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Bee: A Best Effort Peer-to-Peer Delivery Protocol
for Internet Data Dissemination Application

Chi-Jen Wu, Cheng-Ying Li, Kai-Hsiang Yang and Jan-Ming Ho, Member, IEEE

Abstract— How to rapidly disseminate a large-sized file to
many recipients is a fundamental problem in many applications,
such as updating software patches and distributing multimedia
content. In this paper, we present the Bee protocol, which
is a best-effort peer-to-peer file delivery protocol aiming at
minimizing the maximum dissemination time for all peers to
obtain the complete file. Bee is a decentralized protocol that
organizes peers into a randomized mesh-based overlay and each
peer only works with local knowledge. We introduce a slowest
peer first strategy to boost the speed of dissemination, and
design a topology adaptation algorithm that adapts the number
of connections based on upload bandwidth capacity of a peer.
Moreover, Bee is designed to support network heterogeneity and
deal with the flash crowd arrival pattern without sacrificing the
dissemination speed. We present a lower bound analysis and
experimental results on the performance of Bee in terms of
dissemination time and show that its performance can approaches
the lower bound of the maximum dissemination time.

Index Terms— Peer-to-peer System, Content Delivery, Data
Dissemination.

I. INTRODUCTION

HOW to rapidly, reliably and efficiently distribute a large
file across a wide-area network has become an interest-

ing problem in the peer-to-peer (P2P) research community and
some real applications, such as updating the software patches
of Massively Multiplayer Online Games (MMOG) [1] and
operation systems [2] in a flash crowd arrival pattern. Suppose
that a large file is initially held at a single server and we have
to disseminate it to other N peers, how can we minimize the
time it takes for all peers to have the complete file?

In the Internet environment, several characteristics make it
hard to design a scalable protocol that configure resources
(such as computing power and network bandwidth) for dis-
seminating data to a large number of clients, including: 1)
Scalability: The number of participating nodes must be in
the thousands or even more. 2) Unstable: The behavior of
participating users is characterized by the dynamics with
which the nodes join, leave, and rejoin the system at arbitrary
time, making it difficult, if not impossible, to maintain an in-
frastructure among the large number of participating nodes. 3)
Heterogeneity: The resources, such as bandwidth, computing
power of participating nodes often are heterogeneous, which
make it difficult to make a schedule in polynomial time. 4)
Network dynamic: Routers, links in the Internet environment
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and the nodes may fail, incurring more transmission cost
and longer transmission time to deliver the large amount of
contents. For these reasons, it is difficult to maintain a large-
scale data dissemination system that requires a large amount
of communications among the requesting nodes.

Native IP multicast is an efficient and scalable solution for
the data dissemination problem [3]. With native IP multicast
technique, an application can deliver content to a set of
receivers efficiently. This technique reduces the network traffic
by simultaneously delivering a single data stream to thousands
of end nodes. However, a number of considerations, including
scale, reliability and business policy of ISPs have limited the
widespread success and availability of IP multicast across the
Internet infrastructure.

Since the native IP multicast solution has not generally
received widespread deployment, a number of efforts focus
on building P2P content delivery architectures [4-8] to address
the data dissemination problem. The main idea is that a source
can transmit data to a set of peers by TCP connections, and
these peers across the Internet act as intermediate routers to
deliver data over a predefined network, such as a mesh or
multiple trees at the application level. Moreover, in these P2P
architectures, data are usually divided into M parts of equal
size, each being called a block. A peer may download any
one of these blocks either from the server or from a peer
who has downloaded that block. Besides, many researchers,
including [9-10], have studied the performance of these P2P
architectures, and show that the P2P architecture is both
efficient and scalable, even it lacks a centralized coordination
and scheduling mechanism.

A famous P2P content delivery architecture is the BitTorrent
system [4], which is one of the pioneers of the file dissemina-
tion systems, and has become a prominent Internet application,
both in terms of user popularity and traffic volumes [11].
However, BitTorrent is designed to minimize the dissemination
time of each peer egoistically. On the other hand, other recent
studies (including Slurpie[5], Bullet [6], SplitStream [7] and
Crew [8]) have proposed to construct and maintain an overlay
network of multiple trees or a random mesh to deliver data
from a single server.

In this paper, we are interested in a specific version of
the data dissemination problem that arises in current Internet
applications, such as updating software patches or distributing
multimedia contents, especially for the flash crowd arrival
pattern. In the rest of the paper, we then addresses the
following two questions:

i) what is the lower bound of the data dissemination
problem?
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ii) is it possible to design a decentralized protocol that can
achieve or approach to the lower bound?

We begin by giving a formal definition of the data dis-
semination problem. We then derive the lower bound of the
dissemination time for the problem. Note that this lower bound
applies to both homogeneous and heterogeneous networks.

In addition, we present a decentralized protocol, called
”Bee”, to address the data dissemination problem. Bee is
designed from a best-effort service concept, to increase both
the system throughput and peer concurrency. In the best-
effort service concept, a peer allocates bandwidth for all
its neighbors and attempts to serve all of them. Basically,
Bee is very similar to the BitTorrent system. Peers in Bee
begin by self-organizing into a random mesh, and download
blocks from as many neighboring peers as possible. In the
Bee protocol, we present a slowest peer first strategy and
a topology adaptation algorithm to maximize the speed of
dissemination. Under the slowest peer first strategy, a peer
always transmits blocks to the neighbors that have fewest
number of downloaded blocks. Bee protocol also embeds a
topology adaptation algorithm for a peer to adapt number
of connections to its neighbors based on its own upload
bandwidth. Moreover, our experimental results show that the
dissemination time of the Bee protocol approaches the lower
bound of the data dissemination problem that is derived in
this paper for both homogenous and heterogeneous network
environments. To the best of our knowledge, this work is the
first that systematically studies the effects of P2P architecture
with respect to minimizing data dissemination time in data
networks.

The rest of the paper is organized as follows. In Section
II, we first define the data dissemination problem. Section III
describes an overview and design details of the Bee protocol.
We give a detailed analysis of Bee protocol in section IV.
Section V explains our simulation methodology and presents
the performance results of the simulation study. In section VI,
we discuss related work. Section VII concludes this paper with
a summery of the main research results of this study.

II. DATA DISSEMINATION PROBLEM

In this section, we formally define the data dissemination
problem, and provide a lower bound of the problem.

