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Abstract
We propose the first sound and complete learning-based com-
positional verification technique for probabilistic safety proper-
ties on concurrent systems where each component is an Markov
decision process. Different from previous works, weighted as-
sumptions are introduced to attain completeness of our frame-
work. Since weighted assumptions can be implicitly represented
by multi-terminal binary decision diagrams (MTBDD’s), we give
an L∗-based learning algorithm for MTBDD’s to infer weighted
assumptions. Experimental results suggest promising outlooks for
our compositional technique.

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Model Checking

General Terms Theory, Verification

Keywords Compositional verification, probabilistic model check-
ing, algorithmic learning

1. Introduction
Probabilistic programs are widely deployed in various systems. For
problems requiring substantial computation resources, their solu-
tions can be too costly for practice purposes. For many such prob-
lems, probabilistic algorithms may attain better expected worst-
case running time than the worst-case running time of any classical
algorithm [36]. Probabilistic methods hence become a viable tech-
nique to solve hard problems in practice. Indeed, the IEEE 802.11
standard has employed probabilistic methods to avoid the transmis-
sion collision in wireless networks [2].

Similar to classical systems, probabilistic systems are not al-
ways free of errors. In order to ensure their correctness, verification
techniques have been developed to analyze probabilistic systems.
Just like classical systems, a probabilistic system may consist of
several concurrent components. The number of system states also
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increases exponentially in the number of concurrent components.
Addressing the state explosion problem is crucial to probabilistic
verification techniques.

For classical systems, compositional verification aims to miti-
gate the state explosion problem by divide and conquer. Suppose
a classical system M0‖M1 composed of two concurrent compo-
nents M0,M1, and P an intended property about the system. Con-
sider the assume-guarantee reasoning proof rule for classical sys-
tems [13]:

M0 � A A‖M1 |= P

M0‖M1 |= P
(1)

The notation M0 � A means that A simulates all behaviors of
M0. Informally, the rule says that to show the composed system
satisfying P , it suffices to find a classical assumption A such that
A simulates M0, and A composed with M1 satisfies P as well.

A useful assumption needs to be small (at least smaller than
M0) and able to establish the intended property. Finding useful as-
sumptions in assume-guarantee reasoning appears to require inge-
nuity. Although heuristics have been proposed to construct such
assumptions automatically, they are not always applicable. Often-
times, verifiers have to provide assumptions manually. Such labo-
rious tasks are very time consuming and can be extremely difficult
to carry out on large systems.

Interestingly, the problem of finding useful classical assump-
tions can be solved by active machine learning [13]. In active ma-
chine learning [3], a learning algorithm infers a representation of
an unknown target by making queries to a teacher. The learning-
based framework thus devises a mechanical teacher to answer such
queries. Together with a learning algorithm, the framework is able
to find assumptions automatically. For classical systems, the L∗

learning algorithm for regular languages [3] suffices to infer classi-
cal finite automata as classical assumptions [13]. Other techniques
have also been developed to find useful assumptions for composi-
tional verification of classical systems [11, 20, 22, 25].

From the classical learning-based framework, one gathers that
two ingredients are essential to finding probabilistic assumptions.
First, a sound and invertible assume-guarantee reasoning proof rule
for probabilistic systems is needed. A sound proof rule allows us
to analyze compositionally by finding probabilistic assumptions.
An invertible proof rule additionally guarantees the existence of
such probabilistic assumptions when probabilistic systems satisfy
intended properties. Second, a learning algorithm for probabilistic
assumptions is also needed. With a carefully designed mechani-
cal teacher, probabilistic assumptions can then be inferred by the
learning-based framework for probabilistic systems.
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Finding a sound and invertible assume-guarantee reasoning
proof rule does not appear to be a problem. Indeed, the classi-
cal proof rule (1) can be extended to probabilistic systems via
probabilistic simulation [39]. Learning probabilistic assumptions
however is more difficult. To the best of our knowledge, an active
learning algorithm for probabilistic systems is yet to be found. In
fact, it is undecidable to infer labeled probabilistic transition sys-
tems under a version of Angluin’s learning model [30]. Learning
algorithms for general probabilistic systems may not exist after all.

Given the absence of learning algorithms for probabilistic sys-
tems, some authors propose restricted proof rules with only clas-
sical assumptions [16, 32]. Since classical assumptions can be
represented by classical finite automata, the L∗ algorithm is em-
ployed to infer such assumptions in restricted probabilistic assume-
guarantee reasoning proof rules. Yet classical assumptions are inca-
pable of expressing general probabilistic behaviors. Such restricted
proof rules are not invertible. Subsequently, existing probabilistic
assume-guarantee reasoning frameworks are sound but incomplete.

We propose a sound and complete assume-guarantee reasoning
framework for verifying probabilistic safety properties on Markov
decision processes (MDP’s). Let M0 and M1 be MDP’s, and
P≤p[ψ] a probabilistic safety property. Our most ingenious idea
is to consider weighted assumptions in our new assume-guarantee
reasoning proof rule:

M0 �e A A‖M1 |= P≤p[ψ]

M0‖M1 |= P≤p[ψ]
(2)

where A is a weighted automaton. Intuitively, M0 �e A means
that every transition of A has a weight not less than the probability
of the corresponding transition in M0. Compared to the proof rules
in [16, 32], ours relaxes but does not restrict the expressive power of
assumptions. More precisely, we consider 0/1-weighted automata
whose weights are between 0 and 1 inclusively as weighted as-
sumptions. Since transition functions of 0/1-weighted automata
can be probability distributions, the class of 0/1-weighted au-
tomata subsumes MDP’s. Our assume-guarantee reasoning proof
rule is trivially invertible.

In order to find weighted assumptions in our learning-based
framework, we also need a learning algorithm for such assump-
tions. Although active learning algorithms for probabilistic sys-
tems are still unknown, weighted assumptions on the other hand
are learnable due to the relaxation on transition functions. Our sec-
ond innovation is to adopt a well-known representation that enables
a simple L∗-based learning algorithm for weighted assumptions.
Observe that weighted automata can be implicitly represented by
multi-terminal binary decision diagrams (MTBDD’s) [6, 15, 18].
We hence develop an L∗-based learning algorithm for MTBDD’s
and deploy it to infer implicitly represented weighted assumptions.
With the two ingredients, a mechanical teacher is designed to guide
our learning algorithm to find weighted assumptions for probabilis-
tic safety properties. We successfully develop a sound and complete
learning-based assume-guarantee reasoning framework by circum-
venting the unsolved problem of learning probabilistic systems.

In addition to completeness and learnability, adopting weighted
assumptions can also be very efficient. Note that assumptions are
not unique oftentimes. If a probabilistic assumption establishes a
probabilistic property, a slightly different weighted (but not neces-
sarily probabilistic) assumption most likely will establish the prop-
erty as well. Since there are more useful weighted assumptions, our
new framework can be more effective in finding one of them. Ad-
ditionally, inferring weighted assumptions implicitly allows us to
better integrate the learning-based framework with symbolic proba-
bilistic model checking. Indeed, experimental results from realistic
test cases such as IEEE 802.11 and 1394 standards are promising.

si0 si1

si2 si3

start goi

0.8

0.2start i
0.9

0.1

done done

Figure 1: nodei

Compositional verification can alleviate the state explosion prob-
lem even for probabilistic programs.

Our technical contributions are summarized as follows.

• We propose the first sound and invertible assume-guarantee rea-
soning proof rule with weighted assumptions for probabilistic
safety properties on MDP’s.
• We give an MTBDD learning algorithm under Angluin’s active

learning model. It uses a polynomial number of queries in the
sizes of target MTBDD’s and variable sets.
• With our new proof rule and learning algorithm, we give the

first sound and complete learning-based assume-guarantee rea-
soning framework for probabilistic safety properties on MDP’s.
• We compare our new technique with the monolithic probabilis-

tic model checker PRISM [38]. Experimental results suggest
promising outlooks for our compositional technique.

This paper is organized as follows. In Section 2, we illustrate
our learning-based compositional verification technique by a small
example. In Section 3, backgrounds of probabilistic systems and
probabilistic model checking are provided. Section 4 presents
our sound and invertible assume-guarantee reasoning proof rule.
The MTBDD learning algorithm is described in Section 5. Our
learning-based assume-guarantee reasoning framework is given in
Section 6. Section 7 reports the experimental results on parameter-
ized test cases. Finally, Section 9 concludes this paper.

