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Abstract
Speech data typically contain information irrelevant to auto-
matic speech recognition (ASR), such as speaker variability and
channel/environmental noise, lurking deep within acoustic fea-
tures. Such unwanted information is always mixed together to
stunt the development of an ASR system. In this paper, we
propose a new framework based on autoencoders for acoustic
modeling in ASR. Unlike other variants of autoencoder neural
networks, our framework is able to isolate phonetic components
from a speech utterance by simultaneously taking two kinds of
objectives into consideration. The first one relates to the min-
imization of reconstruction errors and benefits to learn most
salient and useful properties of the data. The second one func-
tions in the middlemost code layer, where the categorical dis-
tribution of the context-dependent phone states is estimated for
phoneme discrimination and the derivation of acoustic scores,
the proximity relationship among utterances spoken by the same
speaker are preserved, and the intra-utterance noise is modeled
and abstracted away. We describe the implementation of the dis-
criminative autoencoders for training tri-phone acoustic models
and present TIMIT phone recognition results, which demon-
strate that our proposed method outperforms the conventional
DNN-based approach.
Index Terms: acoustic modeling, automatic speech recogni-
tion, discriminative autoencoders, deep neural networks

1. Introduction
Recently, significant improvements in speech recognition ac-
curacy have been obtained in a variety of tasks whose acous-
tic models were based on deep neural networks (DNN) rather
than Gaussian mixture models (GMM) [1, 2]. More recent ad-
vances in deep learning techniques applied to speech process-
ing include the locally-connected or convolutional deep neural
networks (CNN) [3, 4, 5], temporally recurrent versions of neu-
ral networks (RNN) [6, 7], or the combination of the previous
models [8]. Besides, another branch of research focuses on how
to directly and independently employ neural networks with no
reliance on hidden Markov models (HMM) for sequence mod-
eling. For example, the model based on long-short term mem-
ory (LSTM) took a successful step for the replacement of the
standard DNN-HMM hybrid framework [9, 10, 11].

All of the above methods are related to discriminative mod-
eling. However, building rich generative models, which are
capable of extracting or preserving useful, salient, and high-
level latent information from the high-dimensional, context-
embedded sensory input, lies at the core of solving many ma-
chine learning tasks [12]. These models capture the underly-
ing structure of data by defining flexible probability distribu-
tions over high-dimensional data as part of a complex, partially

observed system. Recently, some of the successful generative
models, such as variational autoencoders (VAE) [13, 14] and
generative adversarial networks (GAN) [15], were proposed to
discover meaningful and high-level latent representations. In
light of these developments, we attempt to propose a new frame-
work, named discriminative autoencoders (DcAE), for acoustic
modeling based on autoencoder neural networks. With a proper
use of sample labels, not only can the optimization of DcAEs
be handled in a discriminative fashion, but the whole model in-
herits the aforementioned merits of generative models.

We replace the role of DNN with an autoencoder and tweak
its objectives for phoneme classification and speaker discrimi-
nation. The autoencoder is a symmetric neural network that is
trained to approximately copy its input to the output [16]. In
addition to the reconstruction error, which makes the autoen-
coder analogous to a generative model that benefits to unsuper-
visedly learn most salient and useful properties of the data, three
additional objective functions are also considered in our pro-
posed framework. The first one is used to estimate the categor-
ical distribution, i.e., the posterior probabilities of the context-
dependent phone states, in the middlemost code layer to form
a phoneme code vector (p-vector) for each acoustic frame. The
other two objectives attempt to ensure that utterances spoken
by the same speaker would have similar representations in the
speaker-discriminative subspace represented in the code layer.
Finally, the acoustic score of each acoustic frame is derived
by its p-vector. To our best knowledge, although autoencoders
have been widely applied to many speech processing tasks,
such as speech enhancement [17, 18], acoustic novelty detec-
tion [19], and robust feature extraction in ASR [20, 21, 22],
fewer papers used them directly for acoustic modeling.

Our work in this paper continues the general line of DcAE
research in [23] and has at least the following two major con-
tributions. First, our proposed model is able to isolate phonetic
components from a speech utterance by simultaneously taking
two kinds of objectives into consideration. Second, along the
same vein, we also apply additional highway connections be-
tween inputs, hidden layers, and code layers, showing the flexi-
bility of the proposed DcAE structure.

