
TR-IIS-06-006

Compliance Enforcement of
Temporal and Dosage Constraints

P.H. Tsai, H.C. Yeh, C.Y. Yu, P.C. Hsiu, C.S. Shih, J.W.S. Liu

May 29, 2006 || Technical Report No. TR-IIS-06-006
http://www.iis.sinica.edu.tw/LIB/TechReport/tr2006/tr06.html

Institute of Information Science, Academia Sinica Technical Report No. TR-IIS-06-006

Compliance Enforcement of Temporal and Dosage Constraints
P. H. Tsai, H. C. Yeh, C. Y. Yu, P. C. Hsiu, C. S. Shih, Member, IEEE, J. W. S. Liu, Fellow, IEEE

Abstract—Medication dispensers treated in this paper are
designed to help improve compliance by users who live at homes
and take medications over long periods of time. The paper first
presents an overview of medication specifications that define
constraints for dispensers and dispenser components that
administer medications as specified. When given a specification
and constraints defined by it, the dispenser scheduler checks for
consistency and feasibility of constraints and schedules
medications to meet the constraints. Several basic algorithms
needed for these purposes are described and evaluated.

I. INTRODUCTION
These days, one can find on-line and in specialty stores
numerous devices and services designed to ease the effort and
improve the chance in medication compliance. They include
dumb pillboxes and programmable medicine dispensers (e.g.,
[1, 2]), as well as websites that help the user to generate
medication schedules (e.g., [3]). Modern drugs can do
wonders in controlling deceases and maintaining health, but
only if the user follows the prescribed directions.
Unfortunately, non-compliance is far too common and severe
[4, 5], especially for elderly and chronically ill individuals:
Such an individual may still live at home, on several
prescribed and over-the-counter (OTC) medications at a time,
and have 10 or more different prescriptions each year for
many years, even decades. Existing devices and services are
not ideal in many ways: They typically require manual
handling of the medications, and the schedules they support
are rigid. For long term users, it is essential that medication
schedules are as flexible as possible. The dispenser must be
tolerant to user tardiness since tardiness is unavoidable.

This paper describes architecture of smart medication
dispensers that are designed for flexibility and tolerance and
basic algorithms that a dispenser scheduler can use for
compliance enforcement. By a smart medication dispenser
(or dispenser for short), we mean specifically a device for use
by a naive user at home without close professional
supervision. During normal operation, the dispenser
schedules the user’s medications, reminds the user at times
when medications should be taken, controls the dosages

dispensed each time, and dynamically readjust the medication
schedule to stay compliant when the user is tardy. The
dispenser provides appropriate warnings when it becomes
impossible to stay compliant.

P. H. Tsai and C. Y. Yu are with Department of Computer Science,

National Tsing Hua University, Hsinchu, Taiwan. Their email addresses are
peipei@eos.cs.nthu.edu.tw and u910224@oz.nthu.edu.tw.

H. C. Yeh, P. C. Hsiu, and C. S. Shih are affiliated with Department of
Computer Science and Information Science, National Taiwan University,
Taipei, Taiwan. Their email addresses are {r94922048, r91004,
cshih}@csie.nthu.edu.tw.

J. W. S. Liu is with Institute of Information Science, Academia Sinica,
Nankang, Taipei, Taiwan. Her email address is janeliu@iis.sinica.edu.tw.

A requirement for proper usage is that all (prescription or
OTC) medications taken by the user are managed by a single
dispenser. The user is provided by user’s pharmacist with a
machine readable Medication Schedule Specification (MSS)
either via Internet or a portable storage device each time the
user acquires medication supplies. When loaded into the
dispenser, the specification defines for the dispenser nominal
temporal and dosage constraints that should be satisfied by
schedules used for dispensing the medications under its care.
In addition, the specification provides hard limits; they are
criteria for compliance monitoring and enforcement.

The models underlying medication schedule specifications
[6, 7] resemble well-known real-time work-load models (e.g.,
[8-15]) in many respects. The resemblance is intentional; we
want to apply established real-time systems principles and
existing techniques to medication scheduling wherever
appropriate. We will discuss relationships between related
models and algorithms in later sections where MSS and
associated algorithms are described.

Our assumption is that some professional(s) has verified
for each user the safety and effectiveness of the user’s
medications and the correctness of their directions. Hence,
many difficult problems on medications addressed by
medication consultation projects (e.g., [16]) are out of scope
for us. On the other hand, their treatment to medication
scheduling lacks the depth and rigor we need.

Following this introduction, Section II describes what and
how requirements and constraints are defined in MSS.
Section III describes dispenser architecture and operations.
Section IV presents consistency and feasibility conditions.
Section V and VI describe dosage selection and scheduling
algorithms. Section VII is a summary.

II. MEDICATION SCHEDULE SPECIFICATION
Throughout the paper, by medications we mean both

prescription drugs and OTC drugs and supplements. Except
for where distinction is necessary, we also refer to food as a
medication. The dispenser does not handle food, but must
schedule meals and snacks and send remembers for them
when some of the user’s medications interfere with food.

A. Usage Assumptions
We confine our attention to dispensers for individual users

 Submitted to IEEE Symposium on Real-Time Systems, December 2006 Copy Right @ May 2006

who live at home without assistance and are on multiple
medications, some of which are taken on long term basis.
Again, we assume that all medications taken by a user are
managed by a dispenser. A likely scenario is that the user is
given a dispenser by the user’s pharmacy, hospital or medical
clinic, with expense covered in part by health insurance as a
reward for improved compliance.

Smart medication dispensers are end-user devices in a tool
chain for medication management and delivery. Tools at high
end of the chain include various manual and computerized
physician order entry systems (e.g., [17-20]). Using them
together with on-line drug libraries and health information
systems (e.g., [21, 22]), medical and health-care professionals
can in principle verify automatically or interactively that the
user can safely and effectively take the medications ordered
and directed in each prescription. A requirement for correct
usage of dispensers is that this verification has been done.

Another important assumption is that the pharmacist is
provided with access to all prescriptions of the user, as well as
information on OTC medications the user takes at the time.
We are building incrementally a prescription authoring tool
[23] to aid the pharmacist: Each time when the user comes to
fill a new prescription or to purchase some OTC drug, the
pharmacist uses the tool to extract user specific directions
from the user’s prescriptions; put the extracted directions in a
unified representation; and check for conflicts while
integrating user specific directions with general directions the
tool extracts from drug libraries. By conflicts, we mean
inconsistencies and flaws in directions that the tool cannot
resolve automatically. If tool finds no conflict during the
integration process, it translates the merged directions into a
MSS for the user’s dispenser. Otherwise, it sends the
information on the conflicts to the responsible order entry
systems and the physicians, requests conflict resolution, and
repeats all the steps when the conflicts are resolved.

