vehicle receives
during the vehicle-environment interaction. The parametrized policy is defined with a
full state (position and velocity) feedback in the form of Gaussian Radial Basis Func-
tion (RBF) controller [4] as

uሺ𝐱, θሻ ൌ ∑ 𝑤௜𝜑௜
 ௡್
௜ୀଵ ሺ𝐱ሻ (14)

with

𝜑௜ሺ𝐱ሻ ൌ exp ሺെ
ଵ

ଶ
ሺ𝐱 െ 𝜇௜ሻ்∆ିଵሺ𝐱 െ 𝜇௜ሻ, (15)

where 𝑛௕ is the total number of basis functions, and θ ൌ ሾ𝑤௜ , 𝜇௜ ,∆ሿ represents the pol-
icy parameter vector of the weight, mean, and covariance of each Gaussian RBF. The
choice of parametric controller (14)-(15) in the form of linear combination of Gaussian
RBFs lies in its function approximation property and good generalization property,
where the controller parameter values and the number of basis functions can be opti-
mized using various methods. This implies robustness to vehicle parametric uncertain-
ties and disturbances in learning. Since the optimal control is generally unknown,
 𝑛௕ ൌ 100 is chosen to be sufficiently large, thus θ ∈ 𝑅ସ଴ଷ, to allow an accurate ap-
proximation.
4.1 Simulation
Setup. We take 0 as the initial time and rest state (0, 0) as the initial state. The final
state to be reached is assumed to be a known target position at a distance L at rest. The
environment is visualized in Fig. 1, where the autonomous car is drawn as the black
box. The vehicle has a horizontal length of 30 centimeters and a mass of 0.5kg. In
addition, in order to mimic a real vehicle on the road, a friction coefficient of μ ൌ0.1is
assumed between the ground and the car, and there is a symmetric bound ofേ4m/sଶon

11

the acceleration control. It can move forward and backward. The simulation is on
MATLAB with Intel i7 core and 16 GB RAM. For our simulation purpose, we use the
double integrator to simulate behavior of real vehicle traveling along a straight line on
the flat ground with viscous friction. Essentially for a point moving on a planar path, it
can be considered as a double integrator or a canonical spring-damper-mass system,
therefore a one-dimensional motion planning problem along a curved path. The time-
optimal control for double integrator is solved in [25] as the trajectory optimization via
barrier function. Let x(t) denote the distance traveled by a point mass m on a frictional
ground controlled by an applied throttle(proportional to forward acceleration) u with
symmetric constraint u ∈ Uୟୢ ൌ ሾെu୫ୟ୶, u୫ୟ୶ሿ where Uୟୢis an admissible control set
(a convex polytope). We assume that u୫ୟ୶ is not less than the static friction force,
whereby the initial velocity is zero. To avoid slipping, the acceleration bound should
satisfy u୫ୟ୶ ൑ μg, g=9.8m/s2 is the gravitational acceleration. Defining x=ሾx, xሶ ሿ୘ as
the state vector of simulated vehicle, the state equations for the vehicle dynamics can
be written as

𝐱ሶ ൌ 𝐀x ൅ 𝐛u, 𝐱ሺ0ሻ ൌ 0 ሺ16ሻ

where𝐀 ൌ ቈ
0 1
0 െ

ୡ

୫
቉ ,𝐛 ൌ ൤଴భ

ౣ
൨,m is the vehicle mass, c ൒ 0 is the viscous friction coef-

ficient, u ൌ uሺ𝐱ሺ𝐭ሻ, θሺtሻሻ.
The action space for the vehicle is the convex and compact set Uୟୢ. Since the vehicle
(16) is controllable, the existence of a control input with at most one switching to steer
the vehicle from a rest state 𝐱ሺ0ሻ ൌ 0 at time zero to a neighborhood of another state
𝐱ሺtሻ in a given time t is ensured by controllability; in our case, to a target state
𝐱୲ୟ୰୥ୣ୲ ൌ ሾ5 0ሿ୘in minimum time T is ensured by PMP. Under nominal operating con-
ditions with no constraints imposed on the motion profiles and no disturbance, the state
response of (16) for an arbitrary piecewise continuous input function u(t) is precisely:

x(t)=׬ e𝐀த
୲
଴ 𝐛uሺt െ τሻdτ

=Cz(t) (17)
where

 e𝐀୲ ൌ α଴ሺtሻI ൅ αଵሺtሻ𝐀,
z(t) =ሾ zଵzଶሿ୘, z୧ሺtሻ=׬ α୧ሺtሻuሺt െ

୲
଴ τሻdτ, i=1,2

C= [b Ab]=controllability matrix
There exist a lot of candidate control algorithms that realize the required state-to-state
steering task under nominal and perturbed operating conditions. Each requires the con-
trol algorithm to tune the corresponding controller parameters according to different
system parameters or operating conditions. In this study, the learning-based control
policy tries to find the policy that decreases the accumulated expected cost (13) of pair-
wise distance between the vehicle achieved progress at each sampling time and the
target. Here an episode is considered where the vehicle is returned to the same initial
state after executing a policy. The motion starts from rest at the origin, moves along a
linear track for a fixed duration T୪ୣୟ୰୬ ൌ 4 by applying a policy. Each episode lasts a
fixed duration T୪ୣୟ୰୬ via repeated traversal along the linear track from the same initial

12

state while reaching finally a position by applying a policy, as shown in Fig. 1. It is
desired that xሺTሻ ൌ L , xሶ ሺTሻ ൌ 0 for a prescribed distance L=5 with T ൑ T୪ୣୟ୰୬ as
small as possible,
i.e. the policy determines the maximum xሶ for each point x on the prespecified path and
a T for task completion. The choice of the learning time T୪ୣୟ୰୬ ൌ 4 in one episode for
the simulations reported here is a tradeoff of the amount of data collected (computa-
tional load) and performance, where too small/largeT୪ୣୟ୰୬ results in aggressive/relaxed
learning.

Results.
Dataset preparation. We use trajectory planning for data collection over [0, T୪ୣୟ୰୬ ൌ
4]. Applying a given policy in the form of () to drive on the linear track from the rest
produces specific sequence of states (positions and velocities). The collected dataset
for learning the dynamics model holds only for the given path and task. In running each
episode, the vehicle starts from the same initial state (zero state at rest) at t=0. We col-
lect in one control cycle for each maneuver policy a batch of trajectory data recorded
for vehicle motion based on simple point mass vehicle model given by (16) respecting
the acceleration limits at sampling times 0.1, 0.2,⋯ ,3.9, 4 over the time horizon ሾ0,4ሿ.
Therefore, a total of 16 episodes (including an initial random-policy round) are exe-
cuted, each of which has a total of N=40 samples of state-control pairs. Suppose we
have a sequence of 40 admissible control inputs satisfying the control bound Uୟୢ at the
jth learning episode

uଵ
ሺ୨ሻ ൌ 𝜋ሺ𝐱ଵ

ሺ୨ିଵሻ
, θሺjെ1ሻሻ,⋯ , uସ଴

ሺ୨ሻ ൌ 𝜋ሺ𝐱ସ଴
ሺ୨ିଵሻ

, θሺjെ1ሻሻ(18)

where u଴
ሺ୨ሻ

is an initial input for arbitrary initial exploration. The constant size dataset
D୧ is composed of a sequence of precisely 40 state-action pairs with the corresponding
state being visited by the vehicle and the corresponding control input

D୨ ൌ ൬ቀ𝐱1
ሺjሻ, u1

ሺjሻቁ ,⋯ , ቀ𝐱୒౪౗౨ౝ౛౪
ሺjሻ , u୒౪౗౨ౝ౛౪

ሺjሻ ቁ ,⋯ , ቀ𝐱40
ሺjሻ, u40

ሺjሻቁ൰, (19)

where 𝐱଴
ሺ୨ሻ ൌ 𝐱଴ . Here N୲ୟ୰୥ୣ୲ ൑ N ൌ 40 denote the first sampling time at which the

car passes through the target region. The state transition rule of (16) that maps current
state and action to the next state

