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ABSTRACT
Most of the present day electric scooters are equipped with
a voltage-driven DC motor powered by four 12-volt lead-
acid batteries and a hand-lever accelerator operated by the
rider to control their speed. Because of the nonlinear bat-
tery discharge characteristics and different driving behav-
iors of riders, it is not easy to tell how much electric power
remaining in the battery and how far the electric scooter can
travel before the battery has to be re-charged. As a result,
the reliability of the electric scooter is lacking.

To tackle this problem and to enhance the capabilities
of present electric scooters, we propose an intelligent con-
trol system that not only can control the speed of the elec-
tric scooter, but also can provide information about resid-
ual electric power in the battery system by monitoring its
power consumption.

This system consists of both motor driver control and
energy management subsystems. The driver control sub-
system is implemented as a closed-loop speed control sys-
tem by using a muscle-like control law with excellent com-
pliant property. The energy management subsystem is
implemented by learning modules based on fuzzy neural
networks and cerebellar model articulation controller net-
works, which can estimate and predict nonlinear charac-
teristics of the power consumption of batteries and electric
scooter dynamics. With this battery power monitoring sub-
system the rider will be provided information regarding an
estimated traveling distance at a given speed, and the maxi-
mum allowable speed to guarantee safety arrival at the des-
tination with the residual battery capacity.

Experimental results show that the performance of
electric scooters can be improved substantially.
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1 Introduction

There are more than ten million gasoline powered scooters
or motorcycles being used in Taiwan every day. They have
become a very common transportation means for people

to commute to and from work. However, the amount of
exhaust and noxious particles produced by the scooter is
quite significant that the scooter is considered a moving air
and noise pollutant and is affecting the air quality and living
environment seriously[1].

In an effort to reduce air pollution, Taiwan govern-
ment has implemented a subsidiary program to encour-
age research and development of battery powered electric
scooters since 1997. However, commercially available
electric scooters to date have some drawbacks, including
high cost, long battery recharging time, relatively short
traveling distance for each re-charge, and inadequate feed-
back information to the user with respect to the residual
battery power. The lack of a more reliable or accurate
power prediction and management mechanism often results
in situations that the riders unwittingly run out of battery
power before they reach their destinations or a facility to re-
charge the battery. This uncertainty as to when the battery
power will run out, could be rather troublesome and there-
fore hinder the sale of electric scooters. The crux in get-
ting a good estimate of the present battery state-of-charge
(SOC) lies in the nonlinear battery discharge characteristics
which vary with the road condition and the driving behav-
ior of the rider.

To tackle the reliability problem of present electric
scooters, we propose an intelligent system which consists
of a motor driver control subsystem and an energy man-
agement subsystem for controlling and monitoring power
consumption of electric scooters. The motor driver con-
trol subsystem (DCS) provides a closed-loop speed control
and is implemented by using a muscle-like control law[2].
Its excellent compliant and short-range enhancement prop-
erty can give the rider the needed feeling of acceleration
and maneuverability. In contrast with the open-loop con-
trol adopted by the present electric scooters, the closed-
loop control enables the rider to fully control the speed of
the electric scooter. In so doing, the rider can control the
consumption of electric power via the proposed subsystem.
The energy management subsystem (EMS) will provide the
rider with the critical information including estimated al-
lowable traveling distance, safe speed, and remaining bat-
tery capacity etc., such that the rider can control the speed
of the scooter within a proper range via DCS and en-



sure that the scooter can arrive at the destination safely.
We use learning modules which consist of fuzzy neural
networks (FNN)[3] and cerebellar model articulation con-
trollers (CMAC) [4, 5] to estimate nonlinear characteristics
of the power consumption of batteries and electric scooter
dynamics. Online learning about power consumption is a
unique feature of our EMS. It is incorporated into this sub-
system to make it more adaptable to different electric scoot-
ers and driving behaviors.

