
GeoBuilder: A Geometric Algorithm
Visualization and Debugging System for

2D and 3D Geometric Computing
Jyh-Da Wei, Ming-Hung Tsai, Gen-Cher Lee, Jeng-Hung Huang, and Der-Tsai Lee, Fellow, IEEE

Abstract—Algorithm visualization is a unique research topic that integrates engineering skills such as computer graphics, system

programming, database management, computer networks, etc., to facilitate algorithmic researchers in testing their ideas,

demonstrating new findings, and teaching algorithm design in the classroom. Within the broad applications of algorithm visualization,

there still remain performance issues that deserve further research, e.g., system portability, collaboration capability, and animation

effect in 3D environments. Using modern technologies of Java programming, we develop an algorithm visualization and debugging

system, dubbed GeoBuilder, for geometric computing. The GeoBuilder system features Java’s promising portability, engagement of

collaboration in algorithm development, and automatic camera positioning for tracking 3D geometric objects. In this paper, we describe

the design of the GeoBuilder system and demonstrate its applications.

Index Terms—Computational geometry, geometric algorithm visualization, knowledge portal, collaborative design, camera position,

LEDA, convex hull, line segment intersection.

Ç

1 INTRODUCTION

ALGORITHM animation and visualization techniques are
used to graphically represent program states during

the execution of a particular algorithm. The development
and evaluation of visualization tools have become an active
research topic in computer science not only because
visualization is emphatically used to help humans under-
stand scientific progress but also because computers are
now in widespread use and are quite convenient for
creating visualizations [11]. Recent research of algorithm
visualization utilizes engineering skills such as computer
graphics, system programming, database management,
computer networks, human-computer interface, etc., to
build an overall system for academic research and computer
science education1 [18], [29]. In this paper, we present a
geometric algorithm visualization and debugging system,
GeoBuilder, for 2D and 3D geometric computing. This
system can facilitate geometric algorithmic researchers in
not only testing their ideas and demonstrating their findings

but also teaching algorithm design in the classroom. We
have embedded GeoBuilder into our previously developed
Open Computational Problem Solving (OpenCPS) knowl-
edge portal [25], [51] as a practice platform for lecturing a
graduate class on geometric computing and algorithm
visualization.

The GeoBuilder system possesses three important features
making it more promising than any other existing visualiza-
tion system. First, GeoBuilder is a platform-independent
software system based on Java’s promise of portability and
can be invoked by Sun’s Java Web Start technology in any
browser-enabled environment. Second, GeoBuilder has the
collaboration capability for multiple users to concurrently
develop programs, manipulate geometric objects, and con-
trol the camera. Finally, the 3D geometric drawing bean of
this system provides an optional function that can auto-
matically position the camera to track 3D objects during
algorithm visualization.

The effectiveness of our system can be observed by using
Naps et al.’s criteria of visualization [21], [31]. Naps et al.
suggest six levels of learner engagement in a visualization
tool, i.e., no viewing, viewing, responding, changing, con-
structing, and presenting. This taxonomy lists engagement
levels that benefit learners increasingly from passive levels to
the most active. With the exception of the nonviewing level,
viewing is the most basic requirement of a visualization
system. Beyond that, the responding level supports question-
and-answer activities asking users to anticipate the next
frame and/or to indicate the program segment of a running
algorithm; then, the changing level allows users to modify
variables and explore the algorithm’s behavior. Many
visualization tools have reached the fifth level—PDE.Mart
[29], PETSc [20], [34], and DEAL.II [3], [2] are examples that
allow users to construct their own visualizations of the
algorithm under consideration. Meanwhile, the highest, i.e.,

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009 1

. J.-D. Wei is with the Department of Computer Science and Information
Engineering, Chang Gung University, 259, Wenhwa 1st Rd., Kweishan,
Taoyuan 333, Taiwan, R.O.C.
E-mail: jdwei@mail.cgu.edu.tw, jdwei@iis.sinica.edu.tw.

. M.-H. Tsai, G.-C. Lee, J.-H. Huang, and D.-T. Lee are with the Institute of
Information Science, Academia Sinica, 128, Sec. 2, Academy Rd., Taipei
115, Taiwan, R.O.C. E-mail: {mhtsai, gc, dtlee}@iis.sinica.edu.tw,
jhh827@gmail.com, dtlee@ieee.org.

Manuscript received 22 Dec. 2006; revised 26 July 2007; accepted 11 June
2008; published online 2 July 2008.
Recommended for acceptance by L. De Floriani.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0228-1206.
Digital Object Identifier no. 10.1109/TVCG.2008.93.

1. Sometimes, visualization systems are referred to as problem-solving
environments by their authors for they fully support visualization
components, numerical simulations, and other computational facilities
required to solve a target class of problems [10], [28], [29].

1077-2626/09/$25.00 � 2009 IEEE Published by the IEEE Computer Society

presenting, level requires users to explain the visualized
algorithm to an audience. It is not easy to seamlessly integrate
the function into a visualization system.

Our system reaches the uppermost level because of its
portability, concurrent collaboration capability, and runtime
visualization utility. Java’s portability allows the Geo-
Builder system to be plugged into the OpenCPS knowledge
portal as a standard implementation interface. Following
the knowledge management (KM) policy, students can
present their perspectives about the implementation codes.
On the other hand, the features provided, such as
collaboration facilities during program development and
utilities for manipulating geometric objects for visualiza-
tion, allow users to demonstrate their ideas and to achieve
online presenting effects.

Aside from system portability and collaboration cap-
ability, we do take into account the animation effect—the
kernel issue of visualization systems. The most interesting
design for the GeoBuilder system is the dynamic decision of
camera position for 3D algorithm visualization. Camera
position is not a problem in 2D environments.2 However, it
becomes serious in 3D environments because the geometric
objects being visualized may overlap in front of the camera
view. The 3D drawing bean of GeoBuilder has an extensible
rule base allowing the camera to move to a proper position
to focus on the objects in the next step, and we have
suggested a simple decision rule that will be described later.
In the following section, we introduce the related literature
of this work. Then, we explain the system architecture, the
implementation of collaboration, and the 3D drawing bean
with automatic camera positioning in Sections 3, 4 and 5,
respectively. Finally, future work and conclusion are given
in Section 6.

2 BACKGROUND AND RELATED WORK

Brown and Sedgewick [8] published the Brown University
Algorithm Simulator and Animator (BALSA) system as
the first fully functioning algorithm animation system in
1984. The development of algorithm visualization systems
has received increasing attention ever since. In 2004,
Hendrix et al. [16] have categorized algorithm visualiza-
tion systems into three classes: “general-purpose software
and algorithm animation systems,” “software and algo-
rithm animation systems for data structures,” and “soft-
ware and algorithm animation systems for debugging.”
The first class requires the users to create visualizations by
inserting specific program segments and function calls
directly into the source code in the animation systems.
The second class centers on data structure visualization
and provides users with a rich environment to interact
with the data structure. Finally, the third class bridges the
gap between debugger systems and sophisticated algo-
rithm animation systems. Our system provides a visual

debugging environment with full support of the LEDA
[19] library for geometric algorithm development and thus
belongs to the last class.

In Section 2.1, we survey the 3D algorithm visualization
systems in this class. Most of these systems were built
using the C language, and thus, they should be installed
before executing. The state-of-the-art Java-based system
JCAT [30] was developed in 2001 when the modern Java
bindings for OpenGL (JOGL) techniques were not yet
released. JCAT can run as a Java applet inside a web page;
however, its drawing engine is built upon outmoded
Java 3D libraries and does not support smooth camera
moving and zooming modes. Our work focuses on 3D
geometric algorithm visualization; therefore, we do not go
through other worthwhile topics such as data structure
visualization and model-view mapping as described in the
jGRASP [16], JIVE [9], and Vizz3D [35] projects.

The proposed GeoBuilder system and the Geo3D-
DrawingBean thereof are portable software on the basis of
the Java language and the JOGL bindings. A practical
application of this system is to plug into the OpenCPS
knowledge portal as an implementation interface. There-
fore, we introduce the OpenCPS in Section 2.2. Prior similar
systems enabling collaborative development are then
compared in Section 2.3, followed by a description of the
dynamic camera positioning feature in Section 2.4.