Let us consider the problem of disseminating a file F to
a set of n peers, N = {1, 2, . . . , n}. We also assume that
a peer leaves the system once completely receiving the file.
Let S be the server (we called it ”seed” in the rest of this
paper) that has the file F in the beginning, and let Size(F )
denote the size of file F in bytes. Each peer i ∈ N in this
system has its upload capacity Ui and download capacity Di.
Both Ui and Di respectively represent the upper bound of the
upload and download bandwidth utilization of peer i. We also
assume that Ui ≤ Di, to model the state-of-the-art Internet
technologies, such as ADSL or Cable modems. Due to the
asymmetric nature of these network technologies, Di is usually
3 to 5 times higher than Ui in practice. Let ti(F ) denote the
time it takes for peer i to receive the complete file F . Note that
ti(F ) denotes the time interval starting at the time peer i sends

its request to the server and ending at the time it receives the
entire file F . Before formally defining the problem, we define
the following two performance metrics first.

Definition 1 (Average Dissemination Time, ADT(F)):

ADT (F ) =
1

|N |
∑
i∈N

ti(F ).

Definition 2 (Maximum Dissemination Time, MDT(F)):

MDT (F ) = max{ti(F )}, i ∈ N .

Assume that the server and all n peers exist in the system
from time t = 0, then MDT (F ) is the time it takes for all
peers to finish receiving the complete file F . Now we define
the data dissemination problem as follows.

Definition 3 (File Dissemination Problem): Given a server
and n peers in the system, and each peer i has the upload ca-
pacity Ui and download capacity Di, where i = {1, 2, . . . , n},
the problem is to find a transmission scheme M to minimize
the MDT (F ). According the definition 2, the problem can be
treated as a min-max problem as follows.

min{MDT (F )}. (1)

Note that the data dissemination problem is somewhat
different from the broadcast network problem where a node
wants to broadcast a message to all other nodes as fast as
possible. Unlike the data dissemination problem in which a
peer is allowed to transmit and receive data simultaneously
subject to the upload and download bandwidth constraints, in
the broadcast network problem, a node can either transmit
messages to or receive messages from another node, but not
both. Many researchers have studied the broadcast network
problem in homogenous networks for more than 20 years,
and its optimal solution was presented in 1980 [12]. However,
when nodes have heterogeneous bandwidths, the problem
becomes NP-hard [13]. So unless P = NP there is no
polynomial time algorithm to find an optimal solution. In
year 2006, Deshpande et al. [14] proposed two centralized
heuristics for the broadcast network problem in a heterogenous
network environment.

A. Ideal Dissemination Time (Lower Bound)

In this section, we focus on studying the lower bound
of the dissemination time, which is also denoted as ”ideal
dissemination time” in this paper, in a heterogenous network
environment. We assume that peers are highly cooperative that
is, each peer is willing to forward data to other peers as fast as
possible. Let us denote the actual amount of data uploaded by
peer i as fi, where fi ≤ Ui×ti(F ) and those peer i receives in
return as ri, where ri ≤ Di×ti(F ). Without loss of generality,
we may assume that, the total amount of download data must
be equal to the total amount of upload data for the seed and
all peers. Hence, we have the following equation.

fs +
n∑

i=1

fi =
n∑

i=1

ri. (2)
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Since we are interested in estimating the lower bound of
the dissemination time, we assume that upload capacity of
each peer i is assumed to be fully utilized, i.e., we have fi =
Ui × ti(F ). Besides, the total amount of download bandwidth
must be equal to n×Size(F ), because all peers have the entire
file F at the end. Then, we can extend the Eq. (2) as follows
to deal with the ideal dissemination time for the general case.

Us × ts(F ) +
n∑

i=1

Ui × ti(F ) = n × Size(F ). (3)

Here, we have a min-max problem with its objective func-
tion in Eq. (1) subject to the constraints given by Eq. (3).
Since the constraint is a linear equation, or more specifically, a
hyperplane in (n+1)-dimension, it is not difficult to show that
the optimal solution for the constrained optimization problem
can be obtained if and only if when all ti are the same, i.e.,

ts(F ) = t1(F ) = t2(F ) = · · · = tn(F ). (4)

We leave details of the proof to interested readers. Applying
this results to Eq. (3), we then have a lower bound of
MDT (F ), denoted by T (F ), for file F , as follows.

T (F ) =
n × Size(F )
Us +

∑n
i=1 Ui

.

Now, we are ready to present the following lemma.

Lemma 1: Let T ∗(F ) denote the MDT (F ), of a feasible
schedule of the data dissemination problem for a given file F .
Then we have:

T ∗(F ) ≥ max
{

T (F ),
size(F )

Us
,

size(F )
min{Di}

}
, (5)

where the right-hand right of Eq. (5) is the lower bound
of the dissemination time in any algorithm for the data
dissemination problem.

Proof: Note that the lemma merely says that T ∗(F ) must
be greater than 1) the lower bound we derived in the above;
2) the time for the seed to transmit the file F ; 3) the time for
the slowest peer to download the file F .

This analysis indicates that if someone wants to design a
data dissemination protocol to approach the lower bound in a
general network environment, two prerequisite keys should be
considered: 1) the protocol should enforce the peers to leave
the system at almost the same time, and 2) the protocol should
always fully utilize the upload bandwidth of each peer. Base on
these observations, we present our design of the Bee protocol
in the following section.

III. BEE DESIGN

In this section, we present the Bee protocol to approach
the ideal dissemination time that we derived in Section II.
In the Bee protocol, like other P2P content delivery systems,
the content is divided into many fix-sized blocks Bi, i =
{1, 2, . . . , m}, that is the smallest transfer unit1 in the system.

1We do not ponder on the round off issues that may make the last block
smaller.

In addition, each block should be small enough to provide a
fine granularity of striping, and it should also be sufficiently
large as to fully utilize the network resource until complete
termination of the file transfer. We chose 256KB for the
block size, which is the same as that used in other P2P
content delivery protocols. A successful completion of the
transmission consists of receiving all blocks. In the following,
we start with an overview of the Bee protocol, followed by
the detailed descriptions of its various components.

A. Overview of Bee

At a high-level concept of overview, Bee constructs a
random mesh overlay among a set of participating peers. Fig.
1 illustrates the scheme of a Bee system. Suppose that a large
content is announced from a single seed, and particularly
we assume that Us ≥ Ui in the system, and a lot of peers
want to download the content (file) at the same time. Each
peer gets into contact with a centralized well-know register
server and retrieves a contact list of an uniform random
subsets of all peers in the system. The size of contact list
is a small constant, say 40. The register server is a powerful
and stable server which keeps the track of IP addresses of all
peers. Seriously, the register server may suffer the scalability
problem, especially when the number of participating peers is
very large. However, there are some techniques of distribution
systems, e.g. cluster systems, can address this problem, we do
not discuss the problem here.