2 System Implementation

The conceptual organization of the proposed intelligent
control system is shown in Fig.1. As stated earlier, this sys-
tem consists of two subsystems, and they are motor driver
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Figure 1. An illustration of the proposed intelligent control
system

control subsystem (DCS) and energy management sub-
system (EMS). The rider sends speed commands to DCS
through a user interface which could be a lever, button, or a
touch pad, and the commands will be converted into proper
signals obtained from the muscle-like control law to drive
the electric scooter according to the feedback velocity sig-
nals. The signal can drive the scooter to move as fast as
it could to the extent as if it were operated under an open-
loop control, so the rider does not have to change driving
behavior. The muscle-like control also possesses a capabil-
ity to filter out noisy or high-frequency disturbance input
signals. It lets the scooter react to speed commands even
the road condition changes constantly. On the other hand,
the energy management system (EMS) monitors the power
consumption of batteries and by learning the battery dis-
charge characteristics, computes the maximum travel dis-
tance and safe speed, and provides this important informa-
tion to the rider through a user interface. When the rider
gets the important information, he/she will be able to make
adjustments to the speed of the scooter by using DCS.
The details of these two subsystems will be discussed in the
following sections.

2.1 Drive Control Subsystem(DCS)

Inspired by the compliant capabilities of the biological
limb, an active damping control based on a muscle-like
compliant control is adopted and implemented in the ker-
nel motor-control subsystem for controlling an electric
scooter. The proposed muscle-like control model was fit-
ted from the responses of voluntary and involuntary limb
movements[6, 7, 8, 9]. Because of its compliant adaptabil-
ity, the controller is very well suited for man-machine in-
terface control[2], such as the hand accelerator in an elec-
tric motorcycle or the foot accelerator in an electric vehi-
cle. Because of its unique nonlinear damping property, the
muscle-like control enables an electric scooter to adapt to
varying loads and sudden impacting forces. The main dif-
ference between the proposed controller and the conven-
tional controller currently used by commercially available
electric scooters is that the former is a closed-loop, com-
pliant controller while the latter is an open-loop controller.
Furthermore, it can provide the rider with the feeling of
great acceleration just like the open-loop control, and with
cruise control capability by allowing a desirable speed to
be set and maintained by DCS. The cruise control function
may be disabled manually or automatically when the brake
of the electric scooter is applied. Thus, the current or elec-
tric energy consumed by manual acceleration and decelera-
tion operations can be reduced, and the life of the battery or
traveling distance can be prolonged. The muscle-like com-
pliant control model consists of two major parts: spindle-
like mechanism emulating the reflex property of biologi-
cal muscular system for absorbing impacting forces, and
muscle-stiffness mechanism emulating muscle stiffness for
tracking various movements. The control blocks of the
DCS are shown in Fig.2. Both inputs of DSC are the veloc-
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Figure 2. An illustration of the Drive Control Subsystem

ity command Vd and the feedback velocity signal V . The
motor command Cmus used in muscle-like model is de-
fined as

Cmus =
∫

(Vdelay − Vdesire)dt (1)



The reflex signal of the spindle-like model, rmus, scaled
through a reflex gain coefficient, H , is combined with the
motor command to produce a reflex-induced command for
muscle force. The linear feedback gain L represents the
effect of muscle length-tension which will vary with load
position. Any change in muscle length will produce a mus-
cle force through muscle stiffness Km. The muscle force
used in the present implementation of DCS is defined as
the DC motor control voltage vm. It can also be defined as
the DC motor control current, depending on the type of DC
motor driver used. Thus, the control law for generating vm

can be expressed as

vm = Km(Lxmus + LPF (Hrmus − Cmus)) (2)

where LPF (·) represents a low pass filter. The spindle-
like model with the nonlinear, fractional, damping effect
multiplied by the short-range elasticity enhancement cab
be expressed as

Bpẋ
1
n
p (|xp| − xp0) = Kr(xmus − xp)

= rmus (3)

where xp, ẋp, and xp0 are the internal position, velocity,
and bias position of the spindle model, n is an odd integer
(n=5 in our case), Bp is a damping coefficient, and Kr is
the reflex stiffness. The muscle equilibrium position xmus

used in DCS is expressed as

xmus =
∫

(Vdelay − V )dt (4)

where Vdelay and V are scooter velocities at the kth and
(k+1)st sampling times, respectively. According to Eq.(3),
any reflex signal will induce a corresponding force to re-
spond to a change of scooter velocity. This nonlinear
damping can deal with disturbance variations within a large
range, and reduce the effect of parameter variation of a non-
linear system.

