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Linear-time Temporal Logic (LTL)

@ Linear-time temporal logic (LTL) models time as an infinite sequence
of states.
» Such an infinite sequence of states is called a computation path or
simply path.
@ LTL allows us to describe temporal properties about computation
paths.
» For instance, event P eventually happens, or event P happens until
event @ does, etc.
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Syntax of LTL

o Consider a fixed set Atoms of atomic formulae p, q,r,....
Definition

Linear-time temporal logic has the following syntax:

¢ == T|L[p[(=0)](¢r¢) | (V)| (d = ¢) |
(X¢) | (F9) [ (Go) [ (9U @) | (0 W) | (9R )

where p € Atoms is an atomic formula.

@ The connectives X, F,G,U,R, and W are temporal connectives.

@ Informally, X means “neXt state,” F means “some Future state,” G
means “all future states (Globally),” U means “Until,” R means
“Release,” and W means “Weak-until.”
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Convention and Examples

@ By convention, binding powers of LTL connectives are:

strongest - weakest
-, X,F,G U,R,W AV -
@ Examples:
FpArnGg = pWr F(p = Gr)v-qUp
pW (gWr) GFp = F(qvs)

Non-examples:
M7 PG

@ A subformula of an LTL formula ¢ is a formula ¢ whose parse tree is
a subtree of ¢'s parse tree.
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Semantics of LTL |

@ Recall that LTL allows us to describe properties about computation
paths.

@ We will formalize computation paths by transition systems.
Definition

A transition system M = (S, —, L) consists of a set S of states, a total
transition relation -C S x S, and a labelling function L: S — 2Atoms,

@ Instead of (s,s’) e—, we will write s - s’

@ A transition relation - S x S is total if for every s € S there is an
s’ € S such that s —» §'.

@ For any s€ S, L(s) contains the set of atomic formulae which are
true in s.

@ A transition system is also called a model.
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Semantics of LTL Il

TE
S2
51@:) O=

o Let M =(S,—,L) with S ={sp,5s1,5},
= {(50’ 51)7 (507 52)) (517 50)7 (51’ 52)a (527 52)}v and L(SO) = {P, CI},
L(s1)={q,r}, and L(sp) = {r}.

@ We can represent the transition system M as a directed graph.

@ Note that transition relations must be total.

» If the self loop at s, were removed, M would not be a transition
system.

» In order to model a state s without any outgoing transition, we add a
new state sy with a self loop and s — sy4.
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Computation Path and Suffix

Definition

A path in a model M =(S,—,L) is an infinite sequence of states
S0,S1,--+,Sn, ... such that s; — s;,1 for every i > 0. We also write
Sp — S1 — --- for the path sp,s1,...,5n,....

@ For instance, s; > sy = s; > s = sp — -+ is a path in the example.
Definition

Let 7 = sp — 53 — - be a path in a model M = (S,—,L). The i-suffix «/
is the suffix s; - s;,1 — -+ of .

@ letm=5—>5—>5 > —>5s —>--. We have

A

> ']Tozﬂ';
14

> TT =5 >S5 >S5S >S5S >
A

> 7T2251—>52—>52—>'--;
732

> Sp > S5p = -+ etc.
o Suffixes of a path are paths.
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Definition
Let M = (S,—,L) be a model, w = sy - s; —> --- a path in M, and ¢ an LTL formula.
Define the satisfaction relation 7 = ¢ as follows.

Q@ =T, 7#¥ L, and Tt =pif pel(sy);

Q r=pifrEg, mEpAYiIfTEpandTEY;, TEQVY If TE G or T E Y;

©Q 7k ¢ = v if w1 whenever 7 E ¢;

Q reXopif

Q 7= Goif ' = ¢ for every i > 0;

@ 7=F¢if ©' = ¢ for some i > 0;

@ 7= ¢ U if there is some i > 0 such that 7' = ¢ and for every 0<j < i, 7 & ¢;

Q F ® W ) if either there is some i > 0 such that 7' 1) and for every 0 < j < i we
have 7/ £ ¢; or for every k >0 we have 7* £ ¢;

Q 7 ¢ R if either there is some i > 0 such that 7' £ ¢ and for every 0 < j < i we
have 7/ = v; or for every k >0 we have 7* = .
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TE Il

@ 7 is always true; 1 is always false; and 7 = p if p is true at the start of 7;
Q -9, dAY, oV, and ¢ = 1 have the usual semantics;
© Xo¢ is true if ¢ is true at the 1-suffix of m;
© Go is true if ¢ is always true in the future;
> Note that “present” is a part of “future.”
@ Fo¢ is true if ¢ is true for some future;
@ o U4 is true if ¢ is true until exclusively 7 is true;
> Note that ¥ must be true in the future.
@ oW is true if U or ¢ is always true;
> Note that ¢ W ) does not require 1) to be true in the future.
@ ¢ R is true if v is true until inclusively ¢ releases 1), or v is always true.