2.1 Three-Dimensional Algorithm Visualization
Systems

Three-dimensional algorithm visualization systems can be
categorized into C/C++ and Java-based families. It is quite
natural that the systems using C/C++ were developed much
earlier, since the C language has a longer history. For
example, Polka-3D [42] and Zeus-3D [7] were first devel-
oped in 1993. Polka-3D seems to be the leader that suggested
the object-oriented animation methodology. This system
provides reusable classes to model animation effects, 3D
objects, special viewers, etc. Polka-3D is industrial Graphics
Library (GL) compliant but was implemented only to run on
the Silicon Graphics IRIS (SGI) workstation. Zeus-3D is an
algorithm visualization system that does not purpose to
show intrinsically 3D objects. This system uses 3D concepts
and graphical display to enhance the quality when present-
ing information of 3D objects contained in an algorithm.

In 1995, GASP [44] implemented a library of primitive
animation functions. The input and output of this system are
transmitted by files. GASP only runs on the SGI workstation
with an exclusive Unix operating system, which allows
GASP to set its user interface (UI) upon Inventor and Motif/
Xt. In the same year, Geomview [32] was released with a
revolutionarily useful viewer for visualizing objects in three
and higher dimensions. It reads geometric data from a
simple formatted file and displays the objects in a window.
Users can translate, rotate, and scale the objects with mouse
operations. However, Geomview is still built on the
C language and can only run on a specific Unix platform.

Following the architecture of GASP, GASPII [40] was
released in 1998. This upgrade maintains several screens
when users run an algorithm. One is the instructor’s
screen, while the other is the student’s. A design like this

2 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

2. We are not saying that 2D camera control is trivial. This work only
considers a static viewport for 2D visualization because this viewport is
practical for normal input instances that do not exceed the bounding box of
the scene. In extreme cases, the input objects may be too many and too large
for the static viewport to present. However, these cases are likely
unnecessary to discuss in algorithm development and demonstration.

helps in educational activities. GASPII runs in the same
environment as GASP. Next, in 1999, DAViD [26] proposed
the 3Dsheet [24] framework to achieve 3D visualization
capability. Using a mouse driven drag-and-drop mechan-
ism, it developed the 3D-snap environment to facilitate
computer-assisted design.

GeoWin [6] was the state-of-the-art system released in
2002. This system can be easily interfaced with renowned
standard geometric software libraries, including LEDA and
CGAL. For instance, it has access to a simple 3D viewer
based on the LEDA d3 window class. GeoWin owns input
and output scenes. Every editing operation of the input
interactive interface maps to an associated event. Whenever
the input scene is modified, the output scene is recomputed
and redrawn immediately.

Java-based algorithm visualizations systems are rela-
tively fewer compared to those written in C/C++, mainly
due to the fact that Java is a newer language invented only
in 1995. The 3D graphic interfaces of Java, such as Java 3D,
were developed much later in 1999. Therefore, we can only
find GAWAIN [15] and JCAT [30] released in 1998 and
2001, respectively. Both are visualization systems running
as Java applets. Each user can interact with the 3D views
locally, independent of the page, to animate geometric
algorithms. The JCAT system further allows the user to
start and stop the algorithm, advance the algorithm step by
step, and adjust the visualization speed. In this paper, we
will present the GeoBuilder, which was developed as a
new generation of algorithm visualization and debugging
system for geometric computing. Benefiting from modern
JOGL technologies, this system is not only portable in a
Web-based environment but also equipped with camera
manipulation capabilities.

2.2 OpenCPS Computational Problem Solving
Environment

In previous work, we implemented a knowledge portal for
Computational Problem Solving [25], dubbed OpenCPS,
which is intended to combine geographically distributed
efforts in algorithmic research. Algorithmic researchers are
invited to share their information in the form of files,
documents, etc., and collaboratively design or implement
new algorithms. Knowledge in OpenCPS, consisting of
various objects and content types, is regarded as a map
relating instances in problem, solution, and implementation
spaces. Problem space objects consist of uniquely identifi-
able computational problems, solution space objects consist
of algorithmic solutions, and implementation space objects
consist of the actual code for the solutions.

All these knowledge objects have their own attributes. A
computational problem possesses attributes such as problem
name, description, problem category, equivalent problems,
subproblems, superproblems, variant problems, formal
definition, input variables, output variables, problem status,
existing solutions, and related publications. An algorithmic
solution is associated with the following attributes: solution
name, target problem, description, pseudocode, complexity,
existing implementations, and related publications. As for
the implementation space, the associated attributes are the
implementation name, target solution, description, related
publications, as well as a folder of source code, running
environment, and a launch button. Additional details can be
found in [25]. The GeoBuilder system is a collaborative

visual debugging system for geometric computing. It can be
ported as a stand-alone application for users to develop,
deposit, and demonstrate the algorithm codes collabora-
tively. In this work, we embed the GeoBuilder system as a
plug-in on the OpenCPS website. Users can designate
GeoBuilder as the running environment in the implementa-
tion space and then invoke it in the Web environment
directly. The effect of visualization engagement can there-
fore be improved to reach the highest, i.e., the presentation,
level for computer-assisted learning.

Fig. 1a shows the screenshot of the OpenCPS portal
with search results for Voronoi diagram. Fig. 1b is a
map generator we developed to observe group knowledge
grown within the OpenCPS portal. A major application of
the KM is to support learning activity with the ability to
organize information and knowledge resources on the
Web [1]. The contents of the OpenCPS knowledge portal
are contributed by all its members and thus can be
regarded as group knowledge. Interestingly, these knowl-
edge objects are not only represented in web pages but
also associated with conceptual elements defined within
the ontology of algorithmic problem-solving knowledge.
In this regard, we developed a Site-And-Concept (SAC)
map generator to visualize the formation of group knowl-
edge [27]. This map generator, as shown in Fig. 1b,
supports both expert and learner modes. Users can
contribute to the group knowledge, as well as learn from
it, through the SAC map.

2.3 Concurrent Collaboration Mechanism

The GeoBuilder system proposed in this paper supports
algorithm visualization and debugging for geometric

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 3

Fig. 1. System architecture of the GeoBuilder. The back end of the
GeoBuilder system connects to an Algorithm Server to request
compiling and debugging services. The states of replicated application
processes can be synchronized by the Collabench Server.

computing. Furthermore, we designed this system to
support online collaboration among multiple users so that
it enables a collaborative-learning and interactive-demon-
stration environment. Because of the increasing availability
of computer networks and the trend toward teamwork,
collaboration-enabling groupware has received much atten-
tion in the research field of Computer-Supported Colla-
borative Work (CSCW) systems. We distinguish our system
from other prior work with an implementation of con-
current collaboration. To clearly elucidate our work, we
categorize the online collaboration systems into three levels:
desktop sharing, floor transfer, and concurrent control.

As an elementary class of online collaboration, desktop
sharing systems allow multiple users to work on a single
virtual desktop through their local input devices such as
keyboards and mouses. Although the users can conveni-
ently connect their terminal devices to a remote desktop,
concurrent operation may cause mutual conflicts due to
numerous and disorderly hardware interrupts made by
different users at the same time. In the extreme case, users
can neither move their mouse nor type a word. Microsoft
VNC and NetMeeting systems and other commercial
products like PC Anywhere are examples of this class.
The mutual conflict problem can be solved by a floor
transfer mechanism, which is adopted by the second class
of online collaboration systems such as Ensemble, Group-
Draw, and GroupGraphics [36]. Using a conflict prevention
approach based on locking [12], these systems require the
users to place a lock on a target object before they can
access it. Conflicting operations are therefore prevented;
meanwhile, the effectiveness of collaboration is decreased
because the systems allow only one user at a time to operate
the objects. In case the user forgets to release the floor, i.e.,
unlock the objects, the collaborative work will be blocked
for a long while until the coordinating process detects the
fault and resolves it.

