
When parallel programming started in the 70's and 80's, it was mostly art: languages
such as functional and logic programming languages were designed and appreciated
mainly for their elegance and beauty. More recently, parallel programming has
become engineering: conventional languages like FORTRAN and C++ have been
extended with constructs such as OpenMP, and we now spend our time benchmark-
ing and tweaking large programs no one understands to obtain performance
improvements of 5-10%. In spite of all this activity, we have few insights into how to
write parallel programs to exploit the performance potential of multicore processors.

To break this impasse, we need a science of parallel programming. In this talk, I will
introduce a concept called "amorphous data-parallelism" that provides a simple, uni-
fied picture of parallelism in a host of diverse applications ranging from mesh
generation/refinement/partitioning to SAT solvers, maxflow algorithms, stencil com-
putations and event-driven simulation. Then I will present a natural classification of
these kinds of algorithms that provides insight into the structure of parallelism and
locality in these algorithms, and into appropriate language and systems support for
exploiting this parallelism.

