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Abstract

Opportunistic network is a type of Delay Tolerant Networks (DTN)

where network communication opportunities appear opportunistic,

an end-to-end path between source and destination may have never

existed, and disconnection and reconnection is common in the net-

work. With numerous emerging opportunistic networking applica-

tions, strategies that can enable effective data communication in such

challenged networking environments have become increasingly desir-

able. In particular, knowing fundamental properties of opportunistic

networks will soon become the key for the proper design of oppor-
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tunistic routing schemes and applications. In this study, we inves-

tigate opportunistic network scenarios based on two public network

traces, namely UCSD and Dartmouth network traces. In this paper,

our contributions are the following: First, we identify the censorship

issue in network traces that usually leads to strongly skewed distribu-

tion of the measurements. Based on this knowledge, we then apply the

Kaplan-Meier Estimator to calculate the survivorship of network mea-

surements, which is used in designing our proposed censorship removal

algorithm (CRA) that is used to recover censored data. Second, we

perform a rich set of analysis illustrating that UCSD and Dartmouth

network traces shows strong self-similarity, and can be modeled as

such. Third, we pointed out the importance of these newly revealed

characteristics in future development and evaluation of opportunistic

networks.

1 Introduction

Opportunistic network is a type of challenged networks, where network con-

tacts (i.e., communication opportunities) are intermittent, an end-to-end

path between the source and the destination may have never existed, dis-

connection and reconnection is common, and/or link performance is highly

variable or extreme. Therefore, traditional Internet and Mobile Ad-hoc NET-

work (MANET) routing techniques can not be directly applied towards net-

works in this category. With numerous emerging opportunistic networking
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applications, such as wireless sensor networks (WSN) [11][28][42], underwa-

ter sensor networks (UWSN)[22], transportation networks [2][14][31], pocket

switched networks(PSN) [17][16][29], people networks [37][40], and etc., it

remains desirable/necessary to develop effective schemes that can better ac-

commodate the characteristics of opportunistic networks.

Knowing fundamental properties of opportunistic networks is the key for

the design of effective routing protocols and/or applications. Among all,

knowledge of inter-contact time distribution is particularly important, since

this distribution provides a good description of network connectivity. Yet,this

important fundamental property has not been extensively studied in the lit-

erature. By inter-contact time, we mean that the time duration between two

contiguous network contacts (between a particular node pair). The larger the

inter-contact time is, the longer the two nodes are disconnected. Moreover,

the more inter-contact time events in the network trace, the more reconnec-

tion/disconnection events have occurred during the network measurement

period.

Statistical analysis of opportunistic network traces has recently been un-

dertaken by [16][17][29]. These studies generally suggest a power-law model

(with heavy tails) to approximate the inter-contact time distribution of op-

portunistic networks, and several studies (e.g., [19] [41]) have employed a

simple power-law distributed random number generator to create an oppor-

tunistic network scenario for developing and evaluating various routing (data

forwarding) schemes. However, the power-law model can only fit a portion
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of the realistic inter-contact time distribution (i.e., the portion with smaller

inter-contact time), whereas the heavy-tailed portion can not be successfully

approximated. As a result, it is still questionable if previously proposed

schemes can remain their performance in realistic opportunistic network sce-

narios.

It is the interest of this study to further analyze opportunistic network

scenarios based on realistic opportunistic people network traces. Using pub-

licly available network traces from UCSD [5] and Dartmouth college [1],

we first propose a survival analysis based approach to cope with censorship

among network traces. The censorship issue commonly exists in most net-

work measurements since it is inevitable to have measured events lasting

longer then the measurement period. While previous studies simply ignore

censored measurement data, our contributions are the following: First, we

identify the censorship issue in network measurement traces, and propose

a simple yet effective algorithm (called CRA) to recover censored measure-

ments. Second, using recovered network measurements, we perform a set

of analysis showing the existence of self-similarities in opportunistic people

networks. Lastly, we pointed out the importance of these characteristics in

future development and evaluation of opportunistic networks.

The rest of the paper is organized as follows. In section 2, we summarize

related work in this area. In section 3, we briefly describe the basic properties

of the opportunistic network traces examined. Section 4 presents our survival

analysis and our proposed censorship removal algorithm for the employed
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network traces. Section 5 performs self-similarity analysis on the recovered

network traces. Finally, section 6 concludes the paper.

