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Abstract 

Web application security remains a major roadblock to universal acceptance of the Web for many kinds of online 
transactions, especially since the recent sharp increase in remotely exploitable vulnerabilities has been attributed to Web 
application bugs. In software engineering, software testing is an established and well-researched process for improving 
software quality. Recently formal verification tools have also shown success in discovering vulnerabilities in C programs. In 
this chapter we shall discuss how to apply software testing and verification algorithms to Web applications and improve their 
security attributes. Two of the most common Web application vulnerabilities that are known to date are script injection, e.g., 
SQL injection, and cross-site scripting (XSS). We will formalize these vulnerabilities as problems related to information 
flow security—a conventional topic in security research. Using this formalization, we then present two tools, WAVES (Web 
Application Vulnerability and Error Scanner) and WebSSARI (Web Application Security via Static Analysis and Runtime 
Inspection), which respectively utilize software testing and verification to deal in particular with script injection and XSS and 
address in general the Web application security problems. Finally we will present some results obtained by applying these 
tools to real-world Web applications that are in use today, and give some suggestions about the future research direction in 
this area. 
 

1. INTRODUCTION 
As World Wide Web usage expands to cover a greater number of B2B (business-to-business), B2C (business-to-client), 

healthcare, and e-government services, the reliability and security of Web applications has become an increasingly important 
concern. In a Symantec analysis report of network-based attacks, known vulnerabilities, and malicious code recorded 
throughout 2003 [49], eight of the top ten attacks were associated with Web applications; and the report also stated that port 
80 was the most frequently attacked TCP port. In addition to holding Web applications responsible for the sharp increase in 
moderately severe vulnerabilities found in 2003, the authors of the report also suggested that Web application vulnerabilities 
were by far the easiest to exploit. 

Web application insecurity is attributed to several factors. Firstly, the Web, which was initially designed as a data-
delivery platform, has quickly evolved into a complex application platform on top of which more and more sophisticated 
applications have been developed. As a result, Web specifications have grown rapidly to meet rising demands, and browsers 
and Web-development languages fought a “feature war” to win market share. Unfortunately, security issues have been left as 
an afterthought. The fast-expanded features did help Web growth; however, many security side effects they induced have 
become today’s major concern for Web adoption. Secondly, since software vendors are becoming more adept at writing 
secure code and developing and distributing patches to counter traditional forms of attack (e.g., buffer overflows), hackers 
are increasingly targeting Web applications. Web application vulnerabilities are hard to eliminate because most Web 
applications a) go through rapid development phases with extremely short turnaround time, and b) are developed in-house by 
corporate MIS engineers, most of whom have less training and experience in secure software development compared to 
engineers at IBM, Sun, Microsoft, and other large software firms. Lastly, current technologies such as anti-virus software 
and network firewalls offer comparatively secure protection at the host and network levels, but not at the application level 
[24]. When network and host-level entry points are relatively secure, the public interfaces to Web applications become the 
focus or targets of attacks [68] [24]. 

Two of the most common Web application vulnerabilities are script injection (e.g., SQL injection) and cross-site 
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scripting (XSS). In this chapter we shall first provide a brief description of XSS and script injection vulnerabilities. The 
reader is referred to Scott and Sharp [98] [99], Curphey et al. [24], and Meier et al. [68] for more details. We then describe 
possible automated approaches to eliminating or at least detecting such vulnerabilities. Finally we will give some concluding 
remarks and present a few possible avenues for future work in this area. 

1.1 Cross-Site Scripting (XSS) 
On Feb 2, 2000, CERT Coordination Center issued an advisory [18] on “cross-site scripting” (XSS) attacks on Web 

applications. This hard-to-eliminate threat soon drew the attention and spawned active discussions among security 
researchers [79]. Despite the efforts of researchers in the private sector and academia to promote developer awareness and to 
develop tools to eliminate XSS attacks, hackers are still using them to exploit Web applications. A study by Ohmaki (2002) 
[80] found that almost 80 percent of all e-commerce sites in Japan were still vulnerable to XSS. A search on Google News 
(http://news.google.com) for XSS advisories on newly discovered XSS vulnerabilities within the month of March 2004 alone 
yielded 24 reports. Among these were confirmed vulnerabilities in Microsoft Hotmail [108] and Yahoo! Mail [62], both of 
which are popular web-based email services. Figure 1 gives an example of an XSS. 

$nick=$_GET['nick'];  
echo "Welcome, ".$nick.”!” 

Figure 1. Example of an XSS vulnerability. 

Values for the variable $nick come from HTTP requests and are used to construct HTML output sent to the user. An example 
of an attacking URL would be: 

http://www.target.com/default.php?nick=<script>malicious_script();</script> 

Attackers must find ways to make victims open this URL. One strategy is to send an e-mail containing a piece of Javascript 
that secretly launches a hidden browser window to open this URL. Another is to embed the same Javascript inside a Web 
page, and when victims open the page, the script executes and secretly opens the URL. Once the PHP code shown in Figure 
1 receives an HTTP request for the URL, it generates the compromised HTML output shown in Figure 2. 

Welcome, <script>malicious_script();</script>! 

Figure 2. Compromised HTML output. 

In this strategy, the compromised output contains malicious script prepared by an attacker and delivered on behalf of a Web 
server. HTML output integrity is hence broken and the Javascript Same Origin Policy [69] [78] is violated. Since the 
malicious script is delivered on behalf of the Web server, it is granted the same trust level as the Web server, which at 
minimum allows the script to read user cookies set by that server. This often reveals passwords or allows for session 
hijacking. Furthermore, if the Web server is registered in the Trusted Domain of the victim’s browser, other rights (e.g., local 
file system access) may be granted as well. 

1.2 SQL Injection 
Considered more severe than XSS, SQL injection vulnerabilities occur when untrusted values are used to construct SQL 
commands, resulting in the execution of arbitrary SQL commands given by an attacker. Figure 3 shows an example. 

$sql="INSERT INTO client_log  VALUES('$HTTP_REFERER');"; 
mysql_query($sql); 

Figure 3. Example of a SQL injection vulnerability. 

In Figure 3, $HTTP_REFERER is used to construct a SQL command. The referrer field of an HTTP request is an untrusted 
value given by the HTTP client; an attacker can set the field to: 
'); TRUNCATE TABLE client_log 

This will cause the code in Figure 3 to construct the $sql variable as:  
INSERT INTO client_log VALUES(''); TRUNCATE TABLE client_log; 
Table “client_log” will be emptied when this SQL command is executed. This technique, which allows for the arbitrary 
manipulation of backend database, is responsible for the majority of successful Web application attacks. 



1.3 General Script Injection 
General script injection vulnerabilities are considered the most severe of the three types discussed in this chapter. They occur 
when untrusted data is used to call functions that manipulate system resources (e.g., in PHP: fopen(), rename(), copy(), 
unlink(), etc) or processes (e.g., exec()). Figure 4 presents a simplified version of a general script injection vulnerability. The 
HTTP request variable “df” is used as an argument to call fopen(), which allows arbitrary files to be opened. A subsequent 
code section may deliver the opened file to the HTTP client, which allows attackers to download arbitrary files. 

$download_file  = $_POST['df'];  
if($_POST['action'] == 'download')  $fp=fopen($download_file,'rb'); 

Figure 4. Example of a general script injection vulnerability. 

A more severe example of this vulnerability type is shown in Figure 5.  

exec("validate_user.exe $_POST['user'] $_POST['pass']");   

Figure 5. A general script injection bug found in PHP Surveyor. 

The intent for this code is to execute the validate_user.exe program in order to validate user accounts and passwords. 
However, since the “user” and “pass” variables are untrustworthy, the code permits the execution of arbitrary system 
commands. For instance, a malicious user can send an HTTP request with user="x y; NET USER foo /ADD" and 
pass="" 

As a result, the actual command becomes: 
Validate_user.exe x y; NET USER foo /ADD 

This results in creation of new user “foo” with logon rights. 

2. CURRENT COUNTERMEASURES 
In this section we will discuss current countermeasures or approaches to ensuring Web application security. Scott and Sharp 
[98] [99] have asserted that Web application vulnerabilities are a) inherent in Web application programs; and b) independent 
of the technology in which the application in question is implemented, the security of the Web server, and the back-end 
database. An intuitive solution to Web application security is to increase the awareness of secure coding practices during the 
code development and implementation phase. Recently, the Open Web Application Security Project (OWASP), an open 
source community dedicated to promoting Web application security, released a list of the "Top Ten Most Critical Web 
Application Security Vulnerabilities" [82]. Many organizations (including the United States Federal Trade Commission [38]) 
have recommended the report as a "best practice" for Web application development. VISA referenced the OWASP report in 
their Cardholder Information Security Program (CISP), and now requires that all custom code be reviewed by 
knowledgeable reviewers before being put into production [109]. These actions suggest the growth of a security auditing 
process—perhaps inevitable in light of the errors that even experienced programmers tend to make [50]. Arguably, vulnerabilities are 
less severe and easier to fix if they are discovered during or very soon after the development stage. However, the process of 
code auditing by reviewers who are competent enough to detect vulnerabilities is time-consuming and costly [23], and there 
is no guarantee that such reviews are complete in that they will find every possible flaw in systems containing millions of 
lines of code. With today's Web applications being developed and constructed by components from sources of different trust 
levels (e.g., in-house, out-sourced, commercial-off-the-shelf, open-source), there is a serious need for automated mechanisms. 

