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ABSTRACT  

This paper presents our winning audio classification 
system in MIREX 2010. Our system is implemented as 
follows. First, in the training phase, the frame-based 70-
dimensional feature vectors are extracted from a training 
audio clip by MIRToolbox. Next, the Posterior Weighted 
Bernoulli Mixture Model (PWBMM) is applied to 
transform the frame-decomposed feature vectors of the 
training song into a fixed-dimensional semantic vector 
representation based on the pre-defined music tags; this 
procedure is called Semantic Transformation. Finally, 
for each class, the semantic vectors of associated training 
clips are used to train an ensemble classifier consisting 
of SVM and AdaBoost classifiers. In the classification 
phase, a testing audio clip is first represented by a 
semantic vector, and then the class with the highest score 
is selected as the final output. Our system was ranked 
first out of 36 submissions in the MIREX 2010 audio 
mood classification task.  

1. INTRODUCTION  

Automatic music classification is a very important topic 
in the music information retrieval (MIR) field. It was 
first addressed by Tzanetakis et al., who worked on 
automatic musical genre classification of audio signals in 
2001 [1]. After ten years of development, many kinds of 
audio classification datasets have been created with 
category definitions and class labels corresponding to a 
set of audio examples. In addition, many approaches 
have been proposed for classifying music data according 
to genre [1, 2], mood [3, 4], or artists [5, 6]. Music 
Information Retrieval Evaluation eXchange (MIREX), 
an annul MIR algorithm competition held jointly with 
ISMIR, started to evaluate audio classification from 
2005. 

In the audio classification field, fixed numbers of 
categories or classes are usually pre-defined by experts 
for different application tasks. In general, these 
categories or classes should be definite and as mutually 
exclusive as possible. However, when most people listen 
to a song they have never heard before, they usually 
have certain musical impressions in their minds, 
although they may not be able to name the exact musical 

category of the song. These musical impressions inspired 
by direct auditory cues can be described by some general 
words, such as exciting, noisy, fast, male vocal, drum, 
and guitar. We believe that the co-occurrences of the 
musical impressions or concepts may indicate the 
membership of a song in a specific audio class. 
Therefore, in this study, we will explore the relationship 
between the general tag words and the specific 
categories. 

Since people tend to mentally tag a piece of music 
with specific words when they listen to it, music tags are 
a natural way to describe the general musical concepts. 
The tags can include different types of musical 
information, such as genre, mood, and instrumentation. 
Therefore, we believe that the knowledge of pre-
generated music tags in a music dataset can help the 
classification of another music dataset. In other words, 
we can train a music tagging system to recognize 
musical concepts of a song in terms of semantic tags first, 
and then the music classification system can classify the 
song into specific classes based on the semantic 
representation.  

Figure 1 shows an overview of our music 
classification system. There are two layers in our system, 
i.e., semantic transformation (ST) and ensemble 
classification (EC). In the training phase of the ST layer, 
we first extract audio features with respect to various 
types of musical characteristics, including dynamics, 
spectral, timbre, and tonal features, from the training 
audio clips. Next, we apply the Posterior Weighted 
Bernoulli Mixture Model (PWBMM) [7] to 
automatically tag the clips. The PWBMM performed 
very well in terms of the tag-based area under the 
receiver operating characteristic curve (AUC-ROC) in 
the MIREX 2010 audio tag classification task [8]. The 
AUC-ROC of the tag affinity output is an important way 
to evaluate the correct tendency of the tagging prediction; 
therefore, we have proper confidence in applying the 
PWBMM in the music tagging step in our system. The 
PWBMM is trained on the MajorMiner dataset clawed 
from the website of the MajorMiner 1  music tagging 
game. The dataset contains 2,472 ten-second audio clips 
and their associated tags. As shown in Table 1, we select 
45 tags to define the semantic space. In other words, a 

                                                 
1 http://majorminer.org/ 
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song is transformed into a 45-dimensional semantic 
vector over the pre-defined tags by ST based on the 
tagging procedure. In the MajorMiner dataset, the counts 
of a tag given to a music clip ranges from 2 to 12. These 
counts are also modeled by PWBMM and have been 
shown to facilitate the performance of music tag 
annotation [7]. In the training phase of the EC layer, for 
each class, the associated training audio clips, each 
represented by a 45-dimensional semantic vector, are 
used to train an ensemble classifier, consisting of support 
vector machine (SVM) and AdaBoost classifiers. In the 
final classification phase, given a testing audio clip, the 
class with the highest output score is assigned to it.  

 
Figure 1. The flowchart of our audio classification 
system.  

The remainder of this paper is organized as follows. 
In Section 2, we describe the music features used in this 
work. In Section 3, we present how to apply PWBMM 
for music semantic representation, and in Section 4, we 
present our ensemble classification method. We 
introduce the MIREX 2010 audio train/test: mood 
classification task and discuss the results in Section 5. 
Finally, the conclusion is given in Section 6.  