B. Direction Parameters
The MSS generated by the authoring tool consists of two

parts: direction of each medication when taken alone and
changes in directions and additional constraints when some of
the user’s medications interact. Fig. 1 gives a partial list of
parameters that define the direction of a medication. Other
parameters and further details can be found in [6].

The name M of the medication identifies the medication
and provides the dispenser with information on its physical
characteristics. We consider here only medications that are
dispensed in discrete units. The granularity g specifies the
minimum size of a dose. A granule of a medication may be a
tablet or caplet, some number of milligrams (mg) or cubic
centimeters (cc), etc. So, a dose of size 1 means different
amounts for different medications.

We will make frequent reference to the parameters starting
from [Tmin, Tmax]: The minimum duration Tmin and maximum
duration Tmax bound the length of time over which the
medication is to be administered. Normal operations of the
dispenser are guided by the parameters listed in the 4 lines

below duration. The dispenser treats the constraints defined
by these parameters as firm constraints: The medication
schedules it uses meet the constraints, but user tardiness may
lead to the violation of some of them and trigger the
re-computation of the schedule in effort to stay compliant.

M: Name of the medication
g: Granularity

[Tmin, Tmax]: Minimum and maximum durations
[dmin, dmax]: Nominal minimum and maximum dose sizes
[smin, smax]: Nominal minimum and maximum separations
(B, R): Maximum intake over a specified time interval given

by budget B and replenishment delay R
(L, P): Minimum intake over a specified time interval given

by lower bound L and interval length P
[Dmin, Dmax]: Absolute minimum and maximum dose sizes
[Smin, Smax]: Absolute minimum and maximum separations

Non-compliance event types and corresponding actions.
Fig. 1 Direction parameters

Dose size is the number of granules taken in one dose.
Separation is the length of time between consecutive doses.
Dosage means the combination of dose size and separation.
The dispenser normally provides the user with doses of sizes
in the range [dmin,, dmax], delimited by the nominal minimum
dose size dmin and nominal maximum dose size dmax, with
separations in the range [smin, smax], delimited by the nominal
minimum separation smin and the nominal maximum
separation smax of the medication. We use hour as unit of time
throughout the paper. The actual time granularity of
dispensers is 10 – 100 milliseconds, however.

The maximum intake (B, R) requires that no more than B
granules of M are taken in any time interval of length R. B
stands for budget, and R stands for replenishment delay. The
current budget is B initially. When a dose of size d is
dispensed at time t, d granules of budget are consumed, and
the d-granule chunk is replenished at t + R. At the time of any
dose, the dose size can be at most equal to the current budget.
This way of enforcing the maximum intake (B, R) constraint
is similar to how a sporadic server [9, 10] limits processor
bandwidth consumption of aperiodic tasks.

For some medications (e.g., antibiotics), it is important that
a certain amount of the medication is at work at all times.
Such a medication typically has a minimum intake constraint
(L, P). It requires that the total size of doses within any
interval of length P to be at least equal to the lower bound L.

As illustrative examples, we quote below the directions of
a pain killer and an antibiotic.

Example 1: “1 gel caplet every 4 to 6 hours …. If pain or
fever does not respond to 1 caplet, 2 caplets may be used but
do not exceed 6 gel caplets in 24 hours unless directed by a
doctor. The smallest effective dose should be used.”

Example 2: “Take 250 to 500 milligrams (mg) every eight
hours. Keep taking this medicine for at least ten days …. It is
best to take the doses at evenly spaced times … on an empty
stomach (either 1 hour before or 2 hours after meals).”

The nominal dose size and separation of the pain killer have
ranges [1, 2] and [4, 6], respectively. It has a maximum intake
of (6, 24) to safeguard against over dose, but has no minimum
intake. The granularity of the antibiotic is 125 mg. Its

 2

direction allows a large dose-size range [2, 4], but suggests a
narrow separation range [8, 8]. Its intakes are (B, R) = (12, 24)
and (L, P) = (6, 24). These constraints provide a guideline for
deviation from the rigid 8-hour day and night schedule.

The antibiotic in Example 2 has a minimum duration of
240 hours. This is a hard constraint, as are constraints defined
by absolute dose size and separation. The dispenser treats a
violation of a hard constraint as a non-compliance event that
warrants a specified action. As shown in Fig. 1, MSS includes
medication-specific rules governing how the dispenser is to
define and respond to non-compliance events. This issue will
be addressed in a later paper.

The absolute minimum dose size Dmin and absolute
maximum dose size Dmax are the smallest and the largest dose
sizes, respectively, amongst all values that are explicitly or
implicitly specified by statements in the direction. Similarly,
absolute minimum separation Smin and absolute maximum
separation Smax are the smallest and largest separations,
respectively, specified by direction statements. In Example 1,
the absolute maximum dose size is also 2. Because of the last
statement in the direction, the absolute minimum doze size is
0, and the absolute maximum separation is infinity.
Directions of many medications allow large ranges of
absolution separation, while suggesting no variation in
nominal dose sizes and separation. An example is a brand of
digoxin [11] for control of some heart conditions. Its
instruction suggests taking a dose a day, at the same time each
day. On how to handle a missed dose, the instruction says “If
you remember within 12 hours, take it immediately. If you
remember later, skip the dose you missed and go back to your
regular schedule”. For this medication, the nominal
separation range is [24, 24], and the absolute separation range
is [12, 36].

C. Interaction Pairs
The MSS captures the information on direction changes

due to interactions between medications using interaction
pairs. There is an interaction pair I(M, N) for each pair of
medications M and N that may interact to a degree as to
require modification in how the medications are to be
administered. The attributes of the interaction pair contains
three components: direction change lists, inter-medication
separations, and precedence constraints.

Some direction parameters for individual medications in an
interaction pair may need to be modified. Consider Fosamax
[11] for treatment and prevention of brittle bone decease as an
example. When taken alone, [dmin, dmax] = [1, 7], [smin, smax] =
[20, 168], and (B, R) = (7, 168). However, when the user is
also taking aspirin, only dose size 1 with separation in the
range [20, 24] is allowed in order to minimize the chance of
stomach upset. The MMS captures such changes in change
lists C(M) and C(N) of each medications in the interaction
pair I(M, N). While user is taking both medications, the
parameters given by the change lists replace the direction
parameters of the individual medications.

The separation attribute of I(M, N) includes minimum

separation σmin (M, N) between the medications: An earlier
dose of M (N) must be separated from a later dose of N (M),
by at least σmin (M, N) (σmin (N, M)). σmin (M, N) may not equal
to σmin (N, M). In Example 2, σmin (Antibiotic, Food) = 0.5 and
σmin (Food, Antibiotic) = 1. Some medications may be
constrained to be taken sufficiently close together or taken
together with food. This requirement is expressed in terms of
maximum separation, which can be defined similarly [6].

Finally, interaction of medications may also lead to
precedence constraints that dictate the order of their
administrations. We do not consider medications with
precedence constraints in this paper.

