
Homogeneous Segmentation and Classifier Ensemble for Audio Tag Annotation and Retrieval

Hung-Yi Lo, Ju-Chiang Wang, and Hsin-Min Wang

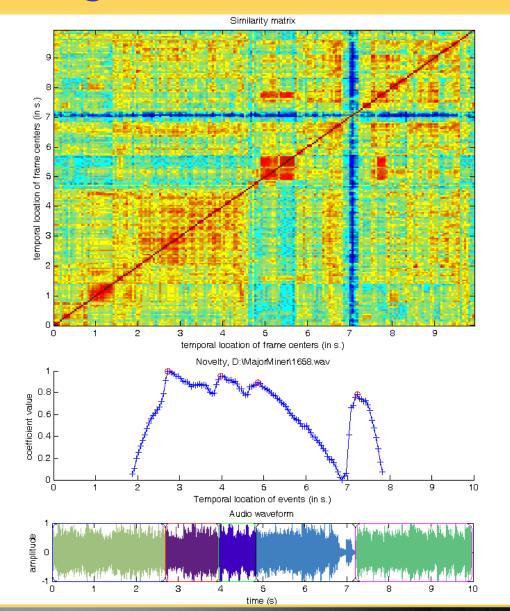
July 20, 2010

Spoken Language Processing Group Natural Language and Knowledge Processing Lab. Institute of Information Science Academia Sinica, Taiwan http://sovideo.iis.sinica.edu.tw/SLG

Social 7	² Tagging to Music
lost.fm	Music Radio Events Charts Community mendations based on your taste » The Mus
Artist Biography	The Beatles » Tracks » Let It Be
Pictures	60S 70s acoustic alternative alternative rock amazing awesome ballad ballads
Albums	beatles beautiful brilliant british british invasion britpop calm chill chillout classic Classic rock classics cool downtempo easy listening
Tracks Events	english favorite favorites favourite favourite songs favourites good great guitar indie john lennon love male vocalist male vocalists melancholic melancholy mellow moody
News Charts	night oldies paul mccartney perfect piano pop pop rock psychedelic FOCK rock ballad rolling stones top 500 songs of all time sad singer-songwriter
Similar Artists Tags	sweet the beatles uk uplifting 1970 Tag
2010/07/20	Institute of Information Science, Academia Sinica, Taiwan

A Query: Rock I Based on the Scores of the Rock Predictor

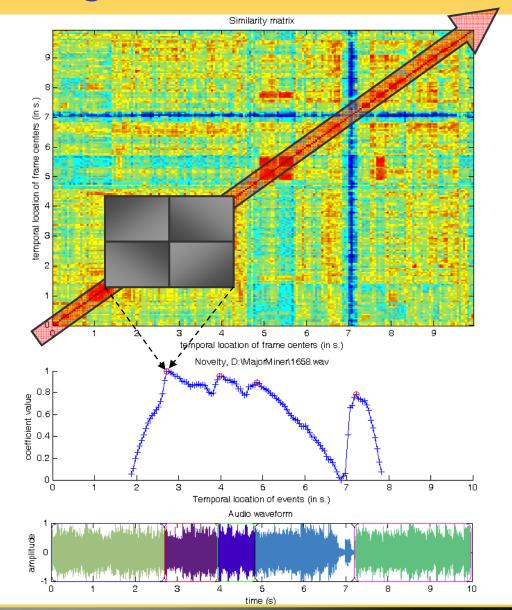
Low Relevance


Our Contributions

- 1. Dividing the audio signal into homogeneous segments using an audio novelty curve
- 2. Each tag predictor is an ensemble classifier combining two classifiers: SVM and AdaBoost
 - Ranking Ensemble for audio tag retrieval
 - Probability Ensemble for audio tag annotation
- Our ranking ensemble won the Audio Tagging Competition in 2009 Music Information Retrieval Evaluation eXchange (MIREX)
 - In terms of tag F-measure and the area under the ROC curve given a tag (for audio retrieval)

4

Audio Segmentation


- Feature of the Matrix:
 13 Dim MFCC
- Kernel Type: Gaussian
- Kernel Size: 128 frames

•The prediction score on the whole clip is the average of scores on each segment.