Based one the contact list returned from the register server,
the peer discovers other peers in the system, and exchanges
update messages with them. The update message contains a bit
string about which blocks are available, and the bit string can
be used to coordinate the block requesting decisions without
global information. After exchanging update messages, a peer
could send requesting block messages to all peers in the
contact list, and downloads blocks while uploading blocks
it owns to other peers simultaneously. In this way, the load
is distributed among all peers in the system. A peer in Bee
system will periodically ask the register server for a new
contact list to maintain the random mesh overlay, or when
it has no block to download from its connected peers.

The key components in the Bee system include (1) a slowest
peer first strategy for finding suitable peers to upload blocks,
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Fig. 1. A scheme of a Bee system: The peers in Bee form a random mesh,
discovery the mesh neighbors and exchange the update messages.
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(2) a block selection strategy for requesting blocks from neigh-
bor peers, and (3) a topology adaptation algorithm for adapting
the number of connections according to a peer’s network
capacity. The detailed descriptions of these components are
presented as follows.

B. Slowest Peer First Strategy

In this section, we describe the slowest peer first strategy
and the procedure that each peer performs. Overall, a good
peer selection approach would be one which neither requests
peers to maintain global knowledge, nor communicate with
a large number of peers, but the one which is able to find
peers having blocks the peer needs. Hence, our focus is the
development of a decentralized mechanism, within which each
peer learns its nearby peers’ statuses (with local knowledge)
and selects a suitable peer to upload blocks in order to
minimize the maximum dissemination time of the system.

The design principle of the slowest peer first strategy is
to keep all the upload capacity of peers full of data. This
means that a peer always can find some peers to upload blocks
to exhaust its upload capacity. Based on the slowest peer
first strategy, a peer i always picks a slowest downloading
peer among the contact list of the peer i, where the slowest
downloading peer is the peer that has the least number of
blocks. Consequently, the peer i always can upload blocks to
the picked peer, because there is a high probability that the
peer i has some blocks that the picked peer does not have. In
this point of view, this peer selection strategy makes our Bee
protocol to be able to utilize the upload bandwidth of each
peer as much as possible.

The operation of the slowest peer first strategy is very simple
but efficient. We use an illustration of the slowest peer first
strategy in Fig. 2 to present this simple idea. After a peer joins
into a Bee system, it periodically sends the requesting block
messages to the peers in the contact list for downloading the
blocks it lacks. When a peer starts to upload blocks to other
peers, it maintains a working set, and the peer tries to use its
network capacity as much as possible to upload blocks to the
peers in its working set. The working set is a set of peers
selecting from the contact list over a period of time. The size
of working set is adapted by a topology adaptation algorithm
that we will discuss later. We show the pseudo code of the
slowest peer first algorithm in Algorithm 1.

Algorithm 1 Pseudo Code of the Slowest Peer First Strategy
1: BEGIN

2: WorkingSet[] ← Null
3: for j ← 0 to Sizeof(WorkingSet[]) do
4: Pick the slowest peer p ∈ Contact List
5: WorkingSet[j] ← peer p
6: j ← j + 1
7: end for
8: return WorkingSet[]
9: END

The advantage of the slowest peer first strategy is to enforce
peers to download blocks at approximately the same speed,

n3

n6

n7

n8
n1

n9

n2

n4

Seed

Fig. 2. An illustration of the slowest peer first strategy: The shaded content
within a peer represents the percentage of the file that a peer has downloaded.
Using the slowest peer first strategy, a peer always forwards blocks to the
slowest peer among its contact list.

and this behavior can significantly diminish the MDT that
we defined in Section II. However, the disadvantage of the
strategy is that the faster downloading peers will be delayed
for the slower downloading peers. Let us think if some
faster downloading peers leave the system early, the MDT
of the system will be prolonged undoubtedly, recalling the
inferences of Eq. (3) and (4) in Section II. Hence, this problem
can be addressed by the proposed slowest peer first strategy
fundamentally.

C. Block Selection Strategy

Once a peer establishes connections with its neighboring
peers, it needs to determine which blocks to request from
which peers, based on the local knowledge (the available
blocks in all peers among the contact list). The Bee protocol
employs the local rarest first strategy for choosing new blocks
to download from neighboring peers. The local rarest first
strategy is proposed in BitTorrent protocol, and it can prevent
the last block problem and increase the file availability in a
BitTorrent system. The main advantage of the local rarest first
strategy is to overcome the last block problem by favoring
rare blocks. This strategy equalizes the file block distribution
to minimize the risk that some rare blocks are lost when
peers owning them fail or depart the system. Bharambe et
al. [16] study the local rarest first strategy by simulations and
show that this strategy can address the last block problem
efficiently. Another advantage of the local rarest first strategy
is to increase the probability that a peer is useful to its
neighboring peers because it owns the blocks that others do
not have, and thus it helps diversify the range of blocks in the
system. For above reasons, the Bee protocol also uses the local
rarest first strategy to select the requesting blocks. Moreover,
applying this strategy, Bee can reduce the complexity of
protocol communication, because each peer only needs to
maintain local information of each block.

Next, we represent the computing model of the local rarest
block strategy. Suppose that B denotes the set of overall
blocks in the file being distributed, and Gi and Mi are the set
of blocks that peer i has already gotten and is still missing,
respectively (where B = Mi ∪ Gi and Mi ∩ Gi = null).
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Similarly, Mi ∩ Mj �= null means that the peers i and j
both are missing at least a block m, and they try to find
and download the block m. The requesting peer r selects
the rarest block m̂ ∈ (Gj ∩ Mr) among those that it misses
and one of its neighbors, say peer j, held. The rarest block
is computed from the number of each block that held by
the neighbors of requesting peer r. More precisely, we use
the following computing function for the local rarest block
strategy:

∀ m ∈ (Gj ∩ Mr)

LRF(m̂) = max

⎧⎨
⎩

∑
i∈Contact List

|m ∩ Mi|
⎫⎬
⎭ .

The above function LRF(m̂) represents a computing model
of the local rarest block strategy for a peer r. For each block
m ∈ (Gj∩Mr), a peer r calculates the number of neighboring
peers missing the block, and it chooses the block with the
maximum value for requesting download.