Researchers have proposed a broad range of automated measures against XSS attacks. According to a) the development 
stage at which they are adopted and b) their underlying technology, these measures can be categorized into four categories—
protection, testing, verification, and blended. Table 1 shows a comparison of each category’s strengths and drawbacks. 

 Stage deployed Immediate 
protection 

Vulnerability 
identification 

Runtime 
overhead 

Side 
effects 

Source 
required 

Examples 

Protection Production Yes No Yes No No AppShield [95], InterDo [60] 

Testing Production / 
Development 

No Yes No Yes No WAVES [51], AppScan [94], 
WebInspect [104], ScanDo [60] 

Verification Development No Yes No No Yes RATS [102] 

Blended Production / Yes Yes Yes No Yes WebSSARI [53] [54] 



Development 

Table 1—A comparison of the three different strategies for Web application security 

2.1 Protection Mechanisms 
Installed at the deployment phase and capable of offering immediate security assurance, protection mechanisms are the most 
widely-adopted solution for Web application security. However, though protective technologies such as anti-virus software, 
network firewalls and IDSs (intrusion detection systems) offer comparatively secure protection at the host and network levels, 
application-level [24] protection technologies are still in their infancies. Park and Sandhu’s cookie-securing mechanism can 
be adopted to eliminate XSS, but it requires explicit modifications to existing Web applications. Scott and Sharp [98] [99] 
proposed the use of a gateway that filters invalid and malicious inputs at the application level; Sanctum’s AppShield [95], 
Kavado’s InterDo [60], and a number of commercial products now offer similar strategies. Most of the leading firewall 
vendors are also using deep packet inspection [31] technologies in their attempts to filter application-level traffic. According 
to a recent Gartner report [105], those that don't offer application-level protection will eventually “face extinction.” 

Although application-level firewalls offer immediate assurance of Web application security, they have at least three 
drawbacks: a) they require careful configuration [16], b) they blindly protect against unpredicted behavior without 
investigating the actual defects that compromise quality, and c) they induce runtime overhead. 

2.2 Formalizing Web Application Vulnerabilities for Testing and Verification 
Adopted during the development phase, software testing and verification are two established technologies for improving 
software quality. Though incapable of offering immediate security assurance, the two technologies can assess software 
quality and identify defects. To understand how they can be applied to Web applications, we have to first formally model 
Web application vulnerabilities. The primary objectives of information security systems are to protect confidentiality, 
integrity, and availability [96]. From the examples described in Section 1, it is obvious that for Web applications, 
compromises in integrity are the main causes of compromises in confidentiality and availability. The relationship is 
illustrated in Figure 6. When untrusted data is used to construct trusted output without sanitization, violations in data 
integrity occur, leading to escalations in access rights that result in availability and confidentiality compromises. 

 
Figure 6. Web application vulnerabilities result from insecure information flow, as illustrated using XSS. 

Both software testing and verification techniques can be used to identify illegal information flow—specifically, to identify 
violations of Web application noninterference [43] policies. We first make the following assumptions: 

 

Assumption 1: All data sent by Web clients in the form of HTTP requests should be considered untrustworthy. 
Assumption 2: All data local to a Web application are secure. 
Assumption 3: Tainted data can be made secure with appropriate processing. 
 
Based on these assumptions we then define the following security policies: 
 
Policy 1: Tainted data must not be used in HTTP response construction. 
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Policy 2: Tainted data must not be written into local Web application storage. 
Policy 3: Tainted data must not be used in system command construction. 

Assumption 1 says that all data sent by Web clients (in the form of HTTP requests) should be considered untrustworthy. 
A majority of Web application security flaws result when this assumption is ignored or neglected. The Web uses a 
sessionless protocol in which each URL retrieval is considered an independent TCP session, which is established when the 
HTTP request is sent and terminated after a response is retrieved. Many transaction types (e.g., those that support user 
logins) clearly require session support. In order to keep track of sessions, Web applications require a client to include a 
session identifier within an HTTP request. An HTTP request consists of three major parts—the requested URL, form 
variables (parameters), and cookies. In practice, all three are used in different ways to store session information. Cookies are 
the most frequently used, followed by hidden form variables and URL requests 

To manage sessions, Web applications are written so that browsers include all session information following initial 
requests that mark the start of a session; and processing HTTP requests entails the retrieval of that information. Even though 
such information is transferred to the client by the Web application, it should not be considered trustworthy information 
when it is read back from an HTTP request. The reason is that such information is usually stored without any form of 
integrity protection (e.g., digital signatures), and is therefore subject to tampering. Using such information to construct 
HTML output without prior sanitization is considered a Policy 1 violation—the most frequent cause of XSS. 

Assumption 2 states that all data local to a Web application should be considered secure. This includes all files read from 
the file system and data retrieved from the database. According to this assumption, all locally retrieved data are considered 
trusted, which results in Policy 2, which states that system integrity is considered broken whenever untrustworthy data is 
written to local storage. Since most applications use client-supplied data to construct output, our model would be too strict 
without Assumption 3, which states that untrustworthy data can be made trustworthy (e.g., malicious content can be sanitized 
and problematic characters can be escaped). 

XSS vulnerabilities result in Policy 1 or Policy 2 violations. Script injection vulnerabilities such as SQL injection are 
generally associated with Policy 3 violations. 

2.3 Software Testing for Web Application Security 
For Web application security, one advantage of software testing over verification is that it considers the runtime behavior of 
Web applications. It is generally agreed that the massive number of runtime interactions that connect various components is 
what makes Web application security such a challenging task [59] [98]. Security testing tools for Web applications are 
commonly referred to as Web Security Scanners (WSS). Commercial WSSs include Sanctum’s AppScan [94], SPI 
Dynamics’ WebInspect [104], and Kavado’s ScanDo [60]. Reviews of these tools can be found in [5], but to our best 
knowledge no literature exists on their design. Our contribution in this regard is a security assessment framework, for which 
we have named the Web Application Vulnerability and Error Scanner, or WAVES. We describe below WSS design 
challenges and solutions based on our experiences with WAVES. 

2.3.1 Testing Model 
All WSSs mentioned above are testing platforms posed as outsiders (i.e., as public users) to target applications. This kind 

of security testing is also referred to as penetration testing. They operate according to three constraints: 
1. Neither documentation nor source code will be available for the target Web application. 
2. Interactions with the target Web applications and observations of their behaviors will be done through their public 
interfaces, since system-level execution monitoring (e.g., software wrapping, process monitoring, and local files access) is 
not possible. 
3.  The testing process must be automated and should not require extensive human participation in test case generation. 

Compared with a white-box approach (which requires source code), a black-box approach to security assessment holds 
many benefits in real-world applications. Consider a government entity that wishes to ensure that all Web sites within a 
specific network are protected against SQL injection attacks. A black-box security analysis tool can perform an assessment 
very quickly and produce a useful report identifying vulnerable sites. In white-box testing, analysis of source code provides 
critical information needed for effective test case generation [87], whereas in black-box testing, an information-gathering 
approach is to reverse-engineer executable code. WSSs to date take similar approaches to identifying server-side scripts 
(scripts that read user input and generate output) within Web applications. These scripts constitute a Web application’s data 
entry points (DEPs). Web application interfaces that reveal DEP information include HTML forms and URLs within HTML 
that point to server-side scripts. In order to enumerate all DEPs of a target Web application, WSSs typically incorporate a 
webcrawler (also called a softbot or spider) to browse or crawl the target—an approach described in many studies involving 
Web site analysis (VeriWeb [12], Ricca and Tonella [88] [92]) and a reverse engineering technique (Ricca et al. [89] [90] 
[91]). From our experiments with WAVES, we learned that ordinary crawling mechanisms normally used for indexing 



purposes [17] [20] [65] [71] [101] [107] are unsatisfactory in terms of thoroughness. For instance, many pages within Web 
applications currently contain such dynamic content as Javascripts and DHTML, which cannot be handled by a webcrawler. 
Other applications emphasize session management, and require the use of cookies to assist navigation mechanisms. Still 
others require user input prior to navigation. Our tests [51] show that all traditional webcrawlers (which use static parsing 
and lack script interpretation abilities) tend to skip pages in Web sites that have these features. In both security assessment 
and fault injection, completeness is an important issue–that is, all data entry points must be correctly identified. Towards this 
goal, we proposed a “complete crawling” mechanism [51]—a reflection of studies on searching the hidden Web [13] [56] 
[64] [85] [86]. 

If each DEP is defined as a program function, then each revelation is the equivalent of a function call site. We define each 
revelation R of a DEP as a tuple: R = {URL, T, Sa}, where URL stands for the DEP’s URL, T the type of the DEP, and Sa = 
{A1, A2, …, An} a set of arguments (or parameters) accepted by the DEP. The type of a DEP specifies its functionality. The 
possible types include searching (tS), authentication (tA), account registration (tR), message posting (tM), and unknown (tU). 
By combining information on a DEP’s URL with the names of its associated HTML forms, the names of its parameters, the 
names of form entities associated with those parameters, and the adjacent HTML text, WAVES [51] can make a 
determination of DEP type. Note that form variables are not the only sources of a DEP’s input—cookies are also sources of 
readable input values. Therefore, the set of R’s arguments Sa = SR ∪ SC, where SR = {P1, P2, …, Pn} is the set of parameters 
revealed by R, and SC = {C1, C2, …, Cn} is the set of cookies contained within the page containing R. 