2010/07/20

Institute of Information Science, Academia Sinica, Taiwan

Audio Segmentation

- Feature of the Matrix:
 13 Dim MFCC
- Kernel Type: Gaussian
- Kernel Size: 128 frames

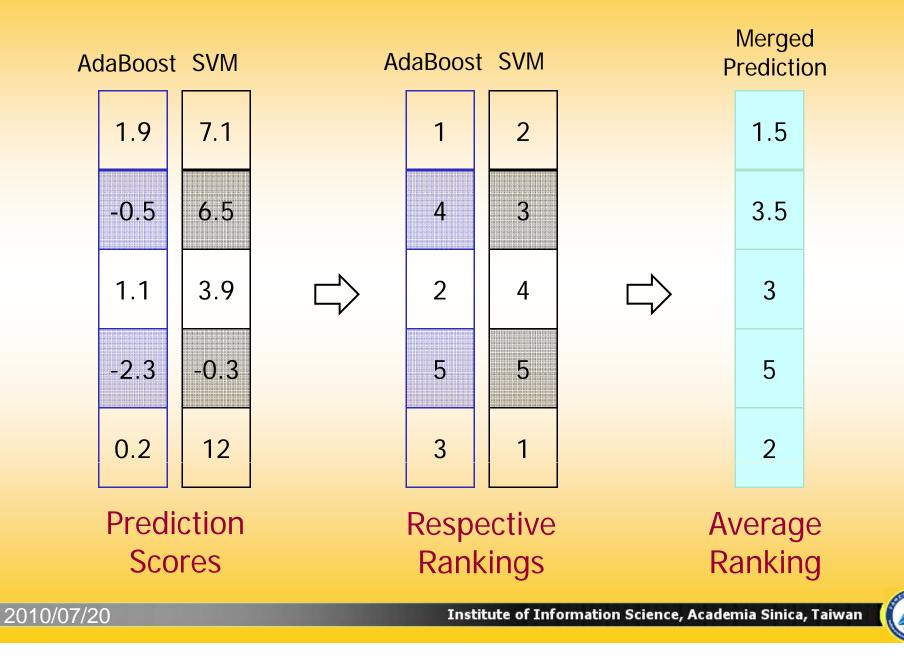
•The prediction score on the whole clip is the average of scores on each segment.

Audio Feature Extraction Using MIRToolbox

	Classes	Features
	Dynamics	· Rms
		 Peak and centroids of the fluctuation summary
	Rhythm	• Tempo
		 Attack slop and attack time of the onset
		Zero-crossing rate
		 Spectral centroid, spread, skewness and kurtosis
		Brightness
		 Rolloff with 95% threshold
		 Rolloff with 85% threshold
	Timbro	 Spectral entropy and flatness
	Timbre	Roughness
		Irregularity
		Inharmonicity
		 MFCCs, delta-MFCCs, and delta-delta-MFCCs
		Low energy rate
		Spectral flux
	Ditch	• Pitch
	Pitch	 Chromagram and its centroids and highest peak
		Key clarity
	Tonality	Key mode
2010/07/20		Harmonic change

Classification Methods and The Difficulties

- The tag predictor is an ensemble that combines the outputs of two classifiers
 - SVM: Linear SVM implemented by the LIBLINEAR package
 - AdaBoost: decision stump as the base learner


Two methods to merge the two prediction scores

- 1. Ranking Ensemble for the retrieval task
 - > The scales of the two classifiers' prediction scores are rather different
- 2. Probability Ensemble for the annotation task
 - The scores of different tag predictors are not comparable

Ranking Ensemble

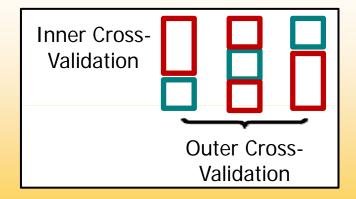
Probability Ensemble

In the audio annotation task, we need to compare the scores of all tag predictors

> The raw scores of different tag classifiers are not comparable

We transform the output scores of SVM and AdaBoost into probability scores with a sigmoid function:

$$\Pr(y=1 \mid \mathbf{x}) \approx \frac{1}{1 + \exp(Af + B)}$$


- \succ *f* : the output score of a classifier
- A, B: can be learned by solving a regularized maximum likelihood problem

Then average the two probability score.