We consider the highest level of online collaboration to
be one that incorporates an implementation of concurrent
control. This type of collaboration allows users to operate
their own terminal devices concurrently with mutual
awareness and consistency maintenance. In doing this, a
session management server is required to coordinate the
groups of replicated applications. Roseman and Greenberg
initiated this research field by publishing the first version
of GroupKit/GroupSketch in 1992 [37], [38]. This system is
built upon the C++ language and the INTERVIEWS toolkit
of X-Windows. Although the INTERVIEWS toolkit has a
limitation on creating arbitrary object classes, the idea of
using remote procedure calls (RPCs) to communicate, share
information, and trigger program execution between
replicated application processes proved successful and
has been extensively applied by its successors. Among
the follow-up studies, the graphics collaborative editing
(GRACE) system released in 2002 [43] stands out as the
authors, Sun and Chen, proposed a distributed algorithm
that ensures causality preservation for the underlying RPC
operations. The algorithm makes it easy to create geometric
objects in the GRACE system with causality preservation of
user operations.

In comparison with the RPC-type approaches, IBM’s
Jazz project [17] suggested a quick-upgrade system archi-
tecture reusing floor control techniques to realize concur-
rent collaboration. This project has demonstrated a system
that embeds collaborative features such as chat, white-
board, data sharing, and collaborative editing (coediting)
functions within the Eclipse application development
environment. Importantly, the coediting function thereof
is implemented following an into context concept, rather
than using the tightly coupled RPC approaches. This
alternative method, referred to as contextual collaboration
[14], settles coeditors in exclusively locked blocks and thus
protects their work from mutual influence. The Jazz system
is efficient in collaborative text editing; however, the
contextual collaboration approach is not easy to extend to
a graphic editing environment because it remains difficult
to assign coediting users to exclusive editing blocks.

Aside from RPC-type approaches and contextual colla-
boration, a native feature of the Java language implies other
possibilities to develop concurrent collaboration systems. As
we know, an event is represented as an object in Java. When
an event occurs, the Java system creates an event object and
sends it to the registered listener objects. Following this
event-driven methodology, we developed the Collabench
(a shorthand for collaborative workbench) package in
our ShareTone project [53]. Wrapping Local Objects
(LocalObject) with Collaborative Objects (CollabObject), the
Collabench maps Local Events (LocalEvent) to Collaborative
Events (CollabEvent) and broadcasts these events for
concurrent action. This package builds an event-driven
collaboration framework offering adequate classes and
interfaces that are more portable than RPC-type approaches
and can facilitate the development of collaborative applica-
tion. In this paper, we use Collabench to implement
concurrent collaboration, since it is also suitable for
collaborative graphic editing and, thus, more useful to
geometric computing.

2.4 Camera Positioning in 3D Environments

Dynamic camera positioning has received increasing atten-
tion in the fields of computer vision [13] and virtual reality
[5], [46]. A typical paradigm of computer vision is to
determine the set of objects visible from a given viewing
area and derive a camera placement method for generating
image-based models [13]. Virtual reality technologies
connect the image-based models to render a cinematic
style and thus support virtual 3D simulation, training, and
entertainment environments with intelligent visualization
interfaces [5], [46].

The GeoBuilder system implements the concept of
camera positioning for 3D geometric algorithm visualiza-
tion. Camera position is not a problem in 2D environments.
This issue becomes serious in 3D environments, however,
because the visualized geometric objects may overlap in
front of the camera view. Therefore, we need a decision
rule to move the camera to a proper position to focus on
the objects in the next step. In Section 4, we will present the
positioning rule based on an observation sphere. The
camera will be moved along the surface of this sphere,
located on one of the candidate positions and then focused
on the center of next object of interest.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

3 SYSTEM ARCHITECTURE

We create the GeoBuilder system as an Integrated Develop-
ment Environment (IDE) that supports the LEDA [19] library
for geometric algorithm development and visualization.
Using this system, users can edit, debug, and visualize
geometric algorithms written in C/C++. GeoBuilder
provides a widget to generate frame code with geometric
object classes. As Table 1 lists, the currently provided objects
include points, line segments, polygons, etc., and lists of
these objects. The choice of this set of primitive visualization
objects is based on our experience of geometric algorithms,
and the set can always be extended and modified.

3.1 Architecture of GeoBuilder

Based on Java’s portability, GeoBuilder is platform in-
dependent and can be launched in any Web environment.
Fig. 2 shows the system architecture of GeoBuilder. The
back end of the GeoBuilder system connects to an
Algorithm Server using TCP/IP sockets. During program
development, source programs are submitted to this server.
They are then compiled by GNU’s gcc compiler and
launched by the server’s activation service. The visualization
and execution components provide coupled functions on
the two sides for users to interact with the running
program; consequently, object-oriented visualization
classes allow users to manipulate geometric objects directly
via a point-and-click mechanism. Users can further input,
save, and restore these geometric objects. The GeoBuilder
system also supports a debugging mode, in which the
submitted programs are tracked by GNU’s gdb debugging
tool. The Java Wrapper of the Algorithm Server parses and
returns the debugging messages for the GeoBuilder IDE to
update the current states and watch the internal variables.

GeoDrawingBean and Geo3DDrawingBean are the draw-
ing beans that render geometric 2D and 3D objects, respec-
tively. They implement the ActionListener interface as the
main part of the visualization component for listening to the
execution and debugging messages. These two drawing
beans render geometric objects and store them into the
GeoModel and Geo3DModel. As for connection to the
Collabench server, we developed subclasses inheriting all

the above object functions and enabling access to current
objects for collaborative work. In case users check the box to
enable automatic camera decision for 3D algorithm visualiza-
tion, Geo3DDrawingBean must forward 3D objects to
CameraAnimation, which handles the operation of automatic
camera positioning. After finishing the task, CameraAnima-
tion transmits the output objects to Geo3DDrawingBean
through the ActionListener interface again.

3.2 Communication of Geometric Objects between
Clients and the Algorithm Server

We use the Java language to develop our system that deals
with C/C++ programs in the current stage. The GeoObject
class is referenced in users’ C++ programs to implement
geometric algorithms, while the VisualObject of Java 2D
and the GLObject of JOGL will display the GeoObject in a
Java-based platform. This implementation implies that we
have to coordinate those objects across the C++ and Java
languages. Herein, we will introduce both kinds of C++
and Java objects from the viewpoint of their mutual
communication. Then, we explain how to implement this
communication.

3.2.1 GeoLEDA Library and GeoObject Abstract Class

LEDA [19], [47] is a mathematical library providing efficient
data types for combinatorial and geometric computing. Our
system supports LEDA 4.2 free version for users’ convenience
to develop programs. Table 1 lists the header files and their
source files contained in the geoLEDA/subdirectory [50].
Users must include the needed header files for the data types
they would like to use. Corresponding source files will be
automatically linked at compile time for user programs to
access the objects provided by the LEDA library and to
communicate with the objects displayed in the Java-based
platform. Notably, all the objects contained in these files
inherit the above-mentioned GeoObject class.

User programs edited in the local GeoBuilder application
will be delivered to a remote algorithm server for debugging
and execution. Therefore, programs must also call an API
function, IPCServiceSetup(), to initialize TCP/IP connection

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 5

TABLE 1
Primitive Visualization Objects Currently

Provided by the GeoBuilder System

Fig. 2. Screenshots of the OpenCPS portal. (a) Knowledge objects as
the searching results for Voronoi diagram. (b) Map generator to observe
the formation of group knowledge.

before these GeoObjects can be visualized in the GeoBuilder

application. This function and other visualization control

functions such as GeoPause() and GeoScanf() are called GeoIPC

APIs of the GeoLEDA library. In addition to these APIs, other

object I/O functions have been directly implemented in the

geometric object classes. GeoBuilder can generate frame

codes for users to manipulate geometric objects in their

program. The details of geometric object classes can be found

in [50]. We will also explain the steps of geometric algorithm

developments in Section 3.4.

3.2.2 VisualObject of Java 2D and GLObject of JOGL

The Java classes displaying geometric objects on the screen

include the industrial standard Java2D VisualObject class

and the JOGL GLObject class for 2D and 3D algorithm

visualization, respectively. Java 2D was released by Sun

Microsystems with the Java 2 SDK version 1.2 and was

broadly used to display 2D objects in graphic Java applica-

tions. The GeoDrawingBean of GeoBuilder uses the Java 2D

VisualObject class corresponding to the C++ GeoObject

class. Using the GeoBuilder system, program developers

need not know the details about the Java graphic interface.

