
SUBMITTED TO IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING SPECIAL ISSUE ON XAI-CTI APPLICATIONS 1

Open Source Intelligence for Malicious Behavior
Discovery and Interpretation

Yi-Ting Huang, Chi Yu Lin, Ying-Ren Guo, Kai-Chieh Lo,
Yeali S. Sun, and Meng Chang Chen

Abstract—Cyber threats are one of the most pressing issues in the digital age. There has been a consensus on deploying a proactive
defense to effectively detect and respond to adversary threats. The key to success is understanding the characteristics of malware,
including their activities and manipulated resources on the target machines. The MITRE ATT&CK framework (ATT&CK), a popular
source of open source intelligence (OSINT), provides rich information and knowledge about adversary lifecycles and attack behaviors.
The main challenges of this study involve knowledge collection from ATT&CK, malicious behavior identification using deep learning,
and the identification of associated API calls. A MITRE ATT&CK based Malicious Behavior Analysis system (MAMBA) for Windows
malware is proposed, which incorporates ATT&CK knowledge and considers attentions on manipulated resources and malicious
activities in the neural network model. To synchronize ATT&CK updates in a timely manner, knowledge collection can be an automatic
and incremental process. Given these features, MAMBA achieves the best performance of malicious behavior discovery among all the
compared learning-based methods and rule-based approaches on all datasets; it also yields a highly interpretable mapping from the
discovered malicious behaviors to relevant ATT&CK techniques, as well as to the related API calls.
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1 INTRODUCTION

C Yber attacks have proliferated recently, incurring dam-
ages that cost individuals and companies dearly.

A powerful proactive defense collects information about
known attacks and comprehensively understands malicious
behaviors, and further exploits this knowledge to interdict
and disrupt attacks or preparations for attack [1], [2]. Thus
it is crucial to grasp the characteristics of malicious behavior
and the resources used therein. Open source intelligence
(OSINT) assimilates experience and knowledge from the
cybersecurity community to form a common knowledge
base for cyber threat studies that best supports a proactive
defense [3].

The attack development life cycle, such as Lockheed
Martin’s cyber kill chain [4], the MITRE ATT&CK (Adver-
sarial Tactics, Techniques and Common Knowledge) frame-
work (hereafter referred to as ATT&CK) [5], and Mandiant’s
adversary life cycle [6], describes the adversary process at
each stage of the attack. Take for example ATT&CK: the
framework is designed to describe the attacker intent and
malicious behavior at each tactic stage. Once all malicious
behaviors are compiled, the cybersecurity analyst can cor-
relate them to derive a clear picture of the attack, and
take the necessary action to stop or mitigate the attack.
The strength of ATT&CK, one of most popular OSINTs, is
its structure and openness in collecting and sharing cyber
threat intelligence. In this study, we crawl the contents of
ATT&CK to build the needed knowledge about malware
behavior to facilitate dynamic malware analysis via deep
learning.
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Information about adversaries is commonly published
in cyber threat intelligence (CTI) reports presented with
semantic descriptions and lists of manipulated resources.
Comprehension of CTI is a large-scale data-driven process
that involves systematic analysis of observations, including
malware, suspicious events, and other rapidly evolving
cybersecurity data. To facilitate CTI usage, many studies [7],
[8], [9], [10], [11] focus on collecting, analyzing, and extract-
ing evidence such as indicators of compromise (IoCs) in
CTI reports. Dealing with increasingly sophisticated cyber
threats and obtaining a overall picture of the fast-evolving
attack scenario from OSINT CTI helps cybersecurity ana-
lysts handle potential attacks as they are unveiled.

Holmes [12] and RapSheet [13] are state-of-the-art sys-
tems that apply manually crafted expert rules to discover
advanced persistent threats or tactics, techniques, and pro-
cedures (TTPs) to detect potential attacks on their host
systems. In this paper, instead of investigating a computer’s
system log, we focus on analyzing the dynamic behavior
of malware using the knowledge from ATT&CK and neural
networks.

To analyze malware activity, dynamic analysis tools such
as Cuckoo Sandbox [14], CWSandbox [15], and APIf [16]
record execution steps in detail to generate execution traces.
Cuckoo Sandbox further applies ATT&CK with rules con-
tributed by volunteers to detect malicious behavior. How-
ever, due to the crowd-sourced nature of Cuckoo Sandbox,
the completeness and timeliness of the contributed rules
(called Cuckoo Signatures) may not be consistent with
ATT&CK. Therefore, in this study, we construct regular
expression rules to implement knowledge within ATT&CK
for use as a labeling method, in addition to the Cuckoo
Signatures, for later use in deep learning. We crawl the
MITRE website to extract and organize the relations of
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Fig. 1. Mapping knowledge from ATT&CK to a malware trace. The top
MITRE webpage is about sub-technique T1547.001 and the bottom
shows the API calls of JCry to partially carry out the technique.

TTPs and malware that can be used as another labeling
method. To account for MITRE website updates, all labeling
processes must be automatic and incremental.

With the rapid development of artificial intelligence (AI),
data-driven methods (i.e., machine learning and deep learn-
ing approaches) can be used for cyber threat analyses such
as malware analysis [17], [18] or attack analysis [19], [20].
However, AI methods are seen as black boxes, which can
create confusion and doubt [21]. For example, when security
analysts analyze malware using an AI model, questions
may arise such as “How can I trust the decision-making
of this model?” or “How has the model come to this de-
cision for a given malware sample?” To understand how
a model learns from data, studies in disciplines as varied
as image caption generation [22], sentiment analysis [23],
and electronic health record applications [24] incorporate
attention mechanisms in neural network models to inter-
pret model outcomes. Generally, the attention mechanism,
which calculates the probability distribution over inputs,
is intuitively seen as an indicator of the model’s focus, as
a convincing explanation is to humans. In this study, we
similarly employ the attention mechanism to interpret the
model outcome. These two questions can be answered if
the outcome of the model is not merely a decision but also
concerns semantics, as is the case with TTPs, API calls, and
the associated resources in this study.

In this study, we examine whether OSINT has a role to
play in using intelligence to better interpret malware. Our
goal is to discover malicious behavior based on the analysis
of an execution trace of Windows malware, to interpret the
discovered behavior as a collection of techniques (TTPs),
and to find the API calls and system resources associated
with these TTPs. Three main aspects of this study are as

follows:

‚ OSINT for cyber threat intelligence: Assimilating
threat intelligence from OSINT to intercept malicious
behavior requires an information extraction mecha-
nism and a competent neural network model.

‚ Malicious behavior discovery: Linking a low-level
malware execution trace to a high-level description
of malicious behavior (i.e., TTPs) requires that we
close the semantic gap between them.

‚ Malicious behavior explanation: Helping the security
analyst to better understand the captured malicious
behavior, the associated API calls and manipulated
system resources constitute observable evidence.

