Exploiting Puzzle Diversity in Puzzle Selection for ESP-like GWAP Systems

Yu-Song Syu, Hsiao-Hsuan Yu, and *Ling-Jyh Chen* Institute of Information Science, Academia Sinica

GWAP = Games with a Purpose

GWAP = Games with a Purpose

PLAYER 1 PLAYER 2

PLAYER 1

PLAYER 2

PLAYER 1

GUESSING: CAR

GUESSING: HAT

GUESSING: KID

PLAYER 2

PLAYER 1

GUESSING: CAR

GUESSING: HAT

GUESSING: KID

PLAYER 2

GUESSING: BOY

GUESSING: CAR

PLAYER 1

GUESSING: CAR

GUESSING: HAT

GUESSING: KID

PLAYER 2

GUESSING: BOY

GUESSING: CAR

Agreement reached: CAR

Why is it important?

- Some statistics (July 2008)
 - 200,000+ players have contributed 50+ million labels.
 - Each player plays for a total of 91 minutes.
 - The throughput is about 233 labels/player/hour (i.e., one label every 15 seconds)
- Google bought a license to create its own version of the game in 2006 (called Google Image Labeler).

- Human Computation a new paradigm of applications
 - Outsource computational process to human
 - Exploit "human cycles" to solve the problems that are easy to humans but difficult to computer programs

- Human Computation a new paradigm of applications
 - Outsource computational process to human
 - Exploit "human cycles" to solve the problems that are easy to humans but difficult to computer programs
- Games With A Purpose (GWAP)
 - Pioneered by Dr. Luis von Ahn, CMU
 - Take advantage of people's desire to be entertained
 - Motivate people to play voluntarily
 - Produce useful metadata as a by-product

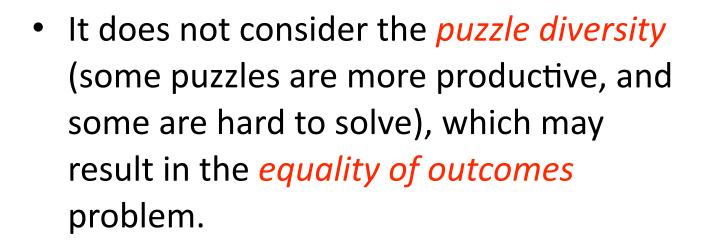
- Human Computation a new paradigm of applications
 - Outsource computational process to human
 - Exploit "human cycles" to solve the problems that are easy to humans but difficult to computer programs
- Games With A Purpose (GWAP)
 - Pioneered by Dr. Luis von Ahn, CMU
 - Take advantage of people's desire to be entertained
 - Motivate people to play voluntarily
 - Produce useful metadata as a by-product
- Question: how to evaluate the performance of GWAP systems?

- The ESP Game has two goals
 - To collect as many labels per puzzle as possible (i.e., quality)
 - To solve as many puzzles as possible (i.e., throughput)

- The ESP Game has two goals
 - To collect as many labels per puzzle as possible (i.e., quality)
 - To solve as many puzzles as possible (i.e., throughput)
- Both factors are critical to the performance of the ESP game, but unfortunately they do not complement each other.

- The ESP Game has two goals
 - To collect as many labels per puzzle as possible (i.e., quality)
 - To solve as many puzzles as possible (i.e., throughput)
- Both factors are critical to the performance of the ESP game, but unfortunately they do not complement each other.
- In [14], we formulated the problem as a variant of classic scheduling problems, and proposed an *Optimal Puzzle Selection Algorithm* (OPSA).

What's the problem?


What's the problem?

 The OPSA scheme determines the optimal number of agreements required for all puzzles based on an analytical model [14].

What's the problem?

 The OPSA scheme determines the optimal number of agreements required for all puzzles based on an analytical model [14].

Contribution

- Using realistic game traces, we identify the puzzle diversity issue in ESP-like GWAP systems.
- We propose the Adaptive Puzzle Selection Algorithm (APSA) to cope with puzzle diversity by promoting equality of opportunity.
- We propose the Weight Sum Tree (WST) to reduce the computational complexity and facilitate the implementation of APSA in real-world systems.
- We show that APSA is more effective than OPSA in terms of the number of agreements reached and the system gain.