2. A Motivating Example
Consider the probabilistic system node1‖node2 composed of two
MDP’s nodei (i = 1, 2) in Figure 1. The process nodei has four
states: the initial state (si0), the ready state (si1), the succeeded state
(si2), and the failed state (si3). Initially, both node1 and node2 begin
at their respective initial states s1

0 and s2
0. The system may start up

all nodes (by the start action), or choose one node to start (by
either the start1 or start2 action). The two processes node1 and
node2 synchronize on shared actions. When the system starts up all
nodes by the start action, node1 transits to its ready state s1

1 with
probability 0.8, or to its succeeded state s1

2 with the probability
0.2. Simultaneously, node2 transits to its ready and succeeded
states s2

1 and s2
2 with probabilities 0.8 and 0.2 respectively. Note

that the sum of probabilities on each action is 1. Each action
hence gives a probabilistic distribution over states. For non-shared
actions, only the acting process moves; other processes stay. Hence
node1 transits to its succeeded state s1

2 while node2 remains in
its initial state s2

0 when the system chooses to start up node1 with
the action start1. Similarly, when the process nodei is at its ready
state si1, it transits to its succeeded state si2 with probability 0.9, or
to its failed state si3 with probability 0.1 on the action goi. Observe
that the probability of a transition is not shown when it is 1. Hence
nodei transits from si0 to si2 with probability 1 on the action start i.

In the system node1‖node2, the system state s1
3s

2
3 is the failed

state. The system is designed so that the probability of reaching the
failed state is no more than 0.01. Formally, the intended property is
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Figure 2: Overview

specified by the probabilistic computation tree logic formula

P≤0.01[ψfailed ]

where ψfailed stands for F 〈s1
3s

2
3〉 and F is the “in the future”

temporal operator. We would like to check whether the system
satisfies the probabilistic property by compositional verification.

2.1 Compositional Reasoning
With the proof rule (2), to show node1‖node2 |= P≤0.01[ψfailed ],
it suffices to find a weighted assumption A that

• node1 �e A, equivalently, A performs every transition of
node1 with no less probability; and
• A‖node2 |= P≤0.01[ψfailed ], equivalently, the systemA‖node2

satisfies the probabilistic property.

Clearly, one could choose A to be node1 if the system sat-
isfies the intended probabilistic property. But then the premise
A‖node2 |= P≤0.01[ψfailed ] is precisely the conclusion node1‖node2

|= P≤0.01[ψfailed ]. Verifiers would not benefit from compositional
verification by choosing node1 as a weighted assumption.

2.2 Overview
We follow the learning-based framework to infer a weighted as-
sumption satisfying the two conditions in the last subsection [11,
13, 25, 32]. In the framework, a learning algorithm is deployed
to infer weighted assumptions with the help of a mechanical
teacher. The learning algorithm presents purported assumptions
to the teacher. The teacher checks if a purported weighted assump-
tion fulfills the premises in the assume-guarantee reasoning proof
rule (2). If not, the mechanical teacher will help the learning algo-
rithm refine purported assumptions by counterexamples.

Figure 2 gives an overview of the learning-based framework. On
a purported weighted assumption A, the teacher checks node1 �e
A and invokes a model checker to verifyA‖node2 |= P≤0.01[ψfailed ].
If both premises are fulfilled, we are done. Otherwise, the teacher
provides a counterexample to the learning algorithm. The learn-
ing algorithm then modifies the purported weighted assumption A
accordingly. We illustrate the framework with concrete examples.

2.3 A Purported Assumption
Consider a purported weighted assumption A in Figure 3. On
the actions start , start1, go1, and done , the assumption A can
transit from a state to any state. Similar to MDP’s, the weight of a
transition is not shown when it is 1. For instance, A transits from
the state s1

1 to the state s1
j on the action go1 with weight 1 for every

0 ≤ j ≤ 3. In comparison, the process node1 moves from the state
s1

1 to the states s1
0, s

1
1, s

1
2, s

1
3 on the action go1 with probabilities

0, 0, 0.9, 0.1 respectively (Figure 1). Observe thatA is not an MDP
since the sum of weights from the state s1

1 on the action go1 is 4.

s1
0 s1

1

s1
2 s1

3

start , start1,
go1, done

start , start1,
go1, done

start , start1,
go1, done

start , start1,
go1, done

Figure 3: Weighted Assumption A
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Figure 4: Witness to A‖node2 6|= P≤0.01[ψfailed ]
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Figure 5: Corresponding Path in node1‖node2

On receiving the weighted assumption A, the mechanical
teacher decides whether the assumption A fulfills both premises
in our probabilistic compositional verification proof rule. It first
checks if the assumptionA performs every transition of node1 with
a weight not less than the probability in node1. This is clearly the
case. Consider, for instance, the transitions from s1

1 to s1
0, s

1
1, s

1
2, s

1
3

on the action go1. The weights associated with these transitions
of A are all equal to 1. They are not less than the probabili-
ties 0, 0, 0.9, 0.1 associated with the corresponding transitions of
node1 respectively. The premise node1 �e A is fulfilled. The me-
chanical teacher then checks the other premise by model checking.

2.4 Model Checking
Technically, a probabilistic model checker does not take weighted
assumptions as inputs. SinceA is a weighted assumption,A‖node2

need not be an MDP. A probabilistic model checker can not verify
whether A‖node2 |= P≤0.01[ψfailed ] directly. We need to lift the
probabilistic model checking algorithm to weighted assumptions.

After model checking, we find that the property P≤0.01[ψfailed ]
does not hold onA‖node2. A witness toA‖node2 6|= P≤0.01[ψfailed ]
is shown in Figure 4. The witness has only one path from the initial
state s1

0s
2
0 to the failed state s1

3s
2
3. Its weight is 0.8 × 1 × 0.1 =

0.08 > 0.01. P≤0.01[ψfailed ] is not satisfied on A‖node2.

2.5 Witness Checking
Since A‖node2 6|= P≤0.01[ψfailed ], the mechanical teacher con-
cludes that the weighted assumption A does not establish the in-
tended probabilistic property. On the other hand, the mechanical
teacher cannot conclude that the system node1‖node2 does not sat-
isfy the property either. Since A has larger weights than node1, a
weighted witness to A‖node2 6|= P≤0.01[ψfailed ] is not necessar-
ily a witness to node1‖node2 6|= P≤0.01[ψfailed ]. Before revising
the weighted assumption A, the mechanical teacher checks if the
witness to A‖node2 6|= P≤0.01[ψfailed ] is spurious or not.

Recall that the weighted assumption A contains all transitions
in node1. The witness to A‖node2 6|= P≤0.01[ψfailed ] therefore
corresponds to a path in node1‖node2 (Figure 5). Also recall that
the weight associated with a transition in the weighted assumption
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Figure 6: Weighted Assumption A′

A is not less than the probability of the corresponding transition in
node1. The probability of the corresponding path in node1‖node2

can be much smaller than the weight of the witness to A‖node2 6|=
P≤0.01[ψfailed ]. Indeed, the corresponding path in node1‖node2

has probability 0.64 × 0.1 × 0.1 = 0.0064 ≤ 0.01. It does sat-
isfy the intended probabilistic property. The witness toA‖node2 6|=
P≤0.01[ψfailed ] is hence spurious. The mechanical teacher then
should help the learning algorithm revising the weighted assump-
tion by sending a counterexample.

2.6 Selecting Counterexamples
In order to remove the spurious witness in Figure 4 from the
weighted assumption A, the mechanical teacher selects a transition
in the weighted assumption A which contributes most to the spuri-
ous witness. In Figure 4, the transitions s1

0
start−→ s1

1 and s1
1

go1−→ s1
3

in the weighted assumption A contribute to the spurious witness.
The mechanical teacher can send either of the transitions as a coun-
terexample to the learning algorithm. Here, let us say the mechan-
ical teacher sends the transition s1

1

go1−→ s1
3 as the counterexample.

The learning algorithm will then update the weight of the selected
transition in revised weighted assumptions.

2.7 Learning Assumption
After receiving a counterexample, the learning algorithm will pur-
port another weighted assumption. Suppose the learning algorithm
purports the weighted assumption A′ (Figure 6). For any transi-
tion, its weight in A′ is no less than the probability of the corre-
sponding transition in node1. For example, the weighted assump-
tion A′ transits from the state s1

1 to the states s1
0, s

1
1, s

1
2, s

1
3 with

weights 0, 0, 1, 0.1 respectively on the action go1. The correspond-
ing transitions in node1 have probabilities 0, 0, 0.9, 0.1 respec-
tively. We have node1 �e A′. A′‖node2 |= P≤0.01[ψfailed ] more-
over holds by model checking. According to our compositional ver-
ification proof rule, the mechanical teacher concludes that the sys-
tem node1‖node2 satisfies the intended probabilistic property.

Note again thatA′ is a not a probabilistic assumption. Although
A′ and node1 have the same number of states in the explicit repre-
sentation, their implicit MTBDD representations are different. A′

has 26 nodes and 4 terminals; node1 has 27 nodes with 6 terminals
in the implicit representation. Compositional verification replaces
the component node1 with a slightly smaller weighted assumption
A′. In fact, node1 is the only probabilistic assumption that can
establish the probabilistic property. If only probabilistic assump-
tions were considered, assume-guarantee reasoning would not be
effective in this example. Adopting weighted assumptions gives our
framework more useful assumptions in compositional verification.