As dynamic malware analysis has been widely used for
malware analysis [17], [25], [26], [27], we present MAMBA
(MITRE ATT&CK based Malicious Behavior Analysis), a
system that addresses the above aspects. An execution trace
includes the sequences of the invoked API calls during
execution of a malware sample. MAMBA starts by extract-
ing the TTPs and their corresponding resources from the
MITRE website and cited references, and discovers TTPs
from malware and their corresponding API execution call
sequences via a well-crafted neural network model. Within
an execution trace, malicious behaviors (TTPs) are under-
taken by one or many API calls and may be described by
CTI reports. MAMBA makes novel use of the information
presented in ATT&CK as the pivotal reference in address-
ing the challenges in malware behavior interpretation. For
instance, in Fig. 1, the sub-technique T1547.001 Boot or Logon
Autostart Execution: Registry Run Keys / Startup Folder refers
to adding an executable program to a startup folder to main-
tain a foothold. This sub-technique can be identified when a
malware sample attempts to add a malicious payload to the
startup folder. High-level descriptions of TTPs in ATT&CK
serve as explanations of malicious behavior, and can be used
to link to low-level execution traces of malware by MAMBA.
MAMBA is thus:

‚ Explainable. In contrast to traditional malware de-
tection and malware classification tasks, we discover
high-level semantic TTPs associated with low-level
API calls for a malware sample.

‚ Comprehensive. Malicious behavior is composed of a
series of operations and resources. By taking into ac-
count resource dependencies, MAMBA finds related
TTPs and their API calls.

‚ Extendable. MITRE ATT&CK keeps up with the
constant evolution of cybersecurity threats. MAMBA
is designed to automatically retrieve the ATT&CK
contents to reflect these changes.

To summarize, our work offers the following contribu-
tions:

‚ MAMBA incorporates knowledge from ATT&CK in
deep learning analysis to discover malicious behav-
ior.

‚ The MAMBA design and methodology are examined
extensively using the contents of MITRE as well as
real-world data. The evaluation outcomes meet the
challenges.
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‚ The study shows that the open-source intelligence of
the MITRE ATT&CK framework facilitates cyberse-
curity applications.

2 BACKGROUND AND MOTIVATION

In this section, we introduce a motivating example and
present insight into using ATT&CK to interpret the mali-
cious behavior lifecycle from an execution trace.

2.1 Motivating Example

We analyze a malware sample (MD5
c86c75804435efc380d7fc436e344898) classified as a member
of the JCry family [28], [29]. Figure 2 depicts the JCry life
cycle with an emphasis on its created processes, discovered
TTPs, and the manipulated resources. JCry is ransomware
disguised as an Adobe flash player update installer. Once
it is clicked, it creates malicious files msg.vbs (4), Enc.exe
(©), and Dec.exe (l), and stores these in the startup folder
to maintain its persistence (in ATT&CK this is identified
as T1547.001 Boot or Logon Autostart Execution: Registry Run
Keys / Startup Folder). These programs are executed when
the user logs in. Executing msg.vbs displays an “Access
Denied” message to warn that the Adobe Flash Player failed
to update (T1059.005 Command and Scripting Interpreter:
Visual Basic). The executable file Enc.exe encrypts the user’s
files for ransom (T1486 Data Encrypted for Impact), and
also deletes shadow copies using a command to prevent
recovery (T1490 Inhibit System Recovery), after which it
launches Dec.exe using PowerShell to display the ransom
note (T1059.003 Command and Scripting Interpreter: Windows
Command Shell, T1059.001 Command and Scripting Interpreter:
PowerShell).

We offer two observations. First, the manipulated re-
sources are useful to group processes and API calls which
work together to carry out malicious activities. For ex-
ample, the manipulated resource Enc.exe (©) is used by
the “malware.exe (PID=2932)”, “enc.exe (PID=912)”, and
“dec.exe (PID=3572)” processes for its creation, execution,
and deletion. Second, the malicious activities associated
with these manipulated resources, e.g., files and commands,
may correspond to techniques in ATT&CK. For example, the
command “cmd.exe /c powershell -WindowStyle Hidden Start-
Process Dec.exe -WindowStyle maximized” can be found on the
ATT&CK TTP webpages (T1059.001 and T1059.003). While
such malicious behavior is traditionally represented by in-
dicators of compromise (IoCs) or signatures in intrusion de-
tection systems (IDSs), in ATT&CK they are presented using
natural language descriptions. In this study, the abundance
and openness of the ATT&CK information facilitates the use
of information retrieval techniques to collect and convert
this data into knowledge for later use.

2.2 MITRE ATT&CK Framework

ATT&CK is a document source of post-compromise adver-
sarial tactics and techniques based on real-world observa-
tions. From the contents of [5], ATT&CK is a behavioral
model that consists of adversary tactics, techniques, and
procedures (TTPs).

Fig. 2. Life cycle of a malware sample from malware family JCry

‚ A tactic represents the goals of an adversary. It cate-
gorizes the attack life cycle into different stages.

‚ A technique/sub-technique represents the technical
means through which goals are accomplished. A
sub-technique, inheriting a technique, corresponds to
more specific action.

‚ A procedure in ATT&CK is exemplified by real-
world examples, either software or an adversary
group, to show their use of techniques or sub-
techniques. achieve their tactical objectives.

Each tactic serves as a class of techniques implemented by
software to accomplish the tactic. For example, to establish
persistence (tactic), JCry (malware) may add a downloaded
payload to the startup folder (sub-technique T1547.001).

In recent years, this framework has become popular for
describing the attack life cycle of either malware or an
adversary group. This paper will focus on the techniques
of all stages of Windows malware samples from ATT&CK.
In this study, techniques refer to techniques as well as
sub-techniques (hereafter techniques) and resources refer to
files, libraries (modules), registries, processes, and networks.
Malicious behavior of a malware sample can be represented
by one or more techniques; the attack life cycle (kill chain)
of malware is composed of a series of techniques.

2.3 Techniques and Execution Trace
The MITRE website provides descriptions of techniques for
which MAMBA extracts resources and matches them with
arguments of the API calls. This strategy is also supported
by [30], in which a comprehensive analysis demonstrates a
strong correlation between ATT&CK techniques and Win-
dows API calls. As shown in Fig. 1, the resource mentioned
in the webpage for technique T1547.001 Registry Run Keys
/ Startup Folder indicates that T1547.001 may be discovered
if resource “C:\\Users\\...\\Startup\\Enc.exe” is accessed
in an execution trace. As the figure shows, this specific
resource can be found in the API calls “NtCreateFile” and
“NtWriteFile”, in which the connection constitutes an im-
portant clue to understanding the malicious activity. Fol-
lowing this procedure, MAMBA’s neural network model
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Fig. 3. MAMBA workflow

is designed to learn the associations between TTPs and
execution traces.

3 SYSTEM DESIGN

The main design goal of MAMBA is to align a resource
annotated with a TTP in ATT&CK to a manipulated resource
used by malware. In this paper, matrices are represented
using uppercase characters and vectors are represented in
boldface using lowercase characters.

3.1 Overview

A high-level overview of the MAMBA workflow is shown in
Fig. 3: it is composed of an extraction phase, a fusion phase,
and a threat identification phase. The extraction phase in-
cludes technique extraction by extracting knowledge tuples
from ATT&CK, and malware execution trace generation
from a sandbox. The technique pages in ATT&CK present
use cases performing the corresponding techniques. These
use cases are treated as observable clues by which to
detect techniques, and are extracted by MAMBA as the
technique knowledge. We also consider series of API calls
and sets of manipulated resources from an execution trace
as a sequence of operations executed by malware. ATT&CK
technique-related knowledge as well as execution-trace API
calls and resources are collected in the extraction phase.