Model Selection

- MIREX evaluates submitted algorithms by 3-fold crossvalidation
- Inner cross-validation on the training set to determine the classifier parameters
 - The cost parameter C in the linear SVM
 - The number of base learners in AdaBoost
- Re-train the classifiers with the complete training set and the selected parameters

 Model selection criterion: AUC-ROC
 Since the class distributions for some tags are imbalanced

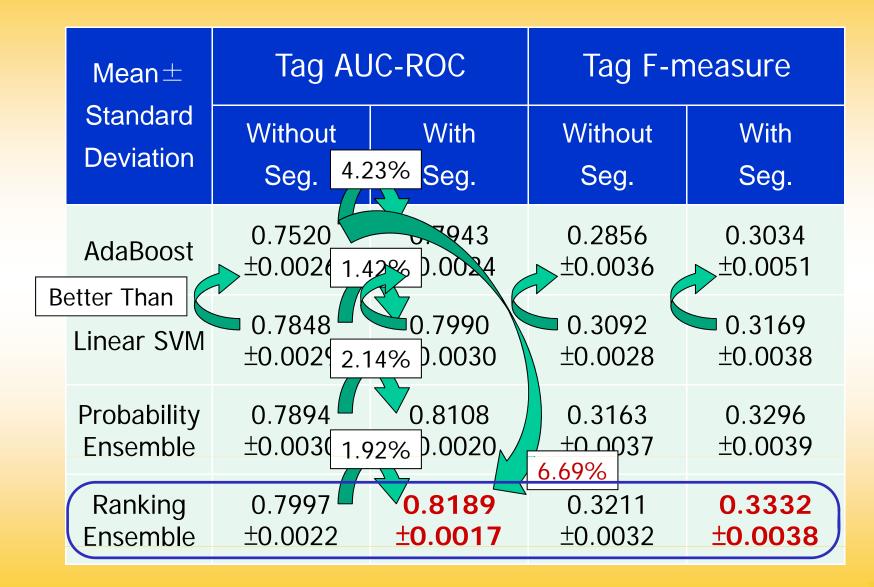
MIREX 2009 Results on The MajorMiner Dataset

12

MIREX 2009 Results on The Mood Dataset

		Tag F-measure	Tag Accuracy	Tag AUC-ROC	Clip AUC-ROC	
	No Seg	0.204	0.882	0.667	0.678	
	Seg	0.219	0.887	0.701	0.704	
	BP1	0.195	0.837	0.648	0.854	
	BP2	0.193	0.829	0.632	0.859	
	CC1	0.172	0.878	0.652	0.849	
	CC2	0.180	0.882	0.681	0.848	
	CC3	0.147	0.882	0.629	0.812	
	CC4	0.183	0.862	0.646	0.812	
	GP	0.084	0.863			
	GT1	0.211	0.823	0.649	0.860	
	GT2	0.209	0.824	0.655	0.861	
)/07/20	HBC	0.063	0.909	0.664	0.861	T

2010/


Extended Experiments

We extensively evaluate the classifiers and the ensemble methods on the downloaded MajorMiner dataset

- MajorMiner is a web-based music labeling game: http://majorminer.org/
- Our extended experiments basically follow the MIREX 2009 setup
 - Use the same 45 tags and download all the audio clips that are associated with these tags
 - The dataset might be slightly different from that used in MIREX 2009
 - The resulting audio database contains 2,472 clips
- Repeat cross-validation
 twenty times to reduce
 variance

	metal	instrumental	horns	piano	guitar	
	ambient	saxophone	house	loud	bass	
	fast	keyboard	vocal	noise	british	
	solo	electronica	beat	80s	dance	
	jazz	drum machine	strings	рор	r&b	
	female	distortion	voice	rap	male	
	slow	electronic	quiet	techno	drum	
	funk	acoustic	rock	organ	soft	
In	country	hip hop	synth	trumpet	punk	
					0	

Results of The Audio Retrieval Task

Results of The Audio Annotation Task

Mean±	Clip AUC-ROC		Tag Accuracy		
Standard	Without	With	Without	With	
Deviation	Seg.	Seg.	Seg.	Seg.	
AdaBoost	0.8627	0.8774	0.9162	0.9184	
	±0.0009	±0.0009	±0.0004	±0.0004	
Linear SVM	0.8788	0.8828	0.9191	0.9200	
	±0.0009	±0.0012	±0.0004	±0.0003	
Probability	0.8788	0.8848	0.9191	0.9201	
Ensemble	<u>±0.0007</u>	±0.0007	±0.0002	±0.0003	
Ranking Ensemble	10.34% 0.7626 ±0.0012	0.7814 ±0.0010	0.9016 ±0.0004	0.9057 ±0.0003	

Conclusion

- This paper has presented our methods for audio tag annotation and retrieval
- Major contributions:
 - > Use a novelty curve to divide audio clips into homogeneous segments
 - Exploit two classifier ensembles: ranking ensemble and probability ensemble
- The ranking ensemble performs very well in the MIREX 2009 audio tag classification task in terms of audio retrieval metrics
 - But not very good in terms of audio annotation metrics

The probability ensemble method performs very well in terms of audio annotation metrics

Thank You