𝐱୩ାଵ
ሺ୨ሻ ൌ 𝐱ሺjሻ(0.1ሺk ൅ 1ሻ)=𝐱ሺjሻ(0.1k)+0.1C𝐳ሺjሻ (0.1k)=𝐱୩

ሺ୨ሻ ൅ 0.1 𝐂𝐳୩
ሺ୨ሻ, k=0, ⋯ ,

39, ሺ𝐱଴
ሺ୨ሻ ൌ 𝐱0 , u଴

ሺ୨ሻሻ given,

defines the set of reachable state from a given initial state. These 40 state-control pairs
collected at different sampling times are correlated via state transition rules. The j-th
episode learning data are to be used as demonstration via the reward in its next (j+1)-
th learning cycle so that the policy is revised with online estimation of vehicle model

13

based on the batch of collected data (for the whole episode completed) during the learn-
ing process.
Performance. The learning performance was evaluated by computing the trajectory
cost function (11)-(13) over the entirety of trial state and control trajectories in each
trial. The dataset D୧ of 40 data in each trial records how the vehicle modifies its input
at each sampled point of the path in accordance with the trajectory cost function as the
feedback the vehicle receives. The outcome of learning shown in Fig. 2 is encouraging.
Given the trajectory cost function, though not monotonic over episodes, the state and
control trajectories are improved by PILCO, which learns to utilize more force to reach
the maximum velocity faster and the target faster as the model is updated when more
information is acquired. The learned control policy exhibits desirable property of min-
imizing the hitting time N୲ୟ୰୥ୣ୲: the car drives forwards at the maximum acceleration
from the start at rest to reach a suitable maximum speed depending on the boundary
conditions of the path and knows when to slow down with the maximum deceleration
for speed reduction to reach the target at rest. The input is always on values in proxim-
ity to the boundary of admissible control set Uୟୢ , i.e. bang-bang control. Though the
maneuver time minimization is not directly involved in the cost (13), by interacting
with the environment during each episode (Algorithm 1, line 3/9), the agent in every
possible state performs aggressive actions of bang-bang control according to a policy
that achieves the target as maximum progress as possible. The resulting velocity profile
forms a triangle with one switching point whose height and position are, respectively,
the maximum allowed velocity and half-travel time from the initial to the target under
symmetric acceleration constraint.
In summary, the simulation illustrates that PILCO, a model-based reinforcement learn-
ing that explicitly takes into account model uncertainty, is a viable approach to learning
the desired property of time-optimal state and input trajectories of linear uncertain sec-
ond- order systems from scratch.
Discussions and Analyses. We provide further discussions and analyses in the follow-
ing.
Verifying Time-Optimality. Time-optimal control solution to double integrator with in-
put constraint and/or velocity constraint can be found in the literature, where time-to-
go function (the minimum time) is calculated through the application of PMP [6] or
numerical optimization [25]. More specifically, given a priori rest-to-rest triangle ve-
locity profile, we have zero velocity at both ends of motion. There are in general two
unknowns that can be used to parametrize a triangle velocity profile: the total motion
duration T and the single switching time Tsw. Considering the symmetric acceleration
bounds and rest-to-rest boundary conditions, the only unknown for triangle velocity is
the switching time Tୱ୵ ൌ T/2. The switching point in this case also determines the bot-
tom edge length (the minimal travel time T) of velocity-time plot uniquely. Theoreti-
cally, in ideal situations of no external disturbances and no model errors, by taking into
account the input constraints, the triangle velocity profile is the intersection of forward
integration along maximum acceleration curve from the initial and backward integra-
tion along the maximum deceleration curve from the target. That is, it is the velocity
trajectory obtained by integrating the equation of a double integrator or second-order

14

mass-spring-damper system when the time-optimal input is a bang-bang control [11]
(i.e. it is a piecewise constant േu୫ୟ୶ at all time) with one sign change.
Given that the area L of triangle is equal to the travel distance between the initial and
the target, there is a switch from acceleration to deceleration for a triangle velocity
profile, i.e. the intersection of the line of positive acceleration forward from the initial
state and the line of negative acceleration backward from the target state in the phase
plane of (position, velocity). Denote by time Tୱ୵ and by velocity (height) h at the switch
point of the triangle. Let T denote the travel time (the bottom length), then T (thus
Tୱ୵ ൌ T/2) and h of switch point can be analytically computed (see Appendix). Equiv-
alently, the time-optimal control needs to compute the distance needed to accelerate
and T decelerate along the path. Note that in the case of double-integrator (14) with
m=0.5, c=0, u୫ୟ୶ ൌ 4, it is a second order system without damping. The position tra-
jectory is oscillating. It requires a minimum of

𝑇 ൌ 2ඨ
mL

u୫ୟ୶
ൌ √2.5 ൌ 1.58

of time for traveling L=5 along a straight line with maximum acceleration/deceleration
of 4 that achieves a highest speed of h= 6.32 in our case (see Appendix, Problem 1), as
Fig. 3(b) shows. The switching from maximum acceleration to maximum deceleration
is at half the total motion duration due to the symmetry of acceleration bounds. The
switching time Tୱ୵ is computed as the time from highest velocity to zero or equiva-
lently from zero to highest velocity:

h/ሺu୫ୟ୶/mሻ=6.32/8= 1.58/2=T/2=Tୱ୵,
as claimed. This requires N୲ୟ୰୥ୣ୲ ൌ 16 for a sampling time of 0.1. The characteristics
of exact solution are learned: the learned triangle velocity profile nearly coincides with
the time-optimal triangle profile.
PILCO Algorithm for model learning. PILCO uses GPs for model learning of the un-
known dynamics (mass and friction coefficient). In our task, the GPs only learn from
the collected dataset only valid for the given path and task, while prior knowledge about
the dynamics based on physics, which have a general validity and is consistent across
the tasks, is not available. The specific state response is derived from measured data for
applying a given policy in the parametric form of (14)-(15) to the simulated model. In
the second episode, nearly correct state response is generated without being concerned
with the true parameters c/m and 1/m. The friction coefficient c can’t be estimated in-
dependently of the mass m from the trajectory. The GP model is then used to form an
estimator for the (approximate) posterior for optimal policy search. This makes the al-
gorithm perform efficiently in velocity learning task for a specific platform, and the
resulting policy encodes the desirable spatial and temporal correlations. However, it is
also observed that sometimes the algorithm, in spite of the natural exploitation-explo-
ration characteristics of the saturating cost function, is not guaranteed to be globally
optimal. It is stuck in local optimum since the optimization problem is not convex [4,
18].
1.Efficiency.We further investigate the efficiency of the algorithm. As shown in Fig. 4,
the agent can indeed be brought to rest at the destination from the initially rest condition
within 2 episodes by an optimal action which achieves the transfer in the smallest