2.2 Energy Management Subsystem(EMS)

The proposed energy management subsystem possesses
functions of battery SOC prediction, battery state of health
(SOH) prediction, maxmium travel distance estimation,
and safe speed estimation. The performance of this sub-
system depends on whether we can find a suitable method
or mechanism to model the nonlinear battery charge and
discharge dynamics. Learning controllers which are bio-
logically inspired and intended to model human experience
[10, 11, 12] are an attractive alternative to dealing with non-
linear systems of incomplete models or inaccurate model
parameters. We therefore decide to use FNNs and CMAC
networks [13] as the core of this subsystem.

In general, the battery capacity is a nonlinear func-
tion of discharge current, temperature, depth of discharge,
and recharging times. At present, there are many meth-
ods for estimating the SOC, and they can be classified as

load voltage method[14, 15], ampere hour accumulation
method[16, 17, 18], and internal resistance method[19].
The load voltage method is suitable for constant load cur-
rent applications. For electric soccters, it cannot provide
precise estimations, because the load current will vary a lot
with the road condition, and the load and speed change of
the scooter. The ampere hour accumulation method is used
to accumulate the discharge current, and estimate the SOC
according to this accumulated value and pre-recorded data
describing the relations between battery discharge current,
voltage, and capacity. The pre-recorded data is not valid in
every discharge condition, so methods making use of mod-
els of fixed parameters to estimate SOC will suffer from
loss of precision when the discharge conditions are chang-
ing over time. The internal resistance method needs to mea-
sure the frequency response of the battery to determine its
SOC. Because it needs extra electric circuits and function
generators, it is difficult to implement.

In our EMS, we use four learning modules, as shown
in Fig.3. These four learning modules are implemented
with FNNs and CMAC networks, as shown in Fig. 4.
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Figure 3. An illustration of the Energy Management Sub-
system
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Figure 4. (a) Learning Module I (b) Learning Module II (c)
Learning Module III (d) Learning Module IV



In Fig.3, system inputs are the battery voltage Vk and
the discharge current Ik. The Learning Module I (LM I)
represents the nonlinear mapping between the discharge
current, relative remaining capacity C remain

k , SOH, and
battery discharge efficiency ηIk

. This module will send
discharge efficiency ηIk

to the Coulomb Counting Mod-
ule (CCM), and the relative battery capacities at kth and
(k − 1)st sampling times respectively can be expressed as

Cdis
Ik

=
ηIk

ηIk−1

Cdis
Ik−1

+ Ik∆T (5)

Cdis
I1 = I1∆T (6)

where ∆T is the sampling time, and Cdis
Ik

and Cdis
Ik−1

are
capacities released from the battery at kth and (k − 1)st
sampling times respectively . Thus, the SOC at the kth
sampling time can be expressed as

SOCk(%) = 100

(
1 − Cdis

Ik

C0

)
(7)

where C0 is the battery rated capacity. The CCM imple-
mented by Eq.(5)-(7) is also the feedback signal provider
to LM I. The Learning Module II (LM II) represents the
nonlinear mapping between Ik , Cdis

k , SOH, and Vk. The
difference Verror will be used to update weights of FNNs
and CMACs in this module. The learning rule for LM II is
designed as

E =
1
2
(Vk − Ve)2 (8)

So the amount of updating weights of FNN can be ex-
pressed as

∆WFNN =
∂E

∂WFNN
(9)