2 Related Work

Research activities of opportunistic networks have been carried out with focus

mostly on the design of effective data forwarding schemes that can provide

high performance data delivery and remain resilient against extremely poor

network connectivity. For instance, replication based routing schemes have

been proposed to inject multiple identical copies of data into the network,

and rely on node mobility to disseminate the data toward the destination [39].

However, the main drawback of this type of schemes is the tremendous traffic

overhead associated with flooding data replicates. As a result, when network

resources (e.g., buffer space or network bandwidth) are limited, replication

based schemes tend to degrade performance of reliability (i.e, the delivery

ratio) unless additional overhead reduction techniques are implemented (e.g.,

[14][26][32][35]).

Additionally, coding based routing schemes have been proposed recently

to transform a message into another format prior to transmission [41] [43].

The design principle of coding based schemes is to embed additional infor-

mation (e.g., redundancy [41] or decoding algorithm [43]) within the coded

blocks such that the original message can be successfully reconstructed with

only a certain number of the coded blocks. The performance of coding based
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routing schemes can be further improved by dynamically adapting encoding

levels [34] and/or combining replication based techniques [19].

However, while most previous work simply employ some well-known ran-

dom way-point mobility model (e.g., the Pursue Mobility Model [15] and the

Reference Point Group Mobility Model [27]) in the performance evaluation

of opportunistic network scenarios, recent studies have noticed that the mo-

bility model of opportunistic networks is far different from traditional ones,

and a generic model for this type of challenged networks is still lacking and

highly desired. Various opportunistic network traces have been contributed

to the research community (e.g., wildlife network trace [11], people network

traces [1][5][6][7], pocket switched network traces [3][9][10], and vehicular net-

work traces [2][4][8]), and several studies have been carried out using network

scenarios based on these network traces [14][17][29][41].

Statistical analysis of opportunistic network traces has been performed

[16][17][29], and the power-law distribution (with heavy tails) has been pro-

posed to model the distribution of inter-contact time and contact duration

in opportunistic networks. However, as we will elaborate later in this paper,

these studies simply ignore the presence of censorship that are common in

network measurements, and they only concentrate on fitting the distribu-

tion curve whereas thorough statistical analysis of other fundamental net-

work properties are still lacking. Particularly, while Internet traffic has been

well-recognized to be self-similar [20][24][33][36], it is one of our interests to

investigate whether the same property holds in opportunistic networks. We
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present detailed analysis and discussion in the followings.

3 Description of Opportunistic Network Traces

In the past few years, the research communities of DTN, MANET, and oppor-

tunistic networks have devoted significant resources and energy to collecting

realistic network traces. Researchers have realized that realistic wireless and

in-motion networks are usually much more dynamic and more unpredictable

than the existing mobility models (e.g., the Pursue Mobility Model [15], the

Reference Point Group Mobility Model [27]) used in traditional mobile and

wireless network studies. From our target network scenarios, network traces

can be classified into several groups, such as wildlife networks [11], people

networks [1][5][6][7], pocket switched networks [3][9][10], and vehicular net-

works [2][4][8].

Since wildlife network traces usually have rather small number of partic-

ipants (e.g., 34 nodes in [11]), and the majority of nodes in vehicular net-

works usually have regular mobility patterns (buses with scheduled routes),

we pursue the study of opportunistic network scenarios based on human mo-

bility. We select two publicly available network traces, namely UCSD [5] and

Dartmouth [1] traces, due to their large number of participating nodes and

sufficiently long measurement duration. Table 1 outlines the basic properties

of the two network traces1.

1In Dartmouth trace, there were a total of 13,888 devices in the network, but only
5,148 of them have contact experience with other devices.
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(a) UCSD trace

(b) Dartmouth trace

Figure 1: Illustration of inter-contact time distribution of UCSD and Dart-
mouth traces.
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Table 1: Comparison of opportunistic network traces.