GeoBuilder handles the drawing process synchronously

with the change of the C++ GeoObject.
We use the JOGL library for 3D geometric algorithm

visualization. JOGL provides hardware-supported 3D

graphics to applications written in Java. The technologies

of JOGL were officially released as open source utilities

by the Game Technology Group at Sun Microsystems

in 2003. JOGL supports full access to the APIs in the

OpenGL 2.0 specification, as well as nearly all vendor

extensions, and integrates with the AWT and Swing

widget sets [49]. The Geo3DDrawingBean of GeoBuilder

makes use of JOGL to render 3D graphics in a Java-based

platform. Geo3DDrawingBean contains the following

objects included in JOGL: GL3DPoint, GL3DLineSegment,

GL3DPolygon, GL3DPolyhedron, and GL3DList. They

inherit the class of GLObject.

3.2.3 Communication between C++ and Java Classes

When users’ C++ programs generate, delete, or modify

geometric objects inheriting the class of GeoObject, the

changes of object states are transformed into string format

and then transmitted to the GeoBuilder application through

TCP/IP sockets. Therein, the string format is restored to be

an instance of the corresponding Java class and forwarded

through the aforementioned ActionListener interface to

GeoDrawingBean or Geo3DDrawingBean according to the

dimension of geometric objects. The corresponding Java

objects of VisualObject or GLObject are thereby created,

destroyed, or updated in response to the state changes. In

the opposite direction, the modification of VisualObject and

GLObject objects can also be conveyed to users’ C++

programs through the string flow on the network. A

communication like this maintains the objects consistent

between the C++ GeoObject class and the corresponding

Java classes.

3.3 GeoBuilder as a Plug-In of the OpenCPS
Knowledge Portal

The OpenCPS knowledge portal was built upon the Plone/
Zope open source utilities [52], which support the Python
language to develop plug-in packages. Based on its easy
plug-in property, we developed content-type running
Python scripts in response to Web users’ implementation
and demonstration requests. Figs. 3a, 3b, and 3c sequen-
tially show the content object in the implementation space,
the Java Network Launch Protocol (JNLP) file, and the
demonstration of running a 2D Voronoi diagram program.

The JNLP file should be prepared in the plug-in package
accompanying all Java programs of the GeoBuilder system.
This file includes all the information such as the algorithm
server’s IP address, the launcher’s username, the URL of the
target program, and all the necessary JAR files of the
GeoBuilder system. The JNLP file is for Sun’s Java Web Start
to launch GeoBuilder in the Web environment. For the
details of the Zope configuration and JNLP format, users
may refer to the Zope user manual [55] and the guide to
Java Web Start [48].

3.4 Geometric Algorithm Development

Since we have embedded GeoBuilder as a plug-in content
type of the portal, users can click any Algorithm Implementa-

tion content object to start this system. The GeoBuilder
system loads or creates project files on the OpenCPS
website through the WebDAV protocol. To begin geometric
algorithm development, as earlier mentioned in Section 3.2,
users have to include the appropriate header files for certain
data types they would like to use. These files are within the
GeoLEDA library and are listed in Table 1.

For users’ convenience, GeoBuilder provides a frame
code generator that asks for the required data types and
then creates program files with frame codes in default.
Users can thus easily use the GeoLEDA library, as long as
they define the input and output in creating a new
algorithm. Fig. 4a is an example of autogenerated codes to
deal with circle objects in the algorithm TestGeometry. The
input thereof is a circle, and the output is also a circle. The
input variable name is inCircle, and the output variable
name is outCircle. This program can be implemented to
find the smallest enclosing circle, as shown in Figs. 4b, 4c,
and 4d.

In the above example, three program files are generated

in the project: TestGeometry.c, TestGeometry_GeoMain.c, and

TestGeometry.h. The first two files contain the main routine

and the user procedures, respectively. The last file,

TestGeometry.h, is the overall header file, in which other

primitive header files of geometric objects in the GeoLEDA

library are also encapsulated. Notice that the sample

program calls an API function, void IPCServiceSetup(char*

hostname, int port_id); in front of the entry point of the main

routine. This function initializes a TCP/IP connection to the

algorithm server. After the connection is established, the

program can thus receive user commands, read input

instances, and write the outputs to the canvas panel of the

GeoBuilder drawing beans. The arguments of this function

indicate the hostname (or IP address) and the port number

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

of the Algorithm Server. They are preassigned in the JNLP

file, as shown in Fig. 3b.

4 CONCURRENT COLLABORATION

Coined as a shorthand notion of collaborative workbench,

Collabench provides a service for collaborative event broad-

casting and concurrent action. This service package [54]

uses an event-driven framework to maintain a consistent

state among replicated applications, facilitating the task of

developing concurrently collaborative applications, and is

used to equip the GeoBuilder system with collaboration

capability.

4.1 Architecture of the Collabench Service Package

When the user creates objects, moves objects, or modifies

object properties in an application, the application’s states

will change as a result. The Collabench service allows user

applications to broadcast corresponding events to other

collaborative applications in the same session, so all the

collaborators can see the same changes.
The core idea of Collabench is an event translating

mechanism that maps “local events” (LocalEvents) to

“collaborative events” (CollabEvents) and vice versa. In the

above-mentioned situation, relevant local events are fired

reflecting the state change made by users’ operation on a local

object. Using the Collabench service package, application

developers wrap local objects (LocalObjects) in collaborative

objects (CollabObjects) and then register corresponding
LocalEvents that will be translated into CollabEvents.

Fig. 5 shows how the Collabench service works: when
the user application calls the createCollabObjectðÞ function3

for creating a CollabObject, a CommonEventListener class
for LocalEvents assigned within the CollabObject is auto-
matically created and added into the listener interfaces
within the wrapped LocalObject. This proxy class imple-
ments all the listener interfaces for the given localEvent-
Classes. The CommonEventListener is instantiated along
with a Java invocation handler LocalEventListenerInvoca-
tionHandler, which receives LocalEventObjects and extracts
CollabEventObjects with the help of EventProcessors.

The client-side EventProcessor is programmed by the
application developer and bound to a target localEventClass.
As Fig. 5 shows, the EventProcessor generates CollabEven-
tObjects to snapshoot the property change or method
invocation information originated from the source local
objects. These CollabEventObjects are sent to the Collabench
server and then dispatched to replicated collaborative
applications following the first-come, first-serve rule. The
respective EventProcessor must also restore the state change
from CollabEventObjects to target LocalObjects; therefore,
collaboration behavior is instantiated and maintained.

We further explain the “system CollabEventObject” that
appears in Fig. 5. The event objects in this class are used to

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 7

3. For wrapping local objects and creating collaborative objects, this
function is declared as CollabenchToolkit:CollabObjectcreateCollabObject
ðObjectlocalObjectInstance; Class½ �localEventClassesÞ.

Fig. 3. GeoBuilder is embedded into the OpenCPS portal. (a) GeoBuilder as a content object in the implementation space. (b) Associated JNLP file.

(c) Running a 2D Voronoi diagram program.

communicate and control the Collabench server but not to
broadcast for concurrent operation. For example, the first
launched client in a collaborative session must use
CollabRequestWorkbenchEvent to request an event queue for
the collaboration session. This client application becomes
the session owner and must share the current application
states and the geometric scene description with the late-
coming client processes. The latecomers use another system
CollabEventObject, CollabRequestFloorEvent, to stop broad-
casting temporarily and wait to catch up with the current
progress. In case a time limit is exceeded, the session
owner is responsible for sending a CollabEventObject
CollabRefreshWorkbenchEvent to kick out the latecomers and
reactivate the concurrent session. Once the owner leaves the
algorithm development project, the Collabench server will
select another client process to take over the ownership. If
all the clients quit this project, the Collabench server will
close the project and clear the event queue.