Adaptive Puzzle Selection Algorithm

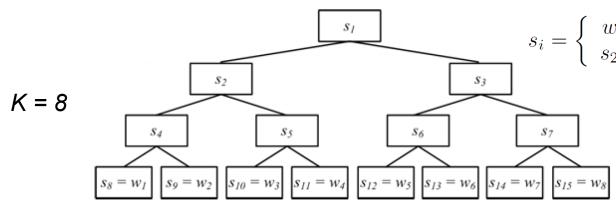
- APSA is inspired by the Additive Increase
 Multiplicative Decrease (AIMD) model of Transmission
 Control Protocol (TCP).
- APSA selects a puzzle to play based on a weighted value w_k , and the probability that the k-th puzzle will be selected is $p_k = \frac{w_k}{\sum_{i=1}^K w_i}$

Adaptive Puzzle Selection Algorithm

- APSA is inspired by the Additive Increase
 Multiplicative Decrease (AIMD) model of Transmission
 Control Protocol (TCP).
- APSA selects a puzzle to play based on a weighted value w_k , and the probability that the k-th puzzle will be selected is $p_k = \frac{w_k}{\sum_{i=1}^K w_i}$

$$w_k = \begin{cases} 1 & \text{the initial value,} \\ w_k + 1 & \text{if agreements are reached,} \\ \frac{w_k}{2} & \text{if no agreements are reached.} \end{cases}$$

The more productive a puzzle is, the higher probability it will be selected in the next game round.


- The *scalability* issue:
 - The computational complexity increases linearly with the number of puzzles played, i.e., O(K).

- The *scalability* issue:
 - The computational complexity increases linearly with the number of puzzles played, i.e., O(K).
- Our solution:
 - We propose a new data structure, called Weight Sum Tree
 (WST), which is a complete binary tree of partially weighted sums.

- The *scalability* issue:
 - The computational complexity increases linearly with the number of puzzles played, i.e., O(K).
- Our solution:
 - We propose a new data structure, called Weight Sum Tree
 (WST), which is a complete binary tree of partially weighted sums.

 $s_i = \begin{cases} w_{i-2^{h-1}+1} & \text{, when } 2^{h-1} \le i < 2^h; \\ s_{2i} + s_{2i+1} & \text{, when } 0 < i < 2^{h-1}. \end{cases}$

s_i: the *i-th* node in the tree h: the height of the tree

- Three cases to maintain the WST
 - After the k-th puzzle is played in a game round
 - Update the w_k and its ancestors: O(logK)
 - After a puzzle has been removed (say, the k-th puzzle)

 S_4

 S_2

 S_I

 $|s_{10} = w_3| |s_{11} = w_4| |s_{12} = w_5| |s_{13} = w_6|$

 S_3

 S_6

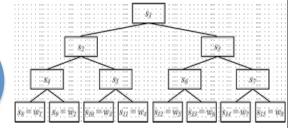
 S_7

- Set the w_k to 0 (to become a virtual puzzle): O(logK)
- After adding a new puzzle (say, the k-th puzzle)
 - Set the w_k to 1

PReplace the first (leftmost) *virtual* puzzle or rebuild the WST:

O(logK) or O(K)

- Three cases to maintain the WST
 - After the k-th puzzle is played in a game round
 - Update the w_k and its ancestors: O(logK)
 - After a puzzle has been removed (say, the k-th puzzle)
 - Set the w_k to 0 (to become a virtual puzzle): O(logK)
 - After adding a new puzzle (say, the k-th puzzle)
 - Replace the first (leftmost) virtual puzzle or rebuild the WST:
 O(logK) or O(K)


• Set the w_k to 1

 S_7

 S_6

 $|s_{10} = w_3| |s_{11} = w_4| |s_{12} = w_5| |s_{13} = w_6|$

 Determine a random number r (0 ≤ r ≤ 1), and call the function Puzzle_Selection(0,r)

Algorithm 1 The proposed puzzle selection implementation based on the APSA scheme and the weight sum tree data structure.

```
1: Function Puzzle\_Selection(k,r)
```

2: **if**
$$k \ge 2^{h-1}$$
 then

3: Return the
$$(k-2^{h-1}+1)$$
th puzzle;

