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Abstract—Cloud storage services enable individuals and organizations to outsource data storage to remote servers. Cloud storage

providers generally adopt data deduplication, a technique for eliminating redundant data by keeping only a single copy of a file, thus

saving a considerable amount of storage and bandwidth. However, an attacker can abuse deduplication protocols to steal information.

For example, an attacker can perform the duplicate check to verify whether a file (e.g., a pay slip, with a specific name and salary

amount) is already stored (by someone else), hence breaching the user privacy. In this paper, we propose ZEUS (zero-knowledge

deduplication response) framework. We develop ZEUS and ZEUSþ, two privacy-aware deduplication protocols: ZEUS provides

weaker privacy guarantees while being more efficient in the communication cost, while ZEUSþ guarantees stronger privacy properties,

at an increased communication cost. To the best of our knowledge, ZEUS is the first solution which addresses two-side privacy by

neither using any extra hardware nor depending on heuristically chosen parameters used by the existing solutions, thus reducing both

cost and complexity of the cloud storage. In summary, through the evaluation on real datasets and comparison to existing solutions, our

proposed framework demonstrates its capability of eliminating data deduplication-based side channel and at the same time keeping the

deduplication benefits.

Index Terms—Cloud storage, side channel, data deduplication, privacy
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1 INTRODUCTION

IN recent years, the amount of data stored at the cloud
storage (e.g., Dropbox [6]) is increasing rapidly due to the

prevalence of data outsourcing. In order to be cost-effective
and to reduce the bandwidth consumption, cloud storages
use cross-user client-side data deduplication [25], [31] which
eliminates the need to store redundant copies by keeping
only a single copy of the data at the cloud storage (see
Section 2.1). More specifically, when a user wants to upload
a file, (s)he sends a duplicate check request (dc request) to the
cloud storage. Upon receiving the request, the cloud storage
determines whether it has a copy of the requested file in its
storage. If a copy is found, it sends a particular duplicate
check response (dc response) that indicates the existence of
the file, and adds a reference to the existing file, hence the
explicit transmission of file from the user to the cloud stor-
age is no longer needed; otherwise, the user uploads entire
file to the cloud storage.

Despite the benefits of storage and bandwidth savings,
the above signaling behavior, where the cloud sends a dc
response indicating the file existence status to the user
before the explicit file uploading, creates a side channel for
privacy leakage. In particular, an attacker can identify the
presence of a specific file by partly following the uploading
procedures and checking whether the deduplication occurs.
For example, an attacker can upload several versions of a
pay slip of a particular organization, with a specific name
and different salary amounts to check which version of the
pay slip gets deduplicated. Such a limited privacy exposes
from snooping the file existence status actually leads to vari-
ous security and privacy threats, such as confirmation-of-a-
file [15], learn-the-remaining [15], related-files attack [26],
and covert channel [15] (see Section 2.2).

The root cause of the deduplication-based side channel
can be attributed to the deterministic relation between the
dc request and dc response. More specifically, the cloud
deterministically replies a positive dc response to deactivate
the explicit file uploading upon finding the dc requested file
in its storage. Based on the above observation, a straightfor-
ward strategy for the side channel defense is to randomize
the duplicate check procedures. Unfortunately, only very
few countermeasures [14], [15], [20], [26], [30] have been
deployed in the cloud storage system or been proposed in
the literature.

Contribution. We propose zero-knowledge deduplication
response (ZEUS) as a side channel defense based on the
framework of zero-knowledge response for cross-user client-
side deduplication which achieves the two-side privacy
with limited extra communications based on a weak
assumption on user behavior. Moreover, we also propose
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the advanced countermeasure, ZEUSþ, by the combined
use of ZEUS and the random threshold solution [15] to
achieve a stronger privacy guarantee with slightly increased
communications. In general, in contrast to the prior meth-
ods, ZEUS and ZEUSþ possess the following advantages.

� (A1) Parameterless Configuration. Existing solutions
[15], [26] usually involve parameters to be heuristi-
cally chosen. The most prominent feature of ZEUS is
that it does not have any parameter to be manually
selected, thus avoiding the difficulty in having a
proper security-performance trade-off in real world
implementation.

� (A2) No Independent Server. ZEUS and ZEUSþ do not
assume the use of extra hardware while existing sol-
utions require the independent gateway/server [18].
In essence, the effectiveness of ZEUS and ZEUSþ

relies solely on how the cloud react to the dc request.
� (A3) Stronger Privacy. Compared to existing solutions

that can only have inexistence privacy, ZEUS and
ZEUSþ achieve a much stronger privacy notion, two-
side privacy (see Section 3.3).

A comparison table about privacy and assumptions
made by different side channel defenses is shown in Table 1.
More discussions on the comparison can be found in
Section 6.

Organization. The rest of the paper is organized as fol-
lows. We first review the related work in Section 2. The sys-
tem model is introduced in Section 3. We present our
proposed ZEUS and ZEUSþ solutions in Section 4, followed
by the real dataset evaluation in Section 5. Comparison and
Discussion are presented in Section 6. Afterwards, we con-
clude our research in Section 7.

2 BACKGROUND AND RELATED WORKS

Here, we first describe how cross-user client-side data dedu-
plication works (Section 2.1), and the corresponding privacy
threats (Section 2.2). Then, we present an overview of the
state-of-the-art solutions and their weaknesses (Section 2.3).

2.1 Data Deduplication

Data deduplication is a very popular technique adopted by
the cloud storage to eliminate the need to store redundant
data by creating logical pointer to the single instance of data
piece, whenever the cloud storage receives identical files.
The implementation of data deduplication can have

different options, depending on where the deduplication
occurs, the scope of the data that deduplication applies, and
the deduplication granularity. More specifically, the cloud
storage in server-side deduplication determines the need of an
additional copy only after receiving the entire file, whereas
the user in client-side deduplication pro-actively performs the
duplicate check via the interaction with the cloud storage.
Client-side data deduplication is featured by the use of dc
request and dc response, and is illustrated in Fig. 1, where the
dc request (e.g., “Is file f in cloud?”) and dc response (e.g.,
“Yes/No”) are used to check whether the user needs to
upload the entire data. Note that the duplicate check refers to
the procedures of exchanging dc request and dc response.
In practice, the dc request is usually implemented by the
cryptographic hash (e.g., SHA-256) of the data. Due to
the collision avoidance of the cryptographic hash function,
the user may detect the existence status of f by only examin-
ing the existence status of the hash in the cloud.

On the other hand, in single-user (or intra-user) deduplica-
tion, the deduplication takes place only among the data
uploaded by the same user, while in cross-user (or inter-user)
deduplication, only a single copy of the data will be stored,
irrespective of the ownership of data. In other words, virtu-
ally all of the users in cross-user deduplication share a sin-
gle disk in the cloud storage.

In addition, the deduplication can apply to either files or
chunks, depending on the deduplication granularity. For
example,Dropbox [6] performs the chunk-level deduplication
with 4 MB chunk size; i.e., each file is partitioned to chunks of
fixed-size and the deduplication works over chunks. More-
over, the chunk size can also be varied [32]; the use of rolling
hash (e.g., Rabin fingerprint [23]) proves to be useful in identi-
fying the commonparts of two similar contents.