3. Preliminaries
3.1 Weighted Automata and Markov Decision Processes
Given a finite set S, a weighted function on S is a mapping δ : S →
Q. A weighted function on S is denoted as a vector of length |S|. A
probability distribution on S is a function δD : S → [0, 1]∩Q that

∑
s∈S δ

D(s) = 1. A point distribution εs on s ∈ S is a probability
distribution where εs(t) = 1 if t = s and εs(t) = 0 otherwise.
Denote the set of weighted functions and probability distributions
on S by ∆(S) and ∆D(S) respectively. Clearly, ∆D(S) ⊆ ∆(S).

Definition 1 A weighted automaton (WA) is a 4-tuple M = (S, s̄,
Act , T ) where S is a finite set of states, s̄ ∈ S is an initial state,
Act is a finite alphabet of actions, and T : S ×Act → ∆(S) is a
weighted transition function.

A finite path π in M is a non-empty finite sequence s0
α0−−→

s1
α1−−→ . . .

αn−1−−−−→ sn where s0 = s̄, αi ∈ Act , and si
αi−−→ si+1

is a transition with T (si, αi)(si+1) 6= 0 for all 0 ≤ i < n.
We denote by π[i] = si the (i + 1)th state, and |π| = n its
length. The weight Wt(π) of a finite path π is T (s0, α0)(s1) ×
T (s1, α1)(s2) × · · · × T (sn−1, αn−1)(sn). Denote PathM the
set of all finite paths inM . Let Π ⊆ PathM be a set of finite paths.
Π is prefix containment free if for every π, π′ ∈ Π, π is not a proper
prefix of π′. When Π is prefix containment free, the weight Wt(Π)
of Π is

∑
π∈Π Wt(π).

Definition 2 A 0/1-weighted automaton (0/1-WA) M = (S, s̄,
Act , T ) is a WA where 0 ≤ T (s, α)(t) ≤ 1 for every s, t ∈ S and
α ∈ Act .

A WA is nondeterministic. There may be multiple transitions
between two states on different actions. Adversaries are used to re-
solve nondeterministic choices in WA’s [5]. Let S+ denote a non-
empty sequence of states in S, and Act(s) the set {α ∈ Act :
T (s, α)(t) > 0 for some t}. An (deterministic) adversary is a
function σ : S+ → Act such that σ(s0s1 . . . sn) ∈ Act(sn).
More general notion of adversaries involving randomizations ex-
ists, but deterministic ones are sufficient for our problem. A WA
M under an adversary σ is therefore deterministic. Let AdvM de-
note the set of adversaries of M . We write Mσ for the WA whose
transitions are determinized by the adversary σ ∈ AdvM .

Definition 3 A Markov decision process (MDP) M = (S, s̄, Act ,
T ) is a 0/1-WA where T (s, α) ∈ ∆D(S) or T (s, α) is the
constant zero weighted function for every s ∈ S and α ∈ Act .

Since the weighted functions returned by weighted transition
functions of MDP’s are probability distributions, the weight asso-
ciated with each transition in MDP’s is referred to as probability.

Let Si be a finite set and δi ∈ ∆(Si) for i = 0, 1. Define
(δ0 ⊗ δ1)(s0, s1) = δ0(s0) × δ1(s1). Observe that δ0 ⊗ δ1 ∈
∆(S0 × S1); and if 0 ≤ δ0(s0) ≤ 1 and 0 ≤ δ1(s1) ≤ 1, then
0 ≤ (δ0 ⊗ δ1)(s0, s1) ≤ 1.

Definition 4 Let Mi = (Si, s̄i,Act i,Ti) be WA for i = 0, 1. The
parallel composition of M0 and M1 (written M0‖M1) is a WA
M0‖M1 = (S0 × S1, (s̄0, s̄1),Act0 ∪Act1,T ) where

T ((s0, s1), α) =

 T0(s0, α)⊗ εs1 if α 6∈ Act1

εs0 ⊗ T1(s1, α) if α 6∈ Act0

T0(s0, α)⊗ T1(s1, α) if α ∈ Act0 ∩Act1

Observe that parallel composition of two 0/1-WAs yields a 0/1-
WA, and parallel composition of two MDP’s yields an MDP.

Example 1 The process node1 in Figure 1 is an MDP with
Snode1 = {s1

0, s
1
1, s

1
2, s

1
3}, s̄node1 = s1

0, Actnode1 = {start , start1,
go1, done}, and Tnode1(s, α) = 〈0, 0.8, 0.2, 0〉 if s = s1

0, α =
start (others are defined similarly). On the other hand, A in Fig-
ure 3 is a 0/1-WA since its weighted transition function does not
return probability distributions.
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3.2 Probabilistic Model Checking for MDP’s
Fix a finite set AP of atomic propositions. We focus on probabilis-
tic safety properties specified by Probabilistic Computation Tree
Logic (PCTL) [8, 24] in the form of P≤p[ψ] with p ∈ [0, 1] and

φ ::= true | a | φ ∧ φ | ¬φ
ψ ::= φUφ

where a is an atomic proposition, φ a state formula, ψ a path
formula, and U the “until” temporal operator. For example, “the
probability of an error occurrence is at most 0.01” is specified as
P≤0.01[trueUφerr] where φerr is a state formula indicating the
occurrence of an error.

PCTL and the safety fragment in general allow nested proba-
bilistic operators [27]. In this paper, we consider a fragment, known
as conditional reachability probability, and leave the extension to
general PCTL safety property as our future work.

Given M = (S, s̄,Act ,T ) and P≤p[ψ] with ψ = φ1Uφ2. We
define pσM,s(ψ) = Wt(Π) where Π = {π ∈ PathMσ | ∀i =
0..|π| − 1. π[i] |= φ1 ∧ ¬φ2 ∧ π[|π|] |= φ2}. Observe that Π is
prefix containment free, and prob(Π) is the probability of reaching
φ2 states along φ1 states under the adversary σ.

Let pmaxM,s (ψ) = max
σ∈AdvM

pσM,s(ψ) denote the maximal prob-

ability that ψ is satisfied at s over all adversaries. We say that s
satisfies P≤p[ψ] (written M, s |= P≤p[ψ]) if pmaxM,s (ψ) ≤ p; M
satisfies P≤p[ψ] (written M |= P≤p[ψ]) if M, s̄ |= P≤p[ψ]. We
write pσM,s(ψ) and pmaxM,s (ψ) as pσs (ψ) and pmaxs (ψ) respectively
if M is clear.

Let ψ = φ1Uφ2. The probability pmaxs (ψ) can be approxi-
mated by an iterative algorithm [5]. The computation starts from
the states satisfying φ2 and iterates backward to compute the max-
imum probability of reaching these states from the states satisfying
φ1. More precisely, define

pmaxs,i (ψ) =


1 if s |= φ2

0 if s 6|= φ2 ∧ s 6|= φ1

0 if s 6|= φ2 ∧ s |= φ1 ∧ i = 0

max
α

{∑
t∈S

T (s, α)(t)× pmaxt,i−1(ψ)

}
otherwise

Then pmaxs (ψ) = lim
i→∞

pmaxs,i (ψ). The computation iterates until

pmaxs,i (ψ) converges.
A weighted witness [23, 41, 42] toM 6|= P≤p[ψ] is a pair (σ, c)

where σ ∈ AdvM is an adversary with pσs̄ (ψ) > p, and c is a set
of finite paths in Mσ such that (1) for all π ∈ c, π |= ψ; (2) for all
proper prefix π′ of π, π′ 6|= ψ; and (3) Wt(c) > p. Observe that
the set c is prefix containment free. Hence Wt(c) is well-defined.
We obtain the (σ, c)-fragment of M (written Mσ,c) by removing
all transitions not appearing in any path of c from Mσ .

Example 2 Consider the weighted witness (σ, c) shown in Figure 4
where σ(〈s1

0s
2
0〉) = start , σ(〈s1

0s
2
0〉〈s1

1s
2
1〉) = go1, σ(〈s1

0s
2
0〉〈s1

1s
2
1〉

〈s1
3s

2
11〉) = go2, and c = {〈s1

0s
2
0〉

start−−−→ 〈s1
1s

2
1〉

go1−−→ 〈s1
3s

2
1〉

go2−−→
〈s1

3s
2
3〉}. The weight of c is 0.8× 1× 0.1 = 0.08.

3.3 Model Checking for 0/1-WA’s
Consider our assume-guarantee proof rule (2), where A is a 0/1-
weighted assumption, the parallel composition A‖M1 usually
yields a 0/1-WA, but not an MDP. The probabilistic model check-
ing algorithm in preceding section needs be adapted to 0/1-WA’s.