= (Ve − Vk)
∂Ve

∂WFNN
(10)

(11)

Meanwhile, the learning rule for LM I can be designed as

∆WF NN =
∂E

∂WF NN

(12)

=

(
∂E

∂Ve

)(
∂Ve

∂Ck
dis

)(
∂Ck

dis

∂ηk

)(
∂ηk

∂WF NN

)
(13)

= (Ve − Vk)

(
∂Ve

∂Ck
dis

)(
Ck−1

dis

ηk−1

)(
∂ηk

∂WF NN

)
(14)

The Learning Module III represents the nonlinear mapping
between Ik, Cremain

k , and SOH. Its output is the estimated
SOH, and the desired SOH at the kth sampling time is de-
signed as

SOHd
k (%) = 100

(
ηk

ηk−1

)
(15)

The Learning Module IV represents the mapping between
Vk, Cremain

k , SOH, and initial capacity Cinitial. This mod-
ule is used to estimate the remaining capacity when the
rider turns on the scooter. The desired Cinitial is designed
as

Cinitial = C0 − Cdis
k∗ (16)

where Cdis
k∗ is the relative released capacity when the

scooter is turned off.
The structure of combination of an FNN and a CMAC

network is used to implement learning modules shown in
Fig.4(a),(b), and(d). In these modules, the CMAC network
will send a set of weights to the corresponding FNN ac-
cording to its input. Then the FNN starts sending output
signals. The learning process of the FNN begins and the
updated weights of FNN are used as training patterns for
the CMAC. So every learning process of learning mod-
ules includes FNN learning, CMAC learning, and their
interactive learning. This kind of learning structure can
enlarge the learning space coverage on complex dynamic
systems[13] so as to increase the speed of convergence of
learning modules used in the battery management applica-
tions.

By using learning modules, the EMS can update pa-
rameters by itself with the change of dynamics of the bat-
tery. This design avoids the unprecision resulted from
the direct estimation of battery dynamics, and can govern
the battery discharge characteristics much better than the
method of linearly modifying SOC according to a fixed pa-
rameter model.

3 Experiment

Two parts of this experiment are described in the following
sections. One is for DCS, and another is for EMS.

3.1 Testing for DCS

We used a commercially available electric scooter to con-
duct our experiment and road tests. A notebook computer
was used to implement the intelligent control system. All
the software code was written in C++ by using Borland
C++ Builder 5.0, and the control signal calculated by the
proposed control law was sent to the motor via the connec-
tion circuit and a DAQ card. The scooter for the experi-
ment is shown in Fig.5(a). A rider performed the road test

��� ���

Figure 5. (a) The electric scooter for the experiment (b)
Road test



according to conditions of our setup. We tested the acceler-
ation property first. The rider would accelerate the scooter
from stop to a speed at 40 km/hr with open-loop control,
and this process was repeated by using the muscle-like con-
trol. The results obtained are shown in Fig.6. In Fig.6(a),
the difference of speed rising times between the open-loop
control and muscle-like control is about 1.5 seconds, and
the rider feels no significant difference between these two
control modes. Fig.6(b) shows that the muscle-like con-
trol saves about 30 % electric energy. In the second step,
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Figure 6. (a)Scooter speed under two control modes
(b)Energy consumption difference under two control
modes

the rider drove the scooter to slide down from a slope, start-
ing at a point marked with x in Fig.7. When it entered a flat,
its speed was reduced to 10 km/hr. Then, the rider set the
desired speed at 20 Km/hr at a point marked with y in Fig.7.
At the point marked z in Fig.7, the scooter climbed another
slope. The current flowing into the motor increased, which
reflects that controller intends to maintain the speed of the
scooter. This demonstrates the muscle-like controller’s ca-
pability of adapting to road conditions automatically.
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Figure 7. Change of Road Condition Test