As the above three notions of deduplication are orthogo-
nal to each other, throughout this paper, unless stated other-
wise, the cloud performs cross-user client-side fixed-size chunk-
level data deduplication, seeking the greatest opportunity to
deduplicate the data and therefore reaching the highest
potential of storage and bandwidth savings.

2.2 Side Channel in Deduplicated Cloud Storage

The deduplication signal (i.e., dc response), by which the
user detects whether a chunk is already in the cloud, creates
a side channel. Such a side channel is first formally pre-
sented in [15] and may lead to the following privacy leakage
and abuses.

� Confirmation-of-a-File. The confirmation-of-a-file [11]
is originally presented in the context of convergent
encryption [8] but can be naturally applied to our
context. More precisely, with the goal of detecting
the existence status of a specific chunk, an attacker
verifies his/her suspect by performing the duplicate
check to see whether the deduplication occurs.

TABLE 1
Comparisons Between Different Side Channel Defenses
(@: Has this Property, �: Does not have this Property)

No Parameter No Indep. Server Two-Side Privacy

Mozy [22] � @ �
Harnik et al. [15] � @ �
Lee and Choi [20] � @ �
Heen et al. [14] @ � @
Wang et al. [30] � @ �
Shin and Kim [26] @ � @
Armknecht et al. [1] � @ �
ZEUS (this paper) @ @ ~
ZEUSþ (this paper) � @ @

Fig. 1. Client-side data deduplication.
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The confirmation-of-a-file can be seen as the most
straightforward privacy leakage due to the side
channel.

� Learn-the-Remaining-Information. Learn-the-remain-
ing-information [15] is a brute force-like strategy, by
which the attacker exhaustively generates all possi-
ble unknown pieces and do the duplicate check. The
positive (negative) dc response (i.e., the occurrence
of deduplication) indicates the existence (inexis-
tence) of the corresponding chunk. Here, due to the
low min-entropy nature (i.e., high predictability) [17]
of the user content, learn-the-remaining-information
strategy can be thought of as a repeated invocation
of confirmation-of-a-file to learn the sensitive infor-
mation of victim.

� Related-chunks Attack. Related-chunks attack [26]
can also be seen as an enhanced version of the
confirmation-of-a-file. More precisely, with the fact
that all of the individual chunks from a particular
file are actually dependent on each other, the exis-
tence of a given proportion of chunks of the file serve
as an evidence of file existence. In this way, related-
chunks can claim the file existence in a more efficient
and more effective manner.

� Covert Channel. Covert channel is a steganographic
channel, by which the information is exchanged by
two parties that are not allowed to communicate. By
using the side channel here, attackers can create a
covert channel to bypass the censorship and communi-
cate with each other [13], [15]. For example, one party
selectively uploads or deletes a predefined chunk c.
Another performs the duplicate check on c and checks
the dc response to detect the absence or presence of c,
which are decoded as bit 0 or 1, respectively.

We particularly note that the side channel here is power-
ful but would be easy to be exploited; any attacker with the
privileges of only a normal cloud storage user can abuse the
dc response as a side channel.

2.3 State-of-the-Art Solutions and Their
Weaknesses

Harnik et al. [15] first identified the risk of side channel in
deduplicated cloud storage and proposed to randomize the
deduplication threshold for each chunk. The deduplication
threshold is defined as the number of copies needed for trig-
gering the deduplication; a popular choice is 1 for all
chunks, which means that the subsequent uploadings of the
same chunk will be deduplicated if a copy can be found.
Harnik et al. made an observation that the deduplication-
based side channel is due to the publicly known and fixed
deduplication threshold. More precisely, when seeing the

positive (negative) dc response1, the attacker knows that
deduplication is (not) triggered and chunk is (not) in the
storage. To obfuscate the dc response, Harnik et al. [15] pro-
posed to use random threshold (RT) on a per-chunk basis.
In RT, the per-chunk deduplication thresholds are kept
secret. As a consequence, even when seeing the negative dc
response, it might be the case where a couple of copies have
been in the storage but the number of copies still does not

reach the threshold. In practice, a deduplication threshold ti
for the chunk ci is selected uniformly at random from ½1; B�,
where B is a predefined upper bound of deduplication
threshold. Despite the simplicity of RT, it has many disad-
vantages. For example, the choice of B remains unclear,
despite an obvious trade-off between the overhead savings
and privacy (e.g., larger B implies better privacy). Most
importantly, in RT, when the attacker sees a positive dc
response, (s)he can be fully confident of chunk existence,
hence breaching the existence privacy (see Section 3.3).

Different implementations of RT actually have the subtle
performance and privacy differences. The subtlety mainly
lies in how a deduplication threshold ti for chunk ci is deter-
mined. For example, Harnik et al. [15] proposed to select ti for
chunk ci uniformly at random beforehand. Lee and Choi [20]
determined ti by making a random choice at each upload and
claimed to have better privacy than Harnik et al.’s method.
Nevertheless, Armknecht et al. [1] stated that the methods
in [15] and in [20] are equivalent in terms of the privacy
guarantee. Instead of uniform sampling over ½1; B�, Wang
et al. [30] determined the deduplication thresholds based on a
game-theoretic approach. In particular, Wang et al. modeled
the deduplication as a dynamic non-cooperative game
between the attacker and cloud. The attacker is aimed to learn
the cloud’s payoff through repeated game iterations. Wang
et al. claimed to havemore efficiency but remain the same pri-
vacy level if game-theoretic deduplication thresholds are
used. Nevertheless, the payoff matrix in [30] is fixed and
cannot be adaptedwith the attacker’s alternative strategies. In
fact, Armknecht et al. [1] recently proved that deduplication
thresholds uniformly sampled from ½1; B� achieve the optimal
defense for the natural privacy measure. Unfortunately, all of
the proposals here fall in the category of RT and therefore
share the sameweaknesses.

Another approach for the side channel defense is to use
an extra hardware to obfuscate the network traffic. The
rationale is that if a proxy, sitting between the user and
cloud, able to cache dc requests, it can obfuscate the net-
work traffic by manipulating the order of transmitting data.
For example, Heen et al. [14] assumed that each user will be
equipped with a gateway from the cloud storage provider.
In this sense, the gateway can break the deterministic rela-
tion between dc requests and dc responses by the late for-
warding policy. On the other hand, Shin and Kim [26]
assumed an independent trusted server that can perform
the similar task and achieve the differentially private dedu-
plicate check. The downside of the solutions in this category
is the use of extra hardware. Though Heen et al. claimed the
practicality by showing the real applications such as Neu-
fGiga and BT Digital Vault, their gateway setting is still not
a popular implementation choice, restricting their applica-
tions. The use of the method in [26] also completely sacrifi-
ces the bandwidth saving at the user side.

Mozy [22] conducted an alternative approach; its belief is
that only small-size files contain sensitive information and
their existence status matters. In this sense, given a thresh-
old for the file size for the deduplication, the deduplication
functions normally if the size of incoming file is larger than
the threshold and the deduplication is deactivated other-
wise. Nonetheless, the biggest challenge in this method is
also the choice of the threshold for the file size.1. Positive (negative) dc response means a copy is (not) found.
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3 SYSTEM MODEL

In this section, we discuss the Network Model and the
Threat Model that we will consider in this paper.