III. DISPENSER ARCHITECTURE
Fig. 2 shows the hardware and software components of a

smart medication dispenser: They include the medication
scheduler, dispenser controller, compliance monitor, network
interface and I/O devices, as well as the dispensing unit
shown in the upper right-hand corner of the figure.

RTC

Compliance
Monitor

User Preferences

Push to Dispense

Containers

Base
Dispensing Drawer

RFID tags

I/O
Devices

Dispenser
Controller

Network
Interface

Medication
Scheduler

Extended
MSS

Processor

Bell

MSS Rules

Medication Record

Fig. 2 Architecture and components

A. Dispensing Unit, I/O Devices and Extended MSS
The dispensing unit has a base with an array of sockets on

the top. Containers, each holding a medication, are plugged in
the sockets. Each socket has a dispensing module (DM). The
DM holds the mechanism for releasing the content of the
container in the socket. Underneath all the sockets is a
dispensing drawer; that is where the user retrieves
medications. The Push-To-Dispense (PTD) button in front of
the base controls this drawer in the manner described below.

The user is provided with the supply of each medication in
a container, with a RFID tag attached. To put new supplies
under the control of the dispenser, the user plugs containers
into the sockets, one container at a time. The plug-in action
causes the dispenser controller to read RFID tags and acquire
the name of the medication in the new container upon reading
the new tag. After making sure that the MSS includes the
direction of the new medication, the controller creates an
association between the medication and its socket and
maintains the association as long as the container remains

 3

plugged in. As a part of initialization, the controller picks up
from MSS information on physical properties of the
medication, which the DM of the socket will need.

The number of granules released by DM is determined by
the value stored in the dose-size register (DSR) of the DM.
During initialization, the controller clears the DSR of every
DM. It loads the dose size into the register immediately
before it commands the DM to release a dose. When
commanded, the DM releases the specified number of
granules and clears the register when it completes.

During normal usage, the dispenser sends a reminder to the
user shortly before each time for medication. Fig. 2 shows an
array of I/O devices. A support infrastructure such as the one
described in [24] will allow the dispenser to leverage them in
the delivery of reminders to the user in and out of the home.
Such connectivity is desirable but not necessary. A minimal
dispenser has a local alarm such as the bell on top of the base;
an audio interface for delivery of voice reminders,
instructions and warnings; a dial-up connection for
transmissions of MSS updates and notifications; and a keypad
for text input from the user.

The dispenser allows the user to extend the MSS with
information on preferences and habits. Armed with this
information, the dispenser tries to fit the medication schedule
into the daily routine of the user. We assume that the user has
configured the dispenser to monitor and record medication
history and user behavior. Many behavior parameters affect
scheduling. An important one is promptness, an estimate of
the length of time the user takes to come and retrieve a
medication after being reminded that it is time for a dose.
Promptness varies, and the user can provide only a rough
estimate. By collecting statistics on this parameter, the
dispenser will improve the estimate over time.

B. Dispenser Operations
The bulk of the work of the dispenser is done by three

components: compliance monitor, medication scheduler, and
dispenser controller. The compliance monitor maintains
medication record and detects and handles non-compliance
events. As stated earlier, we do not address this aspect here.

The pseudo code in Fig. 3 gives an overview of operations
of the dispenser controller. Initialization is carried out
whenever any medication container is added and removed. At
the successful conclusion of initialization, the controller calls
Schedule.Schedule() to start administering the medications.

As its name indicates, the scheduler is responsible for
determining the time and dose size of each dose of every
medication managed by the dispenser. Schedule() and
GetNextDose() are two of its functions. When invoked, the
former computes schedule_table. Similar to schedule tables
used in time-driven real-time systems, schedule_table is a list
of {time, dose_list} structures, sorted by time in increasing
order. time gives the absolute time when some dose of some
medication is due, and dose_list provides the names of the
medications and their dose sizes to be dispensed at the time.

The function GetNextDose() returns the {time, dose_list} at
the head of schedule_table.

Main(…)
{

NextDoseTime = 0;
NextDoseList = NULL;
…
Initialization();
error_occurred = 0;
error_occurred = Scheduler.Schedule();
if (error_occurred != 0) request user attention;

resume:
dispenser_runs = TRUE;
while (dispenser_runs == TRUE) {

error_occurred = Scheduler.GetNextDose(NextDoseTime,
NextDoseList);

if (error_occurred != 0) break;
WaitForTimer(NDTT, NextDoseTime – promptness);
error_occurred = AdministerOperation(NextDoseTime,

NextDoseList);
if (error_occurred != 0) break;

}
if (error_occurred != 0) {

if (error recovery is successful) goto resume;
}
clean up;
return;

}
AdministerOperation(DoseTime, DoseList) { … }
ReleaseOperation(DoseList) { … }
…

Fig.3 Dispenser operation

The dispenser controller works with three timers:
Next-Dose-Time-Timer (NDTT) times when the next dose is
to be dispensed. While the dispenser runs, the controller
repeatedly sets NDTT to expire at a short time before the
instant for the next dose of some medication. The length of
this short time is equal to promptness. Whenever NDTT
expires, the controller carries out the administer operation
described in Fig.4. The operation maintains and uses the
Wait-for-Retrieval-Timer (WFRT) to limit the length of time
the dispenser will wait for the user to respond to a reminder.
Release-Mechanism-Timer (RMT) is the third timer. It is
used to limit the length of time the dispenser wait for DM’s to
complete their operations.

ReleaseOperation(DoseList)

AdministerOperation(DoseTime, DoseList)

1. For every medication in the DoseList, puts the corresponding dose
size in the DSR of the DM for the medication.

2. Broadcasts a release command to all DM’s.
3. Sets the RMT and waits for timer expiration or all DM’s complete.
4. If every DM completes and their DSR cleared before RMT timer

expires, clears RMT, records current time, opens the dispensing
drawer and plays instructions (e.g., take with a glass of water), if
any, and returns 0 to indicate success. If RMT times out, records
socket numbers of malfunctioned DM’s and error conditions and
returns error code.

1. Sounds a voice reminder and reminder bell, sets WFRT to expire
at DoseTime + MAT, and waits for either WFRT timer expiration or
the event that PTD button is pressed.

2. When awaken,
A. If user has pressed the PTD button, cancels the WFRT timer,

and commands a release operation.
(1) If the release operation succeeded, sends the time

recorded by the release operation to compliance monitor
along with dose list for logging. Returns 0.

(2) If release operation failed, picks up error log and returns
error code.

B. If WFRT expired, logs the timer expiration; returns error code.
Fig. 4. Administer and release operations

The administer operation takes as input DoseTime and

 4

DoseList. The former is the time for the current dose, i.e., the
dose to be dispensed at the time. In Fig. 4, MAT stands for
maximum allowed tardiness: If the user does not respond by
DoseTime + MAT, the medication scheduler is invoked to
re-compute the schedule. We will define the parameter
precisely at the end of Section VI.