4.2 Connection between GeoBuilder and
Collabench

The connection between GeoBuilder and Collabench is
depicted in Fig. 2. The text editor, drawing beans, and other
objects such as buttons and checkboxes in the GeoBuilder
IDE are wrapped by respective CollabObjects. When the

collaboration mode is enabled, these objects of a GeoBuilder
application will be kept consistent with those of all the other
replicated GeoBuilder application processes. CollabGeo3D-
DrawingBean is an example that delegates Geo3DDrawing-
Bean at the front end and takes charge of the Collabench
workflow to enable collaborative geometric instance edit-
ing. Notably, the dynamically created geometric objects at
runtime during the program execution will inherit the
VisualObject and GLObject classes in the Java drawing
beans. We can therefore add/delete geometric objects or
change their properties in one client, and the relevant
events will be copied to and reproduced in other Geo-
Builder clients in the same collaboration session. The
contents of the text editor, the commands to the develop-
ment environment, the outputs generated step by step by
the algorithm server, and the actions of the camera,
regardless of manual or automatic occurrence,4 are all
synchronized among the replicated GeoBuilder clients.
Built upon this system architecture, GeoBuilder is inserted
in a collaborative integrated programming environment
with visualization support.

Fig. 6 shows the state-vector diagram that results when we
apply the Collabench service to the GeoBuilder system.
Figs. 6a, 6b, 6c, and 6d sequentially demonstrate the
following scenarios: the first GeoBuilder application re-
quests an event queue, the second application joins as a
latecomer, CollabEvent A is broadcast, and the third
application joins the same session. Figs. 6e and 6f show two
significant design issues. In Fig. 6e, CollabEventsB andC are
broadcast following the first-come, first-served policy. When
the Collabench Server broadcasts the collaborative events,
the semantics of these events are ignored. If the events
conflict in the order in which they come, the GeoBuilder
application is responsible for making a reasonable solution.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

Fig. 4. Frame code to develop a geometric algorithm with circle objects

involved. (a) Autogenerated codes. (b), (c), and (d) Finding the smallest

enclosing circle.

4. The camera positioning mechanism is built inside the Java drawing
beans and runs in each individual client process. Different from manual
movement, automatic camera positioning only generates one CollabEvent
as the enabling signal. This design option reduces the queue length of
CollabEventObjects in the Collabench server.

Fig. 5. The infrastructure of the Collabench service. Collabench is
an event-driven framework generating and broadcasting collabora-
tive events for concurrent cooperation. This mechanism extracts
CollabEventObjects from LocalEventObjects and sends them to the
Collabench server (the dashed lines). After receiving the turning-
around event objects (solid lines), the EventProcessor then restores
the state change from collaborative events to target local objects.

For example, the second and the third applications are
moving and deleting the same object in CollabEvents C and
B, respectively. If event B (deleting) is first broadcast and
conducted by all collaborative applications, then event C
(moving) must be ignored after it is transmitted to the
applications later.

Fig. 6f explains what the GeoBuilder application has to
do when making compiling/debugging control commands.
All the GeoBuilder clients launched in a collaboration
session do connect to the algorithm server. To prevent the
clients from reduplicating control commands to the algo-
rithm server, all the online IDE operations for compiling,
debugging, etc., are forked into controller interface events
and service request events. The former, showing the button
press effect and waiting for a response (if necessary), is
wrapped as CollabEvents and is broadcast out; on the other
hand, the latter must consist of unbroadcast local events
that are directed solely to the algorithm server. As Fig. 6f
shows, the service request events update the application
states after making requests, receiving their response, and
accordingly triggering output actions. The state updating
will subsequently be broadcast through collaborative events
such as CollabEvent D to other GeoBuilder applications,
thus reactivating the collaboration synchronously.

4.3 Benefits from Concurrent Collaboration

GeoBuilder is a collaborative algorithm development tool
that supports geometric algorithm visualization in distrib-
uted environments. We have embedded this system into
our OpenCPS knowledge portal and used it as an
implementation platform for teaching a graduate course

on geometric computing and algorithm visualization.
Benefits from the collaboration function are clearly
observed in the classroom. The feature of concurrent
collaboration helps this system reach the highest level of
Naps et al.’s criteria of visualization, i.e., presenting, as
earlier stated in Section 1. The following examples express
how the concurrent collaboration could be used.

During office hours, students can invite Teaching
Assistants (TAs) to join their collaboration session in order
to discuss the problems they have encountered. The
conversation part of this discussion may progress over
the built-in chat room service, other third-party messaging
products, or the traditional telephone line. Importantly, the
TA can operate the GeoBuilder system to help students in
testing their geometric input instances, verifying their
source codes, and even debugging their programs. The
concurrent collaboration mechanism makes the TA’s
extracurricular instructions more efficient than those of
other remote desktop products because 1) GeoBuilder
allows multiple users to join a session, 2) the TA can
assign several tasks to the group of students and supervise
or coedit with them at the same time, and 3) the strongly
coupled teamwork mode naturally encourages students to
understand their partners’ habits of working and thus
fosters an atmosphere of tacit agreement that is particularly
helpful to collaborative learning and mutual advancement
[39]. After a period of practice, some student groups have
thrived in this collaborative development environment.

Interestingly, the above process turns around when we
need the students to demonstrate their exercise to the TAs.
In this case, the TA creates collaboration sessions and
invites students to join. As a regular examination, the TA
may modify the input instances, insert some program
segments for testing, and even ask students to trim the
algorithm or add new functions. By using concurrent
collaboration, the online demonstration is effective and
follows the principles of openness, justice, and fairness.

5 THREE-DIMENSIONAL DRAWING

Here, we introduce the 3D I/O mechanism of Geo3D-
DrawingBean, before we can explain the third feature of
the GeoBuilder system, i.e., automatic camera positioning
for tracking 3D geometric objects. To place 3D objects
using traditional 2D devices is a challenging issue. In this
work, we implemented the concept of a 3D cursor to draw
3D geometric objects.

5.1 Three-Dimensional Object Input Mechanism

Fig. 7a shows the 3D canvas panel in the center, where the
long arrows colored in red, green, and blue stand for the
x-axis, y-axis, and z-axis, respectively. The 3D cursor is
crossed by another three arrows that indicate the directions
of the x-, y-, and z-axes. Two labels at the bottom of the 3D
canvas panel assist the user in operating the 3D cursor and
objects. The camera label displays coordinates of the
camera, whereas the object label displays coordinates of
the focused 3D cursor and objects. All the coordinates are in
double precision in data processing. The yellow coordinate
lines are for the users’ reference to augment the sense of the

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 9

Fig. 6. State-vector diagram illustrating the Collabench service. (a) The
Collabench Server creates an event queue at the first application’s
request. (b) The second application requests to join this collaboration
session. (c) The Collabench Server broadcasts CollabEvent A. (d) The
third application joins the same session. (e) CollabEvents B and C are
broadcast following the first-come, first-served policy. (f) User applica-
tions direct their compiling/debugging requests solely to the algorithm
server—after the commands are conducted, the state updating
information are then broadcast through collaborative events such as
CollabEvent D.

3D cursor position. When creating geometric instances, the
user can put the 3D cursor on a sequence of target positions.

The 3D cursor is inherently a point in 3D. Using this

special point, Geo3DDrawingBean provides a feasible inter-

face for the user to deal with geometric object classes. The

user can operate the mouse and mouse wheel to move the

3D cursor and thus mark a point, draw a line, generate a

polygon, or generate a list of these objects. After a 3D object

is created, the user can select it again with the 3D cursor. The

selected object gets highlighted, and the yellow coordinate

lines will mark out the center of its location. Moving the 3D

cursor can also translate the focused 3D objects, together

with the associated line segments or polygons.

5.2 Three-Dimensional Object Output Observation
Mechanism

Camera positioning is important in a 3D environment

because the geometric objects to be visualized may overlap

in front of the camera view. Herein, we explain our design

of what we call an observation sphere and then present the

manual and automatic methods for camera positioning.

After creating the input instances, the user must highlight

an object or just put the 3D cursor on a final position. The

selected position becomes the center of the observation

sphere when the user executes the program. Fig. 7a

illustrates a global-view window on the top layer, which

shows the observation sphere and pops up along with the

main window of Geo3DDrawingBean. When the camera

moves to the back of the observation sphere, the sphere

becomes transparent to make the camera position visible.
GeoBuilder lays the camera on the observation sphere

aiming at the center of the sphere. Therefore, the camera’s

position is determined by its azimuthal angle, polar angle,

and distance to the center of the observation sphere. All three

of these arguments can be modified during algorithm

visualization, but we need not write a program segment to

figure out the relative positions of observed objects for display

since the JOGL supports the OpenGL Utility (GLU) Library.