3.1 Network Model

We consider a cloud storage, which employs cross-user cli-
ent-side fixed-sized chunk-level data deduplication. As
mentioned in Section 2.1, client-side deduplication is fea-
tured by the check-first-data-later framework. In particular,
the file to be uploaded is partitioned to chunks c of bit
length f. The user performs the duplicate check on c, consist-
ing of an exchange of dc request and dc response. More pre-
cisely, the dc request hðcÞ, where hð�Þ is a cryptographic
hash function (e.g., SHA-256), is used to query the existence
status of c. The user uploads the chunks only when receiv-
ing negative dc responses (i.e., a deduplication signal indi-
cating the chunk inexistence).

Formally, we define the one-chunk, one-round interaction
duplicate check protocol as follows.

Definition 1. A one-chunk, one-round-interaction duplicate
check protocol is defined as fðc; auxÞ, where c is the chunk that
the uploading user has interest to know the existence status and
aux denotes the auxiliary information required for duplicate
check. In particular, the arguments c and aux of fð�Þ can be
seen as materials uploaded by the user while fðc; auxÞ denotes
the materials responded by the cloud.

In general, the duplicate check protocol can be designed
such that the user performs multi-round interactions with
the cloud to determine whether the existence status of
multiple chunks. However, to ease the notational complex-
ity, we only present the definition of one-chunk, one-round-
interaction duplicate check protocol. The above definition
can be easily extended to the case of multi-chunk, multi-
round-interaction duplicate check protocol. One can also
see that, in essence, dc request consists of both c and aux,
and dc response refers to fðc; auxÞ, from Definition 1 point
of view.

3.2 Threat Model

For an arbitrarily chosen chunk c, the user (including
attacker) does not know its existence status, except that the
user uploads c previously. More specifically, if p denotes
the probability that an arbitrary chunk is in the cloud, then
p is assumed to be very small2. By using side channel attack,
the attacker aims to learn the existence status of a given
chunk c. In other words, the objective of the attacker is to
know whether there is already a copy of c in the cloud stor-
age. Under the conventional deduplication framework, to

determine whether c is stored in a cloud server, the attacker
with the knowledge of c also performs duplicate check. If
the corresponding dc response is positive (negative), then
the attacker would conclude the (non)existence of chunk c
in the storage system.

The attacker does not have any obligation to complete the
uploading and thus can abruptly abort the uploading at any
time instant. Furthermore, we consider a Sybil attacker. In
particular, due to the easy-to-register nature of the current
commercial cloud storage3, the Sybil attacker is able to
create a number of legitimate accounts (termed as Sybil
accounts) of the cloud storage, and to repeatedly perform
independent deduplication checks on chunks. The Sybil
accounts also can freely choose to obey or disobey the file
uploading procedure at any time instant. We do not assume
the ratio of Sybil accounts that can be created by the
attacker. In other words, the privacy of our proposed solu-
tions (see Sections 4.2 and 4.3) is independent of the ratio of
Sybil accounts. Thus, even in the extreme case that all the
accounts controlled by the attacker are Sybil accounts (i.e.,
the ratio of Sybil accounts is 100 percent), our proposed sol-
utions can still achieve their claimed privacy.

The attacker also seeks the assistance by using extra
hardware and software. For example, the attacker may have
a network sniffer sitting between the host and cloud to
check the packet content. Moreover, the attacker is allowed
to check whether the chunk c is accessed. In essence, if a
chunk is not accessed or not transmitted after the duplicate
check, this implies the existence of the chunk.

3.3 Privacy Notion

Here, two privacy notions, existence privacy and inexistence
privacy, are defined. The existence privacy refers to the case
where the attacker cannot confirm the chunk existence except
for the chunks uploaded by himself/herself. More formally,
we have the following definition of existence privacy.

Definition 2. Suppose that c is the chunk of attacker’s interest;
i.e., the attacker without prior knowledge of c is aimed to know
the existence status of c. Let C be the event that c is in the cloud,
fð�Þ the duplicate check protocol, and aux the auxiliary data.
The duplicate check protocol fð�Þ achieves existence privacy if
P ½Cjfðc; auxÞ� ¼ P ½C�, except that fðc; auxÞ has clearly indi-
cated the existence of c.

Basically, when a duplicate check protocol satisfies exis-
tence privacy, its dc response leaks no information on the
existence status of c. On the other hand, the inexistence pri-
vacy refers to an opposite case, where the attacker cannot
confirm the chunk inexistence. Similarly, we have the fol-
lowing definition of inexistence privacy.

Definition 3. Suppose that c is the chunk of attacker’s interest;
i.e., the attacker without prior knowledge of c is aimed to know
the existence status of c. Let �C be the event that c is not in the
cloud, fð�Þ the duplicate check protocol, and aux the auxiliary
data. The duplicate check protocol fð�Þ achieves inexistence pri-
vacy if P ½ �Cjfðc; auxÞ� ¼ P ½ �C�, except that fðc; auxÞ has
clearly indicated the inexistence of c.

2. This assumption can be justified as follows. Consider the case
where the chunk size is 4MB (also the chunk size currently used by
Dropbox). For an attacker without the prior knowledge of a chunk c,
the probability p that an arbitrary chunk c is in the cloud could be

approximately calculated as ð500�250Þ=22þ20þ3

22
2þ20þ3 , where the denominator

denotes the total number of combinations for chunks of 4 MB size and
the numerator denotes the estimated number of distinct chunks stored
in Dropbox. Note that it is reported by Dropbox Tech Blog (https://
blogs.dropbox.com/tech/2016/03/magic-pocket-infrastructure/) that
Dropbox hosts approximately 500 petabytes of user data. We can see
from the above calculation that, if no prior knowledge on c is available,
the probability that an arbitrary chunk is in the cloud is negligible.

3. One can register a new account and have GBs of free space from
cloud storage by simply presenting email address.
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As mentioned in Section 2.3, RT [15] does achieve the
inexistence privacy, but does not achieve the existence pri-
vacy; once receiving the positive dc response, the attacker
immediately knows that the chunk already has a copy
in the cloud. The above claim can be formally stated
as P ½ �CjRTðcÞ ¼00 �00� ¼ P ½ �C� and P ½CjRTðcÞ ¼00 þ00� ¼ 1 6¼
P ½ �C�, where RTðcÞ ¼00 �00 (RTðcÞ ¼00 þ00) means a negative
(positive) dc response returned by the cloud running RT.

Here, we argue that the existence privacy is more impor-
tant than the inexistence privacy because the former actually
leaks more information. Consider the threats due to the
deduplication-based side channel in Section 2.2. Most of the
threats rely on the fact that a specific chunk is in the cloud;
such a fact gives the attacker information about the content in
the specific chunk, which could be a severe privacy leakage.
An obvious example is learn-the-remaining-information;
once confirming the chunk existence, the attacker learns the
sensitive content. The existence privacy does not completely
eliminate the possibility of four threats in Section 2.2, but
significantlymitigates these threats.