Just as there can be multiple call sites to a program function, there may be multiple revelations of a DEP. In Google, both 
simple and advanced search forms are submitted to the same server-side script, with the latter submitting more parameters. 
We defined a DEP D as {dURL, dT, dSa}. For a set SD = {R1, R2, …, Rn} of all collected revelations of the same DEP D, 
dURL=R1.URL = R2.URL =…= Rn.URL. D’s type dT = Judge_T(R1.T, R2.T, …, Rn.T), where Judge_T is a judgment function 
that determines a DEP’s type, taking into account the types of all its revelations. D’s arguments dSa = R1.Sa ∪  R2.Sa ∪  ... 
∪  Rn.Sa. 

2.3.2 Test Case Generation 
Given such a definition, a DEP can be viewed as a program function, with dURL being the function name, dT the 

function specification, and dSa its arguments. The function output is the generated HTTP response (i.e., HTTP header, 
cookies, and HTML text). In this respect, testing a DEP is the same as testing a function—test cases are generated according 
to the function’s definitions, functions are called using the test cases, and outputs are collected and analyzed. 

Testing for Policy 1 violations involved using our DEP definition to generate test cases containing attack patterns, 
submitting them to the DEP, and studying the output for signs of the attack pattern. The appearance of an attack pattern in 
DEP output means that the DEP is using tainted (non-sanitized) data to construct output. The two questions guiding our test 
case generation were a) What is an appropriate test case size that allows for a thorough testing within an acceptable amount 
of time? and b) What types of test cases will/will not cause side effects? 

In response to the first question, given a DEP D of dSa = {A1, A2, …, An}, a naïve approach would be to generate n test 
cases, each with a malicious value placed in a different argument. For each test case, arguments other than the one containing 
malicious data would be given arbitrary values. This appears to be a reasonable approach on the surface, but it is subject to a 
high rate of false negatives because DEPs often execute validation procedures prior to performing their primary tasks. For 
example, D may use A1 to construct output without prior sanitization, but at the beginning of its execution it will check A2 to 
see if it contains a “@” character, when A2 represents an email address. In such situations, none of our n test cases would 
find an error, since they would not cause D to reach its output construction phase. Instead, they would cause D to terminate 
early and create an error message describing A2 as an invalid email. However, D would indeed be vulnerable. A human 
attacker wanting to exploit D could then supply a valid email address and learn that D uses A1 to construct output without 
sanitizing it first. 

To eliminate this kind of false negatives, we employed a deep injection mechanism in WAVES [51]. Using a negative 
response extraction (NRE) technique, the mechanism determines whether or not D uses a validation procedure. The naïve 
approach is used in the absence of validation. Otherwise, WAVES attempts to use its injection knowledge base to assign 
valid values to all arguments. Using a trial-and-error strategy, test cases are repeatedly generated and tested in an attempt to 
identify valid values for all arguments. If successful, then for each of the n test cases, valid values are used for arguments that 
do not contain malicious data. Otherwise, WAVES degrades to using the naïve approach and generates a message indicating 
that its test may be subject to a high false negative rate. 

2.3.3 Side Effects Elimination 
In [51], we acknowledged two serious deficiencies in our original WAVES design—the testing methodology had a 

potential side effect of causing permanent modifications (or even damage) to the state of the targeted application. For 
example, for every submission, a DEP D for user registration may add a new user record to a database. If D accepts ten 



arguments, then to test for a single malicious pattern requires generating ten test cases, with the test pattern placed at a 
different argument in each test case. But in practice, numerous patterns must be tested in order to provide a decent coverage. 
And testing for say ten malicious patterns would mean that one hundred meaningless database records would get created. 

This potential side effect prevented us from performing large-scale empirical evaluations of WAVES. It should be noted 
that AppScan [94], InterDo [60], WebInspect [104], and similar commercial and open-source projects have the same 
drawback. In our subsequent efforts [52], we added three testing modes to WAVES—heavy, relaxed, and safe modes to 
remedy this drawback. The heavy mode was our original mode; and side effects were simply ignored in the interest of 
discovering all vulnerabilities. For the two new modes, DEPs were classified according to their types into three disjoint sets 
Ssafe, Sunsafe, and Sunknown. ∀ D ∈Ssafe, D.T ∈{tS, tA}; ∀ D ∈Sunsafe, D.T ∈{tR, tM}; ∀ D ∈Sunknown, D.T=tU. In both the 
relaxed and safe modes, DEPs belonging to Sunsafe are not tested, and Ssafe DEPs are tested using the heavy mode. In the 
relaxed mode, Sunknown DEPs are tested using the malicious pattern that is most likely to reveal errors. In safe mode, these are 
not tested. 

2.3.4 Output Observation 
After submitting a test case to a DEP, its output (HTTP response) is analyzed to detect any Policy 1 violations. To avoid 

XSS vulnerabilities, client-submitted data containing <script> HTML tags must be processed prior to being used for output 
construction. Proper processing entails a) outputting errors that indicate the detection of an attack, and b) removing the tag 
while still processing the request, and c) encoding the <script> tag so that it is displayed rather than interpreted by the 
browser. To help users observe whether such sanitization steps are being taken by a DEP, we have designed test patterns so 
that the absence of a sanitization routine triggers the execution of a special Javascript by the browser when it renders the 
DEP output. An example test pattern is shown in Figure 7. 

<script>alert(“WAVES_TEST_1”);</script> 

Figure 7. An example of our test pattern for XSS. 
 

As described in Section 2.3.6, Microsoft’s Internet Explorer (IE) was added as a core WAVES component. Accordingly, 
after submitting the test pattern to a DEP and retrieving its output, it is possible to monitor embedded IE behavior. If IE 
makes an attempt to display a “WAVES_TEST_1” message box after the response is retrieved, we know that a) the DEP is 
using one of its arguments to construct output, and b) it did not perform proper sanitization prior to output construction. Such 
DEPs are considered vulnerable to XSS. 

2.3.5 Test Case Reduction 
For any DEP accepting n arguments, the naïve approach requires n×m test cases for testing against m malicious patterns. 

To reduce the number of test cases, we modified the test patterns according to the arguments in which the patterns were 
placed. For example, if placed in the first argument of a DEP, the test pattern shown in Figure 7 will change to: 

<script>alert(“WAVES_TEST_1_ARG_1”);</script> 
This allows for the use of IE behavior to identify vulnerable arguments. Using this strategy, we placed modified versions of 
the same malicious pattern into all arguments of a targeted DEP. This approach requires only 1×m=m case to be tested 
against m malicious patterns. When two or more malicious patterns appear in the output, the message box events are captured 
sequentially and vulnerable arguments are identified. 

2.3.6 Implementation 
WAVES’ system architecture is shown in Figure 8. The webcrawlers act as interfaces between Web applications and 

software testing mechanisms. Without them we would not be able to apply our testing techniques to Web applications. To 
make the webcrawlers exhibit the same behaviors as browsers, they were equipped with IE’s Document Object Model (DOM) 
parser and scripting engine. We chose IE’s engines over others (e.g. Gecko [74] from Mozilla) because IE is the target of 
most attacks. User interactions with Javascript-created dialog boxes, script error pop-ups, security zone transfer warnings, 
cookie privacy violation warnings, dialog boxes (e.g. “Save As” and “Open With”), and authentication warnings were all 
logged but suppressed to ensure continuous webcrawler execution. Note that a subset of the above events is triggered by our 
test cases or by Web application errors. An error example is a Javascript error event produced by a scripting engine during a 
runtime interpretation of Javascript code. The webcrawler suppresses the dialog box that is triggered by the event and 
performs appropriate processing. When an event indicates an error, it logs the event and prepares corresponding entries to 
generate an assessment report. 

When designing the webcrawler, we looked at ways that HTML pages reveal the existence of DEPs or other pages, and 
came up with the following list: 



1. Traditional HTML anchors. 
 Ex: <a href = “http://www.google.com“>Google</a> 
2. Framesets. 
 Ex: <frame src = “http://www.google.com/top_frame.htm”> 
3. Meta refresh redirections. 
 Ex: <meta http-equiv="refresh"  
 Ex: content="0; URL=http://www.google.com">  
4. Client-side image maps. 
 Ex: <area shape=”rect” href =”http://www.google.com”> 
5. Javascript variable anchors. 
 Ex: document.write(“\” + LangDir + ”\index.htm”); 
6. Javascript new windows and redirections. 
 Ex: window.open(“\” + LangDir + ”\index.htm”); 
 Ex: window.href = “\” + LangDir + “\index.htm”; 
7. Javascript event-generated executions. 
 Ex: HierMenus (http://www.webreference.com) 
8. Form submissions. 