The final test was first performed by a rider with
weight 65 kg. He accelerated the scooter from stop to a

speed at 30 km/hr. Then this process was repeated, with
another passenger weighing 71 kg traveling together. In
Fig.8, the speed rising time is shown to have a delay of 2.1
second when the total payload is 136 kg. This case demon-
strates that the muscle-like controller is insensitive to the
load of the scooter.
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Figure 8. Results of Speed Response to Varying Loads

3.2 Testing for EMS

According to the motorcycle driving patterns estiblished by
the Bureau of Standards of Ministry of Economic Affairs
of Taiwan, a power consumption curve can be estimated,
and it is shown in Fig.9. The battery was discharged ac-
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Figure 9. Power Consumption Curve

cording to this curve repeatedly until the battery voltage
dropped under the cutoff voltage, 10.25V. We then charged
this battery to its stantard voltage 13.2V. The discharge and
charge process is called a testing cycle. We repeated the
testing cycle, and checked how the EMS performed. The
battery under test is a sealed lead-acid battery with a rating
of 12V open-circuit voltage and 50Ah capacity, manufac-
tured by Long Battery Co. The programmable system used
to perform testing cycles is manufactured by DIGATRON



Co., and the charge and discharge currents provided range
between 0A and 200A. The EMS was implemented in the
same way as the DCS. Initial weights of all learning mod-
ules were trained by using 98 data sets of constant current
discharge process. Every data set included a time history
of battery voltage, discharge current, discharge efficiency,
and capacity.

Fig. 10(a) shows the relative SOC predicted by our
proposed EMS and SOC which computed by using ampere
hour accumulation method at the 1st testing cycle. At the
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Figure 10. (a) The battery SOC predicted by EMS and
ampere hour accumulation method at the 1st testing cy-
cle (b)The sensed battery voltage and voltage predicted by
EMS (c)The relative battery capacity predicted by EMS

first testing cycle, all learning modules started to learn the
battery dynamics, and the learning rate is set to be 0.005
for all modules. Fig. 10(c) shows that the battery cutoff
voltage is reached after 10 discharge patterns are executed.
Fig. 10(a) and (b) shows that the SOC prediction error of
EMS is 10 % at the end of testing, and we can see that the
SOC predicted by using ampere hour accumulation method
is 80 %. Therefore, the relative SOC shown in Fig.10(a) is
used for checking whether the scooter speed is suitable to
drive its DC motor. The estimated discharge efficiency de-
termines the precision of relative SOC. Fig.11 shows the
SOC predicted at the 20th testing cycle. The EMS predic-
tion error is reduced to 7%, but the error for using ampere
hour accumulation method is still 80%.
Fig.12(a) shows the sensed and predicted battery voltage.

When we discharged the battery according to the discharge
current pattern shown in Fig.12(b), we obtained the relative
SOC estimation result shown in Fig.12(c). We can see that
the SOC curve is almost a monotonically decreasing curve,
and this property suggests that a reliable battery capacity
information can be provided to the rider.

4 Conclusion

We have proposed an integrated intelligent control system
for improving the performance of present electric scoot-
ers. This system utilizes a non-linear damping compliant
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Figure 11. The battery SOC predicted by EMS and ampere
hour accumulation method at the 20th testing cycle
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Figure 12. (a) The sensed and predicted battery voltage (b)
The discharge current pattern (c) The relative SOC

control technique to provide a closed-loop control of the
speed the electric scooter. It provides the rider with cruise-
control capability. It also contains a battery energy man-
agement subsystem to monitor the power consumption of
the battery. The energy management subsystem provides
to the rider important information regarding the residual
battery power of the electric scooter in terms of traveling
distance, and maximum allowable traveling speed to guar-
antee safety arrival at the destination.

The proposed intelligent control system has greatly
improved the performance of present electric scooters. Ad-
ditional safety features, such as range sensors, can also be
added to detect obstacles in the pathway of the electric
scooter to avoid collision. For instance, the speed of the
electric scooter can be reduced automatically by the sys-
tem and an alarm may be turned on to alert the rider when
such obstacles are detected.
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