15

amount of time with practically a time-optimal trajectory. We can see two very different
trajectory behaviors. The first trajectory is counter-intuitive in that it drives in reverse
to the destination. This unusual behavior has a high trajectory cost due to divergence
from the target, causing the rest of the trajectories across the second episode to the last
one switching direction of motion by traveling toward the target from the start. The
same implication has been drawn from the cost vs. episode plot of Fig. 5, where we
observed that the learning converges after 2 episodes. The learning is successful as
validated by the decreasing of state trajectory cost function value with the number of
episodes shown in Fig. 5. After a certain number of learning episodes, the learned ve-
locity trajectories are the same. In the first episode, the total cost is 40 on account of
the unity saturating function, yet at the second episode, a new speed profile is found
that can steer the car to the target with reduced cost and consistently with the reduced
motion duration. The learning behavior from second episode until the final one is rela-
tively identical with small steady-state oscillation. When overshoot occurs, turn-back
is observed during learning. The policy is updated and exploration is terminated to
maintain the cost at its lowest throughout the remaining learning episodes. Fig. 6 are
the learning curves in the position-velocity phase plane, showing the maximization of
reward with respect to time complexity in terms of the number of episodes.
2.Cost Function.Time-optimality is not imposed explicitly in the cost function (11) -
(13).In the initial stages of learning, the predictive state mean is far from the target and
the distribution is looser due to propagation of model uncertainties, so the cost function
guides the agent towards the less unexplored regions. As the learned model that con-
tains uncertainty becomes more accurate with the mean approaching to the target and
the distribution tightened, the agent exploits the local regions for policy optimization.
In fact, via minimization of (11) - (13) over the entire horizon [0,T୪ୣୟ୰୬] of learning
episode, the maneuver or control policy tends to achieve a maximum progress per sam-
pling time so that higher immediate reward is encouraged during the learning. This is
because decaying factor to the power of t𝛾௧in the time-accumulated trajectory cost sum
(11) favors the immediate distance cost (13) to drive toward the target, encouraging the
goal- reaching to be achieved with large progression so as to deliver a lower total tra-
jectory cost. A metric of the error caused by the uncertainty in the learned model is
comparing the predicted state response based on learned model with the state response
of simulated system. The performance is gradually improved over episode as the speed
of target reaching is increased by the cost optimization, validated in Fig. 5.
3.Constraints.Apart from hard control boundaries, equality or inequality (possibly non-
linear, nonconvex) state constraints such as the limit on the travel distance or upper and
lower limits on the vehicle position, obstacle avoidance or maximum velocity limits are
very common to autonomous systems for safe operation. These requirements are not
taken into consideration by PILCO in current form, in particular goal reaching is not
imposed as the boundary constraint, ensuring parameter perturbations do not violate
constraints during trajectory learning. Due to the objective function does not enforce
the vehicle to stop at the target after the target is reached (without imposing equality
constraint of reaching the target or boundary conditions at the target), in the simulation
the vehicle has recovered a near time-optimal rest-to-rest linear locomotion. However,
the vehicle did not converge precisely to the target state, but oscillated around the

16

neighborhood of the target state, since there is no terminal cost imposed on the cost
function. A few trials are carried out to implement a maximum velocity on the autono-
mous vehicle through some tuning on the cost function. It tends to compromise to some
extent and balance the cost generated from the target state and the penalties given for
violating the constraints because it looks at the full horizon for policy evaluation. It
shows that current method is more restricted and can only handle a limited set of ob-
jective functions and constraints.

4.2 Sim-to-Real Policy Transfer Experiment
In order to test the learned policy in a real-world environment, this section presents a
sim-to-real validation experiment we conduct with a low-cost Raspberry Pi-controlled
small car, AlphaBot, as shown in Fig. 7. The simple car is equipped with photo inter-
rupters and ultrasonic sensors for state measurements. It can be controlled to accelerate
and brake. We assume that the model of car belongs to a similar second-order dynamics
with slightly changed model parameters, which is universal due to its base on first prin-
ciples or physics. The learning task is the same time-optimal rest-to-rest steering along
a linear track. This allows the reuse of the learning control obtained from the simulation.
The low-cost vehicle has uncertainties in inertial and friction parameters, suitable for
testing the uncertainty handling capability of learning control algorithm.
In contrast to simulation scenario setup, there is an additional velocity limit for experi-
mental car, which is a state constraint. The velocity limit stems from the electronic
voltage constraints on board, and therefore is not directly handled by the control signal.
Setup. The small car is designated to begin its route at a distance of 180 cm from the
wall and end at 50 cm. Its heading is fixed at zero angle of forward-looking for straight
line motion. In the experiment, prior knowledge about the dynamics model (a detailed
description of the dynamics that contain uncertainties) is not available or is not required.
Instead, these are learnt through the Gaussian Processes. We reuse the same RBF con-
troller that was used in the simulation in Sec. 4.1 to provide a feedback from actual
vehicle state to a control input to the actual vehicle. When applied to a real vehicle, the
learned policy from simulation runs thus can be viewed as an optimal demonstration of
time-optimal control solution to double integrator via PMP. The control signal gener-
ated from the RL algorithm ranges from -2 to 2, and is translated into change rate of
duty cycles of the motor PWM signal on board. In addition, the learning controller is
data-driven in that it can directly process the sensory data to produce a maneuvering
action for the vehicle motion.
Results. The experimental result is shown in Fig. 8. The car moves forward until the
target is arrived. The vehicle drives at each point on the path with its allowable highest
velocity, very similar to that of simulation. Fig. 8(a) shows that the real model car under
the same control policy obtained by simulation reaches the desired target in the real-
world experiment. The end position, despite having no overshooting and fluctuation, is
slightly off the targeted 50 cm partly because of modeling uncertainties and localization
errors due to lateral tracking error and sensor inaccuracies. It is observed that the vehi-
cle follows a nearly a time-optimal velocity along the track as the desired control goal
to attain. The velocity limit stems from the electronic voltage constraints on the robot,
and therefore is not directly handled by the robot control signal. The learning curve is
illustrated in Fig. 8(b). The total cost starts from 40 in the beginning trial of the task for

17

the saturating cost function. It attains a lowest cost of about 16 and a travel time of
about 2.2 seconds at the seventh episode with a total experience time of 28 seconds.
This is deemed very efficient since a very small number of trials is executed for suc-
cessful learning. In Fig. 8(c), immediate cost at every time step in various episodes is
plotted, showing the learning process and the arrival time being reduced over episodes.
The decrease is, however, not monotonic, so the intermediate trajectories before the
learning is complete may not be acceptable until a nearly time-optimal control input is
finally obtained at convergence. It is clear that the design of reward will affect signifi-
cantly the outcome of policy learning. In our case, the decrease of distance to target is
directly related to reduction of travel time. The data-driven learned maneuver effec-
tively mitigates the uncertainty propagation to accurately estimate the uncertainty of
the dynamics. Accordingly, the control policy automatically tune the parameters from
the recorded data accurately when restricted for the specific state-to-state transfer task
with given goal-reaching path to yield an accurate state-to-state time-optimal velocity
solution along the linear track. The learning achieves the goal of reaching the target as
soon as possible.
Discussions and Analyses.
Differences between Simulation and Experiment. The learning task of nearly
time-optimal state-to-state transfer in a scenario of short-distance driving on a linear
path is the same for both simulation and experiment. The control (14)-(15) obtained
from simulation of linear system is shown also effective to steer the real vehicle as fast
as possible for state-to-state transfer. Both simulation and experiment show the learning
reduces the accumulated distance to the target until no significant reduction of the ac-
cumulated distance, thus contributing to reduce the travel time. However, the conver-
gence in the simulation is faster, which possibly stems from the following major differ-
ences.
The first important difference is that the learning experiment is on the basis of more
complicated vehicle dynamics. In fact, in the presence of the inherent factors confronted
during real world experiment that cannot be neglected oraccounted for in a simple phys-
ical model (16) pose, some extent of unknown nonlinearities and uncertainties to the
actual system, the near time-optimality is much harder to ensure. In real world experi-
ment, a more general uncertain nonlinear model is not easily available or too compli-
cated for the design of state-to-state steer maneuvers and in the presence of parameter
uncertainties as well as sensor measurement errors, or unknown external forces inherent
in the vehicle-terrain interaction. In a vehicle hardware, there is an additional velocity
limit (the electronic voltage bounds) to assure that fast motion does not cause harmful
effect or instability on the vehicle in each trial. Other causes of discrepancies between
simulation and experiment are introduced by external disturbances as a result of the
inaccuracy of sensor measurements, motor characteristics and torque disturbances and
variation of environment interactions such as uneven ground, drag force, complicated

friction characteristics (such as Coulomb friction proportional to sign(xሶ) and aerody-

namic drag force proportional toxሶ ଶ , in addition to viscous friction proportional to xሶ)
and wheel sideslip.All the aforementioned factors cause the deviation of state trajectory
in real experiment from that of the simulation under the same control. Since the task
characteristics (system dynamics along a linear track on a frictional plane) and the en-
vironment for learning in simulation and experiment are very similar, a sim-to-real

18

transfer experiment that attempts to use the same data-driven control learned from sim-
ulation that works well as the motion policy is performed on a low-cost car. This vali-
dates the slight generalization capability (robustness and stability) of the model-based
RL algorithm with Gaussian radial basis function kernel encountered for similar dy-
namics and task constraints.
Furthermore, due to the low-cost robot units, low PWM duty cycles translated from the
control signals might not be able to drive the car, affecting the complexity of the task
as well.In the experiment performed, we ascertain that the robot hasenough power
available to travel a distance of L along the linear track to reach the target. Finally, we
remark that the steady-state error can be corrected by switching from the learning con-
trol to a linear stabilizing controller in a neighborhood of the target position.