The gluLookAtðÞ method of the javax:media:opengl:glu class

helps us set the global information of the camera that updates

the current viewing transformation and drives the Geo3D-

DrawingBean to redraw the geometric objects immediately.
The parameters of the gluLookAtðÞ method include the

position of the camera, the position of the reference point

(i.e., the center of the viewport), and the upward vector of

the camera. In Fig. 7b, we let points C and D be the camera

position and the center of the observation sphere, where �

and � are the azimuthal and polar angles, respectively.

Points C and D are the first two sets of parameters of this

method. As for the rest of the parameters, we calculate the

unit vector Ĥ, which indicates the upward direction of the

camera as follows:

Ĥ ¼ ½�cos�cos�� sin�cos�sin��T :

In other words, we keep the viewpoint of the camera

aiming at the center of the observation sphere. In the

manual mode, the user can use the arrow keys to move the

camera position along the surface of the sphere. While in

automatic positioning mode, the drawing bean itself

smoothly adjusts azimuthal and polar angles to change

the camera position. In both modes, the default radius of the

observation sphere is sufficiently large to cover all the input

objects, and the user can enter the “þ” and “�” keys at any

time to alter the radius for zooming in and out, respectively.

5.3 Automatic Camera Positioning

Considering the situation shown in Fig. 7c, GeoBuilder has

calculated the center of the next object of interest as point P

while the camera is currently located at position C. In

automatic positioning mode, GeoBuilder will move the

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

Fig. 7. Observation sphere and camera position decision. (a) Snapshots of the GeoBuilder IDE, the canvas panel of Geo3DDrawingBean, and the

window of global view. (b) Observation sphere and the parameters of the camera position. (c) The camera will move from the original position C to a

new position to watch the object, centered at P , in the next step. The candidate points A and B are the projections of P onto the observation sphere.

camera from position C to one of the candidate positions A
and B, which are the projections of P onto the observation
sphere. Our decision rules to select the new position between
positions A and B are ordered as follows: 1) if the vector
ðA;P Þ intersects fewer existing objects than ðB;P Þ does, then
choose A; otherwise, choose B, and 2) if we cannot make a
decision by the first rule, the nearest point to the current
positionC will be chosen. The procedure in each iteration for
showing a new object includes the following six steps:

1. Calculate the center of the next object of interest.
2. Decide the next camera position.
3. Move the camera smoothly along the shortest path

on the spherical surface. In doing so, the 3D drawing
bean keeps getting redrawn at an acceptable speed.

4. Display and highlight the object of interest.
5. Allow the user to change the camera position and the

radius of observation sphere manually. The updated
camera position and radius of the sphere are saved,
such as it is done by automatic decision.

6. Turn off the highlights and go into the next iteration
of the geometric algorithm visualization.

We have presented a video of the automatic camera
positioning in the 22nd Annual ACM Symposium on
Computational Geometry (SoCG ’06) [45]. This video shows
how we launch the GeoBuilder on the OpenCPS website in
the first step. Two 3D algorithms about constructing convex
hulls [4] and detecting line segment intersections [33] are
then loaded to conduct the algorithm visualization.

5.4 Demonstrations of Automatic Camera
Positioning

Figs. 8 and 9 show the snapshots when we construct a
convex hull in the manual and automatic positioning modes,
respectively. In Fig. 8, the snapshots are captured with a

camera unmoved in the manual mode. Five subfigures

illustrate in order the generated hull triangles. Observably,

these objects are likely to overlap one another in front of the

camera when we do not move the camera dynamically to

proper positions. Fig. 9 shows the snapshots captured while

constructing the convex hull with automatic camera posi-

tioning. In this mode, the camera is automatically moved to

visualize the algorithm step by step. A comparison between

these two figures exposes that automatic camera positioning

provides a clearer effect in visualization procedure.
Geo3DDrawingBean is also suited for line-segment-

associated algorithms. Fig. 10 demonstrates the animation

in detecting line segment intersections in a 3D environment.

This algorithm repeats focusing on one line segment and

sequentially examining potential intersections with other

line segments. During this procedure, the next objects of

interest are alternately the tested line segment and the

nearest point thereon toward the focused line segment. The

intersection point can thereby be clearly observed, if it

actually exists.
We are finding the optimum sequence of camera

positions in this work; however, moving the camera

automatically is not always powerful enough to present

the algorithm states. In certain situations, the changes to

the scene occur in many different places. If there is only

one camera, the camera will keep moving and the user will

lose track of where things are. In future work, we will

provide multiple views of visualization. Each view

window will have its own camera, and the user can

dynamically determine the number of views for algorithm

visualization. We continue the idea of automatic camera

positioning in this work, but only the camera that is closest

to the next object of interest will move to the new position.

This sort of design will reduce disorienting motion.

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 11

Fig. 8. Snapshots captured while constructing the convex hull. This procedure is visualized with a camera unmoved in the manual mode; seven input

points from A to G sequentially locate farther away from the viewport. The five subfigures illustrate in order the triangles generated. (a) �CDE.

(b) �BCD and �BCE. (c) �ABD and �ABE. (d) �ACD. (e) �CDF . Notably, the 3D objects may overlap one another in front of the camera.

Without moving the camera dynamically to proper positions, we cannot observe all changes of the algorithm states.

6 CONCLUSION

In this paper, we have presented a geometric algorithm

visualization system, GeoBuilder, which features Java’s

portability, concurrent collaboration, and the dynamic

decision of camera position for 3D geometric algorithm

visualization. From the viewpoint of Naps et al’s criteria, the

GeoBuilder system can reach the highest level of learner

engagement, i.e., the presenting level. This achievement

mainly benefits from the system portability, allowing the

system itself to be plugged into a knowledge portal. We have

explained how to embed GeoBuilder into our previously

developed OpenCPS portal. The users can exchange com-

ments after they construct their own programs. Furthermore,

the collaboration capability also provides a useful channel for

the users to demonstrate their new ideas and findings in an

online manner.
A good algorithm visualization system must address

various features meeting the users’ need, and its

development requires implementation of a variety of

modules integrated together. We have proposed a camera
positioning module, in addition to addressing the system

portability issue and collaboration capability, because

animation effect is always the kernel issue of an algorithm

visualization system, and other considerations such as

platform independence and capabilities to allow teamwork

are also important. Although our camera positioning rule is

simple, it applies well to automatically track 3D geometric
objects, as shown by two examples of 3D algorithms, i.e.,

constructing convex hulls [4] and detecting line segment

intersections [33].

6.1 Engagement in a Collaborative Learning
Environment

Felder in 1993 indicated that students have their own
learning styles. These styles can be categorized into eight

modes, as shown in Table 2. There are no correct but only

preferred learning styles; furthermore, students may prefer

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

Fig. 9. Snapshots captured while constructing the convex hull with automatic camera positioning. The camera in this mode is automatically moved to

visualize the algorithm step by step. In comparison with Fig. 8, the corresponding subfigures from (a) to (e) show the runtime states more clearly in

generating hull triangles.

Fig. 10. GeoBuilder can also visualize line-segment-associated algorithms. Subfigures demonstrate the animation in detecting line segment

intersections in a 3D environment.

one side of a dimension in some subjects and the opposite
side in other subjects [21]. Traditional coursework puts
particular stress on the dimensions of learning on the left
side, i.e., students are taught to think about the concepts
on the lectures step by step. Felder’s learning style of
information advises the teachers to reach all the different
learning dimensions in a course. To accommodate all the
learning styles, teachers can assign hands-on exercises,
review the course with a global picture, and even use
some visualization tools. The combination of GeoBuilder
and the OpenCPS portal supports a large set of these
facilities. Students can develop their programs for submis-
sion and visualize their execution. Presentations following
the KM policy of the OpenCPS build a global view of the
problems and solutions. The overall system is an effective
supplementary tool that is promising for academic
research and in educational settings.