Trace Name UCSD Dartmouth
Device PDA WiFi Adapter

Network Type WiFi WiFi
Duration (days) 77 1,177
Granularity (sec) 120 300

Devices participating 273 5,148
Number of contacts 195,364 172,308,320

Avg # Contacts/pair/day 0.06834 0.01105
% of censored measurements 7% 1.3%

More specifically, the UCSD trace is a client-based trace that records the

visibility of WiFi based access points (APs) with each participating portable

device (e.g., PDAs and laptops) on UCSD campus. The network trace is

about two and half months long, and there are 273 devices participated.

Similar to [16][17][29], we make the assumption that a communication op-

portunity (i.e., network contact) is encountered between two participating

devices (in ad hoc mode) if and only if both of them are associated to the

same AP during some time period.

Similarly, the Dartmouth trace is an interface-based trace that records

the APs that have been associated with a particular wireless interface during

a three year (1177 days) period. However, we do not intend to use the full

length trace in the following analysis since the overall computation overhead

would become too costly. We will use only a subset of the trace, which is

with the same period (77 days, from 09/22/02 to 12/08/02) as the UCSD
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trace, for analysis purpose, and use the full trace to verify the correctness of

our censorship removal algorithm that we will detail in the next section.

It should also be noted that, in Dartmouth trace, wireless interfaces can

be used by different devices at different times, and each device may use mul-

tiple wireless interfaces. For simplicity, we assume each network interface

represents a single mobile user in the network. Moreover, like in the UCSD

scenario, a network contact is encountered when two mobile users are asso-

ciated to the same access point. Note that, although the Dartmouth trace

is a lengthier trace with a greater number of participating mobile nodes,

the network connectivity is actually very poor in the Dartmouth scenario,

since network contacts (for each source-destination pair) occur much more

infrequently in the network (nearly one sixth of the UCSD scenario).

Similar to [16][17][29], it is the goal of this study to analyze the dis-

tribution of the inter-contact time, Ti c, (i.e., the time period between two

consecutive contacts of a given node pair) in that this property reflects the

network connectivity of the network. Fig. 1 depicts the inter-contact time

distribution of the two employed network traces, and each point on the figure

represents one inter-contact time measurement that starts at the correspond-

ing time point (horizontal axis). In Fig. 1, it is clear that the inter-contact

time distribution is strongly skewed and upper-bound by a straight line (i.e.,

Tupper bound = 11 − Tcur, where Tcur is the starting day of the inter-contact

time in the network trace and 11 is the trace length in weeks). Moreover,

one can also find that the data points can be classified into two groups:
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one is uncensored inter-contact time, and the other is censored inter-contact

time2. More precisely, 7% of inter-contact time measurements are censored

in UCSD trace, and 1.3% are censored in Dartmouth trace. In addition, all

censored data lie on the upper bound straight line, whereas uncensored data

are located in the lower region of the straight line. It turns out that the

censorship leads to strongly skewed inter-contact time measurements, and it

is necessary to recover those censored measurements in order to have more

precise analysis for opportunistic networks.

4 Calibrating Censored Measurements

In this section, we present algorithms that can calibrate censored measure-

ments in opportunistic traces. As identified previously, the inter-contact time

measurement is a kind of survival data (i.e., time to death or event) [23] by

nature, since an inter-contact time is likely to start when the measurement

is going on, but stop after the end of the measurement. Analysis of survival

data has been extensively studied in many disciplines, such as biostatistics,

bioinformatics, life science, and etc., and it has been applied to the subject

of network analysis for online gaming traffic recently [18]. However, sur-

vival analysis has not yet been applied to opportunistic network traces, even

though censored data are prevalent and measurements are strongly skewed.

Targeting this issue, we present one survival analysis technique, called

2An inter-contact time is called censored if starts during the measurement time but
terminates after the end of the measurement.
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Figure 2: Comparison of CCDF and survival curves (using K-M Estimator)
of UCSD and Dartmouth traces in log-log scale.
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Kaplan-Meier Estimator, in subsection 4.1 to estimate the survivorship of

the employed network traces. We present the Censorship Removal Algorithm

(CRA) in subsection 4.2. In subsection 4.3, we show that the proposed CRA

technique can effectively calibrate skewed inter-contact time measurements.