The fusion phase involves resource embedding and
resource-technique binding. Even if the collected knowledge
from ATT&CK and execution traces indicate the same ma-
licious behavior, their constitutions may be different. The
designed embedding mechanism maps resources to fixed-
size vectors while preserving their semantic properties. In
addition, in resource-technique binding we use a neural
network to learn the connection between resources and
techniques from ATT&CK to enable the proposed neural
network to associate the embedding of resources from traces
to techniques from ATT&CK.

Once the extraction phase and the fusion phase are
complete, threats are identified by detecting techniques from
a malware sample. First, API call embeddings are generated
from the output of the fusion phase and are processed by
gated recurrent units (GRUs) to obtain a sequential hidden
vector. Attention mechanisms are applied to highlight the
relevance between resources and API calls as well as depen-
dencies among the bindings and API calls. Finally, threat
identification yields the compromised techniques.

3.2 Knowledge Extraction from MITRE ATT&CK Frame-
work

The first step of knowledge extraction is to extract a
disclosed resource r related to a technique y as a tuple
tr, yu from the webpage for every technique in the MITRE
ATT&CK framework. The regular expressions for r ex-
traction from a token, a shadowed token (a token with
gray background), or a sentence in the MITRE website are
expressed in Table 1. A shadowed token is a complete
path of a resource or command line; for example, the
filename “C:\\Users[Username]\\...\\Startup” in Fig. 1 is
a shadowed token, which can be recognized as the regular
expression for directory (fd). Some resources in a sentence
are not marked with gray background. For example, the
sentence “... usage of the Windows Script Host (typically
cscript.exe or wscript.exe) ...” from the MITRE webpage
of T1059.005 Command and Scripting Interpreter: Visual Basic
consists of two non-shadowed resources “cscript.exe” and
“wscript.exe”, which can be recognized by the composition
of the regular expressions for filename (fn) and extension
(fe). In summary, we collect from the MITRE website 988 re-
sources associated with 229 techniques, forming 2100 tr, yu
pairs.

To evaluate the accuracy of knowledge extraction from
the MITRE ATT&CK framework, we randomly selected 50
techniques to manually label technique-related resources
from the corresponding webpages, and measured the ac-
curacy of resource extraction. Two authors read every tech-
nique webpage on ATT&CK to find related resources and
label a resource with a word or a phrase, such as a filepath,
a registry, or a command, used to implement the technique.
Their agreement (Cohen’s kappa = 0.739) [31] is considered
substantial. When they disagreed on a labeled resource, the
third author joined the discussion to make a decision. This
resulted in a total of 1159 resources annotated among 50
techniques. The average number of resources per technique
was 23.18 (SD = 20.44). To verify the MAMBA extraction
capability, we compared MAMBA with the shadowed to-
kens presented in the ATT&CK web pages: it outperforms
(p ă 0.001 by McNemar’s test [32]) the ATT&CK shad-
owed tokens. MAMBA achieves a precision, recall, and F1
of 0.906, 0.770, and 0.833, respectively, with 19.72 (SD =
18.5) discovered resources, whereas the ATT&CK shadowed
tokens achieve only 0.924, 0.475, and 0.627, respectively, and
discover 11.90 (SD = 11.98) resources.

3.3 Resource Representation

In this step, each resource found from ATT&CK and the
execution trace is embedded into a resource embedding
er . An embedding maps a variable-length resource to a
fixed-length feature vector in the embedding domain. As
resources are not necessarily represented in the same way
between ATT&CK and the execution traces, we seek to
preserve their closeness in the embedding domain for later
neural network processing. For instance, as shown in the ex-
ample in Fig. 1, the startup folder path in ATT&CK consists
of the token “Users[Username]”, which is slightly different
from the “UserszzBaka” in the execution trace. To ensure
that the neural network learns properly, their embeddings
should be close.
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TABLE 1
Regular Expressions for Resource Categories

C: Token Sentence Type; Regular expression Example

F (fd)?(fn)?fe
fd ([a-z]:\\|%\w+%\\?)?([ˆ\*\|\\\:\”\<\>\?\/]+\\)* C:\Users[Username]\...\Startup
fn [ˆ( \*\|\\\:\”\<\>\?\/]+ cmd
fe \.[a-z0-9]{3,5} .exe

L (fd)?(fn)?le le \.dll .dll

R
rk.* rksk

rk
(hkcu|hklm|hkcr|hkcc|hku|hkey( \w+){1,2}|
sam|security|software|system|default|userdiff)

HKEY LOCAL MACHINE

sk \\([ˆ\*\|\\\:\”\<\>\?\/]+\\)*([a-z0-9]+)? \Software\Microsoft\...\Internet Settings

CLSID CLSID
{[a-z0-9]{8}-[a-z0-9]{4}-[a-z0-9]{4}-
[a-z0-9]{4}-[a-z0-9]{12}}

{e17d4fc0-5564-11d1-83f2-00a0c90dc849}

P cmd – cmd
([a-z]:(\\[ˆ\*\|\\\:\”\<\>\?\/]+)+)?
[ˆ\*\|\\\:\”\<\>\?\/]+(\.[a-z0-9]{3,5})?( [ˆ ]+)*

vssadmin delete shadows /all /quiet

N
ip ip \d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}(:\d{1,5})? 127.0.0.1

domain domain ([a-z0-9- ]+\.)+(com|net) red-gate.com
: Abbreviations C, F, L, R, P, and N represent category, file, library, registry, process, and network, respectively.
; fd = directory, fn = filename, fe = extension, le = library extension, rk = root key, sk = subkey path, CLSID = class id, cmd = command,

domain = domain name.

We employ the paragraph vector distributed memory
method (PV-DM) [33] to transform a resource into an n-
dimensional real-valued vector. PV-DM is an unsupervised
learning algorithm to transform a sentence, a paragraph,
or a document into a fixed-length vector. As it is based
on skip-gram embedding techniques, it preserves semantics
and word ordering to facilitate the use of embeddings
for similarity computation while maintaining the closeness
property. In this study, we tokenize each resource and treat
each token as a word in the PV-DM model. To reduce the
influence of unseen words, we build a resource vocabulary
set by excluding out-of-vocabulary and rare words whose
frequency is lower than a given threshold. Once the learn-
ing of the PV-DM for resource is completed, the resource
embedding function is ready.

3.4 Resource-Technique Binding

Once resource embedding er is generated, the next step
is to build a neural network to learn the relation between
a resource and a technique. A resource can be seen as a
plausible clue to the implementation of a technique y to
achieve its tactical intent. A multiple layer perceptron (MLP)
is trained using the pairs ter, yu from ATT&CK, used to
predict the likelihood of techniques given a resource from
an execution trace.

Formally, given a set ofN pairs of ter, yu from ATT&CK,
the objective of the learning function is to maximize the
average log probability with respect to the MLP weights
Wz :

max
1

N

ÿ

log ppy|er,Wzq. (1)

We apply Wz to derive the hidden vector zr for each
resource r, computed as

zr “ σpWzerq, (2)

where σ is the activation function. For a manipulated re-
source extracted from an API call, we use the same em-
bedding function in Section 3.3 to transform r into er , and

further compute the hidden vector z in (2), which can be
considered its contribution to TTPs for later neural network
processing.