Given a state s of a 0/1-WA M and a probabilistic safety prop-
erty P≤p[ψ], we say s satisfies P≤p[ψ] (written M, s |= P≤p[ψ])
if the weight wmaxs (ψ) ≤ p where wmaxs (ψ) is defined simi-
larly as for MDP’s. Here wmaxs (ψ) is referred to as weights rather
than probability. Note we again omit the subscript M when it is
clear. We say that M satisfies P≤p[ψ] (written M |= P≤p[ψ])

if M, s̄ |= P≤p[ψ]. An iterative algorithm similar to the one for
MDP’s is used to compute wmaxs (ψ) for 0/1-WAs. A notable dif-
ference is that the iterative computation may not converge in a 0/1-
WA. To avoid divergent computation, define

wmaxs,i (ψ) = min

{
1,max

α

{∑
t∈S

T (s, α)(t)× wmaxt,i−1(ψ)

}}
if s 6|= φ2 ∧ s |= φ1 ∧ i > 0. Effectively, wmaxs,i (ψ) truncates the
value of wmaxs,i (ψ) when the latter exceeds 1. Let wmaxs (ψ) =
lim
i→∞

wmaxs,i (ψ). We have wmaxs (ψ) ≤ 1, and wmaxs (ψ) =

wmaxs (ψ) when wmaxs ≤ 1.
Note that the properties we are interested in are of the form

P≤p[ψ] with p ∈ [0, 1]. When p = 1, such properties are trivially
satisfied. For 0 ≤ p < 1, we have p < wmaxs (ψ) if p <
wmaxs (ψ).1

4. An Assume-Guarantee Reasoning Proof Rule
Assume-guarantee reasoning proof rules for probabilistic systems
are proposed in [16, 32]. Those proof rules replace a probabilis-
tic component in a composition with a classical assumption. Since
classical assumptions can not characterize all probabilistic behav-
iors of the replaced component, such rules are not invertible. We
propose an assume-guarantee reasoning proof rule that replaces a
probabilistic component with a weighted automaton. We begin with
the weighted extension of the classical simulation relation.

Definition 5 Let M = (S, s̄,Act ,T ) and M ′ = (S′, s̄′, Act ′,
T ′) be WA’s, we say M is embedded in M ′ (written M �e M ′) if
S = S′, s̄ = s̄′, Act = Act ′, and T (s, α)(t) ≤ T ′(s, α)(t) for
every s, t ∈ S and α ∈ Act .

Lemma 1 LetM ,M ′,N be 0/1-WA’s, and P≤p[ψ] a probabilistic
safety property.

1. M �e M ′ implies M‖N �e M ′‖N ;
2. M �e M ′ and M ′ |= P≤p[ψ] imply M |= P≤p[ψ].

Proof: Let M = (S, s̄,Act ,T ), M ′ = (S′, s̄′,Act ′,T ′), and
N = (SN , s̄N ,ActN ,TN ) be WA’s. By M �e M ′, we have
S = S′, s̄ = s̄′, and Act = Act ′. Hence M‖N and M ′‖N
have the same state space, initial state, and alphabet. Since
T (s, α)(t) ≤ T ′(s, α)(t) and TN (p, α)(q) ≥ 0, T (s, α)(t) ×
TN (p, α)(q) ≤ T (s, α)(t) × TN (p, α)(q) for every s, t ∈ S,
p, q ∈ SN , and α ∈ Act ∩ActN . Hence TM‖N ((s, p), β)(t, q) ≤
TM′‖N ((s, p), β)(t, q) for every β ∈ Act ∪ActN by Definition 4.

Since T (s, α)(t) ≤ T ′(s, α)(t), wmaxM,s̄ (ψ) ≤ wmaxM′,s̄(ψ).
wmaxM′,s̄(ψ) ≤ p forM ′ |= P≤p[ψ]. ThuswmaxM,s̄ (ψ) ≤ wmaxM′,s̄(ψ) ≤
p. M |= P≤p[ψ] as well.

Lemma 1 shows that the operator �e is compositional and
preserves probabilistic safety properties. Hence

Theorem 1 Let Mi = (Si, s̄i,Act i,Ti) be MDP’s for i = 0, 1
and P≤p[ψ] a probabilistic safety property, Then the following
proof rule is both sound and invertible:

M0 �e A A‖M1 |= P≤p[ψ]

M0‖M1 |= P≤p[ψ]

where A = (SA, s̄A,ActA,TA) is a 0/1-WA.

Proof: Soundness of the proof rule follows from Lemma 1. By
M0 �e A, M0‖M1 �e A‖M1 (Lemma 1(1)). Since A‖M1 |=
P≤p[ψ], we have M0‖M1 |= P≤p[ψ] (Lemma 1(2)). The proof
rule is also invertible. When the conclusion holds, M0 itself is a
weighted assumption. The two premises are trivially fulfilled.

1 Note here we need p < 1 to conclude p < wmaxs (ψ).
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5. Learning 0/1-Weighted Automata
We adopt the learning-based framework [13, 16] to generate an as-
sumption A in the assume-guarantee reasoning proof rule (Theo-
rem 1). To apply our new proof rule, a weighted assumption is
needed. One could employ learning algorithms that infer explicit
quantitative models like multiplicity automata [7]. Those learning
algorithms require complex and accurate matrix operations. They
hence induce substantial computation and implementation over-
heads. To avoid such overheads, we adopt a different representation
to enable a simple and efficient learning technique. More precisely,
we use MTBDD’s to represent weighted assumptions implicitly. To
infer implicitly represented weighted assumptions, we then develop
an MTBDD learning algorithm under Angluin’s learning model.

5.1 Multi-Terminal Binary Decision Diagrams
Let B denote the Boolean domain {0, 1}. Fix a finite ordered set
of Boolean variables x = 〈x1, x2, . . . , xn〉. A valuation ν =
〈v1, v2, . . . , vn〉 of x assigns the Boolean value vi to the Boolean
variable xi. Let µ and ν be valuations of x and y respectively with
x ∩ y = ∅. The concatenation of µ and ν is the valuation µν of
x∪y such that µν(z) = µ(z) if z ∈ x and µν(z) = ν(z) if z ∈ y.
For y ⊆ x, the restriction ν↑y of ν on y is a valuation of y that
ν↑y(y) = ν(y) for y ∈ y. Let f(x) : Bn → Q be a function over
x. We write f(ν) for the function value of f under the valuation ν.
Let f1(x) and f2(x) be functions over x, f1(x) ≤ f2(x) denotes
f1(ν) ≤ f2(ν) for every valuation ν of x.

A multi-terminal binary decision diagram (MTBDD) [18] over
x is a rooted, directed, acyclic graph representing a function f(x) :
Bn → Q. An MTBDD has two types of nodes. A non-terminal
node is labeled with a variable xi; it has two outgoing edges with
labels 0 and 1. A terminal node is labeled with a rational number.
The representation supports binary operations. For instance, the
MTBDD of the sum of two functions is computed by traversing
the MTBDD’s of the two functions.

Given a valuation ν of x, f(ν) can be obtained by traversing
the MTBDD of f(x). Starting from the root, one follows edges by
values of the Boolean variables labeling the nodes. When a terminal
node is reached, its label is the value f(ν). Since a function f(x)
and its MTBDD are equivalent, f(x) also denotes the MTBDD of
the function f(x) by abusing the notation.

It is straightforward to represent a WA by MTBDD’s [26]. Let
M = (S, s̄,Act ,T ) be a WA. Without loss of generality, we
assume |S| = 2n and |Act | = m. We use x = 〈x1, x1, . . . , xn〉,
x′ = 〈x′1, x′2, . . . , x′n〉 to encode states and next states in S,
and z = 〈z1, z2, . . . , zm〉 to encode actions in Act . Let ν, ν′ be
valuations of x,x′ and α a valuation of z. The action valuation α
of x is valid if it maps at most one variable to 1 (at most one action
can be taken). A valuation ν of x or x′ encodes a state dνe ∈ S. A
valid action valuation α encodes an action dαe ∈ Act . Define

lM (ν) =

{
1 if dνe = s̄
0 otherwise

fM (ανν′) =

{
T (dνe, dαe)(dν′e) if α is valid
0 otherwise

Then the MTBDD encoding of M is (x, lM (x), z, fM (z,x,x′)).
We will represent a WA by its MTBDD encoding from now on.

Example 3 Consider the process node1 in Figure 1 where the
states are s1

i for i = 0, . . . , 3, and the alphabet of actions is
Act = {start , start1, go1, done}. We use x = 〈s1.0, s1.1〉 to
encode the set of states, and z = 〈start , start1, go1, done〉 to
encode the alphabet of actions. The MTBDD of fnode1(z,x,x′)
is shown in Figure 7. In the figure, the terminal node labled by

1 0.9 0.1 0.8 0.2

start

start1

go1

done

s1.0

s1.0′

s1.1

s1.1′

Figure 7: MTBDD of fnode1

the number 0 and its incoming edges are not shown. Solid edges
are labeled by 1 and dotted edges are labeled by 0. Hence, for
instance, the process node1 transits from s1

1 = d〈0, 1〉e to s1
2 =

d〈1, 0〉e on the action go1 with probability 0.9 by the shaded path.
Note that valuations of z need be valid. Thus only the valuations
〈1, 0, 0, 0〉, 〈0, 1, 0, 0〉, 〈0, 0, 1, 0〉, and 〈0, 0, 0, 1〉 of z yield non-
zero values of fnode1 .

