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Linear-time Temporal Logic (LTL)

Linear-time temporal logic (LTL) models time as an infinite sequence
of states.

▸ Such an infinite sequence of states is called a computation path or
simply path.

LTL allows us to describe temporal properties about computation
paths.

▸ For instance, event P eventually happens, or event P happens until
event Q does, etc.
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Syntax of LTL

Consider a fixed set Atoms of atomic formulae p,q, r , . . ..

Definition

Linear-time temporal logic has the following syntax:

φ ∶∶= ⊺ ∣ � ∣ p ∣ (¬φ) ∣ (φ ∧ φ) ∣ (φ ∨ φ) ∣ (φ Ô⇒ φ) ∣
(Xφ) ∣ (Fφ) ∣ (Gφ) ∣ (φU φ) ∣ (φW φ) ∣ (φ R φ)

where p ∈ Atoms is an atomic formula.

The connectives X,F,G,U,R, and W are temporal connectives.

Informally, X means “neXt state,” F means “some Future state,” G
means “all future states (Globally),” U means “Until,” R means
“Release,” and W means “Weak-until.”
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Convention and Examples

By convention, binding powers of LTL connectives are:

strongest → weakest

¬,X,F,G U,R,W ∧,∨ Ô⇒

Examples:

Fp ∧Gq Ô⇒ p W r F(p Ô⇒ Gr) ∨ ¬q U p
p W (q W r) GFp Ô⇒ F(q ∨ s)

Non-examples:

��Ur ���pGq

A subformula of an LTL formula φ is a formula ψ whose parse tree is
a subtree of φ’s parse tree.
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Semantics of LTL I

Recall that LTL allows us to describe properties about computation
paths.

We will formalize computation paths by transition systems.

Definition

A transition system M= (S ,→,L) consists of a set S of states, a total
transition relation →⊆ S × S , and a labelling function L ∶ S → 2Atoms.

Instead of (s, s ′) ∈→, we will write s → s ′.

A transition relation →⊆ S × S is total if for every s ∈ S there is an
s ′ ∈ S such that s → s ′.

For any s ∈ S , L(s) contains the set of atomic formulae which are
true in s.

A transition system is also called a model.
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Semantics of LTL II

q, rs1 r
s2

p,q s0

Let M= (S ,→,L) with S = {s0, s1, s2},
→= {(s0, s1), (s0, s2), (s1, s0), (s1, s2), (s2, s2)}, and L(s0) = {p,q},
L(s1) = {q, r}, and L(s2) = {r}.
We can represent the transition system M as a directed graph.

Note that transition relations must be total.
▸ If the self loop at s2 were removed, M would not be a transition

system.
▸ In order to model a state s without any outgoing transition, we add a

new state sd with a self loop and s → sd .
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Computation Path and Suffix

Definition

A path in a model M= (S ,→,L) is an infinite sequence of states
s0, s1, . . . , sn, . . . such that si → si+1 for every i ≥ 0. We also write
s0 → s1 → ⋯ for the path s0, s1, . . . , sn, . . ..

For instance, s1 → s0 → s1 → s2 → s2 → ⋯ is a path in the example.

Definition

Let π = s0 → s1 → ⋯ be a path in a model M= (S ,→,L). The i-suffix πi

is the suffix si → si+1 → ⋯ of π.

Let π
△= s1 → s0 → s1 → s2 → s2 → ⋯. We have

▸ π0 △= π;
▸ π1 △= s0 → s1 → s2 → s2 → ⋯;
▸ π2 △= s1 → s2 → s2 → ⋯;
▸ π3 △= s2 → s2 → ⋯; etc.

Suffixes of a path are paths.
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π ⊧ φ I

Definition
Let M= (S ,→,L) be a model, π = s0 → s1 → ⋯ a path in M, and φ an LTL formula.
Define the satisfaction relation π ⊧ φ as follows.

1 π ⊧ ⊺; π /⊧ �; and π ⊧ p if p ∈ L(s0);

2 π ⊧ ¬φ if π /⊧ φ; π ⊧ φ ∧ ψ if π ⊧ φ and π ⊧ ψ; π ⊧ φ ∨ ψ if π ⊧ φ or π ⊧ ψ;

3 π ⊧ φ Ô⇒ ψ if π ⊧ ψ whenever π ⊧ φ;

4 π ⊧ Xφ if π1
⊧ φ;

5 π ⊧ Gφ if πi
⊧ φ for every i ≥ 0;

6 π ⊧ Fφ if πi
⊧ φ for some i ≥ 0;

7 π ⊧ φU ψ if there is some i ≥ 0 such that πi
⊧ ψ and for every 0 ≤ j < i , πj

⊧ φ;