The administer operation in turn invokes the release
operation, which is also described in Fig. 4. We recall the
Push-to-Dispense (PTD) button mentioned earlier. The user
responds to reminders by pressing the button. If no
medication is due at the time when the button is pressed, the
dispenser controller keeps the drawer closed and informs the
user by voice that no medication is due until some specified
time. If some medications are due when the button is pressed,
the release operation is invoked. As the result of a successful
release operation, the user is given the correct dose of each
medication to be taken at the time in the dispensing drawer.

By examining the error code and log, the controller can
determine how to recovered from a failed administer
operation. A well-built dispenser should rarely, if ever, fail in
Step 2A of administer operation, but error due to user’s
tardiness (i.e., in step 2B) can occur from time to time during
normal usage for most users. When this error occurs, the
controller calls the scheduler to re-compute the medication
schedule and then repeats the administer operation at a later,
newly scheduled time. As shown in [7], it is often possible to
avoid non-compliance by re-adjusting the schedule. The
dispenser sends warnings and notifications only when
non-compliance becomes unavoidable.

IV. CONSISTENCY AND FEASIBILITY
When called for the first time after initialization, the
Scheduler.Schedule() checks the MSS for consistency and
feasibility in three steps:

1. For each medication that has interaction pairs, updates
its direction parameters if changes specified by change
lists in all its interaction pairs are consistent.

2. Ensures that the direction parameters of every
medication are consistent and feasibility.

3. Ensure that the separation constraints defined by
interaction pairs are consistent and feasibility.

The MSS, and the parameters and constraints given by it, are
consistent when the medication scheduler can resolve
automatically discrepancies, if any, among the parameters.
The parameters, and hence the MSS, are feasible if all the
constraints defined by them can be met simultaneously by
some schedule. Scheduler.Schedule() fails and user attention
is requested when the medication scheduler finds the MSS
inconsistent or infeasible.

In Step 1, dispensers apply only general common sense
rules, rather than medication-specific knowledge-based rules.
As examples, if change lists of a medication modify some of
its absolute limits, the new limits after incorporating the
changes should be at least as stringent as the limits set by the
medication’s own direction parameters unless the MSS

explicitly instructs the scheduler to do otherwise. The
scheduler declares the MSS inconsistent when it finds the
nominal dose size ranges specified by change lists in
interaction pairs of a medication do not overlap, because it
cannot resolve the difference without external guidance.

A. Necessary Conditions
Hereafter, we assume that the scheduler has completed

Step 1 and parts of Steps 2 and 3 successfully. The direction
parameters of every medication satisfy the following
conditions:

(1) Dmin ≤ dmin ≤ dmax ≤ Dmax
(2) Smin ≤ smin ≤ smax ≤ Smax
(3) Dmax ≤ B, and Smax ≤ P ≤ Tmin if Smax and P are finite.

Furthermore, for every pair of medications M and N,
(4) σmin (M, N) ≤ σmax (M, N).
(5) Precedence relations are consistent [8].
In addition, the direction parameters of every medication

with maximum and/or minimum intake constraints must
satisfy the following necessary conditions:

(6) dmin × Floor[R/smax] ≤ B
(7) Ceil[L /dmax] ≤ Floor[P/smin]
(8) B/R ≥ L/P

Floor[x] and Ceil[x] denote the floor and ceiling of x,
respectively. It is impossible for the scheduler to make the
total intake smaller than the value given by the left-hand side
of the inequality in (6). The budget B must be at least equal to
the lower bound. The left-hand side of inequality in (7) is the
minimum number of doses required to have total size L. The
number must be no greater than the maximum possible
number of doses in an interval of length P. Finally, (8)
requires that the dosage rates given by the maximum intake to
be no less than the dosage rate given by the minimum intake.

A consistent medication is one whose directions
parameters satisfy conditions (1) – (8). In general, these
conditions are necessary but not sufficient for feasibility: We
know that a medication has no feasible dosage (i.e., a
combination of dose size and separation meeting all
constraints) if its direction parameters do not meet some of
the conditions, but meeting all the conditions does not mean
that there is feasible dosage. The observation below gives
some of the special cases:

Observation 1 A consistent medication has a feasible dosage
if either of the following is true. (a) L = 0, or B =∞, or both.
(b) dmax divides B, R divides P, and the nominal separation
range includes R (dmax / B).

The medication in case (a) does not have both minimum and
maximum intake constraints. That it has a feasible dosage is
obvious. In case (b), the scheduler can dispense periodically
doses with total size B every R units of time. It follows from
(8) that the minimum intake constraint is satisfied as well.

Below is an example. The parameters satisfy necessary
conditions (1) – (8) but not conditions in Observation 1.

 5

Example 3: Dmin = dmin = 5; Dmax = dmax = 6; Smin = smin = 45;
Smax = smax = 46; (B, R) = (10, 79); (L, P) = (17, 159)

To show that the medication has no feasible dosage, we note
that there are three doses within a constraint interval of length
159. The dotted and solid step functions in Fig. 5 depict two
possible ways for the scheduler to meet the minimum intake
constraint using three doses. The time origin is the time of the
first of the three doses. The 3-ASAP (As Soon As Possible)
function gives the total intake as a function of time when the
scheduler uses size dmax at 0, followed by two doses of
non-increasing sizes with non-decreasing separations. The
one labeled 3-ALAP (As Late As Possible) gives the total
intake when the scheduler uses dose size dmin at 0, followed
by doses of non-decreasing sizes with non-increasing
separations. The intake function of any schedule that
dispenses three doses with total size 17 lies in the shaded
region bounded by these two functions. We can think of
intake as the required dosage demand. The maximum intake
(10, 79) constraints the supply; it is depicted by the heavy
dashed lines. The fact that the dashed line lies below the
intake functions sometimes indicates that the supply is
insufficient to meet the demand at all times and, therefore, the
medication has no feasible dosage.

0

Total Intake/supply

5

10

15

45 46 9290 time

3-ASAP 3-ALAP

79

12

17

Fig. 5 A Feasibility test

B. Dosage Demand Analysis
Fig.6 describes a feasibility test motivated by this example.

It is called Dosage-Demand Analysis (DDA). The input for
DDA consists of nominal dosage and intake parameters (i.e.,
dmin, dmax, smin, smax, B, R, L, and P) of the medication under test.
If the parameters satisfy the necessary conditions listed above
but not the conditions in Observation 1, the test starts from the
minimum number of doses required to get a total dose size L
and tries every possible number of doses. As soon as it finds
an ALAP intake function that never exceeds the dosage
supply in the interval [0, P), it concludes that the medication
may be feasible. It declares the medication infeasible if it
finds no such intake function after trying all possible numbers
of doses.