4.1 Kaplan-Meier Estimator

The Kaplan-Meier Estimator (K-M Estimator, a.k.a. Product Limit Esti-

mator) [30] has been proposed by Kaplan and Meier in 1958. The basic

idea of K-M estimator is that, given survival data as an independent ran-

dom variable, the censored measurements shall have the same likelihood of

distribution as the uncensored ones as long as the number of uncensored

measurements is sufficiently large. More specifically, we define a survival

function (a.k.a. survivorship function or reliability function), S(t), as the

probability that an inter-contact time measurement from the given network

trace is larger than t, i.e., S(t) = Pr [Ti c > t].

Suppose there are N distinct Ti c observations in the network trace (i.e.,

t1, t2, ..., tN in ascending order such that t1 < t2 < ... < tN), ni events (i.e.,

Ti c measurements) have Ti c ≥ ti, and di events are uncensored with Ti c = ti,

the K-M Estimator is a nonparametric maximum likelihood estimate of S(t)

as defined by Eq. 1.
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Ŝ(t) =
∏

ti≤t
Pr [t > ti |t ≥ ti]

=

⎧⎪⎪⎨
⎪⎪⎩

1 ; t1 > t∏
ti≤t≤tN

[
ni − di

ni

]
; t1 ≤ t

(1)

Note that, since the calculation of K-M Estimator is based on the likeli-

hood of uncensored data, the survivorship does not exist when t > tN , that is

the maximum inter-contact time measurement in the trace. We illustrate the

complementary cumulative distribution function (CCDF) of uncensored Ti c

measurements, as well as the survival curves, using UCSD and Dartmouth

traces in log-log scale in Fig. 2.

4.2 Censorship Removal Algorithm (CRA)

In Fig. 2, it is clear that the survival curve consistently has higher population

probability than the CCDF one. The reason is because the CCDF curve is

calculated simply using complete (uncensored) Ti c measurements, whereas

the survival curve takes the censorship into account and presents the more

approximate distribution of the Ti c distribution of realistic opportunistic

networks. Intuitively, the area between the two curves represents the amount

of population that is recovered (calibrated) by survival analysis, and that is

indeed unnegligible.

It turns out that a censorship removal scheme that can recover censored

14



(a) UCSD trace

(b) Dartmouth trace

Figure 3: Illustration of inter-contact time distribution of UCSD and Dart-
mouth traces after calibration.
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Algorithm 1 The CRA algorithm for calibrating censorship of inter-contact
time measurements in network traces.
1: for i = 1 to N − 1 do

2: Randomly select
bS(ti)−bS(ti−1)

bS(ti)
of Ci and move them to Di

3: Move remaining entities of Ci to Ci+1

4: end for
5: Move CN into DN

measurements is still highly desired for further analysis of inter-contact time

measurements in opportunistic networks. Based on the K-M Estimator re-

sults, we propose a censorship removal algorithm (CRA) to calibrate the

censorship based on Ŝ(t) estimates. More specifically, suppose Ci/Di de-

notes the set of censored/uncensored inter-contact time measurements with

Ti c = ti, the censorship removal algorithm iteratively moves a portion of cen-

sored data (based on the probability,
bS(ti)−bS(ti−1)

bS(ti)
) from Ci to Di and moves

the remaining entities of Ci to Ci+1 afterward. Alg. 1 shows the algorithm.

More precisely, in each iteration, each entity of Ci is going to be moved to

Di with probability
bS(ti)−bS(ti−1)

bS(ti)
or moved to Ci+1 otherwise. For simplicity,

we assume the decision process is uniformly distributed. Note that, the

probability,
bS(ti)−bS(ti−1)

bS(ti)
, can be interpreted as the death ratio between ti and

ti+1 (i.e., Ŝ(ti)− Ŝ(ti−1)) with respect to (normalized by) the survivorship at

ti, i.e., Ŝ(ti). Fig. 3 shows the results of inter-contact time distribution after

censorship removal for both UCSD and Dartmouth traces.
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4.3 Evaluation

In this subsection, we present evaluation showing the correctness of the pro-

posed CRA technique. The shortened Dartmouth trace (77 days long, from

09/22/02 to 12/08/02) is employed as the raw network trace, and the full

trace (i.e., 1177 days long) is used to provide complete Ti c information that

are however censored in the shortened one. As we have discovered previously,

there are about 1.3% events (i.e., Ti c measurements) censored in the short-

ened network trace, and 80.4% of them become uncensored when the 1177-

day long trace is employed (i.e., the Ti c measurement ends after 12/08/02

but before the end of network measurements). Fig. 4 compares the CCDF

of the measured Ti c (using the shortened trace), recovered Ti c, and real Ti c

(using the 1177-day long trace) of Dartmouth trace. The results clearly show

that, after applying CRA, the recovered Ti c has nearly identical distribution

as the real one. This clearly shows that the proposed CRA algorithm can

correctly calibrate censorship in time-limited network traces.