We established a sample site to test several commercial and academic webcrawlers, including Teleport [107], 
WebSphinx [71], Harvest [17], Larbin [101], Web-Glimpse [65], and Google. None were able to crawl beyond the fourth 
level of revelation–about one-half of the capability of the WAVES webcrawler. Revelations 5 and 6 were made possible by 
WAVES’ ability to interpret Javascripts. Revelation 7 also refers to link-revealing Javascripts, but only following an onClick, 
onMouseOver, or similar user-generated event. WAVES performs an event-generation process to stimulate the behavior of 
active content. This allows WAVES to detect malicious components and assists in the URL discovery process. During 
stimulation, Javascripts located within the assigned event handlers of dynamic components are executed, possibly revealing 
new links. Many current Web sites incorporate DHTML menu systems to aid user navigation. These and similar Web 
applications contain many links that can only be identified by webcrawlers capable of handling level-7 revelations. Also note 
that even though the main goal of the injection knowledge manager (IKM) is to produce variable candidates so as to bypass 
validation procedures, the same knowledge can also be used during the crawling process. When a webcrawler encounters a 
form, it queries the IKM, and the data produced by the IKM is submitted by the webcrawler to the Web application for deep 
page discovery. 

 
Figure 8. System architecture of WAVES. 

In the interest of speed, we implemented a URL hash (in memory) in order to completely eliminate disk access during the 
crawling process. A separate 100-record cache helped to reduce global bottlenecks at the URL hash. See also Cho and 
Garcia-Molina [20] for a description of a similar implementation strategy. The database feeder does not insert retrieved 
information into the underlying database until the crawling is complete. The scheduler is responsible for managing a breadth-



first crawling of targeted URLs; special care has been taken to prevent webcrawlers from inducing harmful impacts on the 
Web application being tested. The dispatcher directs selected target URLs to the webcrawlers and controls crawler activity. 
Results from crawling and injections are organized in HTML format by the report generator. 

2.3.7 Experimental Result 
We evaluated WAVES’ DEP discovery ability by comparing its crawling (the number of pages retrieved for a target site) 

with other webcrawlers. From our tests [51], Teleport [107] proved to be the most thorough of a group of webcrawlers that 
included WebSphinx [71], Larbin [101], and Web-Glimpse [65]. This may be explained by Teleport’s incorporation of both 
HTML tag parsing and regular expression-matching mechanisms, as well as its ability to statically parse Javascripts and to 
generate simple form submission patterns for URL discovery. On average, WAVES retrieved 28 percent more pages than 
Teleport when tested with a total of 14 sites [51]. We attribute the discovery of the extra pages to WAVES’ script 
interpretation and automated form completion capabilities. In case study to evaluate the effectiveness of the different 
scanning modes we proposed, the heavy mode revealed 80 percent of all errors found by static verification [52]. This shows 
that our remote, black-box testing approach provides a useful alternative to static analysis when source code and local access 
to the target Web application is unavailable. The 58.4 percent coverage of the relaxed mode shows that an effective non-
detrimental testing is possible. The 55 strictly vulnerable sites identified during a 48-hour relaxed mode scan shows that a) 
our proposed mechanism for testing insecure information flow can be successfully used to detect XSS, b) non-detrimental 
testing still yields effective results, and c) XSS still poses a significant threat to today’s Web applications. Furthermore, since 
tools similar to WAVES in many respects are being developed and used by hackers, we note that vulnerable websites can be 
easily identified by performing controlled “attacks” similar to our experiment with more malicious motivations. 

2.4 Software Verification for Web Application Security 
Many verification tools are discovering previously unknown vulnerabilities in legacy C programs, raising hopes that the 
same success can be achieved with Web applications. A major difference between the two efforts is that in C or Java 
vulnerabilities are introduced by improper control flow, while in Web applications they arise from insecure information flow, 
against which neither encryption nor traditional Web access control models [83] offer any protection [93]. Sabelfeld and 
Myers [93] recently published a comprehensive survey on language-based techniques for specifying and enforcing 
information-flow policies. Among them, sound type systems [111] based on the lattice model of Denning [29] appear most 
promising. Banerjee and Naumann [9] proposed such a system for a Java-like language, and Pottier and Simonet [84] 
proposed one for ML. Myers [75] went a step further to provide an actual JIF implementation—a secure information flow 
verifier for the Java language. However, even though these languages can guarantee secure information flow, many consider 
them too strict; furthermore, they require considerable effort in terms of additional annotation in order to reduce false 
positives. Another problem is that most Web applications today are not developed in JIF or Java, but in script languages (e.g., 
PHP, ASP, Perl, and Python) [55]. Using a type qualifier theory [40], Shankar et al. [103] detected insecure information flow 
within legacy code with little additional annotation. Using metacompilation-based checkers [46], Ashcraft and Engler [3] 
were also able to detect insecure information flow in Linux and OpenBSD code without additional annotation. However, 
checkers are unsound, and both addressed only commonly found insecure information flow problems in C. To our 
knowledge, no comparable efforts have been made for Web applications, which involve different languages and unique 
information flow problems. 

In contrast to compile-time techniques, run-time protection techniques are attractive because of their accuracy in 
detecting errors. A typical run-time approach is to instrument code with dynamic guards during the compilation phase. 
Cowan's Stackguard [22] is representative of this approach; its low overhead and high accuracy has led to its inclusion in a 
variety of commercial software packages. Immunix Secured Linux 7+ is a commercial distribution of Linux (RedHat 7.0) 
that has been compiled to incorporate Stackguard instrumentation. Microsoft also includes a feature very similar to 
Stackguard in its latest release of the Visual C++ .NET compiler [70]. 

We describe how static and runtime techniques can be used together to establish a holistic and practical approach to 
ensuring Web application security. We presented here our tool WebSSARI (Web application Security by Static Analysis and 
Runtime Inspection) [53] [54], which a) statically verifies existing Web application code without any additional annotation 
effort; and b) after verification, automatically secures potentially vulnerable sections of the code. In order to verify that 
Policies 1, 2 and 3 hold, WebSSARI incorporates a lattice-based static analysis algorithm derived from type systems and 
typestate. During the analysis, sections of code considered vulnerable are instrumented with runtime guards, thus securing 
Web applications in the absence of user intervention. With sufficient annotations, runtime overhead can be reduced to zero. 
In this section we briefly describe WebSSARI’s design and our experiences learned. 



2.4.1 Secure Information Flow Research 
Type systems have proven useful for specifying and checking program safety properties. By means of programmer-

supplied annotations, both proof-carrying codes (PCC) [76] and typed assembly languages (TAL) [73] are designed to 
provide safety proofs for low-level compiler-generated programs. We also used a type system to verify program security, but 
we targeted a high-level language, i.e., PHP, and tried to avoid additional annotations. 

Many previous software security verification efforts have focused on temporal safety properties related to control flow. 
Schneider [97] proposed formalizing security properties using security automata, which define the legal sequences of 
program actions. Walker [114] proposed a TAL extension, which uses security policies expressed in Schneider’s automata to 
derive its type system. Jensen, Le Metayer and Thorn [57] proposed using a temporal logic for specifying a program’s 
security properties based on its control flow, and offered a model checking technique for verification. In a similar effort, 
Chen and Wagner [19] looked for vulnerabilities in real C programs by model checking for violations of a program’s 
temporal safety properties. Though their main focus was not on security, Ball and Rajamani [6] adopted a similar approach 
for their SLAM project and successfully applied it to Windows XP device drivers. 
2.4.1.1 Type-Based Analysis 

Since vulnerabilities in Web applications are primarily associated with insecure information flow, we focused our effort 
on ensuring proper information flow rather than control flow. The first widely accepted model for secure information flow 
was given by Bell and La Padula [11]. They stated two axioms: a) a subject cannot access information classified above its 
clearance, and b) a subject cannot write to objects classified below its clearance. Their original model only dealt with 
confidentiality; and Biba [14] is credited with adding the concept of integrity to this model. 

Denning [29] established a lattice model for analyzing secure information flow in imperative programming languages 
based on a program abstraction (similar to Cousot and Cousot’s [21] abstract interpretation) derived from an instrumented 
semantics of a language. Andrews and Reitman [2] used an axiomatic logic to reformulate Denning’s model and developed a 
compile-time certification method using Hoare’s logic. In both cases, soundness was only addressed intuitively (a more 
formal treatment of Denning’s soundness can be found in Mizuno and Schmidt [72]). Orbaek [81] proposed a similar 
treatment, but addressed the secure information flow problem in terms of data integrity instead of confidentiality. Volpano, 
Smith and Irvine [111] argued that both works proved soundness with respect to some instrumented semantics whose validity 
was open to question in that no means was offered for proving that the instrumented semantics correctly reflect information 
flow within a standard language semantics. To base directly on standard language semantics, Volpano, Smith and Irvine 
showed that Denning’s axioms can be enforced using a type system in which program variables are associated with security 
classes that allow inter-variable information flow to be statically checked for correctness. Soundness was proven by showing 
that well-typed programs ensure confidentiality in terms of noninterference, a property introduced by Goguen and Meseguer 
[43] for expressing information flow policies. Recently, fully functional type systems designed to ensure secure information 
flow have been offered for high-level, strong-typed languages such as ML [84] and Java [75] [9]. Based on Foster et al.’s 
theory of type qualifiers [40], Shankar et al. [103] used a constraint-based type inference engine for verifying secure 
information flow in C programs, and detected several format string vulnerabilities in some real C programs of which they 
were previously unaware. 