DDA uses the function ALAP_Doses_Separations(),
which takes as an input the number K of doses to be dispensed
in a minimum intake constraint interval. If successful, the
function returns the arrays dose_size[K] and separation[K]
based on the ALAP strategy. Part (b) of Fig. 6 describes the
function.

Let t0 = 0, and tj , for j = 1, … K-1, be the time of the j-th
dose. By definition, t j is equal to the sum of separation[k] for
1≤ k ≤ j. The value of intake(0) is dose_size[0], and intake(t)

increases by dose_size[j] at tj. The value of the supply
function supply(t) is equal to B at 0. It increases at
replenishment time t = R by dose_size[0] and again by
dose_size[j] at t = tj + R, for each j = 1, … K-1.

Input:
Output

Parameters dmin, dmax, smin, smax, B, R, L, P
: is_consistent = TRUE; is_infeasible = FALSE;

If (any of the conditions (1) – (8) is not satisfied)
is_consistent = FALSE; return;

if ((M satisfies any of the conditions stated in Observation 1) return;

max_number_doses = Ceil [P / smin];
min_number_doses = Ceil [L / dmax];
number_doses = min_number_doses;
times_doses_chosen = FALSE;
while (number_doses < max_number_doses) {

times_doses_chosen = ALAP_Doses_Separations(number_doses);
if (times_doses_chosen == FALSE) {

break;
} else {

compute ALAP intake function Intake(t) for t in [0, P);
compute dosage supply function Supply(t) for t in [0, P);
if Intake(t) ≤ Supply(t) for all t in [0, P) return;

}
increment number_doses by 1; times_doses_chosen = FALSE;

}
Is_infeasible = TRUE;
return; (a)

Input
Output

// Select dose sizes.

// Select separations

: Parameters dmin, dmax, smin, smax, B, R, L, P; Number of doses K;
: dose_size[K] = {dmin}; separation[K] = {smin}; succeeded = TRUE;

remaining_dose = L ; remaining_interval = P – 1;

for (index = 1; index <= K; index = index + 1) {
dose_size[K – index] = remaining_dose – (K – index) * dmin ;
if (dose_size[K – index] < dmin) return succeeded = FALSE;
if (dose_size[K – index] = dmin) {

break;
} elseif (dose_size[K – index] > dmax) {

dose_size[K – index] = dmax;
}
remaining_dose = L – dose_size[K – index] ;

}
separation[0] = 0;
for (index = 1; index < K; index = index + 1) {

separation[index] = remaining_interval – (K – 1 – index) * smin ;
if (separation[index] < smin) return succeeded = FALSE;
if (separation[index] = smin) {

break;
} elseif (separation[index] > smax) {

separation[index] = smax;
}
remaining_interval = P – separation[index];

}
return succeeded; (b)
Fig. 6 Dosage Demand Analysis (DDA)

To illustrate DDA, suppose that the ranges of dose size and
separation in Example 3 are widen so that dmin = 3, dmax = 10,
smin = 45, and smax = 80. It is possible to use two doses in a
minimum intake constraint interval of length 159. Initially,
the dose-separation selection function sets both elements of
dose_size[] to the minimum dose size 3. In the first iteration
of select-dose-size loop, dose_size[1] is set to 10, which is the
minimum of dmax = 10 and L - dmin = 14. dose_size[0] is then
set to 7. Select-separation loop computes only separation[1]
and sets it to min(80, 158 – 45) = 80. In this case, the 2-ALAP
intake function never lies above the supply function. This fact
suggests that some dosage may be able to meet both the
minimum intake and maximum intake constraints. Indeed a
dose of size 10 every 79 units of time is such a dosage.

The DDA test resembles the time-demand analysis method
[19] used for determining the schedulability of fixed priority
periodic tasks scheduled on a processor. The scheduler only
needs to check whether the supply meets the demand at time

 6

instants where the intake function or supply function has step
increases. The number of times for this check is 2 K. There is
an important difference however. In time-demand analysis,
time supply increases with time independent how the
processor is allocated to tasks. In contrast, dosage supply at
time t depends on the sizes and times of the doses dispensed
before t. In this respect, DDA resembles slack time estimation
in fixed priority systems (e.g., [21]).

V. DOSAGE SELECTION

Before computing a medication schedule, the scheduler
selects for each medication, from the respective nominal
ranges given by the MSS, a feasible dosage (i.e., values of
dose size d and separation s) it will use in scheduling the
medication. An algorithm used for this purpose is called a
dosage selection algorithm.

A. Heuristic Algorithms
The previous section says that dosage selection can fail in the
general when the medication has both intake constraints.
Table 1 lists two families of heuristic dosage selection
algorithms for the general case: Independent algorithms make
independent selections of the sizes and separations for
individual doses. The four in the first column select boundary
values: Their selections of dosage (d, s) are (dmax, smin), (dmin,
smax), (dmax, smax) and (dmin, smin), respectively, for all doses.

TABLE 1 Dosage selection algorithms

Maximum
Minimum
Likely_Large
Likely_Small

Average
Uniform
Random_Large
Random_Small

MaxD_AMAP
MinD_AMAP
AveS_AMAP
AveD_AMAP

MaxD_ALAP
MinD_ALAP
AveS_ALAP
AveD_ALAP

Independent Intake-Guided

 The Average Algorithm uses average dose size and average
separation. The last three in this group make independent
random selections for each dose. Uniform Algorithm selects
for d and s from uniform distributions over the respective
ranges of the parameters. Random_Large and Random_Small
randomly select d and s from right triangle shape probability
density functions (pdf) over the dose-size and separation
ranges. For the former, the right angles of the dose-size and
separation pdf’s are at dmax and smin, respectively, while for the
latter, they are at dmin and smax.

In contrast, intake-guided algorithms make correlated
selections. Each of these algorithms starts by fixing either
dose size or separation and then uses one of the intake
constraints to guide the selection of the second dosage
parameter. The first parts in the names of these algorithms
tells us their choices of the first parameter: MaxD, MinD,
AveD and AveS indicate that the choices of the algorithms
are d = dmax, d = dmin , d = (dmax + dmin)/2, and s = (smax + smin)/2,
respectively.

The algorithms with AMAP (As Much As Possible) in
their names use the maximum intake (B, R) to guide the
selection of the second dosage parameter. In essence, the

algorithms try to make the total dose size in each interval of
length R as close to the upper limit B as possible, hence the
name. When the dose size d is selected first, the algorithms
selects as separation s the value in the nominal separation
range closest to Ceil[R / Floor[B/d]]. If s is first selected, d is
the nominal dose size closest to Floor[B / Ceil[R/s]].
Algorithms with ALAP (As Little As Possible) in their names
use the minimum intake (L, P) as the guide; they try to make
the total size of doses in each interval P as close to the lower
limit L as possible. If s is first selected, then d is the nominal
dose size closest to Ceil[L / Floor[P/s]]. If d is first selected, s
is the nominal separation closest to Floor[P / Ceil[L/d]].