D. Topology Adaptation Algorithm

The design of Bee explicitly takes into account the capacity
heterogeneity associated with each peer in the P2P network.
Bee is designed to adapt to different network environments
by a topology adaptation algorithm. In general, the available
bandwidth estimation is a non-trivial problem in practical
network applications, so it is hard to decide how many upload
connections a peer should have in the Bee protocol. However,
using a fixed number of upload connections will not perform
well under a wide variety of peers’ network capacities. Hence,
the Bee protocol employs a simple flow control algorithm
that attempts to dynamically change the maximum number
of upload connections (indicated the size of working set in
Bee) according to the upload capacity of each peer.

For the sake of simplicity, we do not use the network
bandwidth estimation techniques [20-21] to determine the
precise upload capacity of each peers. Instead, we assume that
the user can input a coarse grained bandwidth estimate, such
as the form ADSL, Cable, T3, etc, that provides an initial
maximum upload capacity estimate Ui. In addition, we assume
that peers (including the seed) have limited upload/download
bandwidth but the Internet backbone is assumed to have
infinite bandwidth, as illustrated in Fig. 3. This assumption
is reasonable because the previous study [22] showed that
the Internet backbone indeed has very low utilization and the
bottleneck almost happens at the parts near the end hosts.
Based on the two assumptions, we can develop a simple
topology adaptation algorithm for the Bee protocol.

A simple adaptation approach is to set the upload rate for
each upload connection to the same value, say rate r, for all
peers. Hence, if a peer i has maximum upload capacity of Ui,
it establishes k = 
Ui

r � connections, where r ≤ Ui, ∀ i ∈ N .
So in the Bee protocol, each peer establishes k concurrent
upload connections among its working set, and intuitively a
peer can quickly upload the blocks it holds to other peers.

The basic idea behind this approach is that by serving k
different peers simultaneously, the peer can fully utilize its

(Infinite bandwidth)

Peer

Limited bandwidth

Seed

Fig. 3. The simplified network-capacity framework

upload capacity and thus maximize its contribution to the
system throughput. For example, a peer with higher capacity
might establish ten or more connections than a peer with lower
capacity. However, the intuition is not always correct. When a
smaller upload rate r is chosen, the lower bandwidth dedicates
to each connection. As a result, a smaller value of r might
slow down the distribution rate for blocks. We will consider
different values of the upload rate r in our analysis.

IV. PROTOCOL ANALYSIS

In this section, we will describe informally that the dis-
semination time in the Bee protocol can achieve the ideal
dissemination time with a very high probability, and we
also provide a complexity analysis for the Bee protocol in
terms of the scalability, efficiency, communication complexity
and the fairness issues. During the analysis, we assume that
all N peers join the system at the same time and all the
communications between peers are reliable. We also assume
that peers do not leave the system either voluntarily or due to
failures.

A. Scalability

The proposed Bee protocol in section III is very scalable.
A peer only needs to maintain a random overlay mesh with a
constant number of connections, regardless of the size of the
system (the total number of peers in the system). This implies
that each peer only connects to a small number of other peers,
so the load in each peer is very slight.

However, one possible concern is the scalability of the
register server in Bee. The resigner server in Bee serves as
the same role as the tracker in BitTorrent or the rendezvous
point in some application overlay multicast systems [23]. In
practice, the resigner server stores the IP addresses of all peers
in the system; assume that the number of peers is one million,
the amount of storage is approximate to 4 megabytes (4 bytes
for an IP address multiply by the number of peers), so any
usual machine can store the amount of storage for one million
peers. In addition, the functionality of the register server can
be distributed by the cluster system techniques, so that service
load can be shared to many servers. We believe that the register
server will not be a critical problem to limit the scalability of
our Bee protocol.
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B. Efficiency

In this section, we briefly discuss that the dissemination time
in the Bee protocol can achieve the theoretical lower bound
with a high probability. We do not provide a theoretical proof
to show the optimality of the Bee protocol due to the inherent
difficulty of any heuristic-driven distributed protocols, such as
BitTorrent. To the best of our knowledge, we are not aware of
any theoretical results to prove that a decentralized protocol
can achieve the lower bound. In [24], Wu et al. gave a cen-
tralized scheduling algorithm to minimize the dissemination
time in an overlay with all knowledge of each peer’s network
capacity. However, their centralized solution only works in a
static network environment, and they also do not consider the
dynamic behavior of peers, such as joining and leaving, which
are common in real P2P systems.

We now concisely analyze the Bee protocol. First, we
assume that the goal of the Bee protocol is to disseminate a file
F from a seed to a number of receivers under the constraints
of size(F )

Us
≤ T (F ) and size(F )

min{Di} ≤ T (F ). When the two
constraints hold, neither the seed nor the slowest peer does
not become the bottleneck in the system. In addition, we also
assume that the blocks are uniformly distributed among peers,
which is caused by the local rarest first strategy and no any
communication overhead and delay in the Bee protocol.

Recall the analysis in the section II, we introduced two
important design principles for a data dissemination protocol
to achieve the theoretical lower bound. The first one is
that all peers should leave the system at the same time as
much as possible, and each peer has to utilize its upload
bandwidth as much as possible. For the first design principle,
the slowest peer strategy in Bee forces peers to progress at
approximately the same download speed. Second, all peers in
Bee always try to fully utilize the upload bandwidth by the
topology adaptation algorithm, and thus each peer maximizes
its contribution to the system throughput. However, at the
beginning of the system, only the seed has the file, so it
is impossible to utilize the upload bandwidth of each peer.
We call the period of time for the system so that each peer
has enough blocks to exchange as the start-up time of the
system. Assume that a block size is 256KB, so the start-up
time approximately equates to 256KB

r × logn, where r is the
upload rate and n is the number of peers in the system. This
start-up time can be ignored when the distribution file is very
huge. Moreover, in the system, a peer only sends out a block
when it already received a request from a peer, so no blocks
are forwarded without requesting, and a peer will not receive
duplicated blocks.

Here, we provide a simple example to understand the
operation in Bee. In the homogenous network environment,
the upload capacity k of each peer is equivalent, assume
k = 5 (Ui

r = 5). If the number of peers is n, the number
of incoming connections per peer is in average 5 (= n×k

n ),
because the overlay mesh in the Bee system is randomly
constructed. Based on the same concept for the heterogeneous
network environments, each peer in Bee would have the same
number of incoming connections in average. Hence, it is easy
to understand that the Bee system can force peers to progress at

approximately the same download speed and achieve the lower
bound both in the homogenous and heterogeneous network
environments.