2. Discriminative Autoencoders and
Objective Functions

Formally, given a set of training data X , a classic autoencoder
is used to infer internal representations or codesH by minimiz-
ing the reconstruction error between each input x ∈ X and its
reconstructed output x′. Thus, we can suppose H contains un-
treated phonetic, speaker, and other characteristics [16]. In or-
der to extract the phonetic information so as to estimate accurate
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Figure 1: Illustrations of different acoustic modeling systems. The numbers in each block denote the number of nodes in the correspond-
ing layer. (a) Two baseline systems, DNNs and Multi-tasking DNNs. (b) DcAEs with or without the speaker identity layer, expressed by
a dotted block. (c) Highway DcAEs, where the green arrows express the highway connections from the input layer to each hidden layer
as well as the middlemost code layer.

acoustic scores for ASR, we assume that the internal representa-
tion can be separated into three sub-components: the phoneme-
aware vector (p-code), the speaker identity vector (s-code), and
the residual vector (noise within the acoustic frame). In other
words, the internal representation of a given acoustic sample is
concatenated by three individual vector representations. In the
following subsections, we present three kinds of objective func-
tions to be used for training an autoencoder.

2.1. The reconstruction error

Suppose our proposed model M contains a pair of determin-
istic mappings f(·) and g(·), which are responsible for latent
variable inference and observation generation in the terminol-
ogy of Bayesian inference, respectively. Given a set of training
data X ready to go through the inference-generation process

X f→ H g→ X , where H is the internal representation residing
in a latent subspace, the average reconstruction error based on
the residual sum of squares between x ∈ X and its reconstruc-
tion x′ = g(f(x)) is given by

Lr(X ) =
1

|X |
∑
x∈X

‖x′ − x‖22, (1)

where ‖ · ‖22 is the 2-norm operator and |X | is the sample size.
Like a copy machine,H is usually restricted in ways that allow
it to copy only approximately, and to copy only input that re-
sembles the training data. Because the model is forced to prior-
itize which aspects of the input should be copied, it often learns
useful properties of the data.

2.2. The phoneme-aware cross-entropy

One of the straightforward strategies to interpret the phonetic
information of an sensory input is to leverage a categorical dis-
tribution over the predefined context-dependent phonetic states.
To realize the representation, we define an objective function
that aims at maximizing the log posterior probability over all
training samples X (or minimizing the cross-entropy between
the ground truth and the predicted values):

Lphn−ce(X ) =
∑
x∈X

log p(qx|x), (2)

where qx denotes the context-dependent phone state for x, and
p(qx|x) is obtained through a softmax activation function. It is
worthy to note that the dimension of p-code is equivalent to the
number of distinct context-dependent phonetic states.

2.3. The speaker-aware loss

The speaker-aware loss function Lspk, acting in the speaker
identity code (s-code) layer, can be realized in two alternative
ways: 1) the cross-entropy loss and 2) the within-speaker scat-
terness along with the between-speaker ambiguity.

2.3.1. The speaker-aware cross-entropy

For the purpose of segregating the speaker statistics from others,
a simple but direct approach is to first represent a speaker by
a one-hot representation, where each element corresponds to a
distinct speaker in the training set. Then, the training objective
can be defined by maximizing the probability of the true speaker
given an acoustic observation x:

Lspk−ce(X ) =
∑
x∈X

log p(sx|x), (3)

where sx denotes the speaker of x, and p(sx|x) is computed by
feedforward from the input sample to the speaker identity code
layer with a softmax activation function. The deduced probabil-
ity distribution is treated as the s-code.

2.3.2. The within-speaker scatterness

Suppose Hspk = {Hs1, ...,Hsm}, where Hsi corresponds to
the training data that belong to the i-th speaker of the m train-
ing speakers, and the loss function that measures the average
scatterness within each speaker is described as follows:

Lspk−ws(Hspk) =
1

m

m∑
i=1

∑
h∈Hsi

‖h− h̄si‖22, (4)

where h̄si denotes the empirical mean vector of Hsi. Appar-
ently, (4) measures the average within-speaker compactness on
the negative side. Therefore, minimizing (4) implies increasing
the similarity score between two utterances of the same speaker



if the score metric is 2-norm-related. In this way, false rejec-
tions in a speaker verification task will be reduced to some ex-
tent.

2.3.3. The between-speaker ambiguity

The last objective function to be minimized is about the ambi-
guity between s-codes that belong to different speakers, which
can be measured by the following loss function:

Lspk−ba(Hspk) = − 1

m

m∑
i=1

|Hsi|‖h̄si − h̄s‖22, (5)

where h̄s denotes the empirical mean vector ofHspk, and |Hsi|
stands for the size of Hsi. It can be seen that larger Lspk−ba

occurs when each h̄si is drawing closer to h̄s, which makes
s-codes more ambiguous in speaker discrimination.