3.5 Threat Identification Phase

The goal of the threat identification phase is to identify
malicious behavior (TTPs) y from a malware execution trace
with API calls x “ tx1, x2, ...xpˆ|T |u. Formally, given a
training set of M pairs of tx, yu, the objective of the learning
function is to maximize the average log probability with
respect to the MAMBA neural network with all trainable
weights θ, including Wc,Wn,Wv , and Wd (which will be
defined later):

max
1

M

ÿ

m

log ppy|x, θq. (3)

The attack life cycle can be recognized by a series of tech-
niques identified from API calls with their arguments.

A resource-based API call group is defined as a collection
of the related API calls that share the same resource. Given
a malware execution trace, the threat identification phase
produces resource-based API call groups for each process,
after which it compares resource-based API call groups
with other call groups in all processes and predicts possible
techniques. The structure of the threat identification phase
is shown in Fig. 4.

An execution trace is composed of the traces of all
processes; each process trace is a sequence of API calls. A
single API call x consists of a category c, an API function
name n, and one or more argument values (i.e., resources).
In Fig. 1, for instance, API call “NtCreateFile” belongs
to the “file” category and has argument values such as
“C:\\Users\\...\\Startup\\Enc.exe”. The embedding of API
call x is a concatenation of the embeddings of category
ec, API name en, and resources er1 , er2 , er3 (only three
resources are considered):

ex “ rec; en; rer1 ; er2 ; er3ss, (4)
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Fig. 4. MAMBA neural network model

where r; s is concatenation, and er1 , er2 , er3 are from the PV-
DM model in Section 3.3.

ec “Wcxc (5)

en “Wnxn, (6)

where Wc and Wn are the weight matrices of category c
and API name n, and xc and xn are one-hot encodings of
category and API name. Wc and Wn are trained during the
training phase of the MAMBA neural network model.

To preserve ordinal information, the sequence of the
API call embeddings in a process is handled using gated
recurrent units (GRUs). A member of the recurrent neu-
ral network family, GRUs compute efficiently with per-
formance comparable to LSTMs [34]. As GRUs are com-
monly used in malware analysis [35], [36], MAMBA con-
siders GRUs to process the variable-length input sequence
ex “ tex1

, ex2
, ..., ex|T |

u and produce a hidden state h. At
time step t, the hidden state ht of the GRU is updated by

ht “ GRUpht´1, ext
q. (7)

GRUs learn a probability distribution over an input se-
quence such that the output h encodes sequential informa-
tion from the first API call to the current API call.

To find the connection between each pair of API call xt
and system resource ri in a process, we use a resource atten-
tion mechanism as the score function that is the maximum
value of the inner product of resource embedding eri against
the three resource embeddings er,t of API call xt in (9):

scoreperi , xtq “ maxp
erier1t
|eri ||er1t|

,
erier2t
|eri ||er2t|

,
erier3t
|eri ||er3t|

q. (8)

The result is normalized to derive the resource attention
weights sit as a distribution over all API calls:

sit “
exppscoreperi , xtqq

ř|T |
t1“1 exppscoreperi , xt1qq

. (9)

Given these attention weights, we compute a group vec-
tor gi as the weighted sum of the API call hidden states h
for a certain resource ri:

gi “

|T |
ÿ

t“1

sitht. (10)

Also, a binding embedding zi for a resource ri can be ac-
quired in (2) as a feature corresponding to technique y. The
group vector gi is combined with the binding embedding zi
to yield the binding group embedding bi for each resource:

bi “ rgi; zis. (11)

For each resource of a process, the binding group embed-
ding b includes information not only from API calls but also
from ATT&CK. At this step, each process is represented by
a collection of binding group embeddings.

The next step is to aggregate the binding group embed-
dings from each process and produce a malware represen-
tation d for prediction. As shown in the example in Fig. 2,
resources may be manipulated among processes; thus we
apply a self-attention mechanism to highlight dependencies
among the binding group embeddings. The self-attention
mechanism allows each binding group embedding to inter-
act with the other embeddings to determine which should
get more attention:

vi “ softmaxpWvbiq, (12)

where Wv is weight matrix of the two-layer dense network.
The malware representation d is the aggregation of the
group attention scores v and the binding group embed-
dings b:

d “ vb. (13)

The technique prediction task is a multi-label classification
problem with a sigmoid layer at the end of the classifier.
The predicted probability of each technique produced by
the sigmoid function is independent of the others:

y “ sigmoidpWddq. (14)

Algorithm 1 concludes the operations of MAMBA neural
network model described above.

4 EMPIRICAL STUDIES

We designed experiments to answer the following critical
questions.

‚ Q1: How effectively does MITRE knowledge im-
prove TTPs extraction?

‚ Q2: How effectively are the true TTPs extracted from
a given malware sample using MAMBA?

‚ Q3: What makes MAMBA capable of identifying
TTPs?

‚ Q4: How well does MAMBA perform against realis-
tic attack campaigns?
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Algorithm 1 MAMBA Neural Network
Input: an execution trace x
Output: a set of TTPs y
1: while θ has not converged do
2: Forward Propagation:
3: for each process p do
4: rÐ Extract a set of resources from xp
5: er Ð Get resource embedding in Section 3.3
6: zr Ð Get binding embedding in (2)
7: ex Ð API call embedding(x) in (4)
8: hÐ GRU(ex) in (7)
9: for each er in er do

10: ser,h Ð resource attention(er, h) in (9)
11: gr Ð group embedding(ser,h, h) in (10)
12: br Ð binding group(gr , zr) in (11)
13: end for
14: end for
15: v Ð group attention(b) in (12)
16: dÐ malware representation(v, b) in (13)
17: y Ð sigmoid(d) in (14)
18: Backward Propagation:
19: Conduct backward propagation with Adam;
20: end while
21: # Use the trained network to discover TTPs y of an

execution trace x

‚ Q5: How well does MAMBA locate API calls associ-
ated with the predicted TTPs?

For Q1 and Q2, we collected two datasets from MITRE
and MalShare [37] and used three labeling methods: MITRE,
Cuckoo, and RegExp. We compared the performance of
MAMBA, two rule-based methods, five traditional machine
learning methods, and three deep learning approaches in
Evaluation 1. To answer Q3 and understand the contribu-
tions of each component, we further conducted an abla-
tion study. To answer Q4, we analyzed malware samples
provided in the ATT&CK APT29 description to examine
MAMBA’s capabilities. Finally, to answer Q5, we present a
case study showing that MAMBA locates the API calls and
manipulated resources associated with the predicted TTPs.