5 Analysis of Self-Similarities Using Oppor-

tunistic Network Traces

In this section, we perform analysis of self-similarities on the opportunistic

people network traces that have been calibrated using the proposed CRA

technique as presented. Similar to previous studies [17][16], we focus on
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mouth trace.

inter-contact time measurements of the network traces in that this property

can be regarded as an indicator of network connectivity of an opportunistic

network. We firstly investigate the power-law property that shows heavy tails

in the distribution in subsection 5.1, and recap the definition of self-similarity

in subsection 5.2. We present analysis of self-similarity in subsection 5.3, and

discuss the analysis results in subsection 5.4.

5.1 Heavy-Tailed Distribution

As we have mentioned previously, researchers have found that the inter-

contact time distribution of an opportunistic network is power-law distributed,
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and thus heavy-tailed [17][16]. In this subsection, we first give an overview

of the heavy-tailed distribution, and then we show that both UCSD and

Dartmouth traces are heavy-tailed.

The distribution of a random variable X is called heavy-tailed if Eq. 2 is

satisfied with 0 < α < 2 as x → ∞, where c is a positive constant and α is

the power-law exponent [21].

P [X > x] ∼ cx−α (2)

The simplest way to tell whether a distribution is heavy-tailed is to plot

the complementary cumulative distribution function, F (x), of the data set

in log-log scale. The heavy tail index, α, can thus be approximated by

calculating the slope of the curve as shown in Eq. 3.

d log F (x)

dx
∼ −α (3)

Using Eq. 3, we find that the alpha value for the tail is 0.26 for UCSD

trace and 0.47 for Dartmouth trace. Therefore, we conclude that both UCSD

and Dartmouth traces are heavy-tailed, and the conclusion confirms the re-

sults of previous studies [17][16].

5.2 Self-Similarity Definition

A standard notation of a continuous-time process states Z = {Z(t), t ≥ 0}
is self-similar if it satisfies the condition:
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Z(t) = a−HZ(at); ∀t ≥ 0,∀a > 0, 0 < H < 1 (4)

where the equality is in the sense of finite-dimensional distributions and

H is an important effect to describe self-similarity called hurst. Note that a

process satisfying Eq. 4 can never be stationary but Z is typically assumed

to have stationary increments.

A second definition of self-similarity that is more appropriate in the con-

text of standard time series, involves a stationary sequence X = {X(i), i ≥
0}. The corresponding aggregated sequence with aggregation level m can

thus be obtained by dividing the original series X into non-overlapping blocks

of size m and averaging each block as shown in Eq. 5, where k indexes the

block number.

X(m) =
1

m

km∑
i=(k−1)m+1

X(i), k = 1, 2, ... (5)

If X is the increment process of Z, i.e., X(i) = Z(i + 1)−Z(i), then, for

all integers of m, one can obtained

X = m1−HX(m) (6)

Based on Eq. 6, the self-similarity is thus defined as follows:

1. A stationary sequence X = {X(i), i ≥ 0} is called exactly self-similar

if it satisfies Eq. 6 for all m aggregated levels.
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2. Stationary sequences X(i), i ≥ 1, is said to be asymptotically self-

similar if Eq. 6 holds as m → ∞.

3. A covariance-stationary sequence X(i), i ≥ 1, is exactly second-order

self-similar or asymptotically second order self-similar if m1−HX(m) has

the same variance and autocorrelation as X, for all m, or as m → ∞.

The degree of self-similarity of a series is expressed using only a single

parameter called hurst parameter, H, that expresses the speed of decay of

the autocorrelation function of the series. If the series is self-similar, 1/2 <

H < 1. Moreover, as H approaches 1, the degree of self-similarity increases.