Using MTBDD’s, Theorem 1 is rephrased as follows.

Corollary 1 Let Mi = (xi, lMi(xi), z, fMi(z,xi,x
′
i)) be MDP’s

for i = 0, 1 and P≤p[ψ] a probabilistic safety property. Then

M0 �e A A‖M1 |= P≤p[ψ]

M0‖M1 |= P≤p[ψ]

where A = (x0, lM0(x0), z, fA(z,x0,x
′
0)) is a 0/1-WA.

5.2 The L∗ Learning Algorithm for Regular Languages
We adapt the L∗ algorithm to infer an MTBDD representing a
weighted assumption [3]. L∗ is a learning algorithm for regular
languages. Assume a target regular language only known to a
teacher. The L∗ algorithm infers a minimal deterministic finite
automaton recognizing the target regular language by posing the
following queries to the teacher:

• A membership query asks if a string belongs to the target
language; and
• An equivalence query asks if a conjectured finite automaton

recognizes the target language. If not, the teacher has to provide
the learning algorithm a string as a counterexample.

The L∗ algorithm uses membership queries to construct the transi-
tion function of a deterministic finite automaton. When it constructs
a deterministic finite automaton consistent with previous member-
ship queries,L∗ poses an equivalence query to check if the automa-
ton does recognize the target regular language. If so, the algorithm
has learned the target language correctly. Otherwise, the counterex-
ample is used to improve the conjectured finite automaton.

It can be shown [3] that the L∗ algorithm always infers the min-
imal deterministic finite automaton recognizing any target regular
language within a polynomial number of queries.
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5.3 An MTBDD Learning Algorithm
Since any 0/1-WA can be represented by MTBDD’s, we develop
an MTBDD learning algorithm to infer weighted assumptions. Let
f(x) be an unknown target MTBDD. We assume a teacher to
answer the following types of queries:

• On a membership query MQ(ν) with a valuation ν of x, the
teacher answers f(ν);
• On an equivalence query EQ(g) with a conjecture MTBDD
g(x), the teacher answers YES if f = g. Otherwise, she re-
turns a valuation ν of x with f(ν) 6= g(ν) as a counterexample.

Observe that a valuation of x can be represented by a binary
string of length |x|. To illustrate how our MTBDD learning algo-
rithm works, consider an unknown MTBDD f(x) with exactly 2
values 0 and r. Since there are finitely many binary strings of length
|x|, the language R of binary strings representing valuations of x
that evaluate f to r is regular. TheL∗ learning algorithm for regular
languages hence can be used to infer a finite automaton recogniz-
ing the language R [3]. The learning algorithm applies the Myhill-
Nerode theorem for regular languages. It constructs the transition
function of the minimal deterministic finite automaton for any un-
known regular language by posing membership and equivalence
queries about the unknown target. Since the minimal deterministic
finite automaton forR is structurally similar to the MTBDD f with
two terminal nodes [28], the L∗ algorithm can be modified to infer
MTBDD’s with two terminal nodes [19].

Generally, an unknown MTBDD f(x) has k values r1, r2, . . . ,
rk. It evaluates to a value ri on a valuation of x. Moreover, the lan-
guage Ri of binary strings representing valuations of x that evalu-
ate f to ri is regular for every 1 ≤ i ≤ k. Consider generalized de-
terministic finite automata with k acceptance types. On any binary
string, the computation of a generalized deterministic finite au-
tomaton ends in a state of an acceptance type. Formally, define a k-
language L over an alphabet Σ to be a partition {L1, L2, . . . , Lk}
of Σ∗. That is, ∪iLi = Σ∗ and Li ∩ Lj = ∅ when i 6= j. A k-
deterministic finite automaton (k-DFA) D = (Q,Σ, δ, q0,F) con-
sists of a finite state set Q, an alphabet Σ, a transition function
δ : Q × Σ → Q, an initial state q0 ∈ Q, and acceptance types
F = {F1, F2, . . . , Fk} where Fi’s form a partition of Q. Define
δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w) where a ∈ Σ and
w ∈ Σ∗. For a string w ∈ Σ∗, we say D accepts w with type i
if δ∗(q0, w) ∈ Fi. Let Li(D) = {w : D accepts w with type i}.
A k-DFA hence accepts a k-language L(D) = {Li(D) : 1 ≤
i ≤ k}. It is almost straightforward to show a generalized Myhill-
Nerode theorem for k-DFA.

Theorem 2 The following statements are equivalent:

1. A k-language L = {L1, L2, . . . , Lk} is accepted by a k-DFA;
2. Define the relation R over Σ∗ such that xRy if and only if for

every z ∈ Σ∗, xz, yz ∈ Li for some i. R is of finite index.

In order to learn general MTBDD’s, we modify the L∗ algo-
rithm to generate k-DFA. Consider binary strings of length |x| rep-
resenting valuations of x. Since an MTBDD evaluates a valuation
to a value, the values of an MTBDD partition Σ|x|. With Σ∗ \Σ|x|,
an MTBDD in fact gives a partition of Σ∗. In other words, an
MTBDD defines a k-language. By Theorem 2, the modified L∗

algorithm infers a minimal k-DFA that accepts the k-language de-
fined by an unknown MTBDD. It remains to derive an MTBDD
learning algorithm from the modified L∗ algorithm for k-DFA.

Two minor problems need to be addressed in the design of
our MTBDD learning algorithm. First, the modified L∗ algorithm
makes membership queries on binary strings of arbitrary lengths.
The teacher for learning MTBDD’s only answers membership

queries on valuations over fixed variables. Second, the modified
L∗ algorithm presents a k-DFA as a conjecture in an equivalence
query. The MTBDD teacher however accepts MTBDD’s as conjec-
tures. To solve these problems, we apply the techniques in [19].

When the modified L∗ algorithm asks a membership query on a
binary string, our MTBDD learning algorithm checks if the string
has length |x|. If not, the MTBDD learning algorithm returns 0 to
denote the weight 0. Otherwise, the MTBDD learning algorithm
forwards the corresponding valuation of x to the teacher and re-
turns the teacher’s answer to the modified L∗ algorithm. When
the modified L∗ algorithm gives a k-DFA in an equivalence query,
the MTBDD learning algorithm transforms the automaton into an
MTBDD. It basically turns the initial state into a root, each state at
distance less than n into a non-terminal node labeled with variable
xi, and each state at distance n into a terminal node.

Theorem 3 Let f(x) be a target MTBDD. The MTBDD learning
algorithm outputs f in polynomial time, usingO(|f |2 + |f | log |x|)
membership queries and at most |f | equivalence queries.

Proof: The modified L∗ algorithm outputs the minimal k-DFA F ,
using O(|F |2 + |F | logm) membership queries and at most |F |
equivalence queries wherem is the length of the longest counterex-
ample. Every membership or equivalence query of the modified L∗

algorithm induces at most one query in the MTBDD learning al-
gorithm. When the modified L∗ algorithm makes an equivalence
query with a k-DFA, the MTBDD learning algorithm transforms it
into an MTBDD of the same size in polynomial time. Whenever a
counterexample is obtained from the MTBDD teacher, the MTBDD
learning algorithm forwards the corresponding binary string of
length |x| to the modified L∗ algorithm. Hence the learning algo-
rithm infers the MTBDD f with O(|f |2 + |f | log |x|) membership
and |f | equivalence queries.

6. The Learning-based Verification Framework
With our new assume-guarantee reasoning proof rule (Section 4)
and learning algorithm for MTBDD’s (Section 5), we can now
describe our sound and complete learning framework.

Let Mi = (xi, lMi(xi), z, fMi(z,xi,x
′
i)) be MDP’s (i =

0, 1), and P≤p[ψ] a probabilistic safety property. To verify if
M0||M1 |= P≤p[ψ] holds, we aim to generate a 0/1-WAA = (x0,
lM0(x0), z, fA(z,x0,x

′
0)) to fulfill the premises M0 �e A and

A||M1 |= P≤p[ψ]. To find such a weighted assumption A, we use
the MTBDD learning algorithm to infer an MTBDD fA(z,x0,x

′
0)

as the weighted transition function. Recall that the MTBDD learn-
ing algorithm relies on a teacher to answer queries about the target
MTBDD. We therefore will design a mechanical teacher to answer
queries from the learning algorithm (Figure 8).