8 π ⊧ φW ψ if either there is some i ≥ 0 such that πi
⊧ ψ and for every 0 ≤ j < i we

have πj
⊧ φ; or for every k ≥ 0 we have πk

⊧ φ;

9 π ⊧ φ R ψ if either there is some i ≥ 0 such that πi
⊧ φ and for every 0 ≤ j ≤ i we

have πj
⊧ ψ; or for every k ≥ 0 we have πk

⊧ ψ.
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π ⊧ φ II

1 ⊺ is always true; � is always false; and π ⊧ p if p is true at the start of π;

2 ¬φ, φ ∧ ψ, φ ∨ ψ, and φ Ô⇒ ψ have the usual semantics;

3 Xφ is true if φ is true at the 1-suffix of π;

4 Gφ is true if φ is always true in the future;

▸ Note that “present” is a part of “future.”

5 Fφ is true if φ is true for some future;

6 φU ψ is true if φ is true until exclusively ψ is true;

▸ Note that ψ must be true in the future.

7 φW ψ is true if φU ψ or φ is always true;

▸ Note that φW ψ does not require ψ to be true in the future.

8 φ R ψ is true if ψ is true until inclusively φ releases ψ, or ψ is always true.

▸ Note that φ R ψ does not require φ to be true in the future.
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M, s ⊧ φ

Definition

Let M= (S ,→,L) be a model, s ∈ S , and φ an LTL formula. M, s ⊧ φ if
for every path π of M starting at s, we have π ⊧ φ.

Think of the model M as the description of a program and s a state
of the program.

M, s ⊧ φ holds if for every possible computation path satisfies the
LTL formula φ.

Particularly, consider programs that depends on user inputs and the
initial state si of such a program.

M, si ⊧ φ holds if all executions of the program satisfy φ no matter
what user inputs are.

This is a very strong statement.
▸ Much stronger than testing programs.
▸ Testing can only falsify properties; it cannot prove properties.
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Examples I

q, rs1 r
s2

p,q s0

M, s0 ⊧ p ∧ q;

M, s0 ⊧ ¬r ;

M, s0 ⊧ ⊺;

M, s0 ⊧ Xr ;

M, s0 /⊧ X(q ∧ r);
M, s0 ⊧ G¬(p ∧ r);
M, s0 ⊧ GFr ;

M, s0 ⊧ GFp Ô⇒ GFr ;

M, s0 /⊧ GFr Ô⇒ GFp.
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Patterns of Specifications

It is impossible to go to a state where started holds but ready does
not: G¬(started ∧ ¬ready)
For any state, if request holds then it will be acknowledged
eventually: G(request Ô⇒ Facknowledged)
enabled occurs infinitely often: GFenabled

stable will eventually occurs permanently: FGstable

If a process is enabled infinitely often, it is running infinitely often:
GFenabled Ô⇒ GFrunning
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Semantically Equivalence I

Definition

Let φ and ψ be LTL formulae. φ and ψ are semantically equivalent
(written φ ≡ ψ) if for all paths π, π ⊧ φ iff π ⊧ ψ.

Semantically equivalent propositional formulae are still equivalent, for
example:

¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ ¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ.

F and G are dual; X is dual to itself:

¬Gφ ≡ F¬φ ¬Fφ ≡ G¬φ ¬Xφ ≡ X¬φ.

U and R are dual:

¬(φU ψ) ≡ ¬φ R ¬ψ ¬(φ R ψ) ≡ ¬φU ¬ψ.
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Semantically Equivalence II

Lemma

¬(φU ψ) ≡ ¬φ R ¬ψ.

Proof.

Consider any path π = s0 → s1 → ⋯.
Suppose π ⊧ ¬(φU ψ). If πi /⊧ ψ for all i ≥ 0, then π ⊧ ¬φ R ¬ψ by
definition. Otherwise, for every i ≥ 0 such that πi ⊧ ψ, there is j < i that
πj /⊧ φ. Let i0 be minimal that πi0 ⊧ ψ. Then πk ⊧ ¬ψ for every k < i0 by
minimality and there is j0 < i0 that πj0 ⊧ ¬φ. Hence π ⊧ ¬φ R ¬ψ.
Conversely, suppose π ⊧ ¬φ R ¬ψ. If πi ⊧ ¬ψ for all i ≥ 0, π ⊧ ¬(φU ψ) by
definition. Otherwise, let i0 be minimal that πi0 ⊧ ¬φ. Then πk ⊧ φ for all
k < i0 by minimality. Assume πj ⊧ ψ for some j ≤ i0. Let j0 be minimal
that πj0 ⊧ ψ. Then πk ⊧ ¬ψ and πk ⊧ φ for all k < j0 but πj0 ⊧ ψ and
πj0 ⊧ φ. We have φ /⊧ ¬φ R ¬ψ. A contradiction. Hence πj /⊧ ψ for all
j ≤ i0. And π ⊧ ¬(φU ψ).
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Semantically Equivalence III

F distributes over ∨ and G over ∧ (why?):

F(φ ∨ ψ) ≡ Fφ ∨ Fψ G(φ ∧ ψ) ≡ Gφ ∧Gψ.