Type-based approaches to static program analysis are attractive because they prove program correctness without 
unreasonable computation efforts. Their main drawback is their high false positive rates, which often makes them become 
impractical for real-world use. Regardless of whether security classes are assigned through manual annotations or through 
inference rules, in conventional type systems they are statically bound to program variables. It is important to keep in mind 
that the security class of a variable is a property of its state, and therefore varies at different points or call sites in a program. 
For example, in Myers’ JIF language [75], each program variable is associated with a fixed security label (class). A value 
assumes the label of the variable in which it is stored. When a value is assigned to a variable, the value loses its original label 
and assumes the label of the new variable to which it is assigned. Therefore, an assignment causes a re-labeling of the 
security label of the assigned value. JIF ensures security by only allowing more restrictive re-labeling. However, to precisely 
capture information flow, values should be associated with fixed security labels, and variables should assume the labels of 
values they currently store—in other words, assignments should result in the re-labeling of variables rather than values. In 
JIF and similar type-based systems, variable labels become increasingly restrictive during computation, resulting in high 
false positive rates. JIF addresses this problem by giving programmers the power to declassify variables—that is, to explicitly 
relax the restrictiveness of variable labels.  
2.4.1.2 Dataflow Analysis 

False positives resulting from static verification of secure information flow fall into two categories. Class 1 false positives 
arise from the imprecise approximation of temporal variable properties. The problem described in the preceding paragraph 
and Doh and Shin’s [36] forward recovery and backward recovery definitions serve as examples. In fact, most of the 
Denning-based systems suffer from Class 1 errors because the security class of their variables remains constant throughout 



program execution. Class 2 false positives result from runtime information manipulation or validation. For example, 
untrusted data can be sanitized before being used, with the original security class no longer applicable. This kind of false 
positive is more commonly associated with verifications that focus on integrity. 

Class 1 errors can be reduced by making approximations of the run-time information flow more precise. Andrews and 
Reitman [2] first established an approach in which dataflow is semantically characterized in terms of program logic. By 
applying flow axioms, one can derive flow proofs that specify a program’s effect on the information state. This allows the 
security classes of variables to change during execution, and they argued that their approach captures information flow more 
precisely than Denning’s. Banatre, Bryce, and Le Metayer [8] have offered a comparable approach plus a proof checking 
method that resembles dataflow analysis techniques associated with optimizing compilers. Joshi and Leino [58] examined 
various logical forms for representing information flow semantics, leading to a characterization containing Hoare triples. 
Darvas, Hahnle, and Sands [25] went a step further in offering characterizations in dynamic logic, which allows the use of 
general-purpose verifications tools (i.e., theorem provers) to analyze secure information flow within deterministic programs.  

A similar approach involves flow-sensitive analysis techniques used by optimizing compilers, which have been 
extensively researched starting from the early works of Allen and Cocke [1] and followed by the works of Hecht and Ullman 
[47], Graham and Wegman [44], Barth [10], and others. These methods yield more accurate runtime state predictions than 
the other methods mentioned above. However, flow-sensitivity comes at a price—every branch in a program’s control flow 
doubles the verifier’s search space and therefore limits its scalability. ESP, the verification tool recently developed by Das, 
Lerner, and Seigle [26], is representative of this approach; and is based on the assumption that most program branches do not 
affect the information flow property that is being checked. Their contribution is distinctive because ESP allows for flow-
sensitive verification that scales to large programs. They have also proposed a method called abstract simulation to restrict 
identification and simulation to relevant branch conditions. Unlike ESP, Guyer, Berger, and Lin’s [45] approach has a 
specific security focus. They used the flow-sensitive, context-sensitive, inter-procedural data flow analysis framework 
provided by their Broadway optimizing compiler to check for format string vulnerabilities of real C programs.  
2.4.2 Flow-Sensitive Type-Based Analysis 

A third approach emphasizes more accurate or expressive types in type systems. In their trust analysis of C programs, 
Shankar et al. [103] introduced the concept of type polymorphism in their type qualifier framework, and showed how it can 
help reduce false positives. Others have considered extending types with state annotations. The most well known approach of 
this kind is Strom and Yemini’s typestate [106], which is a refinement of types. According to their definition, an object’s 
type determines a set of allowable operations, while its typestate determines a subset allowable under specific contexts. 
Because it allows the flow-sensitive tracking of variable states, it serves as a technique applicable to reduce the number of 
Class 1 errors suffered by type-based information flow systems. Inspired by typestate, DeLine and Fahndrich [28] extended 
C types in their Vault programming language with predicates (named type guards) that describe legal conditions on the use 
of the type. In other words, types determine valid operations, while type guards determine these operations’ valid times of 
use. In a recent project, Foster et al. [41] extended their original, flow-insensitive type qualifier system for C with flow-
sensitive type qualifiers. Using their Cqual tool, they demonstrated the effectiveness of their system by discovering a number 
of previously unknown locking bugs in the Linux kernel. 

Interestingly, the authors of ESP [26] (introduced in Section 2.4.1.2), which tracks information flow using dataflow 
analysis, describe it as “merely a typestate checker for large programs.” It appears that as type systems are refined with states 
and incorporate flow-sensitive checking, fewer differences will exist between type systems and dataflow analysis methods 
for verifying information flow. Our approach for reducing Class 1 errors is based primarily on typestate. 
2.4.2.1 Static Checking 

The goal of static checking is simply to find software bugs rather than to prove that one does not exist [3]. In other words, 
checkers are unsound. A pioneering work was that of Bishop and Dilger [15], which checked for “time-of-check-to-time-of-
use” (TOCTTOU) race conditions. One recent exciting result is that of Ashcraft and Engler [3], who used their 
metacompilation [46] technique to find over 100 vulnerabilities in Linux and OpenBSD, over 50 of which resulted in kernel 
patches. The technique makes use of a flow-sensitive, context-sensitive, inter-procedural data flow checking framework that 
requires no additional annotations. In contrast, Flanagan et al.’s ESC/Java [39] (designed to check the correctness of Java 
programs) requires additional annotations from programmers.  

Most efforts to develop checkers have resulted in publicly available tools [23], including BOON by Wagner et al. [112], 
RATS by Secure Software [102], FlawFinder by Wheeler [116], PScan by DeKok [27], Splint by Larochelle and Evans [63], 
and ITS4 by Viega et al. [110]. All these unsound checkers search for specific error patterns. Splint is the only one that 
requires user annotations. With the exception of ESC/Java, they are all designed for use with C programs. 



2.4.2.2 A Comparison 
Our algorithm can be described as a sound static verification method and as a holistic method that ensures security in the 

absence of user intervention. Most type-based static verification methods are considered sound, provided as extensions to 
existing languages (e.g., Pottier and Simonet [84], Banerjee and Naumann [9], and Myers [75]), and designed to support 
secure program development (as opposed to verifying existing code). Our work was partly inspired by the type qualifier-
based verifier described in [103] (Shankar et al.) and [26] (ESP), both of which offer sound, flow-sensitive, inter-procedural 
data flow analysis without additional annotations. Broadway [45] offers the same capabilities. Other checkers (e.g., MC [3], 
RATS [102], and ITS4 [110]) also perform dataflow analysis without additional annotations, but their analyses are 
considered unsound. And as mentioned in Section 2.4.2.1, most of these checkers (with the exception of RATS) are targeted 
at C programs, while ours is targeted at PHP scripts. As its name suggests, RATS is simply a Rough Auditing Tool for 
Security that offers limited checks for defective PHP programming patterns; and in contrast WebSSARI offers a sound 
information flow analysis. Another difference is that WebSSARI ensures security by inserting runtime guards, while the 
other tools are limited to providing verification. 

WebSSARI, MC and ITS4 are the only approaches that support automated declassification, defined as the process of 
identifying changes in a variable’s security class resulting from runtime sanitization or validation. Automated declassification 
helps reduce the number of Class 2 false positives. MC was designed to detect sections of code that validate user-submitted 
integers. If the code makes both upper bound and lower bound validations on an untrusted value, it is assumed that validation 
has been performed; and the security class of the validated value is then changed from untrusted to trusted. This approach is 
based on the unsound assumption that as long as an untrusted value passes a certain kind of validation, it is actually safe. 
Therefore, false positives are reduced at the cost of introducing false negatives that compromise verification soundness. In 
the case of ITS4, its attempt to reduce Class 2 false positives (while detecting C format string vulnerability) involves using 
lexical analysis to identify sanitization routines based on unsound heuristics. 

When verifying information flow in Web applications, one deals with strings instead of integers, and PHP provides 
standard string sanitization functions. By accepting all string values processed by these functions as trusted, we first reduced 
a considerable number of Class 2 false positives. For cases in which custom sanitization is provided by the programmer, we 
proposed type-aware qualifiers, which resulted in a more expressive security lattice than the simple tainted-untainted lattice 
used by other efforts (e.g., Ashcraft and Engler [3] and Shankar et al. [103]), and achieved a further reduction in the number 
of Class 2 errors. 