Let α be a valuation encoding an action, ν and ν′ valuations
encoding states. The mechanical teacher consists of the member-
ship query resolution algorithm ResolveMQ(ανν′) and the equiv-
alence query resolution algorithm ResolveEQ(fA). The mem-
bership query resolution algorithm answers a membership query
MQ(ανν′) by the weight associated with the transition from dνe
to dν′e on action dαe in a weighted assumption fulfilling the
premises of the assume-guarantee reasoning proof rule. Similarly,
the equivalence query resolution algorithm answers an equivalence
query EQ(fA) by checking whether the MTBDD fA represents the
weighted transition function of a weighted assumption. The equiv-
alence query resolution algorithm should return a counterexample
when fA does not represent a suitable weighted transition func-
tion. Recall that M0 itself is trivially a weighted assumption. Our
teacher simply uses the weighted transition function fM0 of M0 as
the target. In the worst case, our framework will find the weighted
assumption M0 and hence attain completeness. In practice, it often
finds useful weighted assumptions before M0 is inferred.
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M0||M1 |= P≤p[ψ]

false

M0 �e AMTBDD
Learning

Algorithm

Mechanical Teacher

MQ(ανν′)

EQ(fA)

falseανν′

A||M1 |= P≤p[ψ]

(M0||M1)
σ,c |= P≤p[ψ] M0||M1 6|= P≤p[ψ] is

witnessed by (σ, c)

true
false

true

ResolveEQ(fA)

(σ, c)

ResolveMQ(ανν′)

fM0
(ανν′)

ανν′

true

Figure 8: Learning Framework for Compositional Verification

6.1 Resolving Membership Queries
Our membership query resolution algorithm targets the weighted
transition function of M0. Clearly, M0 embeds itself and hence
can be used as a weighted assumption. On the membership query
MQ(ανν′), the mechanical teacher simply returns fM0(ανν′).

Input : MQ(ανν′)
Output: a rational number
answer MQ(ανν′) with fM0(ανν′);

Algorithm 1: ResolveMQ(ανν′)

6.2 Resolving Equivalence Queries
On an equivalence query EQ(fA), the mechanical teacher is given
an MTBDD fA(z,x0,x

′
0). Consider the WA A = (x0, lM0(x0),

z, fA(z,x0,x
′
0)). We need to verify if both premises of the

assume-guarantee reasoning proof rule in Corollary 1 hold. The
equivalence query resolution algorithm first checks if M0 �e A.
If not, there are valuations α, ν, and ν′ with fM0(ανν′) >
fA(ανν′). The equivalence query resolution algorithm returns
ανν′ as a counterexample to EQ(fA).

If M0 �e A, the equivalence query resolution algorithm con-
tinues to check whether A‖M1 |= P≤p[ψ] holds by model check-
ing. If A‖M1 |= P≤p[ψ] holds, the MTBDD learning algorithm
has inferred a weighted assumption that establishes M0‖M1 |=
P≤p[ψ] by the assume-guarantee reasoning proof rule in Corol-
lary 1. Otherwise, the equivalence query resolution algorithm ob-
tains a weighted witness (σ, c) to A‖M1 6|= P≤p[ψ] from model
checking. It then checks if the weighted witness is spurious. Recall
that M0‖M1 and A‖M1 have the same state set and action alpha-
bet due to M0‖M1 �e A‖M1. The (σ, c)-fragment (M0‖M1)σ,c

is well-defined. If (M0‖M1)σ,c |= P≤p[ψ], the weighted wit-
ness (σ, c) is spurious. The algorithm then analyzes the spurious
weighted witness (σ, c) and returns a valuation as the counterexam-
ple. Otherwise, the algorithm concludes (M0‖M1)σ,c 6|= P≤p[ψ]
with the weighted witness (σ, c) (Algorithm 2).

Example 4 Consider the weighted witness in Figure 4. The (σ, c)-
fragment (node1‖node2)σ,c is shown in Figure 5. There is but one
path in (node1‖node2)σ,c. This path ends in 〈s1

3s
2
3〉 and hence

satisfies ψfailed . Its weight however is 0.64×0.1×0.1 = 0.0064 ≤
0.01. Thus (node1‖node2)σ,c |= P≤0.01[ψfailed ]. The weighted
witness in Figure 4 is spurious.

Input : EQ(fA)
Output: YES , a counterexample to EQ(fA)
A← (x0, lM0(x0), z, fA(z,x0,x

′
0));

if ∃ανν′.fA(ανν′) < fM0(ανν′) then
answer EQ(fA) with the counterexample ανν′;
receive a new equivalence query EQ(fA′);
call ResolveEQ(fA′);

if A||M1 |= P≤p[ψ] then
answer EQ(fA) with YES ;
return “M0||M1 |= P≤p[ψ]”;

else
let (σ, c) be a weighted witness to A||M1 6|= P≤p[ψ];
if (M0‖M1)σ,c |= P≤p[ψ] then

select a transition dµe dαe−−→ dµ′e with the maximal
contribution from (A‖M1)σ,c;
answer EQ(fA) with α↑x0µ

′↑x′0 ;
receive a new equivalence query EQ(fA′);
call ResolveEQ(fA′);

else
return “M0||M1 6|= P≤p[ψ]” with (σ, c);

end
end

Algorithm 2: ResolveEQ(fA)

Selecting Counterexamples. Given a spurious weighted wit-
ness (σ, c), the mechanical teacher selects a transition from c as a
counterexample to the MTBDD learning algorithm. The counterex-
ample is intended to remove the spurious weighted witness (σ, c)
from weighted assumptions.

Let (σ, c) be a spurious weighted witness with (A‖M1)σ,c 6|=
P≤p[ψ] and (M0‖M1)σ,c |= P≤p[ψ]. Recall that (M0‖M1)σ,c

and (A‖M1)σ,c have the same state set, initial state, and alphabet.
The only differences between (M0‖M1)σ,c and (A‖M1)σ,c are the
weights associated with transitions. In order to remove the spurious
weighted witness (σ, c), we would like to select transitions which
differentiate (M0‖M1)σ,c from (A‖M1)σ,c most significantly.

More precisely, for any transition t in c, let ΠA(t) and Π0(t)
be the sets of paths in respectively (A‖M1)σ,c and (M0‖M1)σ,c

which contain transition t. Defineω(t) = Wt(ΠA(t))−Wt(Π0(t))
to be the contribution of transition t in the spurious weighted wit-
ness (σ, c). The mechanical teacher simply selects a transition t
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with the maximal contribution. The weight of the selected transition
in A will be revised to the probability of the corresponding transi-
tion in M0. Its contribution will be 0 in following revisions. Note
that contributions of transitions are computed using MTBDD’s for
efficiency. Details are omitted due to space limit.

Observe moreover that selecting one transition may not elimi-
nate the spurious weighted witness. Since a spurious weighted wit-
ness contains several transitions, the weight of the witness may
not be reduced sufficiently after revising a few transitions. Subse-
quently, the same spurious weighted witness may be recomputed by
model checking the premises with a revised weighted assumption.
In order to reduce the number of model checking invocations, we
reuse the same spurious weighted witness to compute counterex-
amples [25]. More precisely, our implementation checks if the cur-
rent spurious weighted witness is eliminated from revised weighted
assumptions. If not, the mechanical teacher selects another transi-
tion from the spurious weighted witness to further refine the revised
weighted assumptions. Since a spurious weighted witness is used to
revise several weighted assumptions, the number of model check-
ing invocations is reduced.

6.3 Correctness
The correctness of our assume-guarantee reasoning framework for
probabilistic systems follows from Theorem 1. We establish the
soundness, completeness, and termination of the new learning-
based framework in the remainder of this section.

Theorem 4 (Soundness) Let Mi = (xi, lMi(xi), z, fMi(z, xi,
x′i)) be MDP’s for i = 0, 1, P≤p[ψ] a probabilistic safety property,
and fA(z,x0,x

′
0) an MTBDD.

• If ResolveEQ(fA) returns “M0||M1 |= P≤p[ψ],” thenM0‖M1

|= P≤p[ψ] holds.
• If ResolveEQ(fA) returns “M0||M1 6|= P≤p[ψ]” with (σ, c),

then (σ, c) is a weighted witness to M0||M1 6|= P≤p[ψ].

Proof: When our learning-based framework reports “M0‖M1 |=
P≤p[ψ]” in Algorithm 2, a weighted assumption A = (x0,
lM0(x0), z, fA(z,x0,x

′
0)) such that M0 �e A and A‖M1 |=

P≤p[ψ] has been inferred. By the soundness of the assume-
guarantee reasoning proof rule (Theorem 1), M0‖M1 |= P≤p[ψ].
On the other hand, suppose our learning-based framework reports
“M0‖M1 6|= P≤p[ψ].” The weighted witness (σ, c) to A‖M1 6|=
P≤p[ψ] has been verified to be a witness to M0‖M1 6|= P≤p[ψ].

Theorem 5 (Completeness) Let Mi = (xi, lMi(xi), z, fMi(z,
xi, x

′
i)) be MDP’s for i = 0, 1, and P≤p[ψ] a probabilistic safety

property.