4.1 Data Collection
Here we describe the collection of samples and labels used
in the evaluations. The MITRE ATT&CK framework (ver-
sion 7) for Windows includes 12 tactics, 148 techniques, 214
sub-techniques, and 378 pieces of software. We gathered
malware samples and their corresponding TTPs presented
in ATT&CK as the ground truth (note that this association
is termed ATT&CK labeling). That is, each sample in the
ATT&CK dataset is collected based on the documents refer-
enced on each technique page on the MITRE ATT&CK web-
site; its labels (TTPs) are determined accordingly. For each
technique page on the MITRE ATT&CK website, the mali-
cious activity is described by one or more referenced docu-
ments. We accessed these documents and used regular ex-
pressions to crawl and extract the MD5, SHA1, and SHA256
hashes of the associated malware samples. To validate the
extracted hashes, we uploaded the hashes to VirusTotal [38]
for verification. If a reference document involved more than

TABLE 2
Dataset Statistics

Source ATT&CK MalShare
Sample 2335 23655
Process 3.82˘23.91 3.17˘16.12
API call 2023.47˘23415.45 4346.29˘26399.03
Selected API calls 514.54˘1199.05 642.05˘1203.08
Resource 329.55˘1296.19 531.21˘6563.29
TTPs per sample 5.94˘3.78 2.80˘2.98§, 12.70˘5.89¶

§ Cuckoo Signatures ¶ RegExp

one technique, we discarded it to eliminate ambiguity. We
also discarded inaccessible references such as those with
anti-crawler prevention, machine-unreadable content, and
broken links. A total of 2,335 malware samples (referred to
as the ATT&CK dataset) were collected corresponding to 67
techniques. We also collected 23,655 malware samples from
MalShare [37] verified as malware by VirusTotal [38] from
January 2018 to April 2019. The combination of the ATT&CK
and MalShare datasets is called the Big dataset. The statistics
of the two datasets are shown in Table 2. For instance, the
average number of process per malware sample is 3.82, and
the average API calls and resources per process are 2,023.47
and 329.55 respectively, for the ATT&CK dataset.

Since samples from MalShare lack TTP labels, we con-
sidered two rule-based label methods: Cuckoo Signatures
(Version 2.0.7), which recognizes 43 TTPs using signatures
provided by crowd intelligence, and RegExp, a regular
expression set generated based on the TTP descriptions in
ATT&CK which recognizes 169 TTPs. To label each malware
sample, we applied these label methods to the Big dataset.

We randomly divided the datasets into a training set
(80%), a development set (10%), and a testing set (10%).
We continued the above process until the F-test on the
TTP distributions of the three sets showed no significant
differences.

4.2 Implementation Settings
We used Cuckoo Sandbox [14] to obtain execution traces
of malware samples. In the MAMBA implementation, the
PV-DM model in Section 3.3 for resource embedding used
the Gensim library [39] to produce a 100-dimension em-
bedding vector as er . For the PV-DM model parameters,
the minimum frequency threshold for each resource token
was set to 5, and the size of the context window was 2.
For training both resource-technique binding in Section 3.4
and the MAMBA neural network in Section 3.5, we used the
loss function with cross entropy and the Adam optimizer to
update the parameters, with an initial learning rate of 0.01.

The size of binding embedding zr was set to 50. The
identity function was used for the σ function in (2). The
weight matrix Wz was for the two-layer dense networks,
set to R100ˆ100 and R100ˆ50. We set each API call and GRU
hidden state size to 400 and 100 respectively, and set the
maximum timestamp t to 500. For category and API name
embedding, the weight matrices Wc and Wn were R100ˆ7

R100ˆ36. Both of the weight matrices Wv and Wd were two-
layer dense networks: Wv1 and Wv2 were set to R150ˆ64 and
R64ˆ1, and Wd1 and Wd2 were R150ˆ64 and R64ˆ|y|.
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4.3 Evaluation 1: MAMBA Evaluations

In this section, we compare the performance of MAMBA
and other methods using the ATT&CK and Big datasets to
answer Q1 and Q2. Table 3 compares the performance of
MAMBA with two rule-based systems (Cuckoo Signatures
and RegExp), five traditional machine learning methods,
i.e., LinearSVC (Linear Support Vector Classifier), Random
Forest, Decision Tree, GaussianNB (Gaussian Naive Bayes),
and KNeighbors (K-nearest Neighbors) in Scikit-learn [40],
and three conventional neural networks, i.e., MLP (mul-
tilayer perceptron), RNN (recurrent neural network), and
LSTM (long-short term memory). Machine learning-based
and deep learning-based methods are commonly used in
malware analysis [35], [41], [42], [43]. As traditional machine
learning methods could not accept a complete execution
trace as input, we took the first five hundred API calls (with
API categories and API function names only) of an execu-
tion trace and used PCA (principle component analysis) [44]
to reduce the dimensions of the execution trace. For the
traditional machine learning methods, the reduced API call
sequences and associated TTPs were used as input, whereas
for the conventional deep learning models, MAMBA’s API
call embeddings and associated TTPs were used as input.

Evaluation 1 has 3 sets of comparisons using ATT&CK,
Cuckoo Signatures, and RegExp labels sequentially as
ground truth for comparisons; the first set is used with
the ATT&CK dataset, and the other two are used with the
Big dataset. Table 3 compares various methods for TTP
discovery in terms of precision (P), recall (R), F1 score,
false positive rate (FPR), and false negative rate (FNR),
including the statistical significance level as per the Mann–
Whitney U test [45] in comparison to MAMBA. MAMBA
has significant performance differences with most of the
compared methods. Both Cuckoo Signatures and RegExp
perform poorly as the TTPs cover only part of ATT&CK
labels on the ATT&CK dataset; as a result, they achieve F1
scores of 0.049 and 0.099 and false negative rates of 0.858
and 0.659. The five traditional machine learning methods
perform slightly better than the rule-based approaches, with
F1 scores ranging from 0.389 to 0.260, as they learn the
relationship between API calls and TTPs. The conventional
neural networks learn from the embeddings of API calls,
yielding high precision, i.e., 0.556, 0.461 and 0.552 for MLP,
RNN, and LSTM, and relatively low false positive rates,
i.e., 0.010, 0.009, and 0.006. Compared to the deep learning
models, MAMBA demonstrates significant improvements
due to its preservation of resource and group dependencies
in the attention mechanism and its utilization of resource
and binding embeddings.

Take JCry as an example: as shown in Section 2.1, JCry is
identified with six malicious behaviors: T1547.001, T1486,
T1490, T1059.001, T1059.003, and T1059.005. Whereas the
MLP model correctly labels T1547.001 only, MAMBA addi-
tionally identifies T1059.001 and T1059.003 because it makes
use of ATT&CK resource knowledge such as “powershell”,
“-WindowStyle Hidden” and “cmd.exe” (see Section 4.6.2 for
details). For the LSTM model, although it handles sequential
data, it fails to identify any of JCry’s malicious behavior
as it ignores the semantics and structure of malware. To
sum up, MAMBA yields superior performance due to the

resource attention and group attention mechanisms as well
as ATT&CK knowledge and resource embeddings.

For the second and third set of comparisons, first,
the agreement (Krippendorff’s α “ ´0.120) [46] between
Cuckoo Signatures and RegExp is low, which demonstrates
the subjective nature of rule-based systems. Conventional
rule-based approaches exhibit limited performance on TTP
discovery, as shown in Table 3. Moreover, given sufficient
training data, learning-based approaches learn from latent
information in the data, and yield better predictions using
the Big dataset than when using the ATT&CK dataset. When
using these two labeling methods MAMBA achieves around
90% in terms of precision, recall, and F1 score, and produces
a 0.6% false positive rate and a 6% false negative rate, which
is the best performance of all the methods.

From Table 3, MAMBA outperforms in terms of preci-
sion, recall, and F1 at 0.667, 0.569, and 0.591 respectively.
To answer Q1, the result shows the ATT&CK labeling and
dataset does provide useful knowledge to extract TTPs
from execution traces, but due to the limited number of
malware samples and TTP labels, the resultant performance
is moderate. For question Q2, we conclude that: 1) MAMBA
accurately identifies TTPs compared to rule-based and other
learning-based approaches on the Big dataset using both
labeling methods. 2) Comparing the results on the ATT&CK
dataset against those on the Big dataset, given sufficient
samples and labels, MAMBA achieves high precision, recall,
and F1, attesting the efficacy of the MAMBA neural network
model.