We see that the learning control method to realize the time-optimal state-to-state
steer control in a simulated model is a good approximated time-optimal control of ac-
tual system with similar dynamics and task characteristics. Instead of providing an an-
alytical and thorough proof of the control performance demonstrated by simulation and
experiment, we give some interpretations or explanations.
 Interpretation 1. A simple interpretation that follows the formulation of time-optimal
point-to-point control with nonlinear model predictive control [29] that complements
the experimentis as follows. Let (x(t), u(t)=u(x(t))) be the time-optimal state-input tra-
jectories of simulation model (16). The demonstration by the simulated system (16)
provides a good understanding of the time-optimal vehicle motion with only input con-
straint under no disturbance and no state constraint. For successful sim-to-real experi-
ment, we assume that the simulation model (16) can be extended to the actual system
(20) in real experiment

 𝐱ୟሶ ൌ 𝐀𝐱ୟ ൅ 𝐛uୟ ൅ 𝐝ሺ𝐱ୟ, tሻ, 𝐱ୟሺ0ሻ ൌ 0, 𝐱ୟሶ ൑ v୫ୟ୶, u ∈ Uୟୢ ൌ ሾെu୫ୟ୶, u୫ୟ୶ሿ

(20)

where 𝐱ୟሺtሻ is the actual state, uୟሺtሻ ൌ uሺ𝐱ୟሺtሻ,θୟሺtሻሻ is the same time-optimal con-
trol (14) leaned from (16), 𝐝ሺ𝐱ୟ, tሻ ∈ 𝐃 is a bounded additive disturbance represented
as a priori unknown function with 𝐃 a bounded set, v୫ୟ୶ is the maximum velocity lim-
itation (or state constraint) due to hardware setting. The system (20) is assumed a slight
perturbation of (16) due to small disturbance or unmodeled dynamics. To simplified
analysis and gain some intuition, we can view 𝐝ሺtሻ ൌ 𝐝ሺ𝐱ୟ, tሻ in (20) as the lumped
model-mismatch effect of the unmodeled dynamics with respect to the simulated sys-
tem model (16) used for optimal demonstration. Thus, 𝐱ୟሺtሻ is the actual state trajec-
tory in the presence of adverse disturbance effect of 𝐝ሺtሻ as the same nominal state
feedback control (16)-(17) used for (16) is also used for (20). From (20),we have

𝐱ୟ(t) =𝐂𝐳ୟሺ𝐭ሻ ൅ ׬ e𝐀த
୲
଴ 𝐝ሺτሻdτ

= 𝐂𝐳ሺ𝐭ሻ ൅ ׬ e𝐀தሺ
୲
଴ bδuሺτሻ ൅ 𝐝ሺτሻሻdτ (21)

19

where δuሺtሻ ൌ uୟሺ𝐱ୟሺtሻ,θୟሺtሻሻ െ uሺ𝐱ሺ𝐭ሻ, θሺtሻሻ. Given that the actual system is a slight
perturbation of simulated system, the consistency or similarity of the task characteris-
tics assumes that the Lipschitz condition

|δuሺtሻ| ൑ k୶‖𝐱ୟሺtሻ െ 𝐱ሺtሻ‖+ k஘‖θୟሺtሻ െ θሺtሻ‖ (22)

holds for some constantsk୶ ൐ 0, k஘ ൐ 0 . This is a reasonable assumption that small
deviation in state yields a small fluctuation of control action. As seen from (21),(22),
since the matrix A is stable, the difference between x(t) and 𝐱ୟሺtሻ is thus bounded by
the discrepancy 𝐝ሺtሻbetween the model and actual system, the variation of controller
parameters and how much the differential state-feedback control δuሺtሻ can attenuate
the disturbance, i.e. when the disturbance is large/small, the counterbalancing control
magnitude is also large/small correspondingly. Theoretically, if we assume that disturb-
ance is bounded during motion, the system (20) can be controlled to steer to the target
region using the nominal control uሺtሻlearned from simulated vehicle dynamics (16) in
near minimum time even in the presence of external disturbance. That is, the deviation
of experimental state trajectory (20) from nominal time-optimal state trajectory of (16)
is such that ‖𝐱ୟሺtሻ െ 𝐱ሺtሻ‖ ൑ ϵ and 𝐱ୟ൫Tୟ,୲ୟ୰୥ୣ୲൯ ൎ 𝐱൫T୲ୟ୰୥ୣ୲൯ ൎ a given target at rest
in the reachable set with the first target hitting timeTୟ,୲ୟ୰୥ୣ୲of (20) largerthan T୲ୟ୰୥ୣ୲of
(18).The deviation ϵenters the cost function (11) for the actual vehicle dynamics (20),
thus it also depends on the sensitivity of the cost function on the discount factor. We
can choose a discount factor 𝛾(0 ൏ 𝛾 ൏ γ∗ሻ of cost function that guarantees the state
trajectory of (20) exhibits small perturbation from time-optimal trajectory of model (16)
under the same nominal time-optimal control [29] if there exists a γ∗such that the gra-
dient of the cost (11) with respect to the deviation ϵ is upper bounded. Validity of the
above consistency/similarity property that guarantees the actual system performance
using the same control obtained from simulation is supported by comparing Fig. 9 and
Fig. 10. Therefore, it allows the transfer of command input learned on the basis of sim-
ulated model to a similar, real kinematic vehicle driving on a linear short-distance path
in real environment.
Interpretation 2. The parametric model uncertainty and external uncertainty causes the
actual trajectory executed by the vehicle not exactly predictable. The equation of mo-
tion (16) with unknown but bounded additive disturbance (20) can be discretized using
the Euler method as
 v୧ ൌ

୶౟ି୶౟షభ
୦

, (23)

a୧ ൌ

୴౟ି୴౟షభ
୦

ൌ െ
ୡ

୫
v୧ ൅

ଵ

୫
u୧ ൅

ଵ

୫
d୧ (24)

where v, a denote the velocity and acceleration of the simulated second-order system,
h is the step size, i=1,…,N, x଴ ൌ 0, v଴ ൌ 0, a଴ ൌ 0.The optimality condition of bang-
bang control requires that the acceleration input after substituting (23) into (24)
୶౟ିଶ୶౟షభା୶౟షమ

୦మ
ൌ േu୫ୟ୶ (25)

or
୶౟ିଶ୶౟షభା୶౟షమ

୦మ
ൌ െ

ୡ

୫

୶౟ି୶౟షభ
୦

േ
ଵ

୫
u୫ୟ୶ ൅

ଵ

୫
d୧ (26)

20

holds for the uncertain system (20) moving along a linear track to reach 𝐱୒౪౗౨ౝ౛౪ ൎ
𝐱୲ୟ୰୥ୣ୲. This is the optimality relation in the form
 v୧ାଵ ൌ fሺx୧, v୧, u୧ ሺx୧, v୧ሻ ൌ േu୫ୟ୶, m, c, d୧ሻ (27)
Note that though the function f is valid and consistent across the tasks [27]. The model-
based RL needs to learn the function f via (27) with optimality guarantee, i.e. the one
that achieves the time-optimal control performance, from the dataset. In addition, we
construct the aggressive policy which robustly steers the uncertain system from the in-
itial state to the target as fast as possible along the trajectory predicted by the learned
model f with errors caused by the uncertainty and disturbance to accurately match the
time-optimal trajectories u୧ ൌ േu୫ୟ୶, with x୧ confined to an interval on the linear one-
dimensional line. The validity of GP prediction model of vehicle-terrain interaction
sticks to the data points restricted to a linear path, while prior knowledge about the
uncertain dynamics of a simple double-integrator based on physics is not availa-
ble. With updated policy (state feedback), a new velocity is generated, we see in Fig.
that the modeling error is reduced in subsequent episodes in which the learned state
response (new velocity) from the initial to the final state is updated and coincides
nearly with the time-optimal state response of simulated system. Therefore, the learned
model is sufficiently accurate to capture the properties of the vehicle for specific path
following task.