A deduplicate check protocol with side channel defense
achieves two-side privacy if both existence privacy and
inexistence privacy are fulfilled. According to Definition 2
and Definition 3, a two-side private deduplicate check pro-
tocol means that the dc response does not include any infor-
mation about the existence status of a specific chunk. We
conjecture that such a deduplicate check protocol cannot
have any deduplication gain either. We, instead, have a
weaker version of existence privacy defined as follows.

Definition 4. Suppose that c is the chunk of attacker’s interest;
i.e., the attacker without prior knowledge of c is aimed to know
the existence status of c. Let C be the event that c is in the cloud,
fð�Þ the duplicate check protocol, and aux the auxiliary data.
The duplicate check protocol fð�Þ achieves weaker existence pri-
vacy if P ½Cjfðc; auxÞ� ¼ 1=2, except that fðc; auxÞ has clearly
indicated the existence of c.

The difference between Definitions 2 and 4 is that, while
P ½Cjfðc; auxÞ� ¼ P ½C� ¼ p in the former, P ½Cjfðc; auxÞ� ¼
1=2 in the latter. The above definition of weak existence pri-
vacy states that, even after seeing the dc response, the
attacker can only still make a random guess on the existence
status of c. We particularly note that, though numerically
P ½Cjfðc; auxÞ� is increased from p in Definition 2 to 1=2 in
Definition 4, this makes nearly no impact on the probability
that the attacker confirms the existence status of a single
chunk c, in the absence of correlation among multiple
chunks. In the following, a two-side private deduplicate
check protocol means the fulfillment of both weak existence
privacy and inexistence privacy, unless stated otherwise.

As mentioned in Section 2.3, RT [12] and its variants [1],
[20], [30] achieve only one-side privacy. The heuristic in [14]
assumes a trusted gateway but does not have formal

privacy guarantee. The solution in [26] achieves differential
privacy, which is a privacy notion similar to two-side pri-
vacy. Mozy [22] eliminates the side channel, only for small-
size files.

There are the other security and privacy issues around
the design of cloud storage4, such as the reconciliation
between the encryption and deduplication [18], proof of
ownership (POW) [12], key management [19], and poison
attack [3]. These issues are orthogonal to the side channel.
Throughout this paper, we focus only on the side channel.

4 PROPOSED SOLUTIONS

In this section, we first present the strawman countermea-
sure and their security flaws in Section 4.1. After that, we
propose the first solution ZEUS with the minimal overhead
in Section 4.2. The second solution ZEUSþ via the integra-
tion of ZEUS and the existing RT solution having two-side
privacy guarantee is presented in Section 4.3.

4.1 Strawman Solutions

In addition to the deduplication threshold randomization
[15], the most straightforward idea to uncorrelate the dc
request and dc response is to randomize the dc response. A
na€ıve implementation of such a random response approach
goes as follows. Let chunk existences 0 and 1 represent the
absence and presence of the chunks in the cloud, respec-
tively. The dc response � (þ) indicates that the user has to
(does not need to) upload the chunk. Then, the na€ıve random
response strategy can be illustrated in Table 2. Note that we
refer dctable to as the table describing the dc requests and dc
responses (e.g., Table 2) thereafter. We can observe that
when the chunk is absent, the cloud has no choice but returns
a negative dc response, instructing the user to upload the
chunk. On the other hand, when the chunk is present, the
server has the flexibility for the dc response.

Though the design objective of random response is to
reveal nothing about the chunk existence status, unfortu-
nately, the positive response in Table 2 invariably indicates
the chunk existence, thus violating existence privacy. Even
worse, the Sybil attacker can also conclude the inexistence
of chunk c by using Sybil accounts to perform independent
duplicate checks on c. More specifically, each Sybil account
uploads hðcÞ, gains the dc response, but aborts the commu-
nication with the cloud right before c is uploaded. By doing
so, the attacker does not change the existence status of c.
When all Sybil accounts gain negative dc responses, the
attacker is highly confident that c is not in cloud.

One might consider that the use of time limit between
subsequent duplicate checks could be useful in reducing
the ability of independent duplicate checks. Nevertheless,
the attacker can easily circumvent the countermeasure by
using different Sybil accounts. Another plausible approach

TABLE 2
dc Table for Strawman Zero-Knowledge

Response Approach

chunk c existence dc response

0 �
1 þ=�

4. Currently, to the best of our knowledge, Mozy is the only public
cloud storage provider that attempts to eliminate the privacy leakage
from the side channel in client-side deduplicated cloud storage sys-
tems. However, there are other techniques that address the data pri-
vacy, rather than privacy issue of side channel. For example,
convergent encryption is used by the cloud for encrypted data dedupli-
cation. Convergent encryption has been adopted by public cloud stor-
age providers including Mega [21] and Bitcasa [2] and by a free/open
decentralized cloud storage system, Tahoe-LAFS [27].
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is that, with the observation that the independent duplicate
checks require the incomplete uploading, the cloud may ask
users to complete the uploading; otherwise, the account will
be blocked. Here, the complete uploading means that once
receiving negative dc response, the user explicitly uploads
the chunk. However, because Sybil accounts can be created
with limited cost or even for free, a Sybil attacker can still
bypass this approach by performing the duplicate check,
disconnecting to the cloud right before chunk uploading,
and leaving some Sybil accounts blocked.

4.2 ZEUS

Here, we present the design principle behind ZEUS, fol-
lowed by the formal description of ZEUS.

4.2.1 Design Principle

Basically, the failure of the na€ıve random response in coun-
teracting side channel can be attributed to the following two
reasons.

� (R1) A distinguishable response exists. Here, the dis-
tinguishable response is defined as the dc response
appearing only once in dc table. For example, þ in
Table 2 is a distinguishable response. The attacker
seeing þ immediately knows the chunk existence,
breaching the existence privacy.

� (R2)An incomplete uploading can always be exploited
by the attacker. The incomplete uploading enables the
attacker to repeatedly run duplicate checks. The poten-
tially different or the same dc responses may leak
information on the chunk existence status.

Now, we propose the following three techniques, (T1)�
(T3), to circumvent the above difficulties and to develop our
side channel defense, ZEUS. Note that (T1) and (T2) are
developed to counteract (R1) while (T3) nullifies the effect
of (R2).

� (T1) Double Chunk Uploading. The first technique is,
instead of uploading a single chunk, to upload two
chunks at once. Table 3 shows the corresponding dc
table. Unfortunately, the na€ıve implementation of

double chunk uploading, as shown in Table 3, where
the user sends two individual dc requests and
receives two individual dc responses, is not helpful in
preventing the privacy leakage, because this can only
be regarded as doing the ordinary duplicate check
twice. However, combined with XOR obfuscation
described below, the randomness in the dc response
makes the attacker muchmore difficult to distinguish
between chunk existence and inexistence.