4.4 Evaluation 2: Ablation Test

MAMBA includes knowledge from ATT&CK (binding em-
beddings), group dependencies (group attention), and API
calls (resource attention). We conducted an ablation study
to understand the contributions of each component to TTP
identification using the RegExp labels on the Big dataset.

Table 4 shows that after the removal of one or two com-
ponents, MAMBA still performs well, and indeed demon-
strates statistically significant improvements by the Mann–
Whitney U test [45] against most of the models. All compo-
nents have positive effects on the F1 score; in particular,
resource attention, that is, measuring the association be-
tween manipulated resources and API calls, has an obvious
impact. For instance, MAMBA discovers that a sample
(MD5 b9f7ff253e508d01cfa6defccdbad400) extensively ma-
nipulates the resource “aevce.exe” among invoked API calls
such as RegSetValue, NtCreateFile, and CreateProcessIn-
ternalW to implement T1547.001; when resource attention
is removed, MAMBA does not discover this TTP. This
verifies that resource attention measures the correlation
between resources and API calls, enhancing the ability of
MAMBA to discover TTPs. Another interesting finding is
that precision increases when only considering binding em-
bedding, (“– (resource attention + group attention)”); one
reasons is because it generates the fewest TTP predictions
to increase precision. Taking T1057 Process Discovery as
an example, 33 resources such as “tasklist” are extracted
from ATT&CK. MAMBA recognizes that sample MD5
203d4f3541012300368ee97420f46f5f attempts to list processes
with a command, tasklist /fi “imagename eq rfusclient.exe”,
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TABLE 3
Comparison of Various Methods for TTP Discovery

Source ATT&CK dataset Big dataset (ATT&CK + MalShare)
Label ATT&CK Cuckoo RegExp
Metric P R F1 FPR FNR P R F1 FPR FNR P R F1 FPR FNR
Cuckoo 0.078‹ 0.048‹ 0.049‹ 0.044‹ 0.858‹ - 0.087‹ 0.326‹ 0.131‹ 0.036‹ 0.903‹

RegExp 0.081‹ 0.206‹ 0.099‹ 0.351‹ 0.659‹ 0.061‹ 0.231‹ 0.092‹ 0.283‹ 0.468‹ -
Random Forest 0.375: 0.144‹ 0.208‹ 0.005‹ 0.429‹ 0.417‹ 0.203‹ 0.273‹ 0.003: 0.400 0.813‹ 0.850‹ 0.831‹ 0.010‹ 0.094‹

LinearSVC 0.200‹ 0.370; 0.260‹ 0.088‹ 0.343‹ 0.380‹ 0.408‹ 0.394‹ 0.039‹ 0.298‹ 0.734‹ 0.584‹ 0.650‹ 0.046‹ 0.133‹

GaussianNB 0.321‹ 0.490 0.388‹ 0.092‹ 0.268: 0.349‹ 0.560‹ 0.430‹ 0.089‹ 0.217‹ 0.738‹ 0.658‹ 0.606‹ 0.047‹ 0.132‹

Decision Tree 0.342‹ 0.332‹ 0.337‹ 0.040‹ 0.344‹ 0.437‹ 0.464‹ 0.450‹ 0.044‹ 0.316‹ 0.745‹ 0.745‹ 0.745‹ 0.026‹ 0.113‹

KNeighbors 0.416‹ 0.365‹ 0.389‹ 0.028‹ 0.375‹ 0.468‹ 0.456‹ 0.462‹ 0.029‹ 0.281‹ 0.777‹ 0.772‹ 0.774‹ 0.020‹ 0.110‹

MLP 0.556‹ 0.365‹ 0.427‹ 0.010 0.319‹ 0.833‹ 0.779‹ 0.801‹ 0.006 0.111‹ 0.938‹ 0.926‹ 0.928‹ 0.004‹ 0.037‹

RNN 0.461‹ 0.214‹ 0.288‹ 0.009 0.394‹ 0.688‹ 0.604‹ 0.631‹ 0.010‹ 0.251‹ 0.850‹ 0.774‹ 0.796‹ 0.009‹ 0.115‹

LSTM 0.552; 0.289: 0.362; 0.006: 0.358‹ 0.770‹ 0.711‹ 0.735‹ 0.007 0.144‹ 0.920‹ 0.900‹ 0.908‹ 0.006‹ 0.051‹

MAMBA 0.667 0.569 0.591 0.011 0.220 0.898 0.887 0.891 0.006 0.061 0.945 0.954 0.949 0.005 0.024

: p <0.05, ; p <0.01, ‹ p <0.001. Mann–Whitney U test is applied to compare the performance of MAMBA against that of each compared
method.

whereas MAMBA with fewer components fails to identify
the TTP. This shows that the relation between the command
and the extracted resource transfers successfully to the bind-
ing embedding, boosting performance.

To answer Q3, each component of MAMBA, binding
embedding, group attention and resource attention helps to
discover TTPs.

TABLE 4
Ablation Test Results on Big Dataset

P R F1
MAMBA 0.945 0.954 0.949

– group attention 0.942‹ 0.935‹ 0.938‹

– resource attention 0.911 0.920: 0.915:

– binding embedding 0.940‹ 0.933 0.936

– (resource + group attention) 0.949; 0.925‹ 0.936‹

– (binding embedding + group attention) 0.886‹ 0.932‹ 0.908‹

– (binding embedding + resource attention) 0.934‹ 0.912‹ 0.919‹

: p <0.05, ; p <0.01, ‹ p <0.001. Mann–Whitney U test is applied
to compare the performance of MAMBA against that of each
compared method.

4.5 Evaluation 3: APT29 Case Study
The ATT&CK evaluations use known attack methods of
APT groups such as APT29 [47] to evaluate cybersecu-
rity products. In 2019, 21 security vendors participated
in the evaluation using this emulated adversary environ-
ment. With this experiment we examined the capability of
MAMBA trained with ATT&CK dataset and ATT&CK label-
ing in dealing with malware samples used in a well-known
APT29 adversary, and compared the predicted TTPs with
the ATT&CK APT29 Evaluation results [48]. The malware
samples deployed in APT29 are well-documented in [49],
[50], [51]; we collected these 310 malware samples for the
evaluation and compared the outcome with those of the
attending vendors.