6.2 Discussion of the System Effectiveness

The effectiveness of an algorithm animation system has
been studied and analyzed in the field of computer science
education. Stasko et al. conducted an empirical study of a
priority queue algorithm animation and found that algo-
rithm animation was not necessarily a better way to teach
an algorithm [41]. Nevertheless, Lahtinen et al. indicated
that all the user groups, teaching materials, and classroom
instructions can affect the effectiveness of an algorithm
visualization system [22], [23]. Developed for geometric
algorithm visualization, the GeoBuilder system is especially
useful in debugging and education since geometric objects
are naturally suitable for users to see the shapes rather than
to see the numbers on a printout. The 2-opt algorithm to
solve the traveling-salesman problem and the quick-hull
algorithm to find a convex hull are examples for which we
can clearly display the next operations running in the
algorithms, i.e., detecting a path intersection and inserting a
new edge, respectively. The visualization interface can not
only help the users to verify their idea but also teach the
students to understand the pseudocodes of the algorithms.

The performance issues we have presented in this work
involve system portability, concurrent collaboration, and
improvement of animation effect. The discussion with
regard to these issues has been given in the relevant
sections. From the viewpoint of system effectiveness, we
make the following conclusions: 1) Using the Java’s
portability, we have demonstrated the integration of our
system and a knowledge portal. This integration enhances
the application of a visualization system. 2) The concurrent
collaboration function is now helpful for TAs to use to
guide and test the students. Some students also enjoy this
collaborative development environment. We intend to

extend this mechanism to a larger scale program develop-

ment. 3) We have proposed a method for positioning the

camera properly to visualize the geometric objects, but

moving the camera automatically may not always work in

certain cases that the changes to the scene occur on many

different places. To solve this problem, our system will

support multiple views of visualization in the future.

6.3 Future Work

It is difficult to have an algorithm visualization system that
meets the demand of the user in every aspect. Although
GeoBuilder is equipped with a powerful drawing engine for
use in a 3D environment, there is room for improvement
and a lot more work to enhance its capabilities, including
but not limited to the following:

1. Consider heuristic methods developed in artificial
intelligence and computer vision to obtain more
robust decision rules for automatic camera
positioning.

2. Combine other multimedia techniques and auxiliary
I/O devices to improve the effectiveness of algo-
rithm visualization and facilitate the application in
heterogeneous platforms.

3. Follow the open standard XML-enabled 3D file
format, the X3D (previously called VRML200x), to
enable real-time communication of 3D data across all
applications and network applications.

4. Create multiple views of visualization and extend
the application of 3D I/O mechanisms to the
research of Virtual Reality.

5. Provide more complex 3D geometric object types
for use in Computer-Aided Design (CAD) and
Computer-Aided Manufacturing (CAM).

6. Develop high-level collaboration scenarios and
environments for use in collaborative learning.

ACKNOWLEDGMENTS

This work was supported in part by the National Science

Council under Grants NSC96-2221-E-001-016-MY3 and

NSC-96-2752-E-002-005-PAE. Jyh-Da Wei was with the

Institute of Information Science, Academia Sinica, Taiwan,

R.O.C.

REFERENCES

[1] A. Aurum, P. Parkin, and K. Cox, “Knowledge Management in
Software Engineering Education,” Proc. Fourth IEEE Int’l Conf.
Advanced Learning Technologies (ICALT ’04), pp. 370-374, 2004.

[2] W. Bangerth, R. Hartmann, and G. Kanschat, DEAL.II Differ-
ential Equations Analysis Library, Technical Reference, http://
www.dealii.org, 2008.

[3] W. Bangerth, R. Hartmann, and G. Kanschat, “Deal.II—A General-
Purpose Object-Oriented Finite Element Library,” ACM Trans.
Math. Software, vol. 33, no. 4, p. 24, 2007.

[4] C.B. Barber, D.P. Dobkin, and H. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Trans. Math. Software, vol. 22,
no. 4, pp. 469-483, 1996.

[5] W.H. Bares and J.C. Lester, “Intelligent Multi-Shot Visualization
Interfaces for Dynamic 3D Worlds,” Proc. Fourth Int’l Conf.
Intelligent User Interfaces (IUI ’99), pp. 119-126, 1999.

[6] M. Bäsken and S. Näher, “GeoWin—A Generic Tool for Interactive
Visualization of Geometric Algorithms,” Software Visualization. pp.
88-100, Springer, 2002.

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 13

TABLE 2
Felder’s Learning Style

[7] M.H. Brown and M.A. Najork, “Algorithm Animation Using 3D
Interactive Graphics,” Proc. Sixth Ann. ACM Symp. User Interface
Software and Technology (UIST ’93), pp. 93-100, 1993.

[8] M.H. Brown and R. Sedgewick, “A System for Algorithm
Animation,” Proc. ACM SIGGRAPH ’84, pp. 177-186, 1984.

[9] G. Cattaneo, P. Faruolo, U.F. Petrillo, and G.F. Italiano, “JIVE:
Java Interactive Software Visualization Environment,” Proc.
IEEE Symp. Visual Languages and Human Centric Computing
(VLHCC ’04), pp. 41-43, 2004.

[10] P. D’Ambra, M. Danelutto, D. di Serafino, and M. Lapegna,
“Advanced Environments for Parallel and Distributed Appli-
cations: A View of Current Status,” Parallel Computing, vol. 28,
no. 12, pp. 1637-1662, 2002.

[11] S. Diehl, “Software Visualization,” Proc. 27th Int’l Conf. Software
Eng. (ICSE ’05), pp. 718-719, 2005.

[12] H.P. Dommel and J.J. Garcia-Luna-Aceves, “Floor Control for
Multimedia Conferencing and Collaboration,” Multimedia Systems,
vol. 5, no. 1, pp. 23-38, 1997.

[13] S. Fleishman, D. Cohen-Or, and D. Lischinski, “Automatic Camera
Placement for Image-Based Modeling,” Computer Graphics Forum,
vol. 19, no. 2, pp. 101-110, 2000.

[14] J. Fontana, “Collaborative Software Ages Slowly,” Network World
Fusion, http://www.networkworld.com/, 2003.

[15] A. Hausner and D.P. Dokkin, “GAWAIN: Visualizing Geometric
Algorithms with Web-Based Animation,” Proc. 14th Ann. Symp.
Computational Geometry (SCG ’98), pp. 411-412, 1998.

[16] T.D. Hendrix, J.H. Cross II, and L.A. Barowski, “An Extensible
Framework for Providing Dynamic Data Structure Visualizations
in a Lightweight IDE,” Proc. ACM SIGCSE ’04, pp. 387-391, 2004.

[17] S. Hupfer, L.-T. Cheng, S. Ross, and J. Patterson, “Introducing
Collaboration into an Application Development Environment,”
Proc. ACM Conf. Computer Supported Cooperative Work (CSCW ’04),
vol. 6, pp. 21-24, 2004.

[18] A. Kerren and J.T. Stasko, Algorithm Animation—Introduction,
chapter 1, pp. 1-15, Springer, 2002.

[19] L. Kettner and S. Näher, “Two Computational Geometry
Libraries: LEDA and CGAL,” Handbook of Discrete and Computa-
tional Geometry, second ed. J.E. Goodman and J. O’Rourke, eds.,
chapter 64, pp. 1435-1463, CRC Press, 2004.

[20] M. Knepley, R. Katz, and B. Smith, “Developing a Geodynamics
Simulator with PETSc,” Numerical Solution of Partial Differential
Equations on Parallel Computers, A. Bruaset and A. Tveito, eds.,
pp. 413-438, Springer, 2006.

[21] M. Krebs, T. Lauer, T. Ottmann, and S. Trahasch, “Student-Built
Algorithm Visualizations for Assessment: Flexible Generation,
Feedback and Grading,” Proc. ACM SIGCSE ’05, pp. 281-285, 2005.

[22] E. Lahtinen and T. Ahoniemi, “Annotations for Defining Inter-
active Instructions to Interpreter Based Program Visualization
Tools,” Electronic Notes in Theoretical Computer Science, vol. 178,
pp. 121-128, 2007.

[23] E. Lahtinen, H.-M. Jarvinen, and S. Melakoski-Vistbacka, “Target-
ing Program Visualizations,” Proc. ACM SIGCSE ’07, pp. 256-260,
2007.

[24] D. Lee, C.F. Shen, and S.M. Sheu, “Geosheet: A Distributed
Visualization Tool for Geometric Algorithms,” Int’l J. Computa-
tional Geometry and Applications, vol. 8, no. 2, pp. 119-155, 1998.

[25] D.T. Lee, G.C. Lee, and Y.W. Huang, “Knowledge Management
for Computational Problem Solving,” J. Universal Computer Science,
vol. 9, no. 6, pp. 563-570, 2003.