2.4. The proposed DcAE framework

Finally, by combining the reconstruction error in (1), the
phoneme-aware cross entropy in (2) and the speaker-aware loss
in either (3), or (4) and (5), our goal is to find a set of model
parametersM by minimizing

Lphn−ce + αLspk + Lr + λ‖M‖22, (6)

where α > 0 is used to control the degree of reliance on the
speaker-aware objective function Lspk, λ is a regularization pa-
rameter that controls the model complexity, and

Lspk =

{Lspk−ce(X ), or
Lspk−ws(Hspk) + Lspk−ba(Hspk).

(7)

The treatment of α and λ is akin to that in ElasticNet [26].
One of the major reasons for using the combination of the

three kinds of loss functions is to simultaneously isolate the
phonetic and speaker factors that explain the input acoustic fea-
tures. First, Lr guarantees that the code layer of DcAEs pos-
sesses enough acoustic information to restore or generate the
observations, just like a generative model based on factor anal-
ysis, so that we do not need to worry that the information for
phone discrimination will be washed away even if the mismatch
between training and test data gets more serious. Second, Lspk

and Lphn−ce play a role like a filter to keep what is useful and
throw what is worthless into the residual part of the code layer.
(This also explains why the residual part is necessary in the code
layer.) Therefore, they help centralize the phonetic and speaker
information, respectively, into their corresponding identity parts
of the code layer, in order to form an s-code and a p-code for
each acoustic frame, where the p-code just can be used as its
acoustic scores for the subsequent phone decoding.

3. Experiments
3.1. Experiment setup

Experiments were conducted on the TIMIT corpus [27]. The
training set contained 3,696 sentences from 462 speakers. A
separate development set of 50 speakers was used for hyperpa-
rameter tuning. Experiments were evaluated on the core test set,
which consisted of 192 utterances, with 8 utterances from each
of the 24 speakers. The speakers in the training, development,
and core test sets do not overlap.

The phone recognizer was implemented with three-state tri-
phone HMMs, which were tied to give 1,943 context-dependent

phonetic states in total. The likelihoods produced by the DNN
were used as the emission probabilities of HMM states. A bi-
gram language model estimated from the phone transcriptions
available in the training set was used in the decoding phase.
After decoding, the 48 phone labels were mapped to 39 phone
classes for scoring, following [28].

3.2. Baseline systems

The baseline DNN-HMM system was trained with 2 hidden lay-
ers, with 1,024 hidden units in each layer. The input layer con-
sisted of a context window of 11 frames of acoustic features,
including the target frame at time t, 5 preceding and 5 following
frames. Each frame was represented by 40 dimensional feature
space maximum likelihood linear regression (fMLLR) features
[29], plus their first and second order derivatives. Therefore,
each frame was represented by a 120-dimensional vector, and
the input layer consisted of 1,320 nodes. The output layer of
the baseline system was a softmax layer, with one output node
for each of the 1,943 acoustic states. The training target of the
DNN was a one-hot representation for each frame. The labels
were determined by Viterbi alignment on the training data ac-
cording to a baseline GMM-HMM recognizer.

The DNN was fine-tuned using back-propagation over the
full structure with the framewise cross-entropy criterion. The
learning rate was first set to 0.01 for a minimum of 4 epoches.
When the validation loss reduction between successive epoches
was less than 0.002, the learning rate was halved, and contin-
ued to be halved after each epoch for 10 times till the training
process stopped. The mini-batch size was 256.

The second baseline system used a multi-task learning
DNN (MTL-DNN), which had the same network architecture
as the DNN used in the DNN-HMM baseline system, except the
output layer. In addition to the output layer with a softmax acti-
vation function for the primary task of context-dependent pho-
netic state classification, the final layer was augmented with a
secondary softmax-activated layer for an auxiliary speaker clas-
sification task. The MTL-DNN adopted the same learning pro-
cess as the DNN. The likelihoods produced by the primary task
were used as the emission probabilities of HMM states, and the
likelihoods produced by the secondary task were discarded.

The GMM-HMM system and the decoders for all the neural
network-based systems were built up on top of the Kaldi toolkit
[30]. Neural network training was performed on NVIDIA
GeForce GTX TITAN X GPUs using an in-house tool based
on the Keras library [31].

3.3. Results

Table 1 summarizes the neural network models that are com-
pared in the paper and their objective functions, where “MTL–
DNN” stands for the multi-task learning DNN, which uses
speaker identification as the auxiliary task; “DcAE–1” repre-
sents the DcAE model trained by considering the reconstruction
error (Lr) and phoneme-aware cross-entropy loss (Lphn−ce);
“DcAE–2” is trained with Lr , Lphn−ce and the speaker-aware
cross-entropy (Lspk−ce); “DcAE–3” denotes the model trained
with Lr, Lphn−ce, the within-speaker scatterness (Lspk−ws),
and the between-speaker ambiguity (Lspk−ba); and “H–DcAE”
is an extension of “DcAE–3” by adding extra highway connec-
tions in the encoder part in order to ensure that the information
from the input layer is kept when training the encoder. For the
DcAE-based models, there were two hidden layers in the en-
coder and decoder parts, respectively. Each hidden layer con-
tained 1,024 nodes. Initial weights were uniformly sampled



Table 1: The loss functions used in different models.