• IfM0||M1 |= P≤p[ψ], then ResolveEQ(fA) returns “M0||M1

|= P≤p[ψ]” for some MTBDD fA(z,x0,x
′
0).

• IfM0||M1 6|= P≤p[ψ], then ResolveEQ(fA) returns “M0||M1

6|= P≤p[ψ]” with a weighted witness (σ, c).

Proof: In our framework, the MTBDD learning algorithm targets
the weighted transition function ofM0. It will infer fM0(z,x0,x

′
0)

eventually (Theorem 3). If M0‖M1 |= P≤p[ψ], the learning algo-
rithm always infers a weighted assumption A (in the worst case,
A is M0) such that M0 �e A and A‖M1 |= P≤p[ψ]. Hence
ResolveEQ(fA) returns “M0‖M1 |= P≤p[ψ].” Otherwise, the
learning algorithm always infers a weighted assumption A (in the
worst case, A is M0) such that M0‖M1 6|= P≤p[ψ] is witnessed by
(σ, c). ResolveEQ(fA) returns ”M0‖M1 6|= P≤p[ψ].”

Theorem 6 (Termination) Let Mi = (xi, lMi(xi), z, fMi(z, xi,
x′i)) be MDP’s for i = 0, 1, and P≤p[ψ] a probabilistic safety
property. Our learning-based framework reports “M0‖M1 |=

P≤p[ψ]” or “M0‖M1 6|= P≤p[ψ]” within a polynomial number
of queries in |fM0(z,x0,x

′
0)| and |z ∪ x0 ∪ x′0|.

Proof: In our learning-based framework, the MTBDD learning
algorithm targets the weighted transition function of M0. It will
infer the target MTBDD fM0(z,x0,x

′
0) using O(n2 + n logm)

membership queries and at most n equivalence queries where n =
|fM0(z,x0,x

′
0)| andm = |z∪x0∪x′0| (Theorem 3). At this point,

the weighted assumption A is M0. The mechanical teacher reports
either “M0‖M1 |= P≤p[ψ]” or “M0‖M1 6|= P≤p[ψ].”

7. Experiments
We have implemented a prototype of our compositional verification
technique on top of PRISM 4.0.1 [38]. It accepts an MDP specified
in the PRISM modeling language and a probabilistic safety prop-
erty. The MTBDD learning algorithm is implemented by modifying
the L∗ algorithm in libalf 0.3 library [9] with CUDD 2.5.0 pack-
age.2 The membership query resolution algorithm (Algorithm 1)
and the embedded checking algorithm (Algorithm 2) are imple-
mented using CUDD. Probabilistic model checking in the equiv-
alence query resolution algorithm (Algorithm 2) is performed by
PRISM (using the MTBDD engine). We generate counterexam-
ples by the techniques in [23]. All experiments were run on a virtual
machine with 2.6GHz CPU and 4GB RAM.

Our compositional approach is evaluated on several parameter-
ized examples. All examples are derived from the PRISM web-
site.3 For each model, we check a probabilistic safety property. All
models and properties are briefly described below:

• Consensus models a randomized coin algorithm [4] which al-
lows N processes in a distributed network to reach a consensus
by accessing a global shared counter parameterized by K. The
specification describes “the probability that eventually all pro-
cesses make a decision but some two processes do not agree on
the same value is at most p”.
• WLAN models the wireless local area networks specified in

the IEEE 802.11 standard [2]. Stations of a wireless network
cannot listen to their own transmission. Each station has a
backoff counter (with the maximal value of B) to minimize the
likelihood of transmission collision. The time bounded version
of this model is considered. The specification describes “the
probability that either station’s backoff counter hits the number
K within some time is at most p”.
• FireWire models the tree identify protocol of the IEEE 1394

high performance serial bus [1]. Among nodes connected in a
network, a root node needs to be elected to act as the manager of
the bus in the network. The time bound for message transmis-
sion is parameterized by deadline. The implementation version
of this model is considered. The specification describes “the
probability that a root node is elected eventually before some
time deadline passes is at most p”.
• Philo models a randomized solution to the dining philosophers

problem [33].N philosophers sit around a circular table. Neigh-
boring philosophers share a resource. A philosopher can eat if
he obtains the resources from both sides. The specification de-
scribes “the probability that neighboring philosophers do not
obtain their shared resource simultaneously is at most 0.00001.”

Our tool selects one process of the model as M0 and the com-
position of other processes as M1. Selecting the composition of
multiple processes as M0 can be done by solving the two-way de-
composition problem [14, 43]. Here we employ a simple heuristic:

2 http://vlsi.colorado.edu/~fabio/CUDD/
3 http://www.prismmodelchecker.org
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choose the process with the minimal interface alphabet. The inter-
face alphabet of a process is the set of shared actions. For example,
the WLAN model consists of four processes: medium, station1, sta-
tion2 and timer, with interface alphabets {send1, send2, finish1,
finish2}, {time, finish1, send1}, {time, finish2, send2}
and {time}, respectively. We choose timer as M0 by our heuristic.

The first experiment compares the performance of our compo-
sitional approach (compositional) with the monolithic probabilistic
model checking in PRISM (monolithic). Experimental results are
listed in Table 1. For each model and a corresponding probabilistic
safety property P≤p[ψ], we compute the property of Pmax=?[ψ] by
PRISM and report it in the Pmax column. Note that the property
P≤p[ψ] holds on the model if and only if p ≥ Pmax. The satisfia-
bility of the property P≤p[ψ] on the model is reported in the Result
column. For each test case, we show the model size (size) and run
time (time). The model size counts the number of MTBDD nodes
for the weighted transition function of the composed model.4 The
run time includes the time spent on all stages, including model con-
struction, model checking, witness analysis, and assumption learn-
ing. For monolithic approach, both PRISM with the MTBDD en-
gine (PRISM-M) and PRISM with the hybrid engine (PRISM-H)
are tested. Their run times are listed in TM and TH columns respec-
tively. For compositional approach, the number of PRISM calls
(#Call) is also reported. The last column (reduction) shows the re-
duction of model size and time of our compositional approach to
PRISM-M. All time is in seconds, and the symbol “–” indicates
either time-out (4 hours) or memory-out (4GB).

The results are very encouraging. In 20 of 23 cases, the compo-
sitional verifier outperforms PRISM-M significantly. Moreover, a
reduction of 90% in time is achieved in 9 cases; and a reduction of
80% in model sizes is attained in 8 cases. Our compositional ap-
proach benefits the verification by avoiding the construction of the
whole model. In the size reduction column of Table 1, our compo-
sitional approach succeeds in learning an assumption A such that
the size of A‖M1 is much smaller than that of M0‖M1 in most
cases. Only for the two smallest unsatisfied cases in the Consensus
example, our compositional approach performs worse. One possi-
ble reason is that the sizes of the models are so small that com-
positional verification is redundant. Also, observe that PRISM-H
performs much better then PRISM-M in the Consensus example.
MTBDD-based techniques (monolithic or not) may not be the best
choice for this example.

Hybrid (PRISM-H) and MTBDD-based (PRISM-M and ours)
techniques can also be compared in Table 1. The results heavily
depend on the examples. Similar phenomenons were also reported
in [31]. For all cases in the Consensus example, PRISM-H per-
forms much better than both MTBDD-based techniques. For all
cases in the Philos example, the performances of PRISM-H and
PRISM-M are similar. However, in the more realistic WLAN and
FireWire examples, PRISM-H runs out of memory quickly when
the model size becomes large.

The second experiment evaluates the impact of the probability
bound p on the effectiveness of compositional verification. This
experiment is performed on examples with different probability
bounds. The results on the WLAN example with (B,K) = (4, 2)
are plotted in Figure 9(a). When p is above or nearly above
Pmax (≈ 0.1836), the performance of our approach goes down
quickly. The reason is that the property becomes satisfied when
p ≥ Pmax. More equivalence queries are then required to infer a
proper assumption to prove both premises of the reasoning rule.
On the other hand, if the probability bound p is less than Pmax, a
coarse weighted assumption suffices to verify the property. Simi-

4 By composed model, we mean M0‖M1 for monolithic checker and
A‖M1 for our checker.

lar phenomenons can be observed on the Consensus example with
(N,K) = (4, 2) (Figure 9(b)). The result from the FireWire ex-
ample with deadline = 400 (Figure 9(c)) is quite different. Observe
that the actual probability Pmax of the FireWire examples is 1. Its
properties are trivially unsatisfied for any p. Thus there is no rising
edge in Figure 9(c) as in other figures. In the Philos example, the
probability Pmax is 0 and hence the properties are always satisfied
for any p. Similar to FireWire, we do not observe any rising edge
and hence skip the figure of the Philos example. Compositional
verification however always outperforms the monolithic algorithm
regardless of satisfiability of properties in both examples.