� (T2) XOR Obfuscation. The direct use of (T1) does not
prevent the privacy leakage; however, if we perform
encodings on both dc responses and the uploaded
chunks, then the chunk existence status is hidden
behind the deduplication result. More specifically,
for the dc request hhðc1Þ; hðc2Þi in double chunk
uploading, the dc response consists of a single number
that indicates the number of chunks needed to be
uploaded, instead of a pair of ordinary dc responses,
as shown in Table 4. Now, there would only be three
cases for the possible dc response here, which are 0,
1 and 2. If the dc response is 2 (0), two (no) chunks
need to be uploaded; otherwise, the exclusive-or
(XOR) of the two chunks, c1 � c2, is uploaded. In this
way, the user always uploads c1 � c2 and cannot dis-
tinguish between the case where c1 is but c2 is not in
the cloud and the opposite case, when the cloud has
owned a copy of one of them.

� (T3) Dirty Chunk List. If the complete uploading can
always be ensured, the privacy leakage can be signifi-
cantly mitigated. Nonetheless, as mentioned in
Section 4.1, the Sybil attacker may still perform inde-
pendent duplicate checks by leveraging the Sybil
accounts. To counteract such an abuse of free cloud
accounts, we mark the chunk that has been requested
but eventually is not uploaded as a dirty chunk. After-
wards, dc requests containing dirty chunks will
invariably receive the dc response 2. The rationale
behind this design is that dirty chunks could poten-
tially be exploited by the attacker and therefore all the
subsequent duplicate checks relevant to dirty chunks
will always not trigger the deduplication. The above
policy of using dirty chunks can be implemented by
keeping a list (called dirty chunk list, L) containing all
of the hashes of dirty chunks. When receiving the dc
request, the cloud first checks whether the hashes
appear in L. If so, the cloud returns 2; otherwise,
return the value according to a publicly known dc
table in ZEUS (described below).

The Design of dc Table in ZEUS . Despite the above three
techniques, we face a challenge of how to assign proper val-
ues to xi’s in Table 5 such that both privacy and deduplication
benefits are kept. In fact, the design space is rather limited,

TABLE 3
dc Table for Naive Implementation

of Double Chunk Uploading

c1 existence c2 existence dc response

0 0 �;�
0 1 �;þ
1 0 þ;�
1 1 þ;þ

TABLE 4
dc Table for the Implementation of XOR

Obfuscation

c1 existence c2 existence dc response

0 0 2
0 1 1
1 0 1
1 1 0

TABLE 5
Design Space of dc Table for ZEUS

c1 existence c2 existence dc response

z1 0 0 x1

z2 0 1 x2

z3 1 0 x3

z4 1 1 x4
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though the number of obvious options is 34 ¼ 81, because
each xi has three choices 0, 1, and 2. Here, for notation sim-
plicity, we abuse the vector representation to represent differ-
ent dc table realizations. For example, the vector ½2 1 1 0�T
represents the Table 4. In fact, we can have the following four
observations, which can be used to significantly shrink the
design space. Also for the representation simplicity, the nota-
tion xi 2 f0; 1; 2g means the dc response in different cases.
The notation z1 represents the case, where both chunks c1 and
c2 are not in the cloud, the notation z2 represents the case
where c1 is not but c2 is in the cloud, and so on.

� (O1) When c1 and c2 in the dc request hhðc1Þ; hðc2Þi
are all not in the cloud, the cloud is forced to return
2; otherwise, at least one chunk will be missing.
Thus, x1 has to be 2.

� (O2) Similarly, except for x4, all of x1, x2, and x3 can-
not be 0; otherwise, at least one chunk will be miss-
ing. Thus, we derive the constraints of x1 6¼ 0, x2 6¼ 0,
and x3 6¼ 0 in the design.

� (O3) Though being unable to know the existence sta-
tus of a given chunk before processing the chunk (as
mentioned in Section 3.2), the attacker can confirm
the existence of a chunk c1 if the attacker himself/her-
self uploads c1 previously. We particularly note that
this does not violate the privacy because the user who
uploaded chunks has no doubt to be confident that
his/her chunk is in the cloud. However, with the
knowledge that a given chunk c1 exists in the cloud,
the attacker can infer the existence status of c2, if the
table is ill-designed. More specifically, if x3 6¼ x4, the
attacker can distinguish between the cases z3 and z4
by observing the dc response corresponding to the
duplicate check on hhðc1Þ; hðc2Þi. In this sense, the
constraint of x3 ¼ x4 needs to be satisfied.

� (O4) The observation (O3) can also apply to the sym-
metric case where the existence of c2 has been known
by the attacker interested in the existence status of c1.
Thus, the constraint of x2 ¼ x4 also needs to be
satisfied.

Based on (O1)�(O4), only two configurations, ½2 2 2 2�T
and ½2 1 1 1�T , are eligible as a candidate of dc table design.
Nonetheless, though the ½2 2 2 2�T design offers the stron-
gest privacy guarantee, it does not have any storage and
bandwidth savings. Hence, the only feasible solution for the
dc table is ½2 1 1 1�T , as shown in Table 6.

The use of L implies that the attacker no longer has the
capability of performing independent duplicate checks.
More specifically, the attacker has two options, uploading
the chunk and aborting the connection, after the duplicate
check. The former results in the chunk existence, and there-
fore the subsequent duplicate checks involving the

uploaded chunks provide no additional information to the
user because of the same dc response in z2, z3, and z4 (see
Table 6). The latter results in the nullification of the dedupli-
cation on dirty chunks, and therefore the subsequent dupli-
cate checks always return 2 to the user and also provide no
additional information to the user.

4.2.2 Algorithmic Procedures

The formal description of ZEUS is shown in Fig. 2, where the
user attempts to upload a file f to the cloud. The file f is first
partitioned to chunks (step 1). Due to the double chunk
uploading in ZEUS, the user checks whether the number of
chunks is even andwhether the size of the last chunk is equal
to the predefined chunk size. If not, we generate bit sequence
of appropriate length and concatenate it to the file f (steps
3�6). After that, the user performs duplicate check on hhðciÞ;
hðciþ1Þi, i 2 ½1; 3; . . . ; n̂� 1�, on pairs of chunks (step 8). The
cloud, after receiving hhðciÞ; hðciþ1Þi, checks whether the
involved chunks are dirty (step 9). The cloud always returns
2 to the user if so, and returns either 1 or 2 according to the dc
table shown in Table 6 (step 10). Depending on the received
dc response, the user either uploads c1 � c2 or uploads c1
and c2 explicitly to the cloud (steps 13�20).

The design of the dc table in ZEUS has a distinguishable
response (R1) for the case of z1. Thus, at the first sight, one
may consider that ZEUS violates the inexistence privacy,
because the attacker receiving the response 2 can always
confirm the chunk inexistence. The details of the argument
that ZEUS achieves the two-side privacy (i.e., both existence
privacy and inexistence privacy) will be described in
Section 4.2.4.

4.2.3 Performance Evaluation of ZEUS

One can easily see that ZEUS does not sacrifice the storage
saving because ZEUS only affects how the cloud reacts to
the dc request. Here, we evaluate the performance mainly
in terms of the extra communication cost incurred by the
use of ZEUS. One can see from Tables 4 and 6 that the

TABLE 6
dc Table for ZEUS

c1 existence c2 existence dc response

0 0 2
0 1 1
1 0 1
1 1 1

Fig. 2. ZEUS.
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difference between the original data deduplication and
ZEUS lies in the case of z4. More precisely, in such a case,
the user in ZEUS needs to upload c1 � c2 of length f

whereas the user in the original deduplication does not.
Let p be the probability that an arbitrary chunk is in the

cloud. In the original deduplication, the expected communi-
cation cost of uploading two chunks can be calculated as

2ð1� pÞ2fþ ð1� pÞpfþ pð1� pÞf: (1)

On the other hand, the expected communication cost of
uploading two chunks in ZEUS can be calculated as

2ð1� pÞ2fþ ð1� pÞpfþ pð1� pÞfþ p2f: (2)

The difference in the communication cost between Eqs. (1)
and (2) is p2f, which also shows the price to pay for the
privacy.