C. Communication Complexity

We now discuss why the control overhead in the Bee system
is very slight. The communication complexity is defined as the
number of control messages required for a peer to maintain
an overlay topology and to request blocks for downloading.
Here, let us consider the initial state of the system, where many
peers join in the system and connect to each other to establish
a mesh, and then all peers start to download blocks from
one another. After that, other peers may join and leave and
the overlay mesh may likely change, but the communication
complexity of those peers is almost the same as that of the
peers in the initial state.

When a peer joins into the Bee system, it first contacts the
register server for requesting a contact list, and during the
dissemination process, it may contact with the register server
several times for updating the contact list. Assume that a peer
requesting a contact list once needs the constant overhead,
say C, so the overhead for requesting contact lists is O(C).
After obtaining a contact list, a peer first needs to exchange
its state with all its neighbors, and does this operation during
the dissemination process several times. Assume that the
communication overhead to exchange states with all neighbors
once is a constant value D, so the overall overhead for the
state maintenance can be estimated by O(D). After that, a
peer starts to send out requesting messages to its neighbors,
and the total number of requesting messages is equal to the
number of blocks, m, because a peer only sends out a message
for a block.

According to the analysis, total communication complexity
for a peer is O(C+D+m), thus the communication overhead
for a peer in the Bee protocol is relatively slight.

D. Fast Dissemination vs. Fairness

In general, to make the dissemination process as fast as
possible, peers need to contribute (via uploading) bandwidth
as best as it can. This implies that a fast dissemination protocol
needs to keep high capacity peers to stay in the system to serve
others, thus fairness is not a major concern. In other words,
it is clear that there exist scenarios where there are tradeoffs
between fast dissemination and fairness. Some protocols, such
as BitTorrent, FOX [25], have some mechanisms of fairness
to make all peers both give and take equitably. BitTorrent
encourages fairness by using the tit-for-tat (TFT) as the peer
selection strategy, so that peers can share blocks with one
another alike. FOX provides a theoretically optimal download
time when all peers are selfish, but it is a centralized protocol
and only works in homogeneous networks.

On the contrary, our Bee system is designed to minimize the
dissemination time, the fairness issue for the Bee protocol is
not the first concern. In particular, we believe that there is no
”one fits all” protocol, as each of them offers various trade-
offs and may prove most adequate for specific deployment
scenarios.
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V. PERFORMANCE EVALUATION

To understand the performance of our protocol, we built
a discrete-event simulator to simulate the distribution of a
large file from a server to a large number of peers in
the Bee protocol, so that we can comprehensively study its
performance in a wide range of network configurations. For
example, we may simulate a large-scale network environment
with heterogeneous link capacity. Our simulator is based on
the paper [16] which is the first to study the performance of
the BitTorrent-like systems by simulations. In our simulator,
the network model associates a download link and an upload
link bandwidth with each peer in order to make it suitable for
modeling asymmetric access networks.

However, the computational complexity of even this simple
model is still complicated. Hence, we decide to simplify
the network model in a higher level of abstraction way that
can significantly improve the scalability of our simulation.
We simplified our network model in the following ways:
first, we do not consider any shared bottleneck link in the
core network, so we assume the core network has infinite
capacity. This assumption is reasonable because a previous
study [22] showed that the Internet backbone indeed has
very low utilization and the bottleneck links almost happen
at the links near to end hosts. In addition, we also do not
consider network propagation delay and the dynamics of TCP
connections. Instead, we assume that all TCP connections
passing a specific link share the link bandwidth equally, so
the dissemination time of a protocol is dominated by the time
to transfer data. Note that if the download capacity of receiver
is the bottleneck, the spare available upload capacity of sender
will be used by its other uploading connections. Finally, the
endgame model [4] of BitTorrent is not simulated because it
only works for a small percentage of the download time when
the download time is very lengthy. This simplification of Bit-
Torrent adversely may have a tiny impact on the dissemination
time, but not a decisive one.

Obviously, there are some important network parameters
that we do not simulate, such as locality properties in con-
structing the overlay, cross traffic impact, or malicious users.
Although the above simplifications may have impact on our
experiment results, we wish our simulation is able to capture
some of the most important properties for the design philoso-
phy essentially.

A. Road-map of Simulations

We made our simulations to compare the dissemination time
in the Bee system with the lower bound of dissemination
time and the required time in the BitTorrent system. We
implemented the BitTorrent system according to the detail
overview of BitTorrent [4, 16]. Besides, we consider three
network scenarios to evaluate our protocol, each representing
a different degree of heterogeneity in their upload/download
capacity and the peer join pattern is set to flash crowd. Note
that the lower bound of dissemination time in each scenario is
calculated by Eq. (5) in section II. In each network scenario,
we explore the impact of network size, upload bandwidth of
seed and the parameter r in our Bee protocol.

TABLE I

THE UPLOAD/DOWNLOAD BANDWIDTH DISTRIBUTION

Network Type Downloadlink Uplink Fraction

Homogeneous 1500kbps 384kbps 100%

Heterogeneous 1500kbps 384kbps 50%

3000kbps 1000kbps 50%

More heterogeneous 784kbps 128kbps 20%

1500kbps 384kbps 40%

3000kbps 1000kbps 25%

10000kbps 5000kbps 15%

The bandwidth distribution of each network condition is
presented in Table I. First, we consider a homogeneous setting
where all peers have the same upload/download capacity. Then
the heterogeneous network has two types of peers, one of
which has a higher upload/download capacity than the other.
And then, a more heterogeneous condition with four types of
peers is considered, and this network setting is the actual peer
bandwidth distribution which is reported for Gnutella clients
[32].

Moreover, we study the join patterns besides the flash crowd
scenario. In particular we consider cases where peers with
various join ratios to evaluate the impacts of join rates for
the Bee and BitTorrent systems in the more heterogeneous
network conditions. We also present the results of a realistic
join pattern that derived from a tracker log for Redhat 9
distribution torrent of a BitTorrent system [15].

Unless otherwise specified, we use the following settings in
our experiments. First, we used a file size of 200MB with
a block size 256KB (so a file contains 800 blocks). The
seed’s upload capacity is 6000Kbps. The number of contact
list is 40 in both the Bee and BitTorrent system, and the
maximal number of concurrent upload connections per peer is
5 in BitTorrent setting (including the optimistically unchoked
connection). Then the number of initial seeds is only one in
all of our experiments.