Table 1. The 45 tags used in our music classification 
system. 

metal instrumental horns piano guitar 
ambient saxophone house loud bass 
fast keyboard rock noise british
solo electronica beat 80s dance 
strings  drum machine jazz pop r&b 
female electronic voice rap male 
trumpet distortion  quiet techno drum 
funk acoustic vocal organ soft 
country hip hop synth slow punk 

 
2. MUSIC FEATURE EXTRACTION  

We use MIRToolbox 1.32 for music feature extraction 
[9]. As shown in Table 2, four types of features are used 
in our system, including dynamics, spectral features, 
timbre, and tonal features. To ensure the alignment and 
prevent the mismatch of different features in a vector, all 
the features are extracted from the same fixed-size short-
time frame. Given a song, a sequence of 70-dimensional 
feature vectors is extracted with 50ms frame size and 0.5 
hop shift.  

Table 2. The music features used in the 70-dimensional 
frame-based vector. 

Types Feature Description Dim
dynamics rms 1 

centroid 1 
spread 1 
skewness 1 
kurtosis 1 
entropy 1 
flatness 1 
rolloff at 85% 1 
rolloff at 95% 1 
brightness 1 
roughness 1 

 
 
 
 
 
spectral  

irregularity 1 
zero crossing rate 1 
spectral flux 1 
MFCC 13 
delta MFCC 13 

 
 
timbre 

delta-delta MFCC 13 
key clarity 1 
key mode possibility 1 
HCDF 1 
chroma peak 1 
chroma centroid 1 

 
 
tonal 
 

chroma 12 

                                                 
2 http://www.jyu.fi/music/coe/materials/mirtoolbox 
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3. POSTERIOR WEIGHTED BERNOULLI 
MIXTURE MODEL 

The PWBMM-based music tagging system contains two 
steps. First, it converts the frame-based feature vectors of 
a song into a fixed-dimensional vector (in a Gaussian 
Mixture Model (GMM) posterior representation). Then, 
the Bernoulli Mixture Model (BMM) [10] predicts the 
scores over 45 music tags for the song. 

3.1. GMM Posterior Representation  

Before training the GMM, the feature vectors from all 
training audio clips are normalized to have a mean of 0 
and standard deviation of 1 in each dimension. Then, the 
GMM is fitted by using the expectation and 
maximization (EM) algorithm. The generation of the 
GMM posterior representation can be viewed as a 
process of soft tokenization from a music background 
model. We address a “latent music class” as a latent 
variable { }Kk zzzz ,,, 21 K∈  corresponding to the k-th 
Gaussian component with mixture weight πk, mean 
vector μk, and covariance matrix Σk in the GMM. With 
the GMM, we can describe how likely a given feature 
vector x belongs to a “latent music class” zk by the 
posterior probability of the latent music class: 
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Given a song sj, by assuming that each frame contributes 
equally to the song, the posterior probability of a certain 
latent music class can be computed by 

,)1(1)1(
1
∑

=
===

jN

n
jnk

j
jk zp

N
szp x   (2) 

where xjn is the feature vector of the n-th frame of song sj 
and Nj is the number of frames in song sj. 

3.2. Bernoulli Mixture Model  

Assume that we have a training music corpus with J 
audio clips, each denoted as sj, j=1,…,J, and with 
associated tag counts cjw, w=1,…,W. The tag counts are 
positive integers indicating the number of times that tag 
tw has been assigned to clip sj. The binary random 
variable y, with }1 ,0{∈jwy , represents the event of tag 
tw applying to song sj. 

3.2.1. Generative Process 
The generative process of BMM has two steps. First, the 
probability of the latent class zkw, k=1,…,K, is chosen 
from song sj’s class weight vector θj: 

,)1( jkjkwzp θ== θ    (3) 

where θjk  is the weight of the k-th latent class. Second, a 
case of the discrete variable yjw is selected based on the 
following conditional probabilities: 
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The conditional probability that models the probability 
of clip sj having tag tw is a Bernoulli distribution with 
input discrete variable yjw and parameter β for the k-th 
class zkw. 

The complete joint distribution over y and z is 
described with model parameter β and weight matrix Θ, 
where its row vector is θj of clip sj: 
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The marginal log likelihood of the music corpus can be 
expressed as: 
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3.2.2. Model Inference by the EM Algorithm 
The BMM can be fitted with respect to parameter β and 
weight matrix Θ by maximum-likelihood (ML) 
estimation. By linking the latent class of BMM with the 
“latent music class” of GMM described in Section 3.1, 
the posterior probability in Eq. (2) can be viewed as the 
class weight, i.e., θjk = p(zk=1|sj). Therefore, we only 
need to estimate β, which corresponds to the probability 
that a latent music class occurs. We apply the EM 
algorithm to maximize the corpus-level log-likelihood in 
Eq. (6) in the presence of latent variable z. 