4.2.4 Privacy of ZEUS

To learn the existence status of a specific chunk, the only
option left to the attacker is to perform duplicate check. In
the following, the privacy is evaluated based on what the
attacker learns from the duplicate checks.

Single Duplicate Check. From Table 6, at this moment, we
know that ZEUS violates the inexistence privacy, because
the dc response 2 invariably indicates the chunk inexistence
of queried chunks. Now, we have the following privacy
result of ZEUS.

Theorem 1. ZEUS achieves weak existence privacy under
the condition of single duplicate check.

Proof. If both c1 and c2 in the dc request hhðc1Þ; hðc2Þi are not
controlled by the attacker, where c2 is the chunk of
attacker’s interest, the attacker can only confirm the chunk
inexistence when receiving the dc response 2 by chance.

Moreover, as mentioned in Section 3.2, we assume
that the attacker cannot know the existence status of c1 if
the user does not upload it. Thus, though the duplicate
check hhðc1Þ; hðc2Þi with the very likely inexistence of c1
can be used to identify the existence status of c2 (see
Table 6), the attacker is unable to have such kind of
duplicate check. In fact, one might consider that an arbi-
trarily chosen chunk c1 is very unlikely to be in the cloud.
In this way, the attacker can claim to detect the existence
status of c2 by differentiating z1 and z2. However, given
the dc response 1, the probability of c2 in the cloud can
be formulated as

P ½C2jR1� (3)

¼ P ½R1jC2�P ½C2�
P ½R1jC2�P ½C2� þ P ½R1j �C2�P ½ �C2�

(4)

¼ 1� P ½C2�
1� P ½C2� þ P ½R1j �C2�ð1� P ½C2�Þ

(5)

¼ P ½C2�
P ½C2� þ ð1� P ½C2�Þð$1 þ$2Þ ; (6)

where $1 ¼ P ½R1j �C2; �C1�P ½ �C1�
and $2 ¼ P ½R1j �C2; C1�P ½C1�

¼ p

pþ ð1� pÞð0� pþ 1� pÞ ¼
p

2p� p2
;

(7)

whereR1 denotes the event that the cloud response is 1,C2

denotes the event that chunk 2 is in cloud, �C2 denotes the
event that chunk 2 is not in cloud, p denotes the
probability that an arbitrary chunk is in cloud, the first
equality comes from P ½AjB� ¼ P ½BjA�P ½A�

P ½BjA�P ½A�þP ½Bj �A�P ½ �A�, and the

second equality comes fromP ½R1jC1� ¼ 1. From the above,

we see that P ½C2jR1� 	 1
2 and therefore P ½ �C2jR1� 	 1

2 , if
P ½C2� ¼ p, p is rather small (as mentioned in Section 3.2).

Hence, the attacker still cannot make sure c2 is in the cloud

evenwhen seeing dc response 1.
On the other hand, the attacker can upload c1 explic-

itly to ensure the existence of c1 before performing dupli-
cate check. However, the duplicate check hhðc1Þ; hðc2Þi
with the guaranteed existence of c1 does not help the
attacker gain extra existence information of c2 (see
Table 6). tu
Multiple Duplicate Checks. Consider the case where the

attacker attempts to learn the existence status of c2 by invok-
ing duplicate checks more than once. Here, the multiple
duplicate checks can be categorized as three types based on
the relation among the chunks in the consecutive dc
requests.

� (M1) The chunks in dc requests are all different.
� (M2) The chunks in two dc requests have a single

chunk overlapping.
� (M3) The chunks in all the dc requests are the same.
In (M1), the attacker can only confirm the chunk inexis-

tence when receiving the dc response 2 by chance. In (M2),
without loss of generality, we assume that two dc requests
are hhðc1Þ; hðc2Þi and hhðc1Þ; hðc3Þi, respectively. After per-
forming duplicate check hhðc1Þ; hðc2Þi, the attacker has the
option of whether he/she uploads the chunk(s), irrespective
of dc response. If the attacker chooses to abort the communi-
cation, this results in the case where the next duplicate
check hhðc1Þ; hðc3Þi invariably returns dc response 2 because
of dirty chunk c1. If the attacker chooses to upload the
chunk(s), c1 will be in the cloud after the duplicate check
hhðc1Þ; hðc2Þi. As a consequence, the next duplicate check
hhðc1Þ; hðc3Þi with the guaranteed existence of c1 gives no
additional information about the existence status of c2.

In (M3), the attacker also faces the same difficulty; if the
attacker chooses to upload the chunk(s), c1 will be in the
cloud after the duplicate check hhðc1Þ; hðc2Þi. As a conse-
quence, the next duplicate check hhðc1Þ; hðc3Þi with the
guaranteed existence of c1 gives no additional information
about the existence status of c2.

Hence, because of the above arguments, due to our
design of ZEUS from the perspective of attacker’s gain, the
multiple duplicate checks collapse to single duplicate check.

Inexistence Privacy of ZEUS . Here, we state a special case
where ZEUS in fact also (very occasionally) achieves the
inexistence privacy by considering the user behaviors and
network conditions. In particular, in the real world, due to
the unpredictable user behaviors (e.g., shut down the PC/
laptop even when the task is unfinished), the instability of
Internet connection (e.g., unstable 3G/4G communication
during the high-speed moving), and the software/hard-
ware error (e.g., the crash of OS), it may be normal even for
users to have short period of disconnection, naturally

604 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 8, NO. 2, APRIL-JUNE 2020

Authorized licensed use limited to: National Taiwan University. Downloaded on June 08,2020 at 02:36:39 UTC from IEEE Xplore.  Restrictions apply. 



resulting in the incomplete uploading. Recall that when see-
ing the indistinguishable response 2, the attacker originally
can invariably claim the inexistence of both queried chunks.
Nevertheless, with the above consideration, the cloud can
also claim that dc response 2 for hhðc1Þ; hðc2Þi results from
the previous incomplete uploading of either c1 or c2. In this
case, c1 and c2 might already have a copy in the cloud. The
cloud has possibility that it has c1 (or c2) but is still forced to
return 2, gaining the inexistence privacy.

We particularly note that the inexistence privacy from
the above consideration is just an accidental case; this argu-
ment is too strong and impractical, which cannot cover
most of the other typical cases with reliable data uploading.
Therefore, despite the above argument, we still consider
that ZEUS cannot achieve inexistence privacy.