B. Homogeneous Environment

We start by comparing the performance of Bee with that of
BitTorrent protocol in the homogeneous environment. We use
the default settings as mentioned in above section. All peers
join the system at the initial stage, and leave the system when
they finish their downloading. First, we study the influence
of the parameter r in our Bee protocol, and then evaluate
the impact of network size, and upload bandwidth of seed. In
this scenario, the lower bound is 4035 according to Eq. (5).
Moreover, we do not show the upload link utilization, due to
the upload link utilization of this two protocols is over 90%,
which means the overall upload capacity of network is almost
fully utilized.

Fig. 4 depicts the dissemination time (both ADT and
MDT ) with 95% confidence intervals from the simulations as
we vary the parameter r of the Bee protocol in a network with
1000 peers. In Fig. 4, x axis shows different uploading rate r,
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and y axis shows the ADT and MDT . It is easy to see that
when r grows, the MDT increases in a logarithmic manner
and the ADT of various r is a smooth variation. These results
show that the parameter r has a little effect on the performance
of Bee, and the dissemination time of Bee is close to the lower
bound. Based on this experiment, we choose the uploading rate
r = 25 in the following experiments.

Next, we consider the impact of seed bandwidth on the
performance of Bee and BitTorrent. We fix the number of
peers that join the system to 1000 in the initial stage. Here, we
use a normalized MDT metric which is the MDT dividing
the lower bound, and a normalized ADT is also computed
by the same way. Fig. 5 shows the normalized MDT in the
Bee and BitTorrent when the bandwidth of a seed varies from
1000 Kbps to 6000 Kbps. Here, we only represent the MDT
due to the ADT is very similar. In Fig 5, We can easily to
see that the dissemination times in Bee and BitTorrent are
close to the lower bound. However, when the seed bandwidth
downs to 1000 Kbps, the performance of our Bee system
decreases largely. The reason for this phenomenon is that the
seed becomes the bottleneck. This implies that the efficacy
of Bee is limited by the seed bandwidth extraordinarily, and
BitTorrent is a very tolerant protocol for poor seed capacity
network scenarios.

Another important measure is to study the scalability of
Bee by increasing the network size. We use different number
of peers from 500 to 5000 in experiments, and all peers join
system at the initial stage and remain in the system until they
have a complete file. Fig. 6 (a) and (b) show the normalized
ADT and the normalized MDT , respectively. The difference
of ADT between Bee and BitTorrent is not vary much, but
the MDT between Bee and BitTorrent exists a gap regardless
of network size. Moreover, the difference ratio between Bee
and the lower bound is only 1.1 at a network with 5000 peers.
Fig. 6 (c) shows the cumulative distribution of the number
of complete peers in a network with 2000 peers. The results
show that our Bee can efficiently diminish the maximum
dissemination time for all network sizes, and the MDT of Bee
is only 4218 seconds that is very close to the lower bound.

C. Heterogeneous Environment

Next, we evaluate the performance of Bee and BitTorrent
protocol in a heterogeneous network that consists of two types
peers, one of which has a higher upload/download capacity
(3000/1000 Kbps) than the other (1500/384 Kbps). As above
simulations, all peers join the system at the initial stage, and
leave when they finish downloading. In this section, we have
evaluated all performance metrics of Bee but only show the
impact of network size, because other results are similar to
that in the homogeneous environment. In this scenario, the
lower bound is 2333 seconds.

Fig. 7 (a) shows the ADT metircs for Bee and BitTorrent.
It seems that both them are good on the ADT metric, because
their ADT s approach the lower bound, but our Bee is better
than BitTorrent in average. Besides, Fig. 7 (b) shows the
normalized MDT metric for Bee and BitTorrent, and we can
see that Bee is almost twice faster than the BitTorrent in the

Fig. 4. Effect of various rates r on the ADT and MDT in a 1000 peers
network.

Fig. 5. Effect of various seed bandwidth on MDT in a network with 1000
peers.

MDT metric. We also show the cumulative distribution of
the number of complete peers in a network with 2000 peers
in Fig. 7 (c). The result shows that a peer with higher capacity
leaves faster than the peer with lower capacity in BitTorrent.
After the peers with higher capacity leave system, the system
capacity deceases significantly and the dissemination time of
the peers with lower capacity will be prolonged. It fits our
analysis in section II.

In order to analyze the difference between the performance
of Bee and BitTorrent in a heterogeneous network in deep, we
show the average uploading link utilization of peers, including
the seed (6000 Kbps) and two type peers (1000 Kbps and
400 Kbps) in Fig. 8. We can easily to see that the upload
link utilization of each peer is over 90%, which means that
the overall upload capacity of the network is close to fully
utilized. However, in BitTorrent, a peer with higher upload
capacity should exchange block with another one with similar
upload bandwidth, because the TFT peer selection strategy is
likely to reward for the one with similar upload bandwidth.
As a result, the overall upload link utilization of BitTorrent is
efficient, but the design philosophy is based on egoist, so the
lower capacity peers need more time to download data.
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(a) Comparison of Bee to BitTorrent for ADT (b) Comparison of Bee to BitTorrent for MDT (c) Cumulative distribution of download peers on Bee
and BitTorrent with 2000 nodes.

Fig. 6. Scalability comparison of Bee to BitTorrent in homogeneous environments.

(a) Comparison of Bee to BitTorrent for ADT (b) Comparison of Bee to BitTorrent for MDT (c) Cumulative distribution of download peers on Bee
and BitTorrent with 2000 nodes.

Fig. 7. Scalability comparison of Bee to BitTorrent in heterogeneous environments.

Fig. 8. The average uploading link utilization of peers, seed (6000Kbps),
higher capacity peers (1000Kbps) and lower capacity peers (400Kbps)

D. More Heterogeneous Environment

In this section, we repeated the same experiment in a
more heterogeneous network with four types of peer capacity,
which refers to the peer capacity distribution of realistic
Gnutella system [32]. Actually, it presents a very complex
network condition. As previous experiments, we calculate the

Fig. 9. The average uploading link utilization of peers, seed (6000Kbps),
others indicate peer capacity

lower bound of this scenario and it should be 2089 seconds
( size(F )
min{Di} = 1638400

784 ). Our first experiment is to study the
impact of the number of peers from 500 to 5000, but all results
are very similar to the results in the heterogeneous networks
except for the seed bandwidth utilization.

Fig. 9 shows the upload link utilization of seed in Bee and
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(a) Comparison of Bee to BitTorrent for ADT (b) Comparison of Bee to BitTorrent for MDT (c) Cumulative distribution of download peers on Bee
and BitTorrent with 2000 peers.