In the E-step, given the clip-level weight matrix Θ 
and the model parameter β, the posterior probability of 
each latent variable zkw can be computed by 
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In the M-step, the update rule for βkw is as follows, 
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From the tag counts of the music corpus, we know 
that there exist different levels of relationship between a 
clip and a tag. If clip sj has a more-than-one tag count cjw  

for tag tw, we can make song sj contribute to βkw cjw times 
rather than only once in each iteration of EM. This leads 
to a new update rule for βkw: 
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3.2.3. Semantic Transformation with PWBMM 
The w-th component of the semantic vector v of a given 
clip s is computed as the conditional probability of yw =1 
given θ and β: 
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For the ensemble classification layer, given an audio clip 
sm, m=1,2,…,M, its semantic representation is generated 
in the same way. First, a sequence of music feature 
vectors is extracted from sm. Second, the vector sequence 
is transformed into a fixed dimensional posterior weight 
vector θm via Eq. (2). Third, the weight vector θm is 
transformed into a fixed dimensional semantic vector vm 
via Eq. (10). 

4. THE ENSEMBLE CLASSIFICATION METHOD  

Assume that we have G classes for the audio 
classification task, and all the classes are independent. 
We can train G binary ensemble classifiers, denoted as 
Cg, g  = 1, 2,…,G, for each class. Each ensemble classifier 
Cg calculates a final score by combining the outputs of 
two sub-classifiers: SVM and AdaBoost. 

4.1. Support Vector Machine 

SVM finds a separating surface with a large margin 
between training samples of two classes in a high-
dimensional feature space implicitly introduced by a 
computationally efficient kernel mapping. The large 
margin implies good generalization ability in theory. In 
this work, we exploited a linear SVM classifier f(v) of 
the following form: 
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where vw is the w-th component of the semantic vector v 

of a testing clip; λw and b are parameters to be trained 
from (vm, lmg), m=1,…,M, where vm is the semantic 
vector of the m-th training clip and 0} {1,  ∈mgl  is the g-
th class label of the m-th training clip; and W is the 
dimension of the semantic vector. The advantage of 
linear SVM is training efficiency. Certain recent 
literature has shown that it has comparable prediction 
performance compared to non-linear SVM. A single cost 
parameter is determined by using cross-validation. 

4.2. AdaBoost 

Boosting is a method of finding a highly accurate 
classifier by combining several base classifiers, even 
though each of them is only moderately accurate. We use 
decision stumps as the base learner. The decision 
function of the boosting classifier takes the following 
form: 
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where αt is set as suggested in [5]. The model selection 
procedure can be done efficiently as we can iteratively 
increase the number of base learners and stop when the 
generalization ability with respect to the validation set 
does not improve. 

4.3. Calibrated Probability Scores and Probability 
Ensemble 

The ensemble classifier averages the scores of the two 
sub-classifiers, i.e., SVM and AdaBoost. However, since 
the sub-classifiers for different classes are trained 
independently, their raw scores are not comparable. 
Therefore, we transform the raw scores of the sub-
classifiers into probability scores with a sigmoid function 
[7]: 

,
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where f is the raw score of a sub-classifier, and A and B 
are learned by solving a regularized maximum likelihood 
problem [8]. As the sub-classifier output has been 
calibrated into a probability score, a classifier ensemble 
for a specific class is formed by averaging the 
probability scores of associated SVM and AdaBoost sub-
classifiers, and the probability scores of classifiers for 
different classes become comparable. The class with the 
highest output score is assigned to a testing music clip. 

4.4. Cross-Validation 

We first perform inner cross-validation on the training 



6th International WOCMAT & New Media Conference 2010, YZU, Taoyuan, Taiwan, November 12-13, 2010 
 

set to determine the cost parameter C of linear SVM and 
the number of base learners in AdaBoost. Then, we re-
train the classifiers with the complete training set and the 
selected parameters. We use the AUC-ROC as the model 
selection criterion. 

5. MIREX 2010 AUDIO TRAIN/TEST: MUSIC 
MOOD CLASSIFICATION 

We submitted our audio classification system described 
above to the MIREX 2010 Audio Train/Test tasks. Due 
to some unknown reasons, only the evaluation results on 
the music mood dataset were reported (this also happens 
to some other teams), although we believe that our 
system is dedicated to adapt to any kinds of audio 
classification datasets. In the following discussions, this 
system is denoted as WLJW2. We also submitted a 
simple system (WLJW1) as a baseline system. In 
WLJW1, the representation of an audio clip is the mean 
vector of all frame-based feature vectors of the clip, and 
a simple quadratic classifier [15] for each class is trained. 