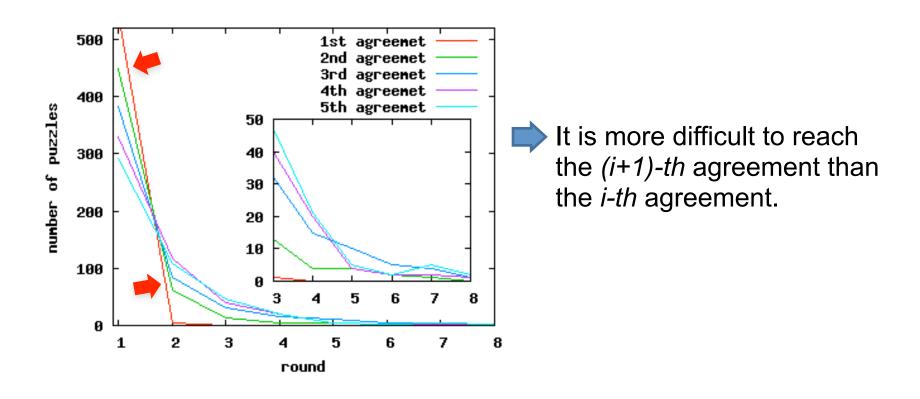
4: end if

5: if
$$r \leq \frac{s_{2k}}{s_1}$$
 then

6:
$$Puzzle_Selection(2k, r);$$

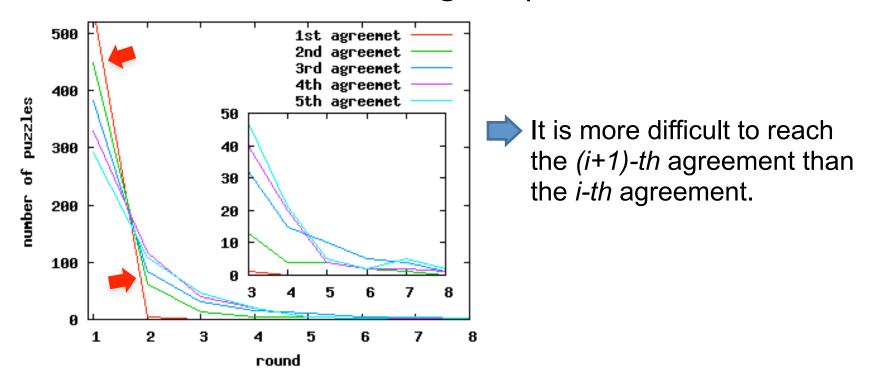
7: **else**

8:
$$Puzzle_Selection(2k+1, r-\frac{s_{2k}}{s_1});$$

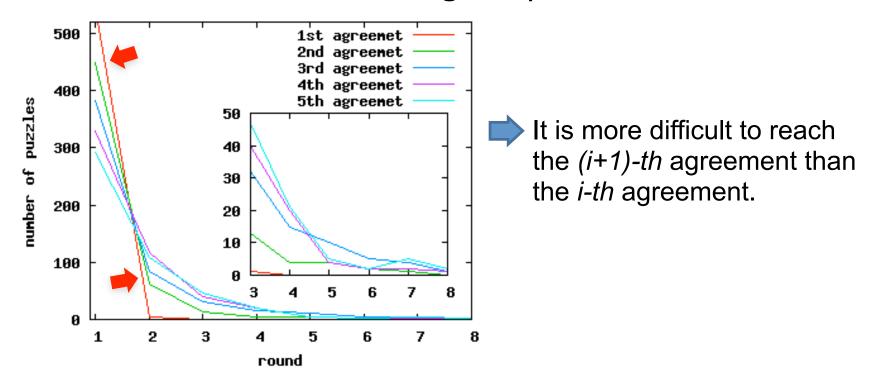

9: end if

Evaluation

- We evaluated the APSA scheme using trace-based simulations.
- The game trace was collected by the ESP Lite system.
 - The trace was one-month long (from 2009/3/9 to 2009/4/9).
 - The OPSA scheme was used in 1,444 games comprised of 6,326 game rounds. In total, 575 distinct puzzles were played and 3,418 agreements were reached.
 - The dataset is available at:http://hcomp.iis.sinica.edu.tw/dataset/