Fig. 10. Scalability comparison of Bee to BitTorrent in more heterogeneous environments.

BitTorrent. It is easy to see that the upload link utilization
of seed in Bee is 90%, but only 50% in BitTorrent system.
From our viewpoints, when the variance of upload capacity
increases, more peers with higher capacity will leave system
early. When it happens, some of the seed’s upload bandwidth
may be idle, because the download bandwidth of the peer with
lower capacity is too small to fully exploit the seed’s upload
bandwidth. As the result, the upload link utilization of seed
decreases when the variance of upload capacity increases. In
contrast, the upload link utilization of seed in Bee is the same
regardless of the degree of upload capacity heterogeneity in
the network.

We now explore the scalability of Bee in the complex
network environment. As shown in Fig. 10 (a), Bee has a
smaller ADT metric and the ADT is close to the lower bound.
However, BitTorrent loses the ascendency in this case, each
peer in BitTorrent needs double time to finish downloading.
Fig. 10 (b) shows the normalized MDT metric of Bee and
BitTorrent. This result also shows that Bee is almost twice
faster than the BitTorrent in MDT metric. We also show the
cumulative distribution of the number of complete peers in a
network with 2000 peers in Fig. 10 (c). It is easy to see that
80% peers leave system at the T time (Recall that the Eq.
(5) that we defined in section II.) and the remained 20% peers
prolong the MDT of Bee system. In fact, these 80% peers are
higher capacity peer, and the dissemination time of remained
peers is limited by their download capacity. When the higher
capacity peers leave system early, the service capacity of
overall system will decease very significantly, and it results
in a long dissemination time in both Bee and BitTorrent.

Fig. 11 shows the cumulative distribution of the number
of complete peers with some modification. We extend the
download capacity of poor peers to make sure that each peer
can download a complete file before the lower bound. In fact,
we increase the download capacity of the slowest peers from
784 Kbps to 1200 Kbps. Fig. 11 shows the CDFs of the
download time for the two protocol in the case of a network
with 2000 peers. The top one is the CDF with 784 Kbps
(minimum download capacity) and the bottom is the CDF with
1200 Kbps. From the results in Fig. 11, we can observe that the

Fig. 11. Cumulative distribution of download peers on Bee that each peer
can download a complete file before the lower bound.

dissemination time in Bee also approaches the lower bound,
when the ( size(F )

min{Di} = 1365.3) is smaller than (T = 1374.9).
The result implies that the performance of Bee is independent
of the degree of network heterogeneity, and the dissemination
time in Bee can approach the lower bound when there are no
bottleneck links at the downstream peers.

In sum, all peers in Bee are able to finish downloading
very quickly even in complex network scenarios. On other
hand, only the dissemination time of the peer with slowest
downloading capacity can not approach the lower bound.
However, that dissemination time of Bee will be significantly
affected by the upload capacity of the seed and the peer with
slowest download capacity, whereas in the Bee protocol the
performance perceived by all peers will not change signifi-
cantly.

E. The Effect of Join Pattern

In this section, we study the impact of different user arrival
patterns on the performance of Bee and BitTorrent systems.
In following experiments, we vary the peer join rate to verify
the performance variation of Bee and BitTorrent systems. All
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(a) Comparison of Bee to BitTorrent for ADT (b) Comparison of Bee to BitTorrent for MDT

Fig. 12. Performance comparison of Bee to BitTorrent with increasing arrival rate in more heterogeneous environment.

experiments in this section use following two sets of settings:
1) a poisson arrival process with a total of 1000 peers in each
set of simulation. 2) an arrival pattern derived from a tracker
log of a Redhat 9 distribution torrent. And capacity of each
peer is randomly selected from four types of peer capacity as
shown in Table 1. The upload bandwidth of the seed is 6000
Kbps.

Fig. 12 shows the performance when using different user
arrival rates for the Bee and BitTorrent system. As Fig. 12 (a)
shows, we can see that the ADT linearly increases when the
arrival rate increases both in Bee and BitTorrent. The reason
for this result is that when more peers join at same time, more
peers need to wait at the start-up time to receive the first block,
so a larger arrival rate causes a longer ADT . Fig. 12 (b) shows
the MDT metric of the Bee and BitTorrent. We can easily
observe that when the arrival rate is low, the MDT s of Bee
and BitTorrent both increase. The reason for this is that, when
the arrival rate is low, the service capacity of overall system is
also low. So peers in our Bee and BitTorrent need more time
to finish downloading the file. However, our Bee outperforms
BitTorrent in the both metrics.

We now evaluate Bee and BitTorrent in a realistic join pat-
tern. In this experiment, each peer joins the system according
to the tacker log of a a Redhat 9 distribution torrent, and all
simulation settings are the same as that in above experiment.
Note that peer capacity consists of four types as shown in
Table I, so the lower bound in this case is that size(F )

min{Di} = 2089
seconds. Fig. 13 depicts the distribution of peer joining time,
the log was collected over 12000 peers joining time. We can
see that the flash crowd happens at the release time for a new
version of Redhat ISO.

All the results are shown in Fig. 14. First, we demonstrated
the download completion time of each peer for Bee and
BitTorrent in Fig. 14 (a). It is clear that 83% peers in Bee
finish the their download before 2000 seconds. On the contrary,
only 50% peers can leave BitTorrent system at 2000 seconds.
Moreover, Bee only needs 1/3 download time of BitTorrent
to finish the file dissemination. In the following, we show the
upload utilization of peers of Bee and BitTorrent in Fig. 14

Fig. 13. The distribution of peer joining time.

(b) and (c). We can see that the upload utilization of each peer
in Bee is almost fully utilized. And the BitTorrent has poor
upload utilization in peers with higher capacity. One reason
for this is that BitTorrent’s random peer selection strategy
maybe pair a higher capacity peer with a lower capacity peer.
When that happens, the upload link bandwidth can not be fully
utilized, because the download capacity of peer with lower
capacity is too small or it doest have block to exchange with
the higher capacity peers. Hence, the upload link utilization of
peers with higher capacity may not be fully utilized in extreme
heterogeneous networks.