5. Rescaling the Velocity Profile as Expert Knowledge
Adaptability in the task of speed regulation, which is complex and varied, according to
comfort, safety concerns and the path properties such as length and maximum curvature
is a key feature of human driving behavior that has robustness to uncertainties. In plan-
ning a new safe velocity profile, the first step is to generate time-optimal velocity pro-
file for the system as the reference velocity profile with the learning techniques, since
it is well-known that the travel time affects the motion profile. It is necessary to know
a priori the lower bound on travel time required by a given state-to-state steering task.
Having attained a time-optimal velocity profile along a specified path, to trade off the
time for smoothness thus energy consumption, there are a variety of safe speed profiles
meeting the most restrictive a priori upper bound of speed and acceleration for each
point on the path with less aggressive use of the admissible input that can be planned
to reduce other cost such as energy consumption. Nevertheless, an increase in travel
time is caused by a potential reduction in the achievable highest speed due to additional
velocity or smoothness constraints. The new velocity profile makes the vehicle motion
slower but likely smoother and energy-saving, as classical kinematics suggests.
By rescaling or regularization in time subject to the dynamic constraints, we can obtain
a nearly time optimal velocity profile [22-24].Suppose the velocity has only cruise and
constant acceleration sections, and we consider only triangle and trapezoid velocity
profiles. A trapezoidal velocity profile （T profile) for transition between two bound-
ary velocities consists of two ramp phases with constant acceleration/ deceleration and
one cruise phase with constant speed.Triangle is a special case of trapezoid. Applying
the rescaling approach to reduce the complexity of learning new motion profiles, we
are particularly interested in how the learned triangle speed profile that has no constant

21

speed section along a linear path can be transformed to an arbitrary speed profile com-
posed by single trapezoid or double trapezoids with cruising phases, denoted by T-
profile and T2-profile, respectively. In the whole state-to-state transfer motion duration,
it is known that T-profiles are commonly used velocity schedules that result from the
solution to the optimization of cost function defined by mixed time and energy, so that
the resulting analytical velocity profile is a smooth trapezoid-like U shape under the
condition of only acceleration constraint without velocity limit, or approximation to
time-optimal velocity profiles with arbitrary boundary conditions, other than rest-to-
rest [23]. Therefore, driving with a T-profile will take a longer travel time than with a
triangle velocity for the same travel distance. T-profile consists of three phases: accel-
eration, cruising and deceleration. The acceleration can reach an appropriate cruise
speed equal to or less than allowable maximum speed, requested by the user or limited
by vehicle characteristics, that depends on the travel time or distance. Then, it is fol-
lowed by a tunable duration of cruising constant speed, and a deceleration stage re-
specting the acceleration bounds. As another example, the triangle can be transformed
into double trapezoids, so that a ladder-type trapezoid velocity profile (T2- profile) is
produced. T2-profile enables the use of different cruise speeds, which lets the vehicle
to select multiple durations of different constant transition speeds that are varied, and
there is an additional acceleration in the middle of movement. Using an algebraic trans-
formation (provided in Appendix), we can transform a triangle to a T-, T2- profile under
different situations for a given distance and a corresponding triangle velocity profile
covering the distance without maximum velocity constraint. These families of velocity
profiles based on T- or T2- profiles are parametrized by a finite number of user-defined
parameters that affect the highest speed, durations of constant speed and overall travel
time. A few examples of T-, T2- profiles are depicted in the Fig. 11, covering the same
travel distance of the corresponding triangle velocity profile.
We point out that T- profile could be easily generated from this parametric speed family
by assigning its respective defining parameter values complying with the specifications.
The specifications can be designed by the user. In many applications, the motion exe-
cution time Tex can be imposed, for example as multiple times of the minimal time
traveled by the triangle velocity on the given path with fixed distance. The imposition
of trajectory duration results in distinct velocity profiles guaranteeing that the travel
time of the same distance on a given path is exactly Tex. Another alternative is to set
the highest velocity of T- profile a ratio of the maximum velocity bound, such as limited
by traffic rules or on different terrain. Both have the effect of rescaling a given triangle
velocity profile to make the motion slower. Similar reasoning can be applied to design
a T2- profile from a triangle or a T- profile. A detailed derivation is provided in Appen-
dix. Rescaling examples following these alternatives for speed scheduling of the double
integrator are depicted in Fig. 12 and Fig. 13.
In summary, instead of learning a new safe speed profile from scratch, the aforemen-
tioned easy-to-implement rescaling approach exploiting generated safe velocity pro-
files or human driver demonstrations as expert knowledge could accelerate the learning
process for a wide range of safe speed profiles or may yield better learning results for
complicated, high-dimensional vehicle dynamics in challenging scenarios such as slip-
pery road. From our study here, the family of trapezoidal velocity profiles at the

22

expense of longer travel time can be deduced from the learned triangle velocity that is
obtained from the maximum progress cost of reaching the goal independent of velocity.
This eliminates the need to design new cost function and the gradient computation, and
restart the whole learning episodes. Having obtained the learned minimum-time veloc-
ity profile, the transformations mentioned above are the expert knowledge that can be
exploited to obtain a new safe speed profile.

6. Conclusion

Minimal-time velocity profile along a prespecified curve, as a subclass of time-
optimal control problems subject to hard control constraints resulting from input satu-
ration, state constraints and external disturbance, finds applications in a variety of au-
tonomous systems such as autonomous driving and robotics. The imperfect modeling
of system dynamics and perception of environment with significant noise makes ma-
chine learning a powerful approach to the practical, near minimum-time velocity plan-
ning for autonomous systems that do not rely on heavy dynamic model-based compu-
tations. An important aspect of this paper is adopting PILCO, an existing model-based
RL which holds the state-of-the-art data efficiency, to learn a near time-optimal velocity
for rest-to-rest state-to-state steer along a linear path by a vehicle with acceleration or
velocity limits. The policy learned from simulation is implemented on a sim-to-real
experiment with a similar vehicle path following task to illustrate the consistency of
learned velocity profile closer to that obtained by time-optimal control. Our case study
expands the scope of problems that can be successfully solved by model-based RL
(such as PILCO) from scratch (without identification of physical parameters of vehicle
motion, a priori task environment characteristics human demonstration and deriving the
optimality conditions), and shows the capability of accounting for and compensating
uncertainties and external disturbances. We illustrate that the safe velocity learning on
different road topology and traffic flow is feasible for the challenging applications of
RL algorithms, serving as a robust adaptive optimal control algorithm.

The study inspires several future researches. Firstly, one potential framework is to
extend the predicted system trajectory in PILCO into Model Predictive Control and
utilize Sequential Quadratic Programming to effectively deal with the constraints. De-
spite the one-dimensional problem we tackle here, the framework is to be examined in
high-dimensional complex systems with sophisticated switching structures, similar to
what NI methods do for the high-dimensional systems with complex known dynamics.
Secondly, the algorithm now performs policy evaluation and optimization offline. It is
crucial for future approaches to take these online since most real-world applications
encourage real-time operation. Thirdly, time-optimality is forced by the long-term sat-
urating cost in our experiment. It is suggested that future studies inspect the possibility
of incorporating Pontryagin Maximum Principle into policy learning, which is a prin-
cipled method with more theoretical supports.

23

References

1. Q. Pham, “A general, fast, and robust implementation of the time-optimalpath parameteri-
zation algorithm,” IEEE Transactions on Robotics, vol. 30,no. 6, pp. 1533-1540, 2014.

2. Polydoros, A. S., &Nalpantidis, L. (2017). Survey of Model-Based Reinforcement Learning:
Applications on Robotics. Journal of Intelligent & Robotic Systems,86(2), 153-173.