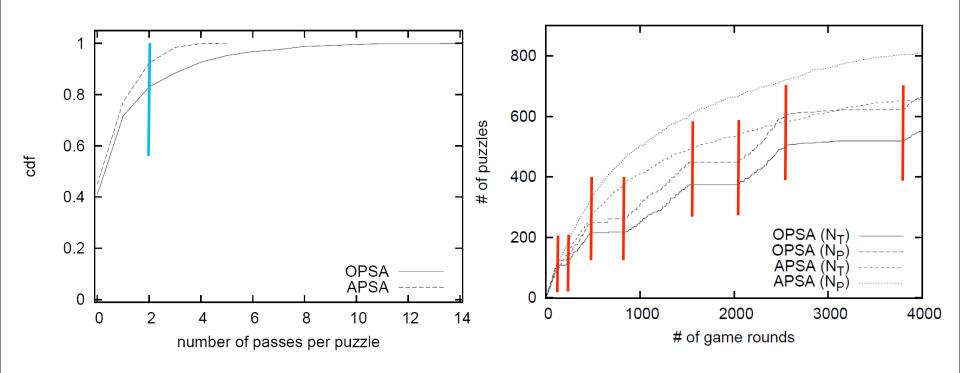


Evaluation – Puzzle Diversity


Evaluation – Puzzle Diversity

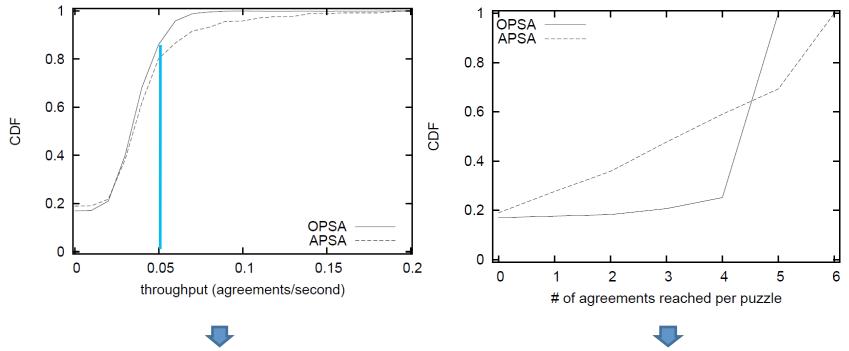
The differences exist among the puzzles.

Evaluation – Puzzle Diversity


The differences exist among the puzzles.

It is important to consider puzzle diversity!

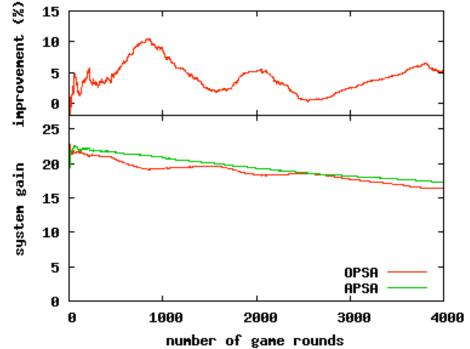
Simulation Results (1)



APSA scheme is superior in terms of reducing the number of the passed rounds.

 N_T : # of distinct puzzles with at least one agreement reached N_P : # of distinct puzzles played

Simulation Results (2)



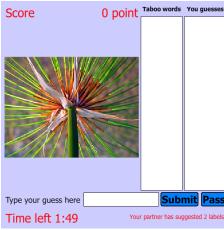
APSA scheme yields more agreements with better per-puzzle throughput

APSA scheme can better accommodate puzzle diversity than the OPSA scheme

System Gain Evaluation

- APSA always achieves a better system gain than the OPSA scheme (about 5% improvement).
 - The system gain could be improved further by modifying the second part of the metric (e.g., by introducing competition into the system [17]).

Summary


- We identify the puzzle diversity issue in ESP-like GWAP systems.
- We propose the Adaptive Puzzle Selection Algorithm
 (APSA) to consider *individual differences* by promoting equality of opportunity.
- We design a data structure, called Weight Sum Tree
 (WST) to reduce the computational complexity of APSA.
- We evaluate the APSA scheme and show that it is more

Advertisement ©

- GWAP API (http://hcomp.iis.sinica.edu.tw/GWAP_API/)
 - JAVA-based API source codes released
 - ESP Lite: an example of GWAP API
 - ESP Lite dataset (v2010.01.01)

ESP Lite

http://hcomp.iis.sinica.edu.tw/GWAP/ESPLite

Beauty Ranking

http://apps.facebook.com/wnranking/

Handsome Ranking


http://apps.facebook.com/menranking/

Gesture Recognition

http://apps.facebook.com/shootit/

Babies' Gesture Recognition

http://apps.facebook.com/testforclass/

Thank You!

Network Research Lab: http://nrl.iis.sinica.edu.tw/
GWAP API: http://hcomp.iis.sinica.edu.tw/GWAP API/

Ling-Jyh Chen Ph. D.

Assistant Research Fellow

128, Section 2, Academia Road Institute of Information Science Nankang, Taipei 115 Taiwan, R.O.C.

Tel: +886-2-2788-3799 ext.1702 Fax: +886-2-2782-4814 E-mail: cclljj@iis.sinica.edu.tw http://www.iis.sinica.edu.tw/~cclljj/