▸ What about F over ∧ and G over ∨?

F(φ ∧ ψ) ?≡ Fφ ∧ Fψ G(φ ∨ ψ) ?≡ Gφ ∨Gψ.

F and G in U and R:

Fφ ≡ ⊺U φ Gφ ≡ � R φ.

U is equivalent to W and F:

φU ψ ≡ φW ψ ∧ Fψ.

W and R are closely related:

φW ψ ≡ ψ R (φ ∨ ψ) φ R ψ ≡ ψ W (φ ∧ ψ)
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Semantically Equivalence IV

Lemma

φ R ψ ≡ (φ ∧ ψ) R ψ.

Proof.

Consider any path π = s0 → s1 → ⋯.
Suppose π ⊧ φ R ψ. If πi ⊧ ψ for all i ≥ 0, π ⊧ (φ ∧ ψ) R ψ as well.
Otherwise, there is i ≥ 0 such that πi ⊧ φ and πj ⊧ ψ for all 0 ≤ j ≤ i .
Thus, πi ⊧ φ ∧ ψ and πj ⊧ ψ for all 0 ≤ j ≤ i . Hence π ⊧ (φ ∧ ψ) R ψ.
Conversely, suppose π ⊧ (φ ∧ ψ) R ψ. If πi ⊧ ψ for all i ≥ 0, π ⊧ φ R ψ as
well. Otherwise, there is i ≥ 0 that πi ⊧ φ ∧ ψ and πj ⊧ ψ for all 0 ≤ j ≤ i .
Thus, πi ⊧ φ and πj ⊧ ψ for all 0 ≤ j ≤ i . That is, π ⊧ φ R ψ.
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Semantically Equivalence V

Lemma

φW ψ ≡ ψ R (φ ∨ ψ).

Proof.

Consider any path π = s0 → s1 → ⋯.
Suppose π ⊧ φW ψ. If πi ⊧ φ for all i ≥ 0, πi ⊧ φ ∨ ψ for all i ≥ 0.
π ⊧ ψ R (φ ∨ ψ) by definition. Otherwise, there is i ≥ 0 that φi ⊧ ψ and
πj ⊧ φ for all 0 ≤ j < i . Then πj ⊧ φ ∨ ψ for all 0 ≤ j ≤ i . π ⊧ ψ R (φ ∨ ψ).
Conversely, suppose π ⊧ ψ R (φ ∨ ψ). Consider whether πi ⊧ ψ for some
i ≥ 0. If πi /⊧ ψ for all i ≥ 0, πi ⊧ φ for all i ≥ 0 since π ⊧ ψ R (φ ∨ ψ).
Hence π ⊧ φW ψ. Otherwise, let i0 be minimal that πi0 ⊧ ψ. Assume
πj /⊧ φ for some 0 ≤ j < i0. Let j0 < i0 be minimal that πj0 /⊧ φ. Then
πj0 /⊧ φ ∨ ψ and πk /⊧ ψ for all 0 ≤ k ≤ j0.π /⊧ ψ R (φ ∨ ψ), a contradiction.
Thus, πj ⊧ φ for all 0 ≤ j < i0. Hence π ⊧ φW ψ.
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Semantically Equivalence VI

Lemma
1 ¬(φ R ψ) ≡ ¬φU ¬ψ.
2 φ R ψ ≡ ψ W (φ ∧ ψ).

Proof.
1 ¬(φ R ψ) ≡ ¬(¬¬φ R ¬¬ψ) ≡ ¬(¬(¬φU ¬ψ)) ≡ ¬φU ¬ψ.

2 ψ W (φ ∧ ψ) ≡ (φ ∧ ψ) R (ψ ∨ (φ ∧ ψ)) ≡ (φ ∧ ψ) R ψ ≡ φ R ψ.
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Semantically Equivalence VII

Theorem

φU ψ ≡ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ.

Proof.