4.2.5 Implementation Details

The dirty chunk list L can be implemented by a Bloom fil-
ter5 (termed as dirty Bloom filter, DBF) for efficient space uti-
lization and queries. The use of DBF in ZEUS incurs the
additional processing overhead. Note that DBF needs to be
maintained in the memory for avoiding slow disk I/O oper-
ations. Both processing and memory overhead from the
DBF are minor. Since DBF has to be kept in the memory and
the query for a Bloom filter is only constant time, the check
of dirty chunks merely imposes minor computation burden.

Two options are available for implementing DBF. First,
the cloud allocates a fixed-size memory space for the con-
ventional Bloom filter as DBF. Let pa be the probability that
a chunk will be marked as dirty because of incomplete
uploading andN be the expected number of distinct chunks
processed by the cloud every year. Then, the memory space
of size �pauN lnðpfpÞ=ðln 2Þ2 bits for DBF suffices to provide
the membership query of DBF with the desired false posi-
tive probability pfp for u years [4]. In the case of pfp ¼ 10�6,
N ¼ 1018, u ¼ 1, and pa ¼ 10�12, Bloom filter occupies
approximately 3 MB. The second method is to implement
dynamic Bloom filter [10] as DBF. Dynamic Bloom filter
gradually grows the size when more and more elements are
inserted. Compared to the first implementation choice of
DBF, dynamic Bloom filter offers adaptive memory usage,
at the cost of slightly increased programming effort.

The step 4 of Fig. 2 is used for the data padding when
the size of the last chunk is not f. The padding is not nec-
essary in the original client-side deduplication; however,
due to the use of XOR obfuscation, the padding is needed
in our setting. Thus, in the cloud, each chunk is associated
with a real chunk size. Most of the chunks will be associ-
ated with f as real chunk size. However, a few of the
chunks in the cloud with be with a number smaller than
f. The real chunk size gives the user ability to remove the
padding 0’s in the last chunk after the user downloads the
file in the future.

The step 6 of Fig. 2 is used if the number of chunks is odd
in total. In this case, the user generates and uploads one
extra random chunk. This extra chunk can also be seen as
the additional bandwidth overhead incurred by ZEUS.
However, the extra bandwidth consumption due to this
extra chunk is negligible with the consideration of a large
number of files are uploaded. Hence, we do not consider
the bandwidth consumption in Eq. (2).

4.3 ZEUSþ

The inexistence privacy of ZEUS is in fact achieved by
assuming that even benign users may also abort the upload-
ing due to the unreliable connection or unpredictable user
behavior. In practice, the occurrence of such an undesirable
situations for benign users can be substantially mitigated by
developing a more reliable client-side software. Moreover,
compared to the number of real inexistent chunks, the num-
ber of chunks that are marked as dirty due to the abnormal
communication abortion is rather limited. Thus, one may
claim that the inexistence privacy of ZEUS relies on a strong
assumption, making it impractical in reality.

Here, the idea of eliminating the strong assumption
while keeping the two-side privacy in ZEUS is to combine
the use of ZEUS and RT. With the observation that ZEUS
and RT offer the existence privacy and inexistence privacy,
respectively, the advantage of such a hybrid use (termed as
ZEUSþ) is obvious; the two-side privacy of ZEUSþ is based
on the protocol design, instead of the exterior assumption
on the user behavior and network conditions. The formal
description of ZEUSþ is shown in Fig. 3. In essence, ZEUSþ

can be thought of as a two-stage obfuscation; the first stage
randomizes the dc response through the RT technique and
the second stage further obfuscates the output of the first
stage through the dc table.

Fig. 3. ZEUS þ.

5. Bloom filter [4] is a space-efficient probabilistic data structure that
supports the membership query with false positives
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One can see from Fig. 3 that the only difference between
ZEUS and ZEUSþ is the use of RT (steps 10�17). In essence,
ZEUSþ works like ZEUS, except that the chunk existences
(i.e., c1 existence and c2 existence) in Table 6 are determined
base on the RT principle. Recall that RT principle (see
Section 2.3) is that each chunk ci is associated with a dedu-
plication threshold ti known only to the cloud and the
deduplication will not be triggered if the number of copies
of ci does not exceed ti. Note that “# ci” denotes the number
of times that the cloud receives ci. We also note that in
ZEUSþ the cloud does not need to keep ti copies in the stor-
age; an additional counter for keeping track of # ci suffices
to fulfill RT principle without sacrificing disk utilization.

4.3.1 Performance and Privacy Evaluation of ZEUSþ

As the communication cost due to the use of RT is depen-
dent on ti’s and the chunk distribution, no closed-form for-
mulation like Eq. (2) can be obtained. As a result, as a
combined use of ZEUS and RT, the bandwidth consump-
tion of ZEUSþ will be empirically evaluated based on the
real dataset in Section 5

On the other hand, we have the privacy result of ZEUSþ

as follows.

Theorem 2. ZEUSþ achieves two-side privacy under the con-
dition of single duplicate check.

Proof. Due to the similarity between ZEUS and ZEUSþ, we
can easily know that ZEUSþ achieves weak existence pri-
vacy, based on Theorem 1.

Simply speaking, ZEUSþ can be seen as the cloud run-
ning RT first to determine positive/negative dc response
and then running ZEUS to obfuscate the dc response out-
putted by RT. The breach of inexistence privacy of ZEUS
is due to the distinguishable dc response 2. However,
with the use of RT, the dc response 2 for the dc request
hhðc1Þ; hðc2Þi can also possibly be attributed to the unsat-
urated t1 and t2. Consider an extreme case that the
attacker has perfect confidence that the chunk c1 is not in
the cloud and aims to detect the existence status of the
chunk c2. In this way, ZEUSþ will be degenerated to RT,
which has been known to achieve inexistence privacy, as
shown in Section 3.3. Thus, we know that ZEUSþ also
achieves inexistence privacy. In fact, the lack of inexis-
tence privacy in ZEUS is now compensated by the use of
RT, resulting in the two-side privacy in ZEUSþ. tu

5 REAL DATASET EVALUATION

The storage saving will not be affected by the side channel
defense. In particular, the schemes belonging to random
threshold category [1], [15], [20], [30] gain the privacy
by sacrificing the bandwidth saving and the schemes

belonging to extra hardware category [14], [26] gains the
privacy mainly by forwarding the request packets with cer-
tain delays. ZEUS and ZEUSþ also do not sacrifice the stor-
age saving; instead, certain communications that are not
needed will be required in ZEUS and ZEUSþ. Thus, in our
evaluation, we only focus on the communication cost. Note
that the communication cost used in our measurements is
defined as the number of bits required during the entire
chunk uploading process, including the duplicate check
(i.e., dc request and dc response) and explicit chunk upload-
ing (i.e., the chunk c, if necessary).

The datasets we used in our evaluation are Enron Email
Dataset [9], The Oxford Buildings Dataset [29], and traffic-
signs-dataset [28]. We chose these datasets because we
believe that ordinary users have the demand to backup the
email and multimedia content to the cloud storage. We
carried out the evaluations on Fedora 12 Linux operating
systems of kernel 2.6.35.9 SMP on Intel Core 2 Duo 3 GHz.
The evaluation program was written in Python 2.7.6. We
implemented the hash function SHA-256 from OpenSSL
library. Fig. 4 reports the statistics of the above three data-
sets. In the setting of our evaluation, we picked 1000 files
uniformly at random and uploaded them to the cloud.
Afterwards, we chose 200 files uniformly at random to
perform duplicate checks and explicit chunk uploading if
necessary.