> Note that ¢ R does not require ¢ to be true in the future.
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Definition
Let M =(S,—,L) be a model, s€ S, and ¢ an LTL formula. M,sE ¢ if
for every path m of M starting at s, we have 7 E ¢.

@ Think of the model M as the description of a program and s a state
of the program.

@ M, sk ¢ holds if for every possible computation path satisfies the
LTL formula ¢.

@ Particularly, consider programs that depends on user inputs and the
initial state s; of such a program.

@ M, s; E ¢ holds if all executions of the program satisfy ¢ no matter
what user inputs are.

@ This is a very strong statement.

> Much stronger than testing programs.
» Testing can only falsify properties; it cannot prove properties.
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Examples |

TR
52
2 @70

e M,ssEpAg;
o M,spE =,
o M,spET,
o M, sy = Xr,;
o M,sp#X(gnAr);
e M,so EG-(pAr);
o M, sy E GFr;
o M,so = GFp = GFr;
o M, sy # GFr = GFp.
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Patterns of Specifications

@ |t is impossible to go to a state where started holds but ready does
not: G—(started A —ready)

e For any state, if request holds then it will be acknowledged
eventually: G(request = Facknowledged)

@ enabled occurs infinitely often: GFenabled
@ stable will eventually occurs permanently: FGstable

o If a process is enabled infinitely often, it is running infinitely often:
GFenabled = GFrunning
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Semantically Equivalence |

Definition
Let ¢ and ¥ be LTL formulae. ¢ and v are semantically equivalent
(written ¢ = ) if for all paths 7, 7 = ¢ iff 7w = 4.

@ Semantically equivalent propositional formulae are still equivalent, for
example:

~(pAY)==pv -t ~(¢V)=-p -
e F and G are dual; X is dual to itself:

-Go = F-¢ -F¢ = G-¢ X = X=¢.
e U and R are dual:

~(¢pU¥) =R ~(¢RY) =9 U -y
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Semantically Equivalence Il

Lemma

~(¢pU¥) =-¢p R

Proof.

Consider any path m=sp > 51 — -+

Suppose T E (¢ U ). If ©' ¢4 for all i >0, then 7 ~¢ R =) by
definition. Otherwise, for every i > 0 such that 7' = ¢, there is j < i that
7 ¥ ¢. Let iy be minimal that 7 = ). Then 7k = =1 for every k < iy by
minimality and there is j < ip that 7 = =¢. Hence 7 £ —¢ R 1.
Conversely, suppose 7 = —¢ R =tp. If 7' = =t for all i >0, 7= =(¢ U1p) by
definition. Otherwise, let iy be minimal that 7 £ —¢. Then 7% & ¢ for all
k < iy by minimality. Assume 7/ £ 4 for some j < iy. Let jo be minimal
that 7 = 4. Then 7 £ —p and 7 & ¢ for all k < jp but 7 = ¢ and

70 & $. We have ¢ # ~¢ R —). A contradiction. Hence 7/ # 1 for all
J<ip. And mE -(0pU). O]
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Semantically Equivalence Il

e F distributes over v and G over A (why?):

F(pv)=FpvFy G(p A1) =Go A G

» What about F over A and G over v?
F(o A1) 2 FoAFY G(¢ v ) 2 G v Gy
@ Fand Gin U and R:
Fop=TUo Gop=LR¢.
e U is equivalent to W and F:
pU =W AF.
@ W and R are closely related:
oW =9 R(dv) PRy =W (onv)
Bow-Yaw Wang_(Academia Sinica) Linear_Time Tamporal Logie



Semantically Equivalence IV

Lemma

¢RY = (¢ry)RY.

Proof.

Consider any path 7 =sy —> 53 — -+

Suppose T ¢ R . If 7' £ 1) for all i >0, 7 (¢ A1p) Rep as well.
Otherwise, there is i > 0 such that 7' = ¢ and 7/ =) for all 0 < j < i.
Thus, 7' £ ¢ A1) and 7 & 4 for all 0<j<i Hence 7 = (¢ A9) R4
Conversely, suppose = (¢ A ) Rep. If ' = ¢p forall i >0, 7= R as
well. Otherwise, there is / > 0 that 7' = ¢ A4 and e forall 0<j<i.
Thus, 7' = ¢ and 7/ = for all 0<j < i. Thatis, 7 = ¢ R. Ol
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Semantically Equivalence V

Lemma

oW =9 R(oVvY).

Proof.

Consider any path m=sp > 51 — ---.

Suppose T ¢Wep. If 7' = ¢ forall i >0, 7' = ¢ v o for all i > 0.