VI. RELATED WORK

In recent years, there are tremendous interests in building
content delivery networks to address the data dissemination
problem, which aims to deliver large-sized data to a group
of nodes spread across a wide-area network. However, how
to design an efficient protocol to achieve the lower bound
of data dissemination time for the problem has not been
discussed in depth in previous literatures. For the content
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(a) Distribution of dissemination time (b) Upload link utilization of each Bee peer (c) Upload link utilization of each BitTorrent peer

Fig. 14. Performance of Bee and BitTorrent with arrival rate from Redhat 9 tracker log.

delivery networks, we divide existing approaches into three
categories: (1) Multicast-based content delivery networks, (2)
infrastructure-based content delivery networks, and (3) P2P-
based (Swarming) content delivery networks. In addition, there
are some advanced coding techniques [30-31] for content
delivery, but we do not discuss that in this paper.

A. Multicast-based Content Delivery

A simple way to distribute content fast is to replace several
unicast streams with one single multicast stream. This can be
done in either the native IP multicast [3], or the application
layer multicast. The native IP multicast approaches focused
on constructing efficient network level multicast trees to
deliver individual packets from the source to the receivers.
Unfortunately, the native IP multicast approaches have some
fundamental problems with reliability, congestion control, het-
erogeneity, and deployment.

As the IP mulitcast can not be widespread deployed, a
large number of efforts then focused on building application-
level overlays [23, 26] to construct and maintain a multicast
tree using only the end peers. However, those tree-based
techniques face several fundamental limitations on scalability
and performance. For example, a single connection failed in a
tree may significantly impact the throughput to all participated
peers. Further, the peers only receive data from its parents in
the tree, thus the failure of a single peer may impact overall
system reliability. For many real situations, to construct a
reliable and scalable multicast tree still has many difficult
problems.

Because of the limitations for single overlay tree approach,
recent studies (e.g., Bullet [6], Splitstream [7], Bullet’ [18] and
[27]) build multiple overlay mulitcast trees or overlay meshes
to establish a more efficient and robust system where the de-
parture of a peer only causes minor disruptions. Creating and
maintaining multicast trees may provide an optimized archi-
tecture for the content delivery, however, the characteristics of
churn effect in the P2P network may cause high maintenance
cost for these approaches. Therefore, these architectures may
not always be the best approaches.

B. Infrastructure-Based Content Delivery

Content Delivery Networks (CDNs) [29], such as Akamai
Technologies2, have been proposed to improve accessibility
for the commercial companies. CDNs are dedicated collections
of servers located strategically across the wide-area Internet.
Content providers, such as multimedia video sources, con-
tract with commercial CDNs to distribute content. CDNs are
compelling to content providers because the responsibility for
distributing content is offloaded to the CDN infrastructure.
Many new infrastructures for the CDNs have recently been
developed to focus on distributing large files, while related
research systems include CoBlitz [17], Spider [28]. These
systems offer a stable and performance-predictable content
delivery architecture, especially for the businesses that want to
offload their bandwidth but need to delivery a large content.

However, regardless of how many nodes in the CDNs are
deployed, they are still limited in provisioned service capacity
explicitly. When the demand of users grows too fast, the
performance of these system may degrade significantly. The
difference between these approaches and the Bee system is
that the service capacity of Bee increases as the number of
peer increases. Thus, we believe that the Bee system is able
to handle the flash crowd user arrival pattern. In addition, we
also believe that our Bee protocol can become a building block
of CDNs by only minor modifications.

C. P2P-Based Content Delivery

The P2P file swarming technology has received a lot of
attention from Internet users and networking researchers [4, 5,
8]. The main concept of the file swarming is inspired from the
parallel-downloading mechanism [19]. For the file swarming
technologies, we provide a summary as follows.

BitTorrent [4] is a very popular content distribution system
which is successful for its efficiency in delivering a large file.
There are two key mechanisms used in the BitTorrent system,
namely, the ”Tit-For-Tat” (TFT) peer selection policy and the
local rarest first piece selection (LRF) strategy. The TFT peer
selection policy aims to prevent the free-riders that refuse to
contribute bandwidth to other peers. Another important feature

2See www.akamai.com.
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of BitTorrent is the local rarest first piece selection (LRF)
strategy. The objective of the LRF strategy is to enhance the
piece availability of overall file. In general, BitTorrent is a
very simple but efficient protocol for content delivery.

Slurpie [5] focuses on reducing load on servers and client
download times when the number of downloading clients is
tremendous. Slurpie uses an adaptive downloading mechanism
which can improve client’s performance according to its
capacity, and adopts a random back-off algorithm to precisely
control load on the server. However, the dissemination time
of Slurpie may be prolonged, especially when the server has
some rare blocks that are requested by a large number of
clients, because the back-off algorithm prevents too many
clients downloading from the server simultaneously.

Crew [8] is a new gossip-based protocol for data dissemina-
tion, and it performs a faster dissemination than the BitTorrent
protocol in experiments. However, the overhead for gossiping
arises form the redundant gossip messages. Crew needs a
complex control mechanism to reduce the message overhead,
because large message overhead may lead to decease total
system throughput and slow down the dissemination time
when a large number of recipients exist in the system. In
fact, Crew is the fastest data dissemination protocol in their
experiments [8], but the authors still do not show how close
it approaches to the lower bound.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an analysis of the lower bound of
the dissemination time for the data dissemination problem. We
also present the Bee protocol to capture the following notions:
(i) all peers leave the system at the same time as much as
possible, and (ii) each peer utilizes its upload bandwidth as
much as possible. Note that, though one may argue that we
could make the seed powerful enough to hold one last piece
of the file until the best timing to upload it to the peers, so
that all peers leave the system at the same time as much as
possible. However, when the resources, such as bandwidth and
computing power of peers often are heterogeneous and the
user arrival pattern is dynamic, the computation complexity
for the best timing is extremely high. On the other hand, our
Bee protocol does not require any scheduling knowledge and
each peer makes its own decision to download blocks only
according to local information. We have conducted extensive
simulations to evaluate the performance of the Bee protocol,
and the simulation results show that the dissemination time in
the Bee system can approach the lower bound when there
are no bottleneck links at the server side or downstream
peers. Specially, in the simulations on heterogeneous network
environment presented in this paper, dissemination time of Bee
is only 1/5 of that of BitTorrent, which is only 10% higher than
the theoretical lower bound. As for the arrival traffic derived
from a software release log, dissemination time of Bee is only
1/3 of that of BitTorrent system.

Currently, fast distribution of large scale software updates to
millions of Internet users is becoming a critical task in today
Internet, technology such as Bee protocol presented in this
paper will thus play a major role in its future development.

It is also interesting to look at how Bee protocol can be
incorporated in P2P streaming applications.
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