5.3 Graphical Methods and Statistical Analysis

As mentioned above, the most attractive property of self-similar process is

that the degree of of self-similarity is expressed by the extent of hurst pa-

rameter, H. In other words, the statistical properties of a self-similar pro-

cess shall not change for different aggregation levels. In this subsection, we

apply four techniques (namely variance-time plot, rescaled adjusted range

plot, periodogram plot, and Whittle estimator) [12][25][13] to investigate

self-similarities within our network traces. We present the analysis in the

followings.
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5.3.1 Variance-Time Plot

The variance-time plot tests the property of the slowly decaying variance

that exists in self-similar series. The variance of the process X(m) is plotted

against the aggregated level m on log-log plot. The m-aggregated process

X(m) = (X
(m)
1 , X

(m)
2 , X

(m)
3 ,...) is defined as Eq. 7, where m and j are positive

integers.

X
(m)
j =

1

m

jm∑
i=m(j−1)+1

Xi ; j = 1, 2, 3, ...,
N

m
(7)

The variance of the process can thus be obtained by:

V ar[X(m)] =
1

(N/m)

N/m∑
j=1

(X
(m)
j − X̄)2

=
V ar[X(m)]

mβ

(8)

Fig. 5 depicts the variance-time plot with various aggregation levels of

UCSD and Dartmouth traces. From the figures, it is observed that the

aggregated variances of the inter-contact time measurements in our network

traces are nearly linear and could be fitted by a simple least squares line with

the slope smaller than -1, which is an indicator of self-similarity. Moreover,

the hurst parameter, H, can also be derived from the absolute value of slop

β by H = 1 − β/2. For instance, in Fig. 5-a, the slope is estimated by

regression as -0.4, and the hurst parameter, H, is therefore estimated to be
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(a) UCSD Trace (H=0.801)

(b) Dartmouth Trace (H=0.7973)

Figure 5: Graphical Analysis of Aggregated Variance Method.
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0.8; whereas, in Fig. 5-b, the slope is about -0.405 and the hurst estimate is

about 0.7973.

5.3.2 Rescaled Adjusted Range Plot

One important property of self-similarity is that the dataset shall keep the

same statistical properties no matter how it is divided into several sub-

datasets [25]. The second analysis technique, called R/S method, thus se-

quentially divides the dataset in dichotomy to calculate the rescaled adjusted

range for each sub-dataset and then takes the average of all calculated values.

The R/S method is subject to the exponent H of the power law which acts

as a function related to the number of points involved.

For instance, given a dataset : X1, X2, X3, ...Xn with sample mean μ =

E[Xi], an adjusted partial sum is defined as

Wk = (X1 + X2 + X3 + ... + Xn) − kX(n) (9)

where k = 1, 2, 3, ..., n and X(n) is the arithmetic mean of the first n

observations. The range R(n) is also defined by:

R(n) = max(0,W1,W2, ..., Wn) − min(0,W1,W2, ..., Wn) (10)

Suppose S(n) denotes the standard deviation of sample size n, the R/S

value of the dataset is thus defined by Eq. 11.
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(a) UCSD Trace (H=0.7472)

(b) Dartmouth Trace (H=0.7973)

Figure 6: Graphical Analysis of R/S Method.
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E

[
R(n)

S(n)

]
→ cnH ,as n → ∞ (11)

Fig. 6 shows the R/S plot (i.e., R/S values against n on a log-log plot) of

the employed network traces, and the hurst parameter, H, is thus estimated

by the regression slope. Specifically, the H estimate is 0.7472 in UCSD

trace and 0.7493 in Dartmouth trace that indicates the inter-contact time

measurements of both network traces are self-similar.

5.3.3 Periodogram Plot

The periodogram is defined as Eq. 12, where ν is a frequency, N is the series

length, X is the series, and I(ν) is the estimator on the spectrum field [13].