8. Related Works
The most relevant works to ours are [16, 17, 32]. In their proof
rules, assumptions are classical deterministic finite automata. The
L∗ algorithm has been applied to infer classical assumptions
in [16]. As discussed above, classical assumptions cannot express
general probabilistic behaviors. Such techniques are sound but in-
complete. We adopt weighted automata as assumptions to have
a sound and invertible proof rule. Our technique is both sound
and complete. A sound and invertible assume-guarantee reason-
ing proof rule for probabilistic I/O systems is given in [17]. The
framework however only works for fully probabilistic discrete time
Markov chains and may not terminate. Our technique in contrast
applies to Markov decision processes and always terminates.

Undecidability of inferring labeled probabilistic transition sys-
tems under Angluin’s active learning model is shown in [30]. A
(necessarily) restricted learning algorithm for such probabilistic
systems is also proposed in the same paper. In addition to learning
different concepts, the restricted algorithm does not utilize mem-
bership queries whereas ours does. An alternative direction for
generating probabilistic assumptions is to use abstraction refine-
ment (AGAR) techniques [21]. In [29], probabilistic assumptions
are conservative abstractions of system components. They are it-
eratively refined by counterexamples [12]. However, AGAR re-
lies on partitioning the explicit state space to construct assump-
tions [21, 29]. We are not aware of any symbolic implementation
of AGAR techniques for classical or probabilistic systems.

Various learning algorithms have been proposed for probabilis-
tic systems [10, 34, 35, 40]. These learning algorithms adopt pas-
sive learning model. They are not applicable to the learning-based
assume-guarantee reasoning framework in [13].

Learning algorithms for binary decision diagrams were pro-
posed in [19, 37]. In [19], an L∗-based algorithm was developed.
The work in [37] used a classification tree-based learning algorithm
for regular languages. Both algorithms inferred deterministic finite
automata and transformed them into decision diagrams.

9. Conclusion
We proposed a sound and complete learning-based assume-guarantee
reasoning technique for probabilistic safety properties on MDP’s.
Instead of probabilistic assumptions, we infer weighted assump-
tions for compositional verification. Using an MTBDD learn-
ing algorithm, our technique generates implicit representations of
weighted assumptions. Experimental results show that the assume-
guarantee reasoning technique outperforms the monolithic proba-
bilistic model checking in most of the test cases.

Our technique can be applied to sequential probabilistic sys-
tems. LetM be an MDP andP≤p[ψ] a probabilistic safety property.
One generates a 0/1-WA A such that M �e A and A |= P≤p[ψ]
by our learning-based technique. It is however not recommended
when M is composed of concurrent MDP’s. Since the construction
of the composition can be very expensive, the computation should
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Table 1: Experimental Results: Monolithic vs. Compositional

Example Param Pmax Result Monolithic Compositional Reduction(%)
TH TM Size #Call T Size Time Size

Consensus
(p=0.01)

(2, 6) 0.04 false 0.16 3.86 393 6 6.08 423 -57.5 -7.6
(2, 10) 0.02 false 0.50 17.36 417 6 24.87 460 -43.3 -10.3
(4, 2) 0.29 false 2.86 40.22 2288 6 35.79 2211 11.0 3.4
(4, 6) 0.10 false 42.15 1109.71 2340 6 703.53 2269 36.6 3.0

(4, 10) 0.06 false 169.21 4747.15 2384 6 3051.72 2327 35.7 2.4
(6, 2) 0.36 false 411.57 1611.16 7075 6 1068.06 6753 33.7 4.6
(6, 4) 0.19 false 2841.36 10270.29 7055 6 5751.38 6728 44.0 4.6

WLAN
(p=0.1)

(2, 2) 0.18 false 430.21 381.38 304314 4 5.91 33237 98.5 89.1
(3, 2) 0.18 false – 675.15 626744 4 5.94 40945 99.1 93.5
(3, 3) 0.02 true – 687.04 626744 11 977.89 664801 -42.3 -6.1
(4, 2) 0.18 false – 2620.32 1321221 4 7.64 52129 99.7 96.1
(4, 3) 0.02 true – 2530.00 1321221 11 1776.14 1421456 29.8 -7.6
(4, 4) 0.00 true – 2683.98 1321221 11 2061.69 1421456 23.2 -7.6

FireWire
(p=0.1)

200 1.00 false 182.58 86.04 836852 4 37.06 129750 56.9 84.5
400 1.00 false 1897.39 507.58 1220933 4 38.92 129761 92.3 89.4
600 1.00 false – 954.33 1243547 4 39.17 129778 95.9 89.6
800 1.00 false – 1380.22 1243552 4 39.21 129772 97.2 89.6

1000 1.00 false – 1803.40 1243551 4 39.52 129780 97.8 89.6

Philos
(p=0.01)

20 0.00 true 29.80 29.74 58565 1 13.43 19328 54.9 67.0
25 0.00 true 55.98 56.36 91325 1 31.48 29908 44.1 67.3
30 0.00 true 109.01 108.84 131260 1 54.71 42763 49.7 67.4
35 0.00 true 1006.60 1022.58 178370 1 96.45 57893 90.6 67.5
40 0.00 true 2370.48 2348.22 232655 1 168.14 75298 92.8 67.6
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Figure 9: Impacts of p on the Performance of MTBDD-Based Approaches (red for compositional, blue for monolithic).

be deferred after concurrent components are simplified. Assume-
guarantee reasoning presented in this paper is certainly preferred.

Currently, our PRISM-based implementation receives a finite
set of paths as weighted witnesses to M 6|= P≤p[ψ]. Generally,
weighted witnesses to M 6|= PCp[ψ] where C ∈ {<,≤} are rep-
resented as graphs with strongly connected components [41, 42].
We plan to generalize transition contributions to select counterex-
amples from spurious weighted witnesses with strongly connected
components. We moreover would like to extend our learning frame-
work to verifying richer properties such as general probabilistic
safety or liveness properties.

Acknowledgments
Fei He (corresponding author) and Xiaowei Gao are supported by
the Chinese National 973 Plan (2010CB328003); the NSF of China

(61272001, 60903030, 91218302); the Chinese National Key Tech-
nology R&D Program (SQ2012BAJY4052), the Importation and
Development of High-Caliber Talents Project of Beijing Munici-
pal Institutions (YETP0167), and the Tsinghua University Initia-
tive Scientific Research Program; Bow-Yaw Wang (corresponding
author) is supported by the Ministry of Science and Technology of
Taiwan (103-2221-E-001 -020 -MY3); Lijun Zhang (corresponding
author) is supported by the Natural Science Foundation of China
(NSFC) under grant No. 61472473, 61428208, 61361136002, the
CAS/SAFEA International Partnership Program for Creative Re-
search Teams.

References
[1] IEEE standard for a high-performance serial bus. IEEE Std 1394-2008,

pages 1–954, Oct 2008.

11 2014/12/22



[2] IEEE standard for information technology–telecommunications and
information exchange between systems local and metropolitan area
networks–specific requirements part 11: Wireless LAN medium ac-
cess control (MAC) and physical layer (PHY) specifications. IEEE
Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pages 1–2793,
March 2012.

[3] D. Angluin. Learning regular sets from queries and counterexamples.
Information and Computation, 75(2):87–106, 1987.

[4] J. Aspnes and M. Herlihy. Fast randomized consensus using shared
memory. Journal of Algorithms, 11(3):441–460, 1990.

[5] C. Baier and J.-P. Katoen. Principles of model checking. MIT Press,
2008.

[6] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska,
and M. Ryan. Symbolic model checking for probabilistic processes.
In ICALP, volume 1256 of LNCS, pages 430–440. Springer, 1997.

[7] A. Beimel, F. Bergadano, N. H. Bshouty, E. Kushilevitz, and S. Varric-
chio. Learning functions represented as multiplicity automata. Journal
of ACM, 47(3):506–530, May 2000. .

[8] A. Bianco and L. de Alfaro. Model checking of probabalistic and
nondeterministic systems. In FSTTCS, volume 1026 of LNCS, pages
499–513. Springer, 1995.

[9] B. Bollig, J.-P. Katoen, C. Kern, M. Leucker, D. Neider, and D. R.
Piegdon. libalf: The automata learning framework. In CAV, volume
6174 of LNCS, pages 360–364. Springer, 2010.

[10] Y. Chen, H. Mao, M. Jaeger, T. Nielsen, K. Guldstrand Larsen, and
B. Nielsen. Learning Markov models for stationary system behaviors.
In NASA Formal Methods, volume 7226 of LNCS, pages 216–230.
Springer, 2012.

[11] Y.-F. Chen, E. M. Clarke, A. Farzan, M.-H. Tsai, Y.-K. Tsay, and B.-
Y. Wang. Automated assume-guarantee reasoning through implicit
learning. In CAV, volume 6174 of LNCS, pages 511–526. Springer,
2010.

[12] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In CAV, volume 1855 of LNCS, pages
154–169. Springer, 2000.

[13] J. M. Cobleigh, D. Giannakopoulou, and C. S. Păsăreanu. Learning
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