Since the schemes belonging to random threshold cate-
gory [1], [15], [20], [30] only has inexistence privacy guaran-
tee while the schemes belonging to extra hardware category
[14], [26] assume the assistance of extra hardware, the com-
parison is made among the original data deduplication (no
privacy is considered, maximum deduplication opportu-
nity), ZEUS, ZEUSþ (B ¼ 5), ZEUSþ (B ¼ 20), and ZEUSþ

(B ¼ 40), where B is a deduplication threshold specified in
RT (see also Section 2.3). Such a comparison shows addition
communication burden incurred by the use of ZEUS and
ZEUSþ with different parameter settings. Moreover, both
ZEUS and ZEUSþ have an inherent dirty chunk list (T3) to
prevent the attacker from gaining existence status informa-
tion by iteratively performing dc requests on the same
chunks. Dirty chunks refer to the chunks on which no dedu-
plication is triggered, and furthermore all of the dc requests
relevant to dirty chunks will not trigger deduplication.
Thus, the use of dirty chunks actually compromise the
deduplication benefit. Thus, the same set of evaluations
applies with different ratios of dirty chunks (0, 10, and
25 percent).6 The evaluation results show the impact of the
ratio of dirty chunks on the communication cost.

Fig. 4. The statistics of datasets used in our experiment.

6. By its definition, dirty chunks cannot be deduplicated for privacy
concern, sacrificing the corresponding deduplication benefit. Thus, “no
dirty chunk” is used to represent the basis (or say, ideal case) of dedu-
plication benefit for ZEUS and ZEUSþ. On the other hand, as men-
tioned in Section 4.2.4, dirty chunks could be due to either the attacker
who issues the dc request but does not upload the chunk or the benign
user who suffers from, for example, network connection problem. We
believe that, in reality, the attacker may cause only a few dirty chunks,
and there will not be too many network connection problems. Note that
obviously 10 and 25 percent are over-estimations of the ratio of dirty
chunks. For example, if the cloud handle 1EB (1018 bytes) data, this
means that at least 1017 bytes are dirty, which is impossible in commer-
cial clouds. We chose 10 and 25 percent as the maximum ratios of dirty
chunks to see their impact on the deduplication benefit.
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Fig. 5 shows the communication costs with varying chunk
sizes without dirty chunks. This reflects the case of the real
communication cost in the sense that the attacker may be
unwilling to create the deduplication-based side channel
given the use of ZEUS and ZEUSþ and benign users infre-
quently have the abnormal disconnection. Thus, there would
be very few percentages of dirty chunks in the cloud.

Obviously, since the original data deduplication finds the
maximum opportunity for the data deduplication, it has the
lowest communication cost. ZEUS has the second lowest
communication cost because, compared to ZEUSþ, ZEUS
does not have the communication cost incurred by RT.
Moreover, a comparison among ZEUSþ with different B’s
clearly shows the larger B implies more communication
cost. The gap between the communication costs of original
data deduplication and ZEUS actually is dependent on the
dataset characteristic. As shown in Eqs. (1) and (2), ZEUS
incurs only p2f extra communications, compared to the
original data deduplication. Thus, in an extreme case where
no duplicate chunk can be found, ZEUS and the original
deduplication have the same communication cost, because
the duplicate check will not fall in the case of z4 in Table 5.
The above argument also shows that the gap will be varied
on different datasets.

Figs. 5, 6, and 7 show the comparison of different side
channel defenses with varying ratios of dirty chunks. Here,
for simplicity, though the number of dirty chunks would
grow with the increasing number of dc requests, we choose
to randomly select a fixed percentage of chunks as dirty
chunks, to see the impact of the number of dirty chunks on
the communication cost. One can see from Figs. 5, 6, and 7
that, given the deduplication with the side channel defense,
more dirty chunks imply more communication cost
required. The reason is obvious; if the cloud finds either
chunk in the dc request dirty, it cancels the deduplication
functionality for the dc request. Thus, more dirty chunks in
the cloud implymore communication cost required.

One can also see that the ratio of dirty chunks has more
impact on ZEUS, in contrast to ZEUSþ, in terms of communi-
cation cost. In fact, one can see that ZEUSþ with B ¼ 40 in
Figs. 5, 6, and 7 have similar communication cost. This can be
attributed to the fact that the chunks already have a very low

probability to be deduplicated, even if no dirty is in the cloud.
Thus, the consideration of the increased number of dirty
chunks makes only negligible impact on the communication
cost. On the other hand, the chunks in the original deduplica-
tion and ZEUS can find a better deduplication opportunity in
the cloud without dirty chunks. However, this deduplication
benefit will be nullified to some extent in the cloudwith dirty
chunks. Hence, we can see a clear increase of communication
cost when comparing Figs. 5, 6, and 7.

6 COMPARISON AND DISCUSSIONS

The schemes belonging to random threshold category [1],
[15], [20], [30] only has inexistence privacy guarantee
because the positive dc response always corresponds to the
chunk existence, irrespective of the setting of B. In addition,
the choice of B determines the trade-off between the dedu-
plication benefits and privacy, but unfortunately remains
unclear. Thus, only the requirement of no independent
server is satisfied in Table 1. On the other hand, the schemes
belonging to extra hardware category [14], [26] assume the
assistance of extra hardware, making the requirement of no
independent server unsatisfied.

One can see from Section 4.2 that ZEUS serves as the side
channel defense without the additional server and manual
parameter. ZEUS can also achieve the two-side privacy,
however, with the assumption 4.2.4 that not only the
attacker but also benign users also create dirty chunks.
Recall that due to the unstable connection to the cloud,
benign users may indeed create dirty chunks. Nonetheless,
the dc response 2 due to such dirty chunks is very unlikely
to occur, compared to the dc response 2 due to two inexis-
tent chunks. As a result, the attacker receiving the dc
response 2 may still have strong confidence that the queried
chunks are not in the cloud. Thus, we only have a triangle
sign for two-side privacy in Table 1.

ZEUS þ is the hybrid solution; it inherits the problem of
choosing a proper B from RT and therefore has a cross sign
in Table 1. However, becauseRT and ZEUS protect the inex-
istence privacy and existence privacy, respectively, ZEUSþ

works as the side channel defensewith two-side privacy.

7 CONCLUSION

Although client-side data deduplication has been widely
adopted by cloud storage services to eliminate redundant
data and communications, it leaks the privacy of the chunk
existence status, resulting in more sophisticated threats. In
this paper, we develop two solutions, ZEUS and ZEUSþ,
based on the framework of zero-knowledge deduplication
response, preventing the attacker from gaining the existence
status information from duplicate checks. While ZEUS and

Fig. 5. Communication cost for different chunk sizes (no dirty chunk).

Fig. 6. Communication cost for different chunk sizes (10 percent dirty
chunks).

Fig. 7. Communication cost for different chunk sizes (25 percent dirty
chunks).
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ZEUSþ is able to offer a stronger privacy notion, two-side
privacy, our real dataset evaluations also confirm that
ZEUS and ZEUSþ incur slightly increased communications.
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