5.1. The Music Mood Dataset 

The music mood dataset [4] was first used in MIREX 
2007. There are 600 30-second audio clips in 22,050Hz 
mono wave format selected from the APM collection3. 
The corresponding five mood categories, each contains 
120 clips, are shown in Table 3. The mood class of an 
audio clip is labeled by human judges using the 
Evalutron 6000 system [16]. 

Table 3. The five mood categories and their components. 
Class Mood Components 

 

1 passionate, rousing, confident, boisterous, 
rowdy 

 

2 rollicking, cheerful, fun, sweet, amiable/good 
natured 

 
3 literate, poignant, wistful, bittersweet, 

autumnal, brooding 
 

4 humorous, silly, campy, quirky, whimsical, 
witty,  wry 

 
5 aggressive, fiery, tense/anxious, intense, 

volatile, visceral 
 
5.2. Evaluation Results 

MIREX uses three-fold cross-validation to evaluate the 
systems submitted. In each fold, one subset is selected as 
the test set and the remaining two subsets serve as the 
training set. The performance is summarized in Table 4 
[17]. The summary accuracy is the average accuracy of 
                                                 
3 http://www.apmmusic.com/ 

the three folds. The bold values represent the best 
performance in each evaluation metric. 

Table 4. The performance of all submissions on the 
music mood dataset. 

Accuracy per Testing Fold Submission
Code 

Summary
Accuracy 0 1 2 

WLJW1 0.5383 0.590 0.500 0.525 
WLJW2 0.6417 0.735 0.595 0.595 
BMPE2 0.5467 0.585 0.505 0.550 
BRPC1 0.5867 0.645 0.575 0.540 
BRPC2 0.5900 0.695 0.550 0.525 
CH1 0.6300 0.705 0.615 0.570 
CH2 0.6300 0.725 0.605 0.560 
CH3 0.6350 0.710 0.640 0.555 
CH4 0.6267 0.710 0.615 0.555 
FCY1 0.6017 0.710 0.540 0.555 
FCY2 0.5950 0.685 0.550 0.550 
FE1 0.6083 0.690 0.555 0.580 
GP1 0.6317 0.695 0.565 0.635 
GR1 0.6067 0.685 0.570 0.565 
HE1 0.5417 0.580 0.520 0.525 
JR1 0.4633 0.480 0.435 0.475 
JR2 0.5117 0.535 0.520 0.480 
JR3 0.4683 0.475 0.475 0.455 
JR4 0.5117 0.560 0.510 0.465 
MBP1 0.5400 0.585 0.530 0.505 
MP2 0.3617 0.200 0.385 0.500 
MW1 0.5400 0.600 0.520 0.500 
RJ1 0.5483 0.570 0.555 0.520 
RJ2 0.5017 0.505 0.495 0.505 
RK1 0.5483 0.595 0.520 0.530 
RK2 0.4767 0.515 0.450 0.465 
RRS1 0.6167 0.695 0.595 0.560 
SSPK1 0.6383 0.665 0.630 0.620 
TN1 0.5550 0.650 0.515 0.500 
TN2 0.4858 0.540 0.430 0.480 
TN4 0.5750 0.645 0.540 0.540 
TS1 0.6100 0.705 0.575 0.550 
WLB1 0.5550 0.605 0.535 0.525 
WLB2 0.5767 0.625 0.550 0.555 
WLB3 0.6300 0.690 0.615 0.585 
WLB4 0.6300 0.705 0.600 0.585 

 
It is clear that our system WLJW2 is ranked first out 

of 36 submissions in terms of summary accuracy. The 
summary accuracy of WLJW2 is 10.34% higher than 
that of our baseline system WLJW1. The results 
demonstrate that semantic transformation and classifier 
ensemble indeed enhance the audio classification 
performance. MIREX has also performed significance 
tests, and the results are shown in Figure 2. Figure 3 
shows the overall class-pairs confusion matrix of 
WLJW2. According to the confusion matrix, our system 
reveals high confidence in classes 3 and 5, and the 
accuracies are 83.33% and 88.33%, respectively. 
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Figure 2. The significance tests on accuracy per fold by 
Friedman's ANOVA w/ Tukey Kramer HSD [17]. 

 
Figure 3. The overall confusion matrix of WLJW2. 

6. CONCLUSIONS 

In this paper, we have presented a music classification 
system integrating two layers of prediction based on 
semantic transformation and ensemble classification. The 
semantic transformation provides a musically conceptual 
representation, which matches human auditory sense to 
some extent, to a given audio clip. The robust ensemble 
classifier facilitates the final classification step. The 
results of MIREX evaluation tasks have shown that our 
system achieves very good performance compared to 
other systems. 
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