Taking 310 execution traces as inputs, MAMBA discov-
ered 67 TTPs among 9 tactics. (As a side note, when trained

T1560 T1547.001 T1059.001 T1140 T1070.004 T1055 T1218.011 T1564.004 

T1059 T1136 T1105 T1546.003 T1036 T1027 T1204 T1102 

T1021.002 T1003 T1047 T1569.002T1018T1571 T1546.015T1114

T1021.006 T1048T1033T1016T1518.001 T1057T1074 T1548.002

T1543.003T1078 T1550.003 T1082T1113 T1106T1083T1119

T1005T1134T1573 T1041 T1552.001 T1027.002 T1069T1071

T1115 T1056 T1070.006T1552.004T1497T1120 T1112T1012

21101 True Positive False Negative

Fig. 5. Comparisons of MAMBA and security vendors on 56 TTPs listed
in APT29 evaluations

with the Big dataset, MAMBA discovered 90 TTPs among
10 tactics.) Whereas 56 TTPs are listed in the APT29 Evalua-
tions, Fig. 5 shows that 20 TTPs are recognized by MAMBA
against those results from the security vendors [48]. In Fig. 5,
the larger the circle is, the more vendors recognize the TTP;
true positives and false negatives of MAMBA prediction are
represented with different colors. In addition, MAMBA rec-
ognizes TTPs—e.g., T1056.001 Input Capture: Keylogging and
T1059.003 Command and Scripting Interpreter: Windows Com-
mand Shell—beyond the 56 TTPs in the ATP29 Evaluation,
although the discovery of these two TTPs is consistent with
[49]. However, MAMBA does produce false positive TTPs,
such as T1546.010 Event Triggered Execution: AppInit DLLs,
which is misidentified because MAMBA treats the registry
subkey “... Windows\LoadAppInit DLLs” in an execution
trace as “...\AppInit DLLs” in the MITRE webpage.

To answer Q4, MAMBA demonstrates the feasibility
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of capturing TTPs on malware samples used in a threat
group. However, there are still some shortcomings due to
the statistical characteristics of deep learning and the size
limitation of ATT&CK dataset.

4.6 Evaluation 4: Resource and API Locating
This section presents a post-processing heuristic to locate
the APIs and manipulated resources of malicious behaviors,
and discusses a case study that demonstrates the effective-
ness of API call locating.

4.6.1 Inference and API locating
At inference time, MAMBA predicts TTPs ŷ and locates
related API calls x̄ Ď x for a given execution trace x.
Given the group attentions in (12) and the resource atten-
tions in (9), we find the dominant resources for discovering
TTPs and locating the related API calls in a process. More
specifically, a set of manipulated resources r̄ŷ is selected
based on two criteria: i) the similarity between the resources
extracted from ATT&CK and the manipulated resources,
and ii) the group attention. The similarity scores reveal the
likelihood that a certain resource is being manipulated to
implement a TTP. The group attention measures how much
information a resource provides, that is, whether it is a
common or rare resource across API calls. A large group
attention value for a resource indicates that the resource is
frequently used among API calls or processes; in contrast, a
resource with a small group value means that it is uniquely
representative, or is used only by chance. Security analysts
use this to select observable resources by setting a threshold
thd for the corresponding similarity scores and k as the
number of highest and lowest attention values. Once the
resources are selected, malicious behavior can be located
via the API calls whose resource attention values are larger
than the largest attention value minus α times the standard
deviation. Algorithm 2 describes the locating process for the
alignment of API calls and resources.

4.6.2 Case study
As there is no benchmark for a quantitative evaluation
of the efficacy of associated API call locating, we here
present a case study on a JCry malware sample to demon-
strate MAMBA’s ability to align API calls. The malicious
activities of JCry were presented as a motivating ex-
ample in Section 2.1. The malware sample manipulates
8,440 resource groups in seven processes. Based on the
MITRE website [28], JCry is labeled with seven TTPs:
T1547.001, T1059.001, T1059.003, T1059.005, T1486, T1490,
and T1204.002. Nine techniques are predicted by MAMBA,
among which T1547.001, T1059.001, and T1059.003 are con-
sistent with the content on the MITRE website; T1033,
T1070.004, T1082, T1016, T1218.010, and T1220 are not listed.

Figure 6 shows the sorted group attentions
and their associated resource attentions of selected
resources found by Algorithm 2. The highest
group attention refers to subkey 2392 regkey1
“HKEY LOCAL MACHINE\SOFTWARE\Classes”, which
is heavily manipulated (443 times). Its high group attention
scores and high associated resource attentions lead to the
discovery of TTP T1082 System Information Discovery. The

Algorithm 2 MAMBA API Call Locating
Input: an execution trace x, a set of group attentions v,

a set of resource attentions s, a set of predicted TTPs ŷ
from the MAMBA neural network, knowledge pairs of
{resource r, TTP y} from Section 3.2

Output: a set of selected manipulated resources r̄ŷ and
the corresponding API call subsequences x̄ŷj

1: for each TTP ŷ do
2: # Select possible resources r̄ŷ for a certain TTP ŷ
3: i Ð Extract resources r from knowledge pairs tr, yu

given TTP ŷ
4: for each resource i do
5: for each manipulated resource j in x do
6: scorepi, jq “ simpei, ejq
7: end for
8: end for
9: r̄ŷ Ð Extract j when scorepi, jq ą thd ŷ

10: r̄ŷ Ð Extract top and bottom k of sort(v)
11: # Locate API call x̄j for a certain resource j.
12: for each resource j in r̄ŷ do
13: for each resource attention s in sj do
14: x̄ŷj Ð Extract x when s ě maxpsjq ´ αstdpsjq
15: end for
16: end for
17: end for

2392 regkey1 subkey and its many high resource attentions,
depicted as the first row of resource attention in Fig. 6,
such as APIs “RegEnumKeyW” and “RegOpenKeyExW”
that enumerate and attempt to open subkeys, support the
discovery of the TTP. The behavior meets the description of
T1082; “RegEnumKeyW” and “RegOpenKeyExW” are the
associated API calls.

The algorithm then finds 3572 Enc.exe, with which we
find the TTP T1070.004 Indicator Removal on Host: File Dele-
tion discovered by MAMBA but not documented on the
MITRE website [28]. The group attention (3572 Enc.exe)
and its highest resource attentions “NtDeleteFile” together
support the discovery of TTP T1070.004. This malicious
behavior can be observed in the execution trace as well: it
deletes the self-created files to evade detection .

Figure 6 depicts the discovery of TTPs T1547.001 and
T1059.001, which are listed on the MITRE website. The
group attention of 2932 Enc.exe is high and the resource
attentions of associated API calls such as ”NtCreateFile” and
”GetFileAttributesExW” are also high, suggesting T1547.001
Boot or Logon Autostart Execution: Registry Run Keys / Startup
Folder. The next group attention for the command line
3420 PS and its resource attentions ”NtCreateSection” and
”CreateProcessInternalW” contribute to the identification of
TTP T1059.001 Command and Scripting Interpreter: PowerShell.

However, MAMBA incorrectly recognizes TTPs T1033
System Owner/User Discovery and T1218.010 Signed Binary
Proxy Execution:Regsvr32, as their behaviors are not found in
the Cuckoo Sandbox execution trace. TTP T1220 XSL Script
Processing is mistakenly recognized when JCry renames and
encrypts XML files. Moreover, T1204.002 User Execution:
Malicious File is not recognized because it involves human
action. Finally, MAMBA does not recognize TTPs T1059.005,
T1486, and T1490.
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Fig. 6. Group attention and resource attention diagram in JCry analysis

TABLE 5
Discovered Life Cycle of JCry

Execution Persistence
Privilege
escalation

Defense
evasion

Discovery

T1059.001 T1547.001 T1547.001 (T1070.004) (T1016)
T1059.003 (T1218.010) (T1033)

(T1220) (T1082)

(*) indicates the TTP is not listed in [28].

Following the MITRE ATT&CK framework, Table 5
presents the life cycle of the associated TTPs of the JCry
analysis, indicating correspondences between the discov-
ered TTPs and TTPs listed in [28].