B. Performance
The determine their performance, we evaluated the

algorithms in Table 1 by using them to select dosages for
“medications” with randomly generated direction parameters.
The heuristics are compared according to two criteria. First,
success rate is the fraction of all medications for which the
algorithm succeeded in finding feasible dosages. A selected
dosage gives the scheduler more leeway in scheduling if it
allows larger deviation from the selected separation s: The
larger the allowed deviation, the better. We use usable
separation range to quantify this aspect: It is the width of the
allowed deviation, normalized with respect to the width of the
given nominal separation range.

A
ve

ra
ge

R
an

do
m

_L
ar

ge

R
an

do
m

_S
m

al
l

U
ni

fo
rm

A
ve

S
_A

LA
P

Av
eD

_A
M

A
P

Av
eD

_A
LA

P

A
ve

S
_A

M
A

P

M
in

D
_A

M
A

P

M
in

D
_A

LA
P

M
ax

D
_A

LA
P

M
ax

D
_A

M
A

P

1.0

0.8

0.6

0.4

0.2S
uc

ce
ss

 R
at

e
S

ep
ar

at
io

n
R

an
ge

0

0.6

0.4

0.2

0

Fig. 7 Relative performance of dosage selection algorithms

The performance summary in Fig.7 was obtained from
sample medications whose parameters were generated in the
following manner: For each sample, dmax and smax were
chosen first independently from even distributions [1, 30] and
[1, 1440], respectively. We use two ratio parameters rd and rs

to determine the lower boundaries of dose size and separation
ranges: dmin = dmax (2-rd)/(2+rd) and smin = smax (2-rs)/(2+rs). rd
and rs were initialized as 0 and incremented independently by
0.1 per step until 2.0 and 1.9, respectively. Intake parameters
B and L are random multiples of dmax and dmin, respectively.
Their respective multipliers rB and rL are independently
selected from the even distribution over the range [1, 100].
Similarly, P and R are random multiples of smax and smin,
respectively. Their respective multipliers rP and rR are also

 7

independently selected from the even distribution over the
range [1, 100]. We threw away samples that were found
inconsistent, and the number of remaining samples was large
enough to yield 10% statistical error.

From Fig. 7, we can see that the success rates of almost all
algorithms are acceptably good. They differ noticeably in
usable separation range, however. (The reason for leaving out
the algorithms listed in the first column of Table 1, despite
their good success rates, is that their usable separation ranges
are equal to 0.) In general, a consequence of intake constraints
is a significant reduction in separation range.

VI. MEDICATION SCHEDULING
When the scheduler starts to compute a medication

schedule, it has already selected a feasible dosage for every
medication M. Since there is no possibility of confusion, we
denote the usage separation range also by [smin(M), smax(M)])
and call them nominal separations. The dosage selection
process has also made sure that that the scheduler can always
find a size for each dose. Hereafter, we focus solely on the
problem of choosing times of the doses, i.e., scheduling.

A. Resource and Workload Models
The medication scheduler is concerned solely with

scheduling the only scarce resource, the user. It uses two
types of virtual resources to manage contention for the user [7]
and allocates these entities as if they were physical processors
and resources: There is a processor PM for every medication
M. The scheduler uses PM to maintain correct separation
between doses of M. If M interacts with some other
medication or with food, then there is also a resource RM for M.
The scheduler uses the resource RM in its effort to maintain
the required minimum separation between doses of M and
doses of other medications and food.

Processor Scheduling It is convenient to view doses of M
as non-preemptable jobs JM(i), for i = 1, 2, …, on PM. A job
starts at the time when the dose it models is released. The job
occupies the processor PM (i.e., the user) for smin(M) units of
time. In terms from real-time systems literature, eM = smin(M)
is the execution time of (jobs of) M.

The first job of each medication M is scheduled to start at
some specified time or on best effort basis. The start times of
subsequent jobs of M are constrained by three types of
deadlines: First, the inter-stream relative deadline of JM(i)
with respect to the previous job JM(i-1) of M is equal to their
absolute maximum separation Smax(M). Second, JM(i) may be
required to start by the end of the current minimum intake
interval. This requirement imposes on the job an effective
minimum intake deadline. Third, if doses of M must be taken
sufficiently close together with doses of other medications,
the inter-medication maximum separations imposes on JM(i)
one or more inter-stream separation deadlines. The absolute
start time deadline of JM(i) is the earliest absolute deadline
computed from these relative deadlines. Precise definitions
and illustrative examples can be found in [7].

A job is said to be precisely scheduled when the time
allocated to it by the scheduler is equal to its execution time.
The medication scheduler always starts with a feasible
precise schedule according to which all jobs start within their
deadlines and are precisely scheduled.

A typical user is not always prompt. A larger than expected
promptness may cause some jobs to start later than their
scheduled times. As a consequence, there may not be enough
time to give some job JM(i) smin(M) units of time before the
subsequent job of M must start. When this occurs, the
scheduler treats the job as an imprecise job [14], consisting of
a mandatory part followed by an optional part. The execution
time of the mandatory part is equal to the absolute minimum
separation Smin(M). The scheduler may allocate the optional
part less than eM - Smin(M) units of time when user tardiness
forces it to short change the part in order to enable the on-time
start of the subsequent jobs of M.

The observations below follow from the definitions of jobs,
their processor time requirements, start time deadlines and
scheduling rules [7].

Observation 2 All separation constraints between doses of
M are met when every job of M starts within its deadline
Smax(M) relative to the start time of the previous job of M
and its mandatory part is precisely scheduled on PM.
Observation 3 Absolute maximum separation constraints
specified by all the interaction pairs are met when every
job starts by its absolute deadline and its mandatory part is
precisely scheduled on PM.

Resource Allocation The scheduler follows two rules in
allocation of RM: (1) Each job of M must have RM exclusively
for an infinitesimally small amount of time in order to start. (2)
Every job of N (≠ M) in each interaction pair I(M, N) of M
requires the resource RM on a shared basis for σmin(N, M) units
of time beginning from when the job starts.

Because of Rule (1), the resource RM serves as a permit for
jobs of M. A job of N can block a job of M for σmin(N, M) units
of time. We call this time blocking time of M by N. The worst
case blocking time of a medication M is equal to the
maximum over all N ≠ M the blocking time of M due to N. In
contrast, an arbitrary number of jobs of medications other
than M can share the resource RM. The observation below
follows as a direct consequence.

Observation 4 Minimum separation constraints specified
by all interaction pairs are met when resources are
allocated to jobs according to Rules (1) and (2).

B. Scheduling Algorithms
We have been experimenting with scheduling algorithms

based on the above described model. All the algorithms
assign priorities to jobs. There are two variants: non-greedy
and priority-driven. A non-greedy algorithm may choose to
let jobs wait intentionally. A priority-driven algorithm never
let any processor or resource idle intentionally.