7 E YR (¢ V1)) by definition. Otherwise, there is i > 0 that ¢’ = 1 and
mEedforall0<j<i. Thenm Egve forall0<j<i. Ty R(4VY).
Conversely, suppose 7 = ¥ R (¢ v ¢). Consider whether 7' &= 1) for some
i>0. If o' ) forall i >0, 7' = ¢ for all i >0 since 7= R (¢ Vv 1h).
Hence 7 = ¢ W 1b. Otherwise, let iy be minimal that 7 = 7). Assume

7 B ¢ for some 0 < j < iy. Let jo < ip be minimal that 70 £ ¢. Then

70 g pvap and K i ap for all 0 < k < jo.m # 1 R (¢ V1)), a contradiction.
Thus, 7/ & ¢ for all 0 < j < iy. Hence = ¢ W 1. O
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Semantically Equivalence VI

Lemma
Q (¢Ry)=-¢pU-1.
Q PRY=9pW (A1)

Proof.
QO —(¢RY) ==(--¢R-—9) = ~(=(-p U -2)) = -9 U -¢.
Q@ YW (pry)=(orP)R(PV(PA))=(pAy) Ry =Ry,
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Semantically Equivalence VII

Theorem

pUtp=-(-ypU (-9 A1) AFip.

Proof.

pUy

¢Wih AFy

YR (¢v)AFY
—~(¥R(¢v))AFY
(- U-(pv)) nFy
(=9 U (=¢ A 1)) AFep.
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Adequate Sets of LTL Connectives |

@ An adequate set of connectives in a logic can express any connective
in the same logic.

» For instance, {1,A, -} is an adequate set of connectives in
propositional logic.

@ By semantical equivalences in LTL, we have the following adequate
sets:

» {U,X}. Recall pR ¢ = =(=p U =) and oW =y R (Vv 1)).
» {R,X}. Recall that ¢ Ut = =(=¢p R-1)) and oW p =y R (¢ v ).
» {W,X}. Recall that g R =9 W (¢ A2)) and ¢ Ut = (= R —2)).

@ Note that X is independent of other connectives.
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Adequate Sets of LTL Connectives Il

o Consider the fragment of LTL without negation and X.
@ We have the following adequate sets:
» {U,R} since pW =9y R(¢pVv)), Fop=TU ¢, and Gp = L R ¢.
» {U,W} since R =YW (¢pA)), Fo=TU ¢, and Gp = L R ¢.
» {U,G} since pW Y =pUyvGh, pRY =W (dA1)), and Fp=TU ¢.
» {R,F} since W= R (v 1h), U = ¢ W AFY, and Go = LR ¢,
» {W,F} since sU= oW AFp, 6RY =W (¢ A1), and Gp = L R ¢,
e Note that {R,G}, {W,G}, and {U,F} are not adequate.
» F cannot be defined by {R, G} nor {W,G}.
» G cannot be defined by {U,F}.
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Outline

© Model checking
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Mutual Exclusion |

@ When two concurrent processes share a resource (printer, disk, etc),
they sometimes need to access the resource exclusively.

@ Critical sections are portions of process codes that have exclusive
access to a shared resource.

@ For efficiency, critical sections should be as small as possible.

@ Moreover, at most one process can enter its critical section at any
time.

@ We will design a simple protocol to ensure mutually exclusive access
to critical sections and verify our solution.
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Mutual Exclusion Il

@ Let us first try to specify our requirements informally.

@ A protocol solving the mutual exclusion problem must ensure the
following property:
Safety: at most one process can enter its critical section at any time.

@ Moreover, a protocol should not prevent any process from entering
critical sections permanently:
Liveness: When a process requests to enter its critical section, it will
eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical
section.
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Mutual Exclusion: First Attempt |

@ Consider two processes P; and Ps.

@ P has three states: non-critical state (n1), trying state (1), and
critical state (c1). Similarly, P> has states ny, t2, and cs.

» Local states are modeled as atomic formulae.

@ Each process has transitionsn>t—->c—->n—->t—>c— .
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Mutual Exclusion: First Attempt Il

@ The system starts with both processes at non-critical states (sp).
@ Exactly one process makes a transition at any time.
» This is called an asynchronous interleaving model.
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Mutual Exclusion: First Attempt Il

50

e Safety. The property is expressed by G-(c1 A ¢p) in LTL. It holds.
@ Liveness. This is expressed by G(t; = Fcy) in LTL. The property is
not satisfied due to the path sy — s; > s3 > s7 > 51 > 53 —> 57+

@ Non-blocking. We would like to express: when a process at n, there is
a successor at t. This is not expressible in LTL.
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Mutual Exclusion: Second Attempt

@ Liveness does not hold because the state s3 does not record which
process enters the trying state first.
@ In our second design, we use two states to record which process
enters the trying state first.
» s3 remembers P; enters t first; s remembers P, enters t, first.

@ One can verify all three properties are satisfied.
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