To answer Q5, the group and resource attention mech-
anisms indeed capture the relations among the predicted
TTPs, the manipulated resources, and the corresponding
API calls; some mistakes are made because they are not
found in the execution trace, some require human interac-
tion, and some are not explainable.

5 RELATED WORK

Open source intelligence and cyber threat intelligence.
Open Source Intelligence (OSINT) involves information
gathering, collection, processing, and correlation from open
data sources such as technical reports, blogs, forums, or
social networks [52]. In recent years, OSINT and CTI reports

have been utilized to provide threat information to proac-
tively mitigate potential attacks [53]. Whereas a number
of studies have discussed the mechanism and standards
of threat intelligence extraction [7], [8], [10], [11] and shar-
ing [54], [55], another line of work investigates the integra-
tion of threat intelligence for detecting network threats [56]
and advanced persistent threats [57]. In this study, MAMBA
integrates MITRE ATT&CK into a neural network model
to leverage the ever-increasing OSINT and CTI reports for
malware behavior analysis.
Malware behavior discovery. Behavior-based malware
analysis detection learns behavior first and detects mal-
ware later [27], [58], while other studies focus directly on
extracting malicious behaviors or common behaviors of a
family. Christodorescu et al. [59], Fredrikson et al. [60], and
Palahan et al. [61] mine malicious behavior by comparing
dependence graphs extracted from the execution behavior
of malware against that of benign software, and produce
sub-graphs specific to malicious behavior. Bayer et al. [26]
develop clustering algorithms to discover behaviors that
are characteristic of a family in a group of malware. Rieck
et al. [25] learn malware behavior using support vector
machines, in which API calls with high corresponding
weights represent malware behavior. Similar to these works,
MAMBA discovers malware behavior. However, whereas
their discovered behavior must be further interpreted by
security analysts, MAMBA presents them as mappings to
MITRE ATT&CK TTPs.
MITRE ATT&CK techniques. Several recent studies lever-
age ATT&CK as a rich source of knowledge. TTPDrill [7]
constructs an ontology of attack patterns that maps threat
actions to TTPs based on a collection of CTI reports. Legoy
et al. [62] develop rcATT to identify tactics and techniques
for textual CTI reports based on ATT&CK content. Al-Shaer
et al. [63] analyze and cluster the APT and software data
reported by ATT&CK to predict techniques. These works
concern only the natural-language contents of the MITRE or
CTI reports, and can be seen as a foundation that facilitates
the use of ATT&CK knowledge in MAMBA.
TTP identification. Holmes [12] and RapSheet [13], the
most closely related works, attempt to connect adversarial
behavior to ATT&CK techniques. Both leverage provenance
graphs and rules to map audit logs to advanced persistent
threat (APT) stages and TTPs on a host. These works differ
from the proposed method in three ways. First, the scope of
MAMBA is different from the two studies, as they focus on
either APT or endpoint detection and not malware behavior.
Also, the focus of this work is to develop a neural network
and integrate ATT&CK knowledge to discover TTPs, which
differs greatly from their pattern matching approaches. Fi-
nally, as ATT&CK evolves, MAMBA is easily adapted to
new versions of the framework, whereas their approaches
require human involvement for pattern development.
Embedding techniques. Rather than manually developing
solutions for security-related events, the use of embedding
techniques has brought significant benefits to the field of
cybersecurity. Mimura et al. [19] embed proxy server logs to
detect unknown malicious communication. ATTCK2vec [20]
learns attack embeddings which correlate a collection of
billions of security events with common vulnerabilities and
exposures (CVEs). PROVDETECTOR [17] embeds malware
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execution paths in the provenance graphs to detect stealthy
malware. SDAC [18] embeds API call paths from each An-
droid app process to detect malware. Similar to [19] and [17],
MAMBA uses a PV-DM model to embed resource values
from both ATT&CK and execution traces. With advances
in embedding techniques, we preserve the closeness in the
embedding domain and use it to bind components and
identify threats.

6 CONCLUSION

In MAMBA, the proposed system, the key drivers to dis-
covering MITRE techniques include 1) incorporating knowl-
edge from the MITRE ATT&CK framework, 2) considering
the relation between resources and API calls, and 3) lever-
aging resource dependencies among processes. Based on
these drivers, the design of the MAMBA neural network
includes 1) binding embeddings, 2) resource attention, and
3) group attention. These ensure that MAMBA achieves the
best performance on both ATT&CK and Big datasets. In
addition, this study demonstrates a usage of the MITRE
ATT&CK framework in cybersecurity applications in gen-
eral that increases the interpretability of the deep learning
outcomes.

The information collected from ATT&CK has limitations,
as the data collection process of the MITRE ATT&CK frame-
work relies heavily on contributions from security experts
and organizations; as a result the data may be neither timely
nor complete. This limits the capability of cybersecurity
systems that rely solely on the MITRE ATT&CK framework
as a knowledge source. In this case, performance can be
improved if the system adopts more OSINTs and other
reliable sources. In this work, we focus only on Windows
malware and its associated TTPs, but the concept of our
approach is not limited to certain operating systems since
malicious behaviors could be discovered by aligning the
manipulated resources to ATT&CK knowledge.

When an adversary with knowledge of MAMBA regular
expressions creates new malware variants to avoid TTP
discovery, there are two ways that MAMBA could still
recognize the technique. First, besides extracting knowledge
directly from ATT&CK, MAMBA can learn malicious be-
haviors from malware execution traces. For example, the
TTP T1070.004 File Deletion contains ten resources, including
the command “rm -rf ”, on ATT&CK. Malware sample MD5
cd1c95aa6f45101735d444aeb447225c does not use any ex-
tracted resource appearing on ATT&CK such as “rm -rf ”, but
implements the technique with an API call, “DeleteFileW”.
In this case MAMBA still identifies the TTP T1070.004 File
Deletion by learning the association between “rm -rf ” and
“DeleteFileW” from data. This shows MAMBA can learn
the relationship between TTPs and API calls from execu-
tion traces. Second, we leverage the fact that open-source
intelligence reports are constantly updated. When an addi-
tional resource is used to implement a technique, OSINT
knowledge (e.g., ATT&CK) may be updated accordingly.
For example, resource powershell.exe -windowstyle hidden -
exec bypass -file ”%appdata%\onedrive.ps1” used to implement
TTP T1059.001 Command and Scripting Interpreter: PowerShell

is not available in version 61 but is in version 72. Given
the latest version of ATT&CK, MAMBA can keep up with
the behavior of JCry. To summarize, MAMBA can still
discover malicious behavior of new malware variants by
not only learning from data but also from the up-to-date
CTI knowledge. Detecting adversarial examples in malware
analysis, such as [64] and [65], remains an active research
area in which MAMBA has room to improve.

This is the first attempt to leverage the knowledge
collected from OSINTs in deep learning analysis of mali-
cious behavior. Still, MAMBA has several drawbacks. For
instance, some discovered TTPs cannot be explained and
some TTPs cannot be found. One reason for these limitations
is insufficient or imbalanced annotated resources on the
MITRE website [62]. In future work, we plan to enrich the
knowledge associated with TTPs via data augmentation or
by adopting more OSINTs. On the other hand, we observed
that the results on the attention distribution in our case
study indicate only a human-understandable explanation
and do not reflect the model’s actual reasoning process for
the model’s outcome [66]. Another direction of future work
is to improve the faithfulness of attention-based explana-
tions for malicious behavior discovery, such as in [67].
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