Focus App Snd Anno Lang Dec
WebSSAR S. I.F. Type Yes Optional PHP Auto
CQual S. I.F. Type Yes Some C Manual
JIF S. I.F. Type Yes Required Java Manual
Vault Gen. I.F. Type Yes Required C Manual
ESP Gen. D.A. Yes No need C None
Broadway S. I. F. D.A. Yes No need C None
MC S. I.F. D.A. No No need C Auto
BOON S. D.A. No No need C None
ESC/Java Gen. D.A. No Required Java Manual
Splint S. L.A.. No Required C Manual
ITS4 S. L.A. No No need C Auto
MOPS S. Modl Yes No need C None
App—Approach  
Anno—Annotation effort 
Dec—Declassification support 
I.F.—Focus on information flow
Type—Type system 
L.A.—Lexical analysis

Snd—Soundness 
Lang—Supported language 
S.—Focus on security 
Gen.—General verification 
D.A.—Dataflow analysis 
Modl—Model checking

Figure 9. A comparison among related works. 
 
To provide a clear representation of how our efforts compare with those of others, we have defined six criteria for 

classifying static analyzers: focus of scope, approach, soundness, additional annotation effort, supported language, and 
declassification support. A comparison based on these criteria is presented in Figure 9. 
2.4.2.3 Runtime Protection 

In many situations, it is difficult for static analysis to offer satisfactory runtime program state approximation. One 
strategy is to delay parts of the verification process until runtime. A good example of this practice is Perl’s “tainted mode” 
[113], which ensures system integrity by tracking tainted data submitted by the user at runtime. In a similar manner, Myers 
[75] also leaves some JIF security class checking operations until runtime. In dynamically typed languages such as Lisp and 
Scheme, a common approach is to perform runtime type checking for objects whose types have yet to be determined at 



compile-time. These kinds of dynamic checks are extremely expensive, resulting in the creation of such static optimization 
techniques as dynamic typing [48] and soft typing [117] to reduce the number of runtime checks. 

WebSSARI takes a similar approach—that is, by applying static analysis, it pinpoints code requiring runtime checks and 
inserts the checks. A similar process is found in Necula, McPeak, and Weimer’s CCured [77]. Though not specifically 
focused on security, their scheme combines type inference and run-time checks to ensure type safety for existing C programs. 
A major difference is that our inserted guards perform sanitization tasks rather than runtime type checking—in other words, 
we insert sanitization routines in vulnerable sections of code that use untrusted information. If they are inserted at the proper 
locations, their execution time cannot be considered real overhead because the action is a necessary security check; and 
WebSSARI will have simply inserted lines of code omitted by a careless (or security-unaware) programmer. 
2.4.3 Verification Algorithm 

In PHP, which is an imperative, deterministic programming language, sets of functions affect system integrity. For 
example, exec() executes system commands, and echo() generates output. These functions must be called with trusted 
arguments. We refer to such functions as sensitive functions; and vulnerabilities will result from tainted (untrustworthy) data 
used as arguments in sensitive function calls. We intuitively derived a trust policy (expressed as a precondition of the 
function), which states the required trust level for each of the function’s arguments. We considered all values submitted by a 
user as tainted, and checked their propagation against a set of predefined trust policies.  
2.4.3.1 Information Flow Model 

To characterize data trust levels, we followed Denning’s [29] model and made the following assumptions: 
1. Each variable is associated with a security class (trust level). 
2. T = {τ , τ , ..., τ }1 2 n  is a finite set of security classes. 
3. T is a partially ordered set by ≤, which is reflexive, transitive, and anti-symmetric. For ,1 2 Tτ τ ∈ , 

 iff  and 1 2 1 2 2 1τ τ τ τ τ τ= ≤ ≤ ,  

and  iff  and 1 2 1 2 1 2τ τ τ τ τ τ< ≤ ≠ . 

4. T forms a complete lattice with a lower bound ⊥  such that T, τ τ∀ ∈ ≤⊥ , and an upper bound such that T, τ τ∀ ∈ ≤ .  

These assumptions imply that a greatest lower bound operator and a least upper bound operator exist on T. For subset Y ⊆  T, 
let Y denote  if Y is empty and the greatest lower bound of the types in Y, otherwise; let Y denote ⊥  if Y is empty 
and the least upper bound of the types in Y, otherwise. 

To develop an information flow system, we need to provide a method to express the trust levels of variables. Following 
the lead of Foster et al. [40] and Shankar et al. [103], we extended the existing PHP language with extra type qualifiers—a 
widely-used annotation mechanism for expressing type refinements. When used to annotate a variable, the C type qualifier 
const expresses the constraint that the variable can be initialized but not updated [40]. We used type qualifiers as a means 
for explicitly associating security classes with variables and functions. In our WebSSARI implementation, we specified 
preconditions for all sensitive PHP function using type qualifiers. These definitions are stored in a prelude file and loaded by 
WebSSARI upon startup. Another prelude file contains postconditions for functions that perform sanitization to generate 
trusted output from tainted input. This serves as a mechanism for automated declassifications. A third prelude file includes 
annotations (using type qualifiers) of all possible tainted input providers (e.g., $_GET, $_POST, $_REQUEST). Type 
qualifiers are also used as a means for developers to manually declassify variables. Manual declassification support is 
important because it allows for manual elimination of false positives, which in turn reduces the number of unnecessary 
runtime guards, resulting in reduce overhead. 

Like Foster and Shankar we perform type inferencing (of security classes) in attempt to eliminate user annotation efforts. 
In conventional type-based secure information flow systems (e.g., JIF [75]), type inferencing is used as a means to infer the 
initial security class of a variable, and a variable is assumed to be associated with its initial security class throughout the 
entire program execution. As explained in Section 2.4.1.1, fixed variable security classes induce a large number of false 
positives. To develop a type system in which variable classes can change and flow-sensitive properties can be considered, we 
maintain our type judgments based on Strom and Yemini’s [106] typestate. A type judgment  Γ  is a set of mapping functions 
(which map variables to security classes) at a particular program point, and every program point has a unique type judgment. 
For each variable dom( )x∈ Γ , there exists a unique mapping, :x τΓ , and we denote the uniquely mapped type τ of x in 
Γ as ( )xΓ . To approximate runtime typestate at compile-time, a variable’s security class is viewed as a static most restrictive 
class of the variable at each point in the program text. That is, if a variable has a particular class pτ at a particular program 
point, then its corresponding execution time data object will have a class that is at most as restrictive as pτ , regardless of 
which paths were taken to reach that point. Formally, for a set of type judgments G , we denote G⊕  as the most restrictive 



type judgment Γwhere, for all { }dom( ') | 'x G∈ Γ Γ ∈ , : xx YΓ . ( ){ }' | 'Y x Gx = Γ Γ ∈  is the set of all classes of x mapped in G. 

When verifying a program at a particular program point, GRΓ = ⊕ , where GR represents the set of all possible type judgments, 
each corresponding to a unique execution-time path that could have been taken to reach that point.  

To illustrate this concept, we will use the widely-adopted tainted-untainted (T-U) lattice of security classes (e.g., by 
BOON [112], Ashcraft and Engler [3], and Shankar et al. [103]) shown in Figure 10. The T-U lattice has only two 
elements—untainted as its lower bound and tainted as its upper bound. Assume that variable t is tainted and that variables u1 
and u2 are untainted. Since exec() requires an untainted argument, for Line 2 of Figures 12 and 13 to typecheck requires that 
we know the static most restrictive class of  X. In other words, we need to know the security class 2Tτ −  that is the most 
restrictive of all possible runtime classes of X at line 2, regardless of the execution path taken to get there. In line 2 of Figure 
12, since X can be either tainted or untainted, 2 = {tainted,untainted} = taintedTτ − ; line 2 therefore triggers a violation. On 
the other hand, line 2 of Figure13 typechecks. 

To preserve the static most restrictive class, rules must be defined for resolving the typestate of variable names. For the 
sake of simplicity, we adopted the original algorithm proposed by Strom and Yemini [106]. First, we perform flow-sensitive 
tracking of typestate. Then at execution path merge points (e.g., the beginning of a loop or the end of a conditional 
statement), we define the typestate of each variable as the least upper bound of the typestates of that same variable on all 
merging paths. In our defined lattice (Figure 11), the least upper bound operator on a set selects the most restrictive class 
from the set. Note that while Strom and Yemini originally used typestate to represent the static invariant variable property, 
which requires applying the greatest lower bound operator, for our purpose typestate is used to represent the static most 
restrictive class, so we need to apply the least upper bound operator instead. 

Tainted 
| 

Untainted 

Tainted String 
| 

Tainted Integer 
| 

Untainted String 
| 

Untainted Integer 

Figure 10. Primitive lattice. Figure 11. Type-aware lattice. 

 
1: if (C) X = t; else X = u1; 
2: exec(X); 

1: if (C) X = u1; else X = u1; 
2: exec(X); 

Figure 12. Example A. Figure 13. Example B 

2.4.3.2 Type-Aware Security Classes 
The first version of WebSSARI implemented the verification algorithm mentioned above and made use of the T-U lattice. 

An initial test drive revealed a common type of false positive. Apparently many developers used type casts for sanitization 
purposes. An example from Obelus Helpdesk is presented in Figure 14. In that example, since $_POST[‘index’] is 
tainted, $i is tainted after line 1. Line 2 therefore does not typecheck, since echo() requires untainted values for its 
argument. 

1: $i = (int) $_POST['index']; 
2: echo “<hidden name = mid value='$i'>" 
Figure 14. Example of a false positive resulting from a type cast. 