φU ψ

≡ φW ψ ∧ Fψ

≡ ψ R (φ ∨ ψ) ∧ Fψ

≡ ¬¬(ψ R (φ ∨ ψ)) ∧ Fψ

≡ ¬(¬ψ U ¬(φ ∨ ψ)) ∧ Fψ

≡ ¬(¬ψ U (¬φ ∧ ¬ψ)) ∧ Fψ.
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Adequate Sets of LTL Connectives I

An adequate set of connectives in a logic can express any connective
in the same logic.

▸ For instance, {�,∧,¬} is an adequate set of connectives in
propositional logic.

By semantical equivalences in LTL, we have the following adequate
sets:

▸ {U,X}. Recall φ R ψ ≡ ¬(¬φU ¬ψ) and φW ψ ≡ ψ R (φ ∨ ψ).
▸ {R,X}. Recall that φU ψ ≡ ¬(¬φ R ¬ψ) and φW ψ ≡ ψ R (φ ∨ ψ).
▸ {W,X}. Recall that φ R ψ ≡ ψ W (φ ∧ ψ) and φU ψ ≡ ¬(¬φ R ¬ψ).

Note that X is independent of other connectives.
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Adequate Sets of LTL Connectives II

Consider the fragment of LTL without negation and X.

We have the following adequate sets:
▸ {U,R} since φW ψ ≡ ψ R (φ ∨ ψ), Fφ ≡ ⊺U φ, and Gφ ≡ � R φ.
▸ {U,W} since φ R ψ ≡ ψ W (φ ∧ ψ), Fφ ≡ ⊺U φ, and Gφ ≡ � R φ.
▸ {U,G} since φWψ ≡ φUψ ∨Gφ, φRψ ≡ ψW (φ ∧ψ), and Fφ ≡ ⊺U φ.
▸ {R,F} since φW ψ ≡ ψ R (φ ∨ψ), φUψ ≡ φW ψ ∧ Fψ, and Gφ ≡ �R φ.
▸ {W,F} since φU ≡ φW ψ ∧ Fφ, φ R ψ ≡ ψ W (φ ∧ ψ), and Gφ ≡ � R φ.

Note that {R,G}, {W,G}, and {U,F} are not adequate.
▸ F cannot be defined by {R,G} nor {W,G}.
▸ G cannot be defined by {U,F}.
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Mutual Exclusion I

When two concurrent processes share a resource (printer, disk, etc),
they sometimes need to access the resource exclusively.

Critical sections are portions of process codes that have exclusive
access to a shared resource.

For efficiency, critical sections should be as small as possible.

Moreover, at most one process can enter its critical section at any
time.

We will design a simple protocol to ensure mutually exclusive access
to critical sections and verify our solution.
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Mutual Exclusion II

Let us first try to specify our requirements informally.

A protocol solving the mutual exclusion problem must ensure the
following property:
Safety: at most one process can enter its critical section at any time.

Moreover, a protocol should not prevent any process from entering
critical sections permanently:
Liveness: When a process requests to enter its critical section, it will
eventually be permitted to do so.
Non-blocking: A process can always request to enter its critical
section.
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Mutual Exclusion: First Attempt I

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

n1c2 s6

c1t2s4 t1c2 s7

Consider two processes P1 and P2.

P1 has three states: non-critical state (n1), trying state (t1), and
critical state (c1). Similarly, P2 has states n2, t2, and c2.

▸ Local states are modeled as atomic formulae.

Each process has transitions n → t → c → n → t → c → ⋯.

Bow-Yaw Wang (Academia Sinica) Linear-Time Temporal Logic November 16, 2021 32 / 35



Mutual Exclusion: First Attempt II

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

n1c2 s6

c1t2s4 t1c2 s7

The system starts with both processes at non-critical states (s0).

Exactly one process makes a transition at any time.
▸ This is called an asynchronous interleaving model.
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Mutual Exclusion: First Attempt III

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

n1c2 s6

c1t2s4 t1c2 s7

Safety. The property is expressed by G¬(c1 ∧ c2) in LTL. It holds.

Liveness. This is expressed by G(t1 Ô⇒ Fc1) in LTL. The property is
not satisfied due to the path s0 → s1 → s3 → s7 → s1 → s3 → s7⋯.

Non-blocking. We would like to express: when a process at n, there is
a successor at t. This is not expressible in LTL.
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Mutual Exclusion: Second Attempt

n1n2

s0

t1n2s1 n1t2 s5

c1n2s2 t1t2

s3

t1t2

s8

n1c2 s6

c1t2s4 t1c2 s7

Liveness does not hold because the state s3 does not record which
process enters the trying state first.

In our second design, we use two states to record which process
enters the trying state first.

▸ s3 remembers P1 enters t1 first; s8 remembers P2 enters t2 first.

One can verify all three properties are satisfied.
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