[26] L.H. Lin, D.T. Lee, and K.F. Aoki, “DAViD: A Distributed
Algorithm Visualization and Debugging System for Geometric
Computing in 3D,” J. Three Dimensional Images, vol. 15, no. 1,
pp. 67-73, 2001.

[27] Y.L. Lin, J.D. Wei, G.C. Lee, and D.T. Lee, “A Visualization Tool
for the Sitemap of a Knowledge Portal and the Concept Map of
Group Knowledge,” Proc. Fifth Int’l Conf. Knowledge Management
(I-KNOW ’05), pp. 179-186, 2005.

[28] S. Markus, S. Weerawarana, E.N. Houstis, and J.R. Rice, “Scientific
Computing via the Web: The Net Pellpack PSE Server,” IEEE
Computational Science and Eng., vol. 4, no. 3, pp. 43-51, 1997.

[29] M. Mu, “PDE.Mart: A Network-Based Problem-Solving Envir-
onment for PDEs,” ACM Trans. Math. Software, vol. 31, no. 4,
pp. 508-531, 2005.

[30] M.A. Najork, “Web-Based Algorithm Animation,” Proc. 38th
Design Automation Conf. (DAC ’01), pp. 506-511, 2001.

[31] T. Naps, “Exploring the Role of Visualization and Engagement in
Computer Science Education,” ACM SIGCSE Bull., vol. 35, no. 2,
2003.

[32] T.M. Nina Amenta, S. Levy, and M. Phillips, “Geomview: A
System for Geometric Visualization,” Proc. 11th Ann. Symp.
Computational Geometry (SCG ’95), pp. 412-413, 1995.

[33] J. O’Rourke, Computational Geometry in C, second ed. Cambridge
Univ. Press, 1998.

[34] P.S. Pacheco, Parallel Programming with MPI. Morgan Kaufmann,
1996.

[35] T. Panas, R. Lincke, and W. Lowe, “Online-Configuration of
Software Visualizations with Vizz3D,” Proc. ACM Symp. Software
Visualization (SOFTVIS ’05), pp. 173-182, 2005.

[36] M. Pendergast, Groupgraphics: Prototype to Product. McGraw-Hill,
pp. 209-227, 1995.

[37] M. Roseman and S. Greenberg, “GroupKit: A Groupware Toolkit
for Building Real-Time Conferencing Applications,” Proc. ACM
Conf. Computer Supported Cooperative Work (CSCW ’92), pp. 43-50,
1992.

[38] M. Roseman and S. Greenberg, “Building Real-Time Groupware
with GroupKit, a Groupware Toolkit,” ACM Trans. Computer-
Human Interaction, vol. 3, no. 1, pp. 66-106, 1996.

[39] N. Rummel, H. Spada, and S. Hauser, “Learning to Collaborate in
a Computer-Mediated Setting: Observing a Model Beats Learning
from Being Scripted,” Proc. Seventh Int’l Conf. Learning Sciences
(ICLS ’06), pp. 634-640, 2006.

[40] M. Shneerson and A. Ta, “GASP-II—A Geometric Algorithm
Animation System for an Electronic Classroom,” Proc. 14th Ann.
Symp. Computational Geometry (SCG ’98), pp. 405-406, 1998.

[41] J. Stasko, A. Badre, and C. Lewis, “Do Algorithm Animations
Assist Learning?: An Empirical Study and Analysis,” Proc. IFIP
TC13 Int’l Conf. Human-Computer Interaction and ACM Conf. Human
Factors in Computing Systems (INTERCHI ’93), pp. 61-66, 1993.

[42] J.T. Stasko and J.F. Wehrli, “Three-Dimensional Computation
Visualization,” Proc. IEEE Symp. Visual Languages, pp. 100-107, 1993.

[43] C. Sun and D. Chen, “Consistency Maintenance in Real-Time
Collaborative Graphics Editing Systems,” ACM Trans. Computer-
Human Interaction, vol. 9, no. 1, pp. 1-41, 2002.

[44] A. Tal and D. Dobkin, “Visualization of Geometric Algorithms,”
IEEE Trans. Visualization and Computer Graphics, vol. 1, no. 2,
pp. 194-204, 1995.

[45] M.-H. Tsai, J.-D. Wei, J.-H. Huang, and D.T. Lee, “A Portable
Geometric Algorithm Visualization System with Dynamic Camera
Positioning for Tracking 3D Objects,” Proc. 22nd Ann. Symp.
Computational Geometry (SCG ’06), pp. 479-480, 2006.

[46] M. Zancanaro, O. Stock, and I. Alfaro, “Using Cinematic
Techniques in a Multimedia Museum Guide,” Proc. Int’l Conf.
Museums and the Web, 2003.

[47] Algorithmic Solutions Software GmbH LEDA, http://
www.mpi-sb.mpg.de/LEDA/, 2008.

[48] Java Web Start Technology, http://java.sun.com/products/
javawebstart/, 2008.

[49] JOGL API Project, https://jogl.dev.java.net/, 2008.
[50] Manual of GeoLEDA Library, http://webcollab.iis.sinica.edu.tw/

Components/GeoBuilder/GeoLedaManual/index.html, 2006.
[51] OpenCPS Website, http://www.opencps.org/, 2008.
[52] Plone Foundation, http://plone.org/, 2008.
[53] ShareTone Project, http://webcollab.iis.sinica.edu.tw/

SHARETONE, http://www.sharetone.org/, 2006.
[54] WebCollab—Collabench’s Home, http://webcollab.iis.sinica.

edu.tw/Components/Collabench, 2006.
[55] Zope Corporation, http://www.zope.org/Documentation/, 2008.

Jyh-Da Wei received the PhD degree in
computer and information science from the
National Chiao-Tung University in 2002. Since
then, he worked as a postdoctoral research
fellow in the Institute of Information Science,
Academia Sinica, Taiwan, for the military ser-
vices for four years. Then, he joined the faculty
of Chang Gung University, Taiwan, in August
2007, where he is currently an assistant profes-
sor in the Department of Computer Science and

Information Engineering. His research interests include knowledge
management, scientific visualization, intelligent multiagent system, and
neuro-fuzzy control.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 15, NO. 2, MARCH-APRIL 2009

Ming-Hung Tsai received the bachelor’s de-
gree, majoring in applied math with minoring in
computer science, from National Tsing Hua
University, in 2004 and the MS degree in
computer science and information engineering
from the National Taiwan University in 2006. He
has been a research assistant in the Institute of
Information Science, Academia Sinica, Taipei,
since January 2007. His research interests
include software visualization, virtual camera

planning, and multitouch application.

Gen-Cher Lee is currently a PhD student in the
Department of Computer Science and Informa-
tion Engineering, National Taiwan University.
He has also been a research assistant in the
Institute of Information Science, Academia
Sinica, Taiwan, since 2001. His research inter-
ests include collaborative systems, digital con-
tent management systems, and knowledge
management systems.

Jeng-Hung Huang received the master’s de-
gree in computer and information science from
the National Chung Cheng University. From
2001 to 2006, he was a research assistant in
the Institute of Information Science, Academia
Sinica, Taiwan. He has been an associate
researcher in the Telecommunication Labora-
tories, Chunghwa Telecom Co., Ltd., since
September 2006.

Der-Tsai Lee has been with the Institute of
Information Science, Academia Sinica, Taiwan,
since July 1, 1998, where he is currently a
distinguished research fellow and the director.
Prior to joining the Institute, he was a professor
in the Department of Electrical Engineering and
Computer Science, Northwestern University,
where he has worked since 1978. He is also
a professor of computer science in the Depart-
ment of Computer Science and Information

Engineering and the Graduate Institute of Electronics Engineering,
National Taiwan University, and a chair professor at the National
Taiwan University of Science and Technology and at the National
Chung Hsing University. He has a joint appointment with the
Genomics Research Center and the Research Center for Information
Technology Innovation, Academia Sinica. He is currently the acting
director of the Research Center for Information Technology Innovation.
He is a fellow of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

WEI ET AL.: GEOBUILDER: A GEOMETRIC ALGORITHM VISUALIZATION AND DEBUGGING SYSTEM FOR 2D AND 3D GEOMETRIC... 15