 

Six of the 38 responding developers who also included copies of their intended patches for our review relied on this type 
of sanitization process. Since all HTTP variables are stored as strings (regardless of their actual type), using a single cast to 
sanitize certain variables appears to be a common practice. However, the false positive serves as evidence supporting the 
idea that security classes should be type-aware. For example, echo() can accept tainted integers without compromising 
system integrity (i.e., without being vulnerable to XSS). Figure 11 illustrates the type-aware lattice that we incorporated in 
our second version of WebSSARI. Until now, it has been commonly believed that annotations in type-based security systems 
should be provided as extensions to be checked separately from the original type system. [40] [41] [103] [39]. In this chapter 
we are proposing the use of a type-aware lattice model and introducing the idea of type-aware qualifiers. Though still 
checked separately, type refinements (e.g., security classes) are type-aware. 
2.4.3.3 Program Abstraction and Type Judgment 

When verifying a PHP program, we first use a filter to deconstruct the program into the following abstraction: 
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, where x is a variable, n is an integer, ~ represents binary operators (e.g., +), ( )f a  represents a function call. Commands that 
do not induce insecure flows are referred to as valid commands. The type system maintains a separation between the 
statically typed and the untyped worlds. To infer types (i.e., security classes) within the untyped world, and to check for 
command validity in the typed world, we define the following two judgment rules: 
(1) Expression typing: :e τΓ  (2) Command validity: cΓ  

Commands (which do not produce values) are distinguished from expressions (which do produce values). In these rules, Γ 
denotes a type judgment, which maps variables to types and also specifies the valid commands. Our type judgment rules are 
given below: 
 
1.Mapping Rules: 
      (Initialization)       (Operation)      (Postcondition) 

( )    :    : ( )1 1 2 2       
:    :      : ( ): ( [ / ])1 2 1 2
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2.Checking Rule: 3. Concatenation Rule: 
     (Precondition) (Concatenation) 
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4.Updating Rule:  
 (Assignment)  (Restriction)   

:    :    :1 2
'  :   ' :1 2
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    if  than else 1 1 2 2 1 2

'    ' if  than else 1 2 1 2
c c e c c
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The set of PHP expressions that offer tainted data and the set of sensitive functions are represented as set I and set O, 
respectively. To ensure secure information flow, we add the following rule that infers all expressions in I as tainted: 

    (Tainted Input)
   : int

e I
e ta ed

∀ ∈
Γ

 

 

We define preconditions for functions that belong to O as the safe sensitive function rule: ( ) (untainted, ,untainted)pfΓ = " . 

When verifying, we update type judgments according to command sequences and raise an error if any checking rule is 
violated. If we can derive a type judgment for each program point of the command sequence, we say the command sequence 
is secure. 
2.4.3.4 Soundness 

Since we always maintain the static most restrictive type judgment at every program point, a variable’s type 
monotonically increases along the updating sequence. This is an essential property that ensures the soundness of our 
algorithm. However, PHP is an interpreted “scripting language” that allows for dynamic evaluation. For example, one can 
write “$$a” to represent a “dynamic variable,” whose variable name can be determined only at runtime. To retain soundness, 
all dynamic variables are considered as tainted. When other kinds of dynamic evaluation exist in the target code, WebSSARI 
degrades itself to a checker—it still checks for potential vulnerabilities, but outputs a warning message indicating that it 
cannot guarantee soundness. We do, however, support pointer aliasing by implementing the original solution proposed by 
Strom and Yemini [106]. We maintain two mappings—an environment and a store. The environment maps the names of 
variables involved in pointer aliasing to virtual locations, and the store maps locations to security classes. Therefore, when 
two pointers point to the same storage, we recognize their dereferences as a single value having a single security class. A 
trust level change in one pointer deference is reflected in the other. 

2.4.4 System Implementation 
The tool WebSSARI was developed to test our approach that extends an existing script language with our proposed type 

qualifier system. An illustration of WebSSARI’s system architecture is presented in Figure 15. A code walker consists of a 
lexer, a parser, an AST (abstract syntax tree) maker, and a program abstractor.  The program abstractor asks the AST maker 
to generate a full representation of a PHP program’s AST. The AST maker uses the lexer and the parser to perform this task, 



handling external file inclusions along the way. By traversing the AST, the program abstractor generates a control flow graph 
(CFG) and a symbol table (ST). The verification engine moves through the CFG and references the ST to generate a) type 
qualifiers for variables (based on the prelude file) and b) preconditions and postconditions for functions. This routine is 
repeated until no new information is generated. The verification engine then moves through the control flow graph once 
again, this time performing typestate tracking to determine insecure information flow. It outputs insecure statements (with 
line numbers and the invalid arguments). For each variable involved in an insecure statement, it inserts a statement that 
secures the variable by treating it with a sanitization routine. The insertion is made right after the statement that caused the 
variable to become tainted. Sanitization routines are stored in a prelude file, and users can supply the prelude file with their 
own routines. 

Figure 15. WebSSARI system architecture. 
Support for different languages is achieved by providing their corresponding code walker implementations. Since the 

lexers and parsers can be generated by publicly available compiler generators, providing a code walker for a language breaks 
down to: a) choosing a compiler generator, and providing it with the language’s grammar, b) providing an AST maker, and c) 
providing a program abstractor. For step a), grammars for widely-used languages (e.g., C, C++, C#, and Java) are already 
available for widely-used compiler generators such as YACC and SableCC, and for step b), AST makers for different 
languages should only differ in preprocessing support (e.g., include file handling). However, since we expect considerable 
differences to exist in the ASTs of various languages, the major focus on providing a code walker implementation for a 
language is on implementing a program abstractor. 

To support verification experiments using tens of thousands of PHP files, we developed a separate GUI featuring batch 
verification, result analysis, error logging, and report generation. Statistics can be collected based on a single source code file, 
files of a single project, or files of a group of projects. Vulnerable files are organized according to severity, with general 
script injection the most severe, SQL injection second, and XSS third. To help users investigate reported vulnerabilities, we 
added Watts’ PHPXREF [115] to generate cross-referenced documentation of PHP source files. A screenshot of this GUI is 
presented in Figure 16. 

In this project WebSSARI, we provided a code walker for PHP. We used Gagnon and Hendren’s SableCC [42], an 
object-oriented compiler framework for Java. Similar to YACC and other compiler generators, SableCC accepts LALR(1) 
[30] grammars. No formally written grammar specifications for the PHP language exist, and no studies have been performed 
on whether PHP’s grammar can be fully expressed in LALR(1) form. We used Mandre’s [66] LALR(1) PHP grammar for 
SableCC, which has never been thoroughly tested. The combination of SableCC and Mandre’s grammar allowed us to 
develop a code walker for PHP; however, an initial test drive using approximately 5,000 PHP files revealed deficiencies that 
caused WebSSARI to reject almost 25 percent of all verified files as grammatically incorrect. With help from Mandre, we 
were able to reduce that rejection rate to 8 percent in a subsequent test involving 10,000 PHP files. 
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Figure 16. A screenshot of the WebSSARI GUI under Windows. 

2.4.5 Experimental Results 
SourceForge.net [4], the world’s largest open source development website, hosts over 70,000 open-source projects for 

more than 700,000 registered developers. PHP, currently with 7,792 registered projects, clearly outnumbers all other script 
languages (e.g., Perl, Python, and ASP) for Web application development. SourceForge.net classifies projects according to 
language, purpose, popularity, and development status (maturity). We identified a sample of 230 projects that reflected a 
broad variation in terms of language, purpose, popularity, and maturity. We downloaded their sources, tested them with 
WebSSARI, and manually inspected every report of a security violation. Where true vulnerabilities were identified, we sent 
email notifications to the developers. Over the five-day test period, we identified 69 projects containing real vulnerabilities; 
to date, 38 developers have acknowledged our findings and stated that they would provide patches. 

We note that in 33 of those 38 projects, the vulnerabilities had simply been overlooked, even though sanitization routines 
had been adopted in the majority of cases. We also found (from the developers’ responses) that some of these projects had 
vulnerabilities that had already been identified and disclosed prior to the present project. Further inspection of their code 
revealed that the developers had fixed all previously published vulnerabilities, but failed to identify similar problems that 
were hidden throughout the code. These observations justify the need for an automated verification tool that can be used 
repeatedly and routinely.  

In all, our WebSSARI scanned 11,848 files consisting of 1,140,091 statements; and 515 files were identified as 
vulnerable. After four days of manual inspection, we concluded that only 361 files were indeed vulnerable—a false positive 
rate of 29.9 percent. The number of insecure files dropped to 494 after adding support for type-aware qualifiers, yielding a 
false positive rate of 26.9 percent. Type-aware qualifiers eliminated the false positive rate by 10.03 percent.  

Of the total 1,140,091 statements, 57,404 were associated with making calls to sensitive functions with tainted variables 
as arguments. WebSSARI identified 863 as insecure. After manual inspection, we concluded that 607 were actually 
vulnerable. Adding sanitization functions to all 57,404 statements caused 5.03 percent (57,404/1,140,091) of the 1,140,091 
statements to be instrumented with dynamic guards, thus inducing overhead. After static analysis, the number of statements 
requiring dynamic sanitization was reduced to 863—a difference of 98.4 percent. As stated in Section 2.4.2.3, this 
instrumentation for vulnerable statements cannot be considered overhead because it simply adds code omitted by the 
programmer. Since only 607 statements were actually vulnerable, WebSSARI only caused 0.02 percent of all statements to 
be instrumented with unnecessary sanitization routines. 