Models Loss Functions

MTL–DNN Lphn−ce, Lspk−ce

DcAE–1 Lr , Lphn−ce

DcAE–2 Lr , Lphn−ce, Lspk−ce

DcAE–3 Lr , Lphn−ce, Lspk−ws, Lspk−ba

H–DcAE Lr , Lphn−ce, Lspk−ws, Lspk−ba

Table 2: Phone error rates (%) by different ASR systems.

Models Loss Weights PER (Dev) PER (Test)

DNN 1 21.40 20.50
MTL–DNN 1:0.1 21.50 20.20

DcAE–1 1:1 21.20 20.70
DcAE–2 1:1:0.1 21.20 20.00
DcAE–3 1:1:0.5:0.5 21.40 19.90
H–DcAE 1:1:1:1 20.10 19.50

Table 3: Phone error rates (%) by the pretrained DcAE-based
systems.

Models Loss Weights PER (Dev) PER (Test)

PT–DcAE–1 1:1 20.90 19.70
PT–DcAE–2 1:1:0.1 20.90 19.80
PT–DcAE–3 1:1:0.5:0.5 20.90 19.60
PT–H–DcAE 1:1:1:1 20.90 20.00

by the Glorot process, which was fit for the tanh activation
function [32]. The adaptive gradient algorithm for updating the
model parameters was AdaGrad [33].

Figure 2 shows the phone error rates (PERs) achieved by
different DcAE-based models with different numbers of nodes
in the residual layer. The speaker loss weight α in (6a) was set
to 1.0. The result indicates that increasing the residual layer
size does not reduce the PERs. Figure 3 further shows the PERs
achieved by “DcAE–2”, “DcAE–3” and “H–DcAE” with dif-
ferent α in (6a) and different numbers of nodes in the resid-
ual layer. The result shows that “DcAE–2” with a small α in
general gives lower PERs. In contrast, “DcAE–3” seems to be
more robust against the variation of the speaker loss weight than
“DcAE–2”, and “H–DcAE” performs well at a larger α. The
larger α also indicates that the hybrid speaker loss in “DcAE–
3” and “H–DcAE” might be more effective than the speaker
loss in “DcAE–2”, and thus can contribute more in the training
objective.

The PERs by different ASR systems are summarized in Ta-
ble 2. All the DcAE-based systems were implemented with
105 nodes in the residual layer. The loss weights for the loss
functions in Table 1 were set according to the development
set. It is clear that “DcAE–2”, “DcAE–3”, and “H–DcAE”
outperform “DNN”, “MTL–DNN”, and “DcAE–1”. The re-
sult indicates that considering the speaker-aware loss (either
the speaker-aware cross-entropy (Lspk−ce) in “DcAE–2” or the
within-speaker scatterness (Lspk−ws) plus the between-speaker
ambiguity (Lspk−ba) in both “DcAE–3” and “H–DcAE”) in the
training objective can indeed reduce the PER. Moreover, the
combination of Lspk−ws and Lspk−ba are more effective than
Lspk−ce. “H–DcAE” has the lowest PER of 19.50%, as ex-
pected.

3.4. Pretraining DcAEs

Gradient-based optimization methods can result in a poor local
optimum. To remedy this problem, pretraining methods have
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with different residual layer sizes.

Figure 3: Heat map in PERs generated by different DcAE-based
systems with different α and residual layer sizes.

been proposed to initialize the parameters prior to back propa-
gation. In some sense, this is similar to using maximum like-
lihood acoustic models as the initialization for discriminative
training in traditional GMM-HMM acoustic models. We pre-
trained the DcAE model with the reconstruction loss only, and
used the model with the lowest validation loss as the initializa-
tion for further training using the proposed losses in Secion 2.1,
2.2 and 2.3. From the results shown in Tables 2 and 3, we find
that pretraining can improve the performance of DcAE models,
in most cases.

4. Conclusions
In this paper, we have proposed a new framework based on au-
toencoders for acoustic modeling in ASR. Unlike other variants
of autoencoder neural networks, our framework is able to iso-
late phonetic components from a speech utterance by simultane-
ously taking two kinds of objectives into consideration, which
cooperate to make our model behave like a generative model
that possesses discriminative power for ASR. The experimental
results demonstrate that our proposed framework outperforms
the conventional DNN-based methods.
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