 8

MVF Scheme Among the priority schemes we have
studied, the MVF (Most-Victimized-First) schemes seems to
be a natural choice for scheduling interacting medications.
MVF priority scheme gives fixed priorities to jobs based on
their worst case blocking times; the longer the worst case
blocking time, the higher the priority: Jobs of the same
medications are scheduled in FIFO order. Using the
non-greedy version, the scheduler considers one medication
at a time in priority order and generates a complete schedule
of the medication. According to the priority-driven variant,
ready jobs are scheduled one at a time without look ahead.
The scheduler views the sequence of jobs of each medication
as a periodic task [8]. The length of intervals between
consecutive jobs of the task is in the range [smin(M), smax(M)].

 To illustrate, we consider a user who takes the medications
named in the graph in Fig. 8. The graph, called a separation
graph [7], has a node for each medication and food. The
square bracket under the medication name gives its usable
separation range. There is an edge from M to N with label
σmin(M, N) if σmin(M, N) ≠ 0. (Maximum separations between
medications are all zero in this example.) The worst case
blocking times of Fosamax, antibiotic, food and vitamin are 6,
2, 1.0 and 0.5, respectively. Hence, the MVF scheme gives
jobs of Fosamax the highest priority, followed by jobs of
antibiotic, meals and then by jobs of vitamin.

Fosamax
[20, 24]

Food

0.5 6.0

0.5

1.0

0.5

1
2

Antibiotic
[4,6]

Vitamin
[12, 24]

6.0

Fig. 8 A separation graph

Fig. 9 shows segments of schedules produced by three
variants of MVF scheme: non-greedy MVF (MVF-NG);
MVF-NG-Food-First (MVF-NG-FF); and the priority-driven
version (MVG-PD). All three schedules are periodic with a
24-hour period. The time origin is the start of a day. In the
figure, PFX, PA, PFD, and PV refer to processors for Fosamax,
antibiotic, food and vitamin, respectively; their resources are
named RFX, RA, RFD, and RV, respectively. The boxes on a
timeline labeled by a processor name indicate the time
intervals during which the processor is in use.

Following the MVF-NG algorithm, the scheduler treats
food as if it were a medication. It begins by scheduling jobs of
Fosamax. It then schedules jobs of antibiotic, meals and
vitamin in order. The Fosamax job (i.e., dose) of day starts at
0 and is allocated RA, RFD, and RV, each for 0.5 hour. The job
occupies the processor PFX for 20 hours. The first antibiotic
job cannot start until 0.5, since RA is not available until then.
The scheduler decides to use the maximum nominal
separation and schedules the 4 jobs of the day evenly space in
time at 0.5, 6.5, 12.5 and 18.5. Each job occupies PA for 4
hours and is allocated RFX and RFD for one hour. The user
cannot eat the first meal until time 1.5 when RFD becomes
available. Each food job occupies PF for 0.5 hr. Given the

schedule of subsequent antibiotic jobs, the scheduler
schedules the second and third meals at 7.5 and 13.5. Finally,
since only Fosamax blocks the vitamin job of the day, the job
can start at time 0.5.

0 8 124 16

PFX

PA

PV

PFD

20 24

(a) MVF-NG

PFX

PA

PV

PFD

(b) MVF-NG-FF

PFX

PA

PV

PFD

(c) MVF-PD
Fig. 9 MVF schedules of interacting medication

While MVF-NG algorithm treats food a medication,
MVF-NG-FF algorithm plan meals times based on user
preference and then schedules jobs of medications in time
intervals allowed. This is the strategy advocated in [6]. In
essence, meal times specified by the user are treated as
forbidden intervals for medications that interact with food. It
alters the forbidden intervals only when changes are
necessary. Suppose that the start of the day is 6 AM. The user
prefers to have breakfast at 6:30 AM, lunch at noon and
dinner at 6PM, as well as uninterrupted sleep for 6 hrs. The
MVF-NG-FF schedule in Fig. 9 is generated to fit these user
preferences.

The MVF-PD schedule shown in Fig. 9 is generated using
the priority-driven variant. The job in each period is ready for
scheduling at the beginning of the period. In this example,
periods of the Fosamax, antibiotic, and vitamin are 24, 6, and
24, respectively. At time 0 (the start of the day), the tasks are
in-phase (i.e., a period of every task starts at 0.). Suppose that
according to the user preference, the food jobs of the day
become ready at 0 or 0.5, 6 and 12. We note that the MVF-PD
schedule is similar to the MVF-NG schedule except for the
large jitter of the antibiotic job. It is acceptable only when the
absolute maximum separation is 6.5 or more. Compared with
RM-PD and EDF-PD schemes however, MVF-PD is much
superior; the rate-monotonic and EDF priority schemes fail to
produce acceptable schedules in this case [7].

Performance Measures We measure the merit of a
medication scheduling algorithm by the quality of the
schedules it produces. Quality of medication schedules has
two dimensions: adherence to medication directions and user
friendliness. Several figures of merit quantify how close a
schedule adheres to medication directions. They include
dose-size variation, separation jitter, and deviation from
nominal parameter ranges [7]. By these criteria, the MVF-NG

 9

schedule in Fig.10 is almost ideal: If the user is prompt, there
is no separation jitter and no deviation from nominal
separation for every medication. However, keeping a
constant separation between doses is also why the schedule is
not user friendly, with poor meal times and sleep times. In
contrast, separation jitters of antibiotic are 2.25 and 0.5,
respectively, for the MVF-NG-FF and the MVF-PD schedule.
By this criterion, MVF-NG-FF performs poorly, especically
if the user’s condition treated by the antibiotic is serious
enough to warrant a relative constant level of the medication.

We use the maximum allowed tardiness as a measure to
quantify user friendliness. Tardiness is the difference
between the actual promptness and the estimated promptness,
if the difference is positive and is equal to 0 otherwise. The
maximum allowed tardiness (MAT) of a dose i of medication
M according to a schedule is the maximum length of time the
start time of the corresponding job JM(i) can be delayed
without violation any hard constraints. The MAT of the
medication M is the minimum MAT over all doses of M. Take
the MVF-NG-FF schedule in Fig. 9. Suppose that the
absolute maximum separation of antibiotic is 9 and the
minimum separation of antibiotic is 3. Then the values of
MAT of the 4 daily doses of antibiotic are 0.5, 3, 1 and 5.
Therefore, the MAT of antibiotic is 0.5. According to the
MVF-NG schedule, the MAT of antibiotic is 0. (A delay in
any of the first three doses of antibiotic would violate the
minimum separation constraint between the medication and
food.) By this criterion also, MVF-NG is not user friendly.