3. Kober, J., Bagnell, J. A., & Peters, J. Reinforcement learninginrobotics: A survey. The In-
ternational Journal of Robotics Research,32(11), pp.1238-1274, 2013.

4. M. Deisenroth, Carl Rasmussen. “PILCO: A Model-Based and Data-Efficient Approach to
Policy Search” Proceedings of the International Conference on Machine Learning, 2011.

5. Ostafew, C. J., Schoellig, A. P., Barfoot, T. D., & Collier, J. Speed daemon: experience-
based mobile robot speed scheduling. Canadian Conference on Computer and Robot Vision,
pp. 56-62, 2014.

6. O. Stryk, R. Bulirsch, “Direct and indirect methods for trajectory optimization,” Annals of
Operation Research, vol. 37, no. 1, pp. 357-373, 1992.

7. J. Bobrow, S. Dubowsky, J. Gibson, “Time-optimal control of roboticmanipulators along
specified paths,” International Journal of RoboticsResearch, vol. 4, no. 3, pp. 3-17, 1985.

8. T. Kunz, M. Stilman, “Time-optimal trajectory generation for path followingwith bounded
acceleration and velocity,” Proceedings of Robotics:Science and Systems, 2012.

9. Jond, H. Barghi, V. V. Nabiyev, A. Akbarimajd. "Planning of mobile robots under limited
velocity and acceleration." 2014 22nd Signal Processing and Communications Applications
Conference (SIU), 2014.

10. Bianco, C. G. L., & Romano, M. (2007, April). Optimal velocity planning for autonomous
vehicles considering curvature constraints. In Proceedings 2007 IEEE International Con-
ference on Robotics and Automation (pp. 2706-2711). IEEE.

11. Liberzon, D. Calculus of variations and optimal control theory: a concise introduction.
Princeton University Press, 2011.

12. Rao, A. V. (2014). Trajectory optimization: a survey. In Optimization and optimal control
in automotive systems (pp. 3-21). Springer, Cham.

13. D.Verscheure, B. Demeulenaere, J. Swevers, J.DeSchutter, M. Diehl,“Time-optimal path
tracking for robots:Aconvex optimization approach,”IEEE Trans. Autom. Control, vol. 54,
no. 10, pp. 2318–2327, Oct. 2009.

14. ArdeshiriTohid, M. Norrlöf, J.Löfberg, A. Hansson. "Convex optimization approach for
time-optimal path tracking of robots with speed dependent constraints." IFAC Proceedings
Volumes, vol. 44,no. 1, pp. 14648-14653, 2011.

15. Qian, X., Navarro, I., de La Fortelle, A., &Moutarde, F. Motion planning for urban autono-
mous driving using Bézier curves and MPC. IEEE 19th International Conference on Intel-
ligent Transportation Systems (ITSC), pp. 826-833, 2016.

16. Ozatay, E., Ozguner, U., &Filev, D. (2017). Velocity profile optimization of on road vehi-
cles: Pontryagin's Maximum Principle based approach. Control Engineering Practice, 61,
244-254.

17. Martinez-Marin, T. Learning optimal motion planning for car-like vehicles. IEEE Interna-
tional Conference on Computational Intelligence for Modelling, Control and Automation
pp. 601-612, 2005.

18. Saha, O., Dasgupta, P., &Woosley, B. (2019). Real-time robot path planning from simple to
complex obstacle patterns via transfer learning of options. Autonomous Robots, 1-23.

19. Hartman, G., Shiller, Z., & Azaria, A. (2018). Deep Reinforcement Learning for Time Op-
timal Velocity Control using Prior Knowledge. arXiv preprint arXiv:1811.11615.

24

20. Sprague, C. I., Izzo, D., &Ögren, P. (2019). Learning a Family of Optimal State Feedback
Controllers. arXiv preprint arXiv:1902.10139.

21. J. Kabzan, L. Hewing, A. Liniger and M. N. Zeilinger, Learning-Based Model Predictive
Control for Autonomous Racing.In IEEE Robotics and Automation Letters, vol. 4, no. 4, pp.
3363-3370, Oct. 2019, doi: 10.1109/LRA.2019.2926677.

22. Shin, K., & McKay, N. Selection of near-minimum time geometric paths for robotic manip-
ulators. IEEE Transactions on Automatic Control, 31(6), pp.501-511, 1986.

23. Kim, J., & Croft, E. A. Online near time-optimal trajectory planning for industrial ro-
bots. Robotics and Computer-Integrated Manufacturing, 58, 158-171, 2019.

24. Wigstrom, O., Lennartson, B., Vergnano, A., &Breitholtz, C. High-level scheduling of en-
ergy optimal trajectories. IEEE Transactions on Automation Science and Engineer-
ing, 10(1), pp.57-64, 2013.

25. Hauser, J., & Saccon, A. (2006, December). A barrier function method for the optimization
of trajectory functionals with constraints. In Proceedings of the 45th IEEE Conference on
Decision and Control (pp. 864-869). IEEE.

26. Nair, S., Savarese, S., & Finn, C. (2020). Goal-Aware Prediction: Learning to Model What
Matters. arXiv preprint arXiv:2007.07170.

27. Song, C., & Boularias, A. (2020). Identifying Mechanical Models through Differentiable
Simulations. arXiv preprint arXiv:2005.05410.

28. Moerland, T. M., Broekens, J., & Jonker, C. M. (2020). Model-based reinforcement learn-
ing: A survey. arXiv preprint arXiv:2006.16712.

29. Verschueren, R., Ferreau, H. J., Zanarini, A., Mercangöz, M., & Diehl, M.. A stabilizing
nonlinear model predictive control scheme for time-optimal point-to-point motions. 56th
IEEE Conference on Decision and Control, pp. pp.2525-2530, 2017.

30. Dinev, T., Merkt, W., Ivan, V., Havoutis, I., & Vijayakumar, S. (2020). Sparsity-Inducing
Optimal Control via Differential Dynamic Programming. arXiv preprint arXiv:2011.07325.

Appendix
Appendix contains two Euclidean geometry problems related to transforming an isos-
celes triangle to a single trapezoid or double trapezoids with the same area.
Problem 1: An isosceles triangle with given area L and slope u of isosceles, find the
bottom length T.
Denote the height of switch point from acceleration to deceleration (or height of the

triangle) by h. Then h=
୘

ଶ
u. Thus,

L ൌ
ଵ

ଶ
T ൈ

୘

ଶ
u ,

or

Tଶ ൌ 4
୐

୳
(A1)

Thus,

T ൌ 2ට
୐

୳
(A2)

The total traversal time T increases with the travel distance L and decreases with the
acceleration u. Note that (A1) can be solved iteratively by Newton method

Tሺn ൅ 1ሻ ൌ
1
2
∗ ሺTሺnሻ ൅

4L
uTሺnሻ

 ሻ

Problem 2: Transformation of a triangle to a single or double trapezoids

25

Anisosceles triangle with given bottom length Tand height h, and an isosceles trap-
ezoid with the same base angle (That is to say, the isosceles triangle and isosceles
trapezoid have the same slope of side). We want to calculate the upper line length
and the lower line length of the trapezoid necessary to make its area 𝑟஺times as the
area of the isosceles triangle.

Two cases are considered.
Case 1. trapezoid’s height is given
(a) Transform to single trapezoid (Fig. 14)
Refer to Fig. 14. Assume the ratio of the height ratio of trapezoid to the triangle is 𝑟௛,
and the upper line length of the trapezoid is𝛼. Let the area of the trapezoid be 𝑟஺ times
the area of triangle. For our purpose, 𝑟஺ ൌ 1.