Our experiments were conducted using a machine equipped with one Intel Pentium IV 2.0Ghz processor, 256 megabytes 
of RAM, and a 7,200 RPM IDE hard disk. On average, WebSSARI processed 73.85 statements per second. 

3. CONCLUDING REMARKS AND FUTURE WORK 
Security remains a major roadblock to universal acceptance of many kinds of online transactions or services made available 
through the Web. This concern has been attributed to vulnerabilities of Web applications that are remotely exploitable. Many 
protection mechanisms are available and can offer immediate security assurance, but they induce overhead and do not 
address the actual software defects. On the other hand, software testing and verification are both common practices for 
improving software quality. In order to apply existing techniques to Web applications, Web application vulnerabilities must 
be formalized. In this chapter, we have formalized Web application vulnerabilities as problems involving insecure 
information flow, which is a conventional topic in security research. Secure information flow research was mostly motivated 
by confidentiality considerations; however, we have shown that Web application security require more emphasis on data 



integrity and trust than on confidentiality and availability. Based on our formalization, we then described how software 
security testing and verification could be applied to Web applications security.  
In software testing, researchers and engineers from the private sector have devoted a considerable amount of resources to 
developing WSSs, but little is known about their design challenges and their potential side effects. Another drawback is that 
current WSSs (including our original WAVES [51]) focus on SQL injection detection, but are deficient in XSS detection. 
We addressed these problems by: 
1. giving a formal definition of a WSS and a list of design challenges; 
2. listing test types that may induce side effects; 
3. describing a test case generation process capable of producing a non-detrimental set of test cases; 
4. showing how a Web application can be observed from a remote location during testing; 
5. defining three modes of remote security auditing, with a focus on potential side effects; 
6. conducting an experiment using three different modes (heavy, relaxed and safe modes) and five real-world Web 

applications to compare differences in their coverage and induced side effects; and 
7. conducting an experiment using the relaxed mode to scan random websites. 
 

At least four assessment frameworks for Web application security (WAVES [51], AppScan [94], WebInspect [104], and 
ScanDo [60]) provide black-boxed testing capability for identifying Web application vulnerabilities. The advantage of 
testing over protection mechanisms is their ability to assess software quality. However, they have two disadvantages: a) they 
cannot provide immediate security assurance, and b) they can never guarantee soundness (they can only attempt to identify 
certain vulnerabilities, but cannot prove that certain vulnerabilities do not exist). By combining runtime mitigation and static 
verification techniques, WebSSARI demonstrates an approach that retains the advantages and eliminates the disadvantages 
of preceding efforts. Note that WebSSARI provides immediate protection at a much lower cost than Scott and Sharp’s, since 
validation is restricted to potentially vulnerable sections of code. If it detects the use of untrusted data following correct 
treatment (e.g., sanitization), the code is left as-is. According to our experiment, WebSSARI only caused 0.02 percent of all 
statements to be instrumented with unnecessary sanitization routines. In contrast, Scott and Sharp [98] [99] perform 
unconditional global validation for every bit of user-submitted data without considering the fact that the Web application 
may have incorporated the same validation routine, thus resulting in unnecessary overhead. If a Web application utilizes 
HTTPS for traffic encryption, the associated decrypt-validate-encrypt may limit scalability. Furthermore, WebSSARI 
provides protection in the absence of user intervention, as compared with the user expertise required for Scott and Sharp’s 
approach. Compared to WAVES, WebSSARI offers a sound verification of Web application code. Since verification is 
performed on source code, it does not require targeted Web applications to be up and running, nor is there any danger of 
introducing permanent state changes or loss of data. 

Compared to language-based approaches such as Myers [75], Banerjee and Naumann [9], and Pottier and Simonet [84], 
our approach verifies the most commonly used language for Web application programming, and also incorporates support 
for extending to other languages. In other words, we provide verification for existing applications while others have 
proposed language frameworks for developing secure software. Their technique of typing variables to fixed classes results in 
a high false positive rate; while in contrast, we used typestate to perform flow-sensitive tracking that allows security classes 
of variables to change, resulting in more precise compile-time approximations of runtime states. Comparing flow-sensitive 
approaches such as Ashcraft and Engler [3] and Shankar et al. [103], we proposed a type-aware lattice model in contrast to 
their primitive tainted-untainted model. According to our experimental results, the use of this lattice model helped reduce 
false positives by 10.03 percent. Compared to unsound checkers [3] [39] [112] [102] [116] [27] [63] [110], WebSSARI 
attempts to provide a sound verification framework. 

We note that compared with a white-box approach (which requires source code) such as WebSSARI, a black-box testing 
approach to security assessment (e.g., WAVES and other WSSs) still holds many benefits in real-world applications. A 
black-box security analysis tool can perform an assessment very quickly and produce a useful report identifying vulnerable 
sites. To assure high security standards, white-box testing can be used as a complement. 

3.1 Future Research Directions and Open Problems 
3.1.1 Protection Mechanisms—anomaly detection or misuse detection? 

The primary job of protection mechanisms such as Scott and Sharp’s work [98] [99] or commercial application firewalls 
is to distinguish malicious traffic from normal traffic. In anomaly detection, normal traffic is defined, and those that do not 
comply with the definitions are considered malicious. Scott and Sharp adopted this approach for every DEP of a Web 



application, and required that the network administrator supply definitions describing valid parameters for the DEP. HTTP 
requests to a DEP that do not comply with its definition are considered malicious. Most commercial application firewalls, on 
the other hand, deploy deep packet inspection [31], which makes use of misuse detection. In misuse detection, a database of 
malicious patterns (“signatures”) is maintained, and every HTTP request is filtered against this signature database to verify 
the absence of malicious data. Unfortunately, even for known attacks, neither anomaly nor misuse detection can guarantee 
detection. Scott and Sharp’s approach asks that administrators specify valid parameters for every DEP. Though this reduces 
the chance of DEPs being attacked, it does not eliminate all attack possibilities. For example, the definition for an address 
field may be “it must be a string with length between 20 to 50 characters.” A skilled attacker may still be able to exploit the 
DEP under this restriction—using a cleverly-crafted 20-to-50-character malicious string. On the other hand, filtering against 
a signature database cannot guarantee detection either. Signature-based detection has proved very successful in the anti-virus 
technology, because once released by its developer, a virus’ executable code is fixed. However, due to the expressiveness 
and rich features of SQL, a same SQL injection attack can take almost an unlimited number of patterns. A detailed 
explanation was recently given in Maor and Shulman [67]. Even if all possible attack patterns can be enumerated, real-time 
filtering would be impractical even with the support of advanced string filtering algorithms such as the bloom filter [31], 
which is already being deployed in most application level firewalls. We note that since WebSSARI also performs signature-
based filtering to sanitize untrustworthy data, it is also subject to this problem. 

3.1.2. Testing—how to reduce false negatives? 
WSSs available to date suffer from the high rate of false negatives due to two main reasons. Firstly, bypassing form 

validation procedures is difficult. Some WSSs, such as VeriWeb [12] and AppScan [94], adopt a profile-based solution that 
requires administrators to manually supply valid values for every form field. WAVES incorporates techniques associated 
with hidden Web crawling to address this problem. However, even with such a mechanism in place, enumerating all 
execution paths is difficult. For example, for many websites, a majority of DEPs will not be identified if the webcrawler does 
not complete a login form correctly. Even if the webcrawler is capable of recognizing a login form, the administrator must 
manually supply proper values (i.e., a pair of valid username and password). These suggest that manual efforts are 
unavoidable in order to reduce false negatives. The second reason is that current WSSs use malicious patterns to detect SQL 
injection vulnerabilities. They submit malicious patterns to DEPs and observe their output. A majority of these malicious 
patterns are designed to make the backend database of vulnerable Web applications output error messages. Such error 
messages are then delivered by a Web application as parts of its output and observed by the WSSs. However, many Web 
applications today suppress such error messages, and therefore subject current WSS testing methodology to a high rate of 
false negatives. 

3.1.3. Verification—Web languages are hard to verify 
WebSSARI incorporates a compile-time verification algorithm that statically approximates runtime state. Such 

approximation is harder for weakly-typed languages, and for languages that support features such as pointer aliasing, 
function pointers, and object-oriented programming. These features often cause the number of states of a verifier to grow 
exponentially, making the task of verifying larger programs nearly impossible.  Popular languages used for Web application 
development, such as PHP and Perl, not only support all the above features, but are also scripting languages. Scripting 
languages are not compiled into executables but executed directly by interpreters. Therefore, they have a much looser 
construct and support dynamic evaluation—that is, they can generate code on the fly and have the interpreter execute them. 
In other words, they can programmatically interact with the underlying interpreter at runtime. All these features make it very 
difficult for runtime state approximation. Before the Web, complex software were seldom developed using scripting 
languages, and therefore not much efforts have been made to study the verification of scripting languages. However, today’s 
Web applications are large and complex, but a majority of them are developed using scripting languages. To successfully 
verify these applications, techniques must be developed to handle features (such as dynamic evaluation) unique to scripting 
languages. 
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