I(υ) =
1

2πN

∣∣∣∣∣
N∑

j=1

X(j)eijυ

∣∣∣∣∣
2

(12)

A Periodogram Plot can be therefore obtained by collecting multiple peri-

odograms of various frequency values. The plot can be fitted using a straight

line in the log-log scale, and the slope, β, of the fitting line can be approxi-

mated by 1 − 2H. Note that, in practice, people usually use the lowest 10%

of the frequencies [38] to make the periodogram plot, since the power law

behavior only holds for frequencies close to zero. Fig. 7 illustrates the peri-

odogram plots of UCSD and Dartmouth traces. The slope of the fitting line

is aound -0.56 in UCSD trace and -0.53 in Dartmouth trace, and, therefore,

the hurst estimate is about 0.78 in UCSD trace and 0.76 in Dartmouth trace
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(a) UCSD Trace (H=0.7824)

(b) Dartmouth Trace (H=0.7655)

Figure 7: Graphical Analysis of Periodogram Method.
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that again confirm the inter-contact time measurements are self-similar in

both network traces.

5.3.4 Whittle Estimator

Whittle estimator is usually regarded as the most robust indicator for self-

similarity analysis in that it provides a confidence interval for the whole

estimation procedure. There are two types of Whittle estimator models,

namely the Fractional Gaussian Noise (FGN) model with 1/2 < H < 1 and

the Fractional ARIMA (p,d,q) with 0 < d < 1/2 [21]. The main difference

between these two methods is that ARIMA assumes the existence of short-

range dependency while FGN does not. Since we in this study focus on the

long-range dependency of the employed network traces, we apply Whittle

estimator with FGN by aggregating the datasets into different levels. As

shown in Fig. 8, the Whittle estimator is stabilized to about 0.8 for UCSD

network trace while the comparison results of the three graphical methods

are all within 95% confidence interval (when the aggregation level is greater

than 1000). Moreover, the results also show that the Whittle estimator is

stabilized to about 0.75 for Dartmouth network trace, and the comparison

with previous three graphical methods are all within 95% confidence interval

when the aggregation level is greater than 1000. We conclude here again the

inter-contact time measurements of UCSD and Dartmouth traces are both

self-similar.
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(b) Dartmouth Trace

Figure 8: Graphical Analysis of Whittle Estimator.
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5.4 Discussion

Recall that, in Fig. 1 (and Fig. 3), it is apparent that there do exist some

regular patterns in the distribution of inter-contact time measurements for

both UCSD and Dartmouth traces. More specifically, from the figures, one

can easily observe that “periodical gaps” appear about once a week, and each

gap is about one-day long in the figures. The phenomenon can be explained

that people in the campus tend to have contacts with others only during

weekdays (i.e., students always escape from the campus in weekends, and

thus there are very few wireless network associations with campus access

points present in both network traces). Moreover, similar phenomena are

also observed when we zoom in/out the inter-contact time distribution, i.e.,

periodical gaps are also present in daily, quarterly, and yearly basis, that rep-

resents sparse network connectivity during off office hours, quarter breaks3,

and summer vacations respectively.

In addition, Fig. 1 also shows that most uncensored measurements are

clustered at the bottom area of the figure, i.e., the inter-contact time of these

clustered measurements are small. The results indicate that once a network

contact is encountered for a given pair of nodes, they are more likely to

meet each other again in the very near future. For instance, in the employed

campus scenarios, most mobile devices are carried by students, and they tend

to team up and move as clusters in the campus-life (e.g., attending classes,

3Both of UCSD and Dartmouth College are on a quarter-based system, rather than a
semester system.
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dining in campus restaurants, and studying in campus libraries). Based on

the mathematical analysis and our explanation, we conclude that the process

of opportunistic people networks is self-similar.

6 Conclusion

In this study, we investigate fundamental properties of opportunistic peo-

ple networks. Using public network traces from UCSD and Dartmouth col-

lege, we identify the censorship issue in network traces that usually leads to

strongly skewed distribution of the measurements. Based on this knowledge,

we then apply the Kaplan-Meier Estimator to calculate the survivorship of

network measurements, which is used in designing our proposed censorship

removal algorithm (CRA) that is used to recover censored data. We show

that, after applying CRA, the recovered network trace has nearly identi-

cal inter-contact time distribution as the real one. Additionally, we per-

form a rich set of analysis illustrating that UCSD and Dartmouth network

traces shows strong self-similarity, and we pointed out the importance of

these newly revealed characteristics to the future of opportunistic people

network research. The results of this study is indeed influential and should

be taken into consideration in the design, evaluation, and deployment of

future opportunistic network applications.
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