The bottom length of the triangle in thetrapezoid is 𝑟௛ℎ ൈ
்

௛
ൌ 𝑟௛𝑇, and the lower line

length of the trapezoidൌ 𝛼 ൅ 𝑟௛𝑇

The area of the trapezoidൌ
ሺఈ ା ሺఈ ା ௥೓்ሻሻ ൈ௥೓௛

ଶ

ൌ 𝑟஺ ൈ The area of the triangle ൌ 𝑟஺ ൈ
1
2
𝑇ℎ

By multiplying
ଶ

௛
on both side, we get𝑟௛ሺ2𝛼 ൅ 𝑟௛𝑇ሻ ൌ 𝑟஺𝑇, 2𝛼 ൌ

௥ಲ்

௥೓
െ 𝑟௛𝑇,𝛼 ൌ

ଵ

ଶ
ሺ
௥ಲ
௥೓
െ 𝑟௛ሻ𝑇

Therefore, the upper line length of the trapezoid ൌ 𝛼 ൌ
ଵ

ଶ
ሺ
௥ಲ
௥೓
െ 𝑟௛ሻ𝑇 , and the

lowerline lengthൌ 𝛼 ൅ 𝑟௛𝑇 ൌ
ଵ

ଶ
ሺ
௥ಲ
௥೓

 ൅ 𝑟௛ሻ𝑇

(b) Transform to double trapezoids

Refer to Fig. 15. Similar to Fig. 14, denote the defining ratios 𝑟஺, 𝑟௛of single trapezoid
as 𝑟஺భ , 𝑟௛భ for the upper trapezoid and𝑟஺మ , 𝑟௛మ for the lower trapezoid.There are four
constraints:

1. 𝛼ଵ ൒ 0

2. The lower line length of the upper trapezoid ≤ The upper line length of

the lower trapezoid→
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 ൅  𝑟௛ଵ൰𝛼  ൑
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 െ  𝑟௛ଶ൰𝛼

3. 𝑟஺ଵ ൅ 𝑟஺ଶ ൌ 1

4. ℎଵ ൅ ℎଶ ൑ 𝑉௠௔௫ ⟶ 𝑟௛ଵ ൅ 𝑟௛ଶ ൑
௏೘ೌೣ

௛

We can generate a solution by guessing a𝑟஺భfirst, and 𝑟஺మ ൌ 1 െ 𝑟஺భ. Then for such

𝑟஺భ , 𝑟஺మ, check if there is any feasible 𝑟௛భ , 𝑟௛మsatisfying other three constraints listed

above. This process is iterated until 𝑟௛భ , 𝑟௛మ are found.

We can formulate the following optimization problem for the transformations.

26

i)Minimizing the lower line (bottom) length
௥ಲ
௥೓
 െ  𝑟௛  ൐  0 ⟶ 𝑟௛ ൑ √𝑟஺ .

௥ಲ
௥೓
൅ 𝑟௛ is a decreasingfunction when 𝑟௛ ൏ √𝑟஺ with its

minimaൌ 2√𝑟஺ happens when 𝑟௛ ൌ √𝑟஺ . Therefore, this problem is equivalent to
maximizing𝑟௛.
௥ಲభ
௥೓భ

൅ 𝑟௛ଵ ൑
௥ಲమ
௥೓మ

െ 𝑟௛ଶ, if 𝑟஺ଵ, 𝑟஺ଶ, 𝑟௛ଵ ൅ 𝑟௛ଶ:ൌ 𝐻 ൌ
௏೘ೌೣ

௕
is given, we can rewrite the in-

equality as 𝑟௛ଵ ൅ 𝑟௛ଶ ൌ 𝐻 ൑
௥ಲమ
௥೓మ

െ
௥ಲభ
௥೓భ

ൌ
௥ಲమ௥೓భି௥ಲభ௥೓మ

௥೓భ௥೓మ

⟶𝐻𝑟௛ଵ𝑟௛ଶ ൌ 𝐻൫𝐻 െ 𝑟௛ଶ൯𝑟௛ଶ ൑ 𝑟஺ଶ𝑟௛ଵ െ 𝑟஺ଵ𝑟௛ଶ ൌ 𝑟஺ଶ൫𝐻 െ 𝑟௛ଶ൯ െ 𝑟஺ଵ𝑟௛ଶ

⟶𝐻ଶ𝑟௛ଶ െ 𝐻𝑟௛ଶ
ଶ ൑ 𝐻𝑟஺ଶ െ ൫𝑟஺ଵ ൅ 𝑟஺ଶ൯𝑟௛ଶ

⟶ 𝑟௛ଶ
ଶ െ ቀ𝐻 ൅

௥ಲభା௥ಲమ
ு

ቁ 𝑟௛ଶ ൅ 𝑟஺ଶ ൒ 0(A3)

We can solve the equation to get one constraint on the range of 𝑟௛ଶ (𝑟௛ଶ ൒
 the larger root or𝑟௛ଶ ൑ the smaller root of (A3) with equality), along with 𝑟௛ଶ  ൑

ඥ𝑟஺ଶ and 𝑟௛ଵ ൌ 𝐻 െ 𝑟௛ଶ ൑ ඥ𝑟஺ଵ ⟶ 𝑟௛ଶ ൒ 𝐻 െ ඥ𝑟஺ଵ , we know the feasible range
for 𝑟௛ଶ. To minimize the lower line length, we have to pick the largest𝑟௛ଶin the feasible
range.
ii)Minimizing the lower line length
௥ಲ
௥೓
 െ  𝑟௛  ൐  0 ⟶ 𝑟௛ ൑ √𝑟஺ .

௥ಲ
௥೓
൅ 𝑟௛ is a decreasingfunction when 𝑟௛ ൏ √𝑟஺ with its

minimaൌ 2√𝑟஺ happens when 𝑟௛ ൌ √𝑟஺ . Therefore, this problem is equivalent to
maximizing𝑟௛.
௥ಲభ
௥೓భ

൅ 𝑟௛ଵ ൑
௥ಲమ
௥೓మ

െ 𝑟௛ଶ, if 𝑟஺ଵ, 𝑟஺ଶ, 𝑟௛ଵ ൅ 𝑟௛ଶ:ൌ 𝐻 ൌ
௏೘ೌೣ

௛
is given, we can rewrite the in-

equality as 𝑟௛ଵ ൅ 𝑟௛ଶ ൌ 𝐻 ൑
௥ಲమ
௥೓మ

െ
௥ಲభ
௥೓భ

ൌ
௥ಲమ௥೓భି௥ಲభ௥೓మ

௥೓భ௥೓మ

⟶𝐻𝑟௛ଵ𝑟௛ଶ ൌ 𝐻൫𝐻 െ 𝑟௛ଶ൯𝑟௛ଶ ൑ 𝑟஺ଶ𝑟௛ଵ െ 𝑟஺ଵ𝑟௛ଶ ൌ 𝑟஺ଶ൫𝐻 െ 𝑟௛ଶ൯ െ 𝑟஺ଵ𝑟௛ଶ

⟶𝐻ଶ𝑟௛ଶ െ 𝐻𝑟௛ଶ
ଶ ൑ 𝐻𝑟஺ଶ െ ൫𝑟஺ଵ ൅ 𝑟஺ଶ൯𝑟௛ଶ

⟶ 𝑟௛ଶ
ଶ െ ൬𝐻 ൅

𝑟஺ଵ ൅ 𝑟஺ଶ
𝐻

൰ 𝑟௛ଶ ൅ 𝑟஺ଶ ൒ 0

We can solve the equation to get one constraint on the range of 𝑟௛ଶ (𝑟௛ଶ ൒
 the larger root or𝑟௛ଶ ൑ the smaller root), along with 𝑟௛ଶ  ൑ ඥ𝑟஺ଶ and 𝑟௛ଵ ൌ 𝐻 െ
𝑟௛ଶ ൑ ඥ𝑟஺ଵ ⟶ 𝑟௛ଶ ൒ 𝐻 െඥ𝑟஺ଵ, we know the feasible range for𝑟௛ଶ. To minimize the
lower line length, we have to pick the largest 𝑟௛ଶin the feasible range.
For anisosceles triangle with given slope of legs m and area A and let its bottom length

to be 𝑥. From
ଵ

ଶ
ൈ 𝑥 ൈ ሺ

௫

ଶ
ൈ 𝑚ሻ ൌ

௠௫మ

ସ
 ൌ 𝐴,𝑥 ൌ 2ට

஺

௠
, we can choose a close initial

value 𝑥଴, then use Newton-Raphson method𝑥௡ାଵ ൌ
ଵ

ଶ
ሺ𝑥௡ ൅

ସ஺

௠௫೙
ሻ to update its value

iteratively to find a better approximation to𝑥.Suppose we have an approximation to 𝑥.
Single trapezoid
If 𝑟஺ ൌ 1, and an approximation to 𝑥 is available