VII. SUMMARY
We describe in this paper architecture of smart medication
dispensers and algorithms for consistency checking, dosage
selection and scheduling. In addition to building a prototype
dispenser, we are evaluating these and other medication
scheduling algorithms, to determine their ability to produce
feasible schedules and other quality measures, on real-life and
synthetic medication schedule specification. Much work in
this direction remains to be done. Compared with what we
know about algorithms for scheduling real-time tasks, we are
still far from having the necessary insight and understanding
about the behavior of medication scheduling algorithms. We
also need to have sound graceful degradation mechanisms.
We discussed earlier the application of imprecise
computation. We will explore in depth its use, as well as the
use of other schemes (e.g., [25]) for prevention of
non-compliance.

ACKNOWLEDGEMENT
This work is partially supported by the Taiwan Academia
Sinica Thematic Project SISARL: Sensor Information
Systems for Active Retirees and Assisted Living. The authors
wish to thank Dr. D. Burkhardt and Mr. T. S. Chou for their
suggestions on medication specification and dispenser
design.

REFERENCES
[1] S. C. Dursco, “Technological Advances in Improving Medication

Adherence in the Elderly,” Annals of Long-Term Care: Clinical Care
and Aging, Vol. 9, No. 4, 2001.

[2] http://www.dynamic-living.com/automated_medication_dispenser.htm
and http://www.epill.com/

[3] My Pill Box at http://www.mypillbox.org/mypillbox.php
[4] Harris Interative, “Prescription Drug Compliance a Significant

Challenge for Many Patients,”
http://www.harrisinteractive.com/news/allnewsbydate.asp?NewsID=9
04, March 2005.

[5] A. V. Law, M. D. Ray, K. K. Knapp, and J. K. Balesh, “Unmet Needs in
Medication Use Process: Perceptions of Physicians, Pharmacists, and
Patients,” Journal of American Pharmaceutical Association, 2003.

[6] P. C. Hsiu, H. C. Yeh, P. H. Tsai, C. S. Shih, D. H. Burkhardt, T. W.
Kuo, J. W. S. Liu, T. Y. Huang, “A General Model for Medication
Scheduling,” Institute of Information Science, Academia Sinica,
Taiwan, Technical Report TR-IIS-05-008, July 2005.

[7] P. H. Tsai, H. C. Yeh, P. C. Hsiu, C. S. Shih, T. W. Kuo, J. W. S. Liu, “A
Scarce Resource Model for Medication Scheduling,” Institute of
Information Science, Academia Sinica, Taiwan, Technical Report
TR-IIS-06-003, April 2006.

[8] J. W. S. Liu, Real-Time Systems, Chapters 2 – 4, Prentice Hall, 2000.
[9] B. Spruri, L. Sha, J. P. Lehoczky, “Aperiodic task Scheduling for Hard

Real-Time Systems,” Real-Time Systems Journal, Vol. 1, No. 1, 1989.
[10] T. M. Ghazalie and T. P. Baker, “Aperiodic Servers in Deadline

Scheduling Environment,” Real-Time Systems Journal, 1995.
[11] T. S. Tia, J. W. S. Liu and M. Shankar, “Algorithms and Optimality of

Scheduling Aperiodic Requests in Fixed Priority Preemptive Systems,”
Real-Time Systems Journal, Vol. 10, No. 1, January 1996.

[12] J. P. Lehoczky, L. Sha, and Y. Ding, “The Rate-Monotonic Scheduling
Algorithm: Exact Characterization and Average Behavior,”
Proceedings of IEEE Real-Time Systems Symposium, December 1989.

[13] N. Audsley, A. Burns, K. Tindell, M. Richardson, and A. Wellings,
“Applying a New Scheduling Theory to Static Priority Preemptive
Scheduling,” Software Engineering Journal, Vol. 5, No. 5, 1993.

[14] J. W. S. Liu, K. J. Lin, W. K. Shih, R. Bettati and J.Y. Chung,
“Imprecise Computations,” IEEE Proceedings, January 1994.

[15] C.C. Han, K.J. Lin and J.W.S. Liu, "Scheduling jobs with temporal
distance constraints," SIAM Journals on Computing, 1995.

[16] G. Gerguson, J. Allen, N. Blaylock, D. Byron, N. Chambers, M.
Dzikovska, L. Galescu, X. Shen, R. Swier, and M. Shift, “The
Medication Advisor Project: Preliminary Report,” Report No. 776,
Computer Science Department, University of Rochester, May 2002.

[17] D. M. Cutler, N. E. Feldman, and J. R. Horwitz, “U. S. Adoption of
Computerized Physician Order Entry Systems,” Health Affairs, 2005.

[18] R. W. Park, S. S. Shin, Y. I. Choi, J. O. Ahu, and S. C. Hwang, “CPOE
and Electronic Medical Record Systems in Korea Teaching Hospitals,”
Journal of American Medical Informatic Association, 2005.

[19] R. L. Davis, “Computerized Physician Order Entry Systems: The
Coming of Age for Outpatient Medicine,” PLoS Medicine, 2005.

[20] B. Koppel, et al., “Role of Computerized Physician Order Entry
Systems in Facilitating Medication Errors,” Journal of AMA, 2005.

[21] Health Information Systems: http://www.hhs.gov/healthit/ahic.html
[22] PDRHealth, Drug Information, http://www.pdrhealth.com/drug_info/
[23] H. C. Yeh, P. C. Hsiu, C. S. Shih, P. H. Tsai and J. W. S. Liu,

“APAMAT: A Prescription Algebra for Medication Authoring Tool,”
to appear in Proceedings of IEEE International Conference on Systems,
Man and Cybernetics, October 2006.

[24] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. K. Alshebli, M. Caccamo,
C. Gunter, E. Gunter, and J. Hou, “An Open Architecture for Assisted
Living,” to appear in Proceedings of IEEE International Conference on
Systems, Man and Cybernetics, October 2006.

[25] M. Hamdaoui and P. Ramanathan, “A Dynamic Priority Assignment
Technique for Streams with (m, k)-firm deadlines,” IEEE Transactions
on Computers, Vol. 44, No. 12, December 1995.

 10

http://www.dynamic-living.com/automated_medication_dispenser.htm
http://www.epill.com/
http://www.mypillbox.org/mypillbox.php
http://www.harrisinteractive.com/news/allnewsbydate.asp?NewsID=904
http://www.harrisinteractive.com/news/allnewsbydate.asp?NewsID=904
http://www.hhs.gov/healthit/ahic.html
http://www.pdrhealth.com/drug_info/

	I. INTRODUCTION
	II. Medication Schedule Specification
	A. Usage Assumptions
	B. Direction Parameters
	C. Interaction Pairs
	III. DISPENSER ARCHITECTURE
	A. Dispensing Unit, I/O Devices and Extended MSS
	B. Dispenser Operations

	IV. CONSISTENCY AND FEASIBILITY
	A. Necessary Conditions
	B. Dosage Demand Analysis

	V. Dosage Selection
	A. Heuristic Algorithms
	B. Performance

	VI. Medication Scheduling
	A. Resource and Workload Models
	B. Scheduling Algorithms

	VII. Summary