The upper line length of the trapezoid =
ଵ

ଶ
ሺ
ଵ

௥೓
െ 𝑟௛ሻ𝑥

The lower line length ൌ
ଵ

ଶ
ሺ
ଵ

௥೓
 ൅ 𝑟௛ሻ𝑥

Ladder (double) trapezoids

27

The upper line length of the upper trapezoid =
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 െ  𝑟௛ଵ൰ 𝑥

The lower line length of the upper trapezoid =
ଵ

ଶ
൬
௥ಲభ
௥೓భ

 ൅  𝑟௛ଵ൰ 𝑥

The upper line length of the lower trapezoid =
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 െ  𝑟௛ଶ൰ 𝑥

The lower line length of the lowertrapezoid =
ଵ

ଶ
൬
௥ಲమ
௥೓మ

 ൅  𝑟௛ଶ൰ 𝑥

where 𝑟஺భ , 𝑟஺మ , 𝑟௛భ , 𝑟௛మmust satisfy the constraints

Case 2. Trapezoid’s bottom is given. Let T be the bottom length of triangle.
For single trapezoid, suppose the lower line length is given by𝜆𝑇. We have

ଵ

ଶ
ሺ
௥ಲ
௥೓

 ൅

 𝑟௛ሻ𝑇 ൌ 𝜆𝑇 , i.e.𝑟௛ଶ െ 2𝜆𝑟௛ ൅ 𝑟஺ ൌ 0.Let the discriminant = 4𝜆ଶ െ 4𝑟஺ ൒ 0, orλ ൒
√𝑟஺ for existence of real solutions. Solving the quadratic equation, we get 𝑟௛ ൌ 𝜆 േ

ඥ𝜆ଶ െ 𝑟஺ . For the upper line length =
ଵ

ଶ
ቀ
௥ಲ
௥೓
െ 𝑟௛ቁ 𝑇 ൒ 0 ,𝑟௛ଶ ൑ 𝑟஺ ൑ 𝜆ଶ ,so the 𝜆 ൅

ඥ𝜆ଶ െ 𝑟஺solution is not possible. Therefore, we have 𝑟௛ ൌ 𝜆 െ ඥ𝜆ଶ െ 𝑟஺. Therefore,
we obtain the trapezoid
Height = 𝑟௛ℎ ൌ ൫𝜆 െ ඥ𝜆ଶ െ 𝑟஺൯ℎ

The upper line length =
ଵ

ଶ
ቀ
௥ಲ
௥೓
െ 𝑟௛ቁ 𝑇 ൌ

ଵ

ଶ
൫ሺ𝜆 ൅ ඥ𝜆ଶ െ 𝑟஺ሻ െ ሺ𝜆 െ ඥ𝜆ଶ െ 𝑟஺ሻ൯𝑇 ൌ

 ඥ𝜆ଶ െ 𝑟஺𝑇

For T2 profile, if the lower bottom length of the upper trapezoid is 𝜆ଵT, and the lower
bottom length of the lower trapezoid is 𝜆ଶT, we can get result analogous to the single
trapezoid case:
Upper trapezoid:

λଵ ൒ ඥ𝑟஺ଵ,Height = ቆλଵ െ ටλଵ
ଶ െ 𝑟஺ଵቇ ℎ,The upper line length = ටλଵ

ଶ െ 𝑟஺ଵ𝑇

Lower trapezoid:

λଶ ൒ ඥ𝑟஺ଶ,Height = ቆλଶ െ ටλଶ
ଶ െ 𝑟஺ଶቇ ℎ,The upper line length = ටλଶ

ଶ െ 𝑟஺ଶ𝑇

Since the lower bottom length of the upper trapezoid൑The upper line length of the
lower trapezoid, wehave an additional constraint between λଵand λଶ:

𝜆ଵ ൑ ටλଶ
ଶ െ 𝑟஺ଶ.

28

Figures

29

Fig. 1. Setup of one-dimensional state-to-state transfer task. The black box depicts the
car, which is modeled using a point-mass double integrator. The car begins moving
from the origin (green star) at rest along a straight line to reach the target (red star)
along a rough plane. The task involved the execution of different acceleration control
policies on the double integrator with embedded uncertainties from the same rest state
to reach a target state. The resulting state–input pair and cost at each sampling time
point were recorded.

Fig. 2.Total cost vs. episode. The cost is reduced until (near) convergence is achieved
at the second episode, and is stable after convergence.

30

(a)

(b)

Fig.3. Learned response in time and phase plane. Episode 1 features the car reversing.
In Episode 2, a correct, nearly time-optimal motion toward the target was produced. (a)
Vehicle position at each episode over 40 sampling time steps spanning a time horizon
of 4 s. (b) Predicted position–velocity trajectories in the phase plane through application
of data-driven control on learned model for the goal-reaching task along a linear track.
The state trajectories became more accurate (time-optimal) with respect to the predicted
velocity trajectory as the model was updated during learning. The time-optimal velocity
trajectory upon convergence with one instance of switching is shown.

31

(a)

(b)

Fig. 4.(a)Converged learning outcome of state (position, velocity) and input (accelera-
tion) trajectories of the vehicle. After reaching the neighborhood of target, the vehicle
tries to stay at the target at rest. There is little steady- state oscillation around the target
since the vehicle can’t decelerate fast enough to rest at the target. (b) The analytical
solution with minimum time 1.58443.We see that the temporal characteristics of time-
optimal trajectories is learned: the velocity profile is a triangle and the acceleration
input exhibit the bang-bang control. The discrepancy is due to the mismatch between
the objective and time optimality.

32

Fig. 5. The low-cost model car AlphaBot for experiment (left photo) and the experi-
mental set-up of driving a AlphaBot along a linear track.

(a)

33

(b)

(c)

Fig.6. Experimental results. (a) Graph of total cost against episodes.The trajectory cost
decreased after some transients until convergence at the 7th episode where a travel time
of approximately 2s was achieved. (b)Intermediate costs in selected episodes.(c) Out-
come with respect to learning state and control trajectories.

34

(a)

(b)

Fig. 7. Transformation of a triangular speed profile with symmetric acceleration
bound to different trapezoid speed profiles with an additional velocity limit in the
velocity–time plane considered. (a) Examples of T (trapezoidal) profile: trapezoid
with one span of time of constant speed at a height equal to the maximum velocity
and with sides whose slopes are equal to the maximum acceleration and decelera-
tion. (b) Examples of a T2 (double trapezoidal) profile: a ladder-type velocity profile
with spans of time of constant speed and with sides whose slopes are equal to the
maximum acceleration and deceleration. The total distances traveled by the new ve-
locity profiles are the same as those of their triangular counterparts (for the travel
distance L). The constant velocity section in T velocity profiles must be lower than
the maximum velocity.

35

S

Fig. 8 (left) A triangle and (right) a trapezoid of the same area or known area ratio

Fig. 9 A triangle (left) and double trapezoid (right) of the same area or known

area ratio

Table 1. shows the switching time tୱ୵, minimum time T∗ of the triangle
profile in the presence of ∓4% deviation of both mass and friction co-
efficient simultaneously with accurate c=0.1, m=0.5 for given L=5 and
u୫ୟ୶ ൌ 4. For comparison, tୱ୵ ൌ 0.79057, T∗ ൌ 2tୱ୵ ൌ 1.58114 for
the case of m=0.5, c=0. It indicates the friction clearly slows down the
fastest motion.

m, c

Time

m=0.5
c=0

m=0.5
c=0.1

m=0.5
c=0.096

m=0.5
c=0.104

m=0.48
c =0.1

m=0.52
c=0.1

tୱ୵ 0.79057 0.854717 0.852088 0.857352 0.836147 0.872974

T∗ 1.58114 1.58443 1.58418 1.5847 1.55229 1.61595

