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Abstract. Audio tags correspond to keywords that people use to de-
scribe different aspects of a music clip, such as the genre, mood, and
instrumentation. With the explosive growth of digital music available
on the Web, automatic audio tagging, which can be used to annotate
unknown music or retrieve desirable music, is becoming increasingly im-
portant. This can be achieved by training a binary classifier for each
tag based on the labeled music data. However, since social tags are usu-
ally assigned by people with different levels of musical knowledge, they
inevitably contain noisy information. To address the noisy label prob-
lem, we propose a novel method that exploits the tag count information.
By treating the tag counts as costs, we model the audio tagging prob-
lem as a cost-sensitive classification problem. The results of audio tag
annotation and retrieval experiments show that the proposed approach
outperforms our previous method, which won the MIREX 2009 audio
tagging competition.
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1 Introduction

With the explosive growth of digital music available on the Web, organizing and
retrieving desirable music from online music databases is becoming an increas-
ingly important and challenging task. Until recently, most research on music
information retrieval (MIR) focused on classifying musical information with re-
spect to the genre, mood, and instrumentation. Social tags, which have played
a key role in the development of “Web 2.0” technologies, have become a major
source of musical information for music recommendation systems. Music tags
are free text labels associated with different aspects of a music clip, like the
artist, genre, emotion, mood, and instrumentation [4]. Consequently, music tag
classification seems to be a more complete and practical means of categorizing
musical information than conventional music classification. Given a music clip,
a tagging algorithm can automatically predict tags for the clip based on models
trained from music clips with associated tags collected beforehand.

Automatic audio tag annotation has become an increasingly active research
topic in recent years [3, 5, 7, 9, 10], and it has been one of the evaluation tasks
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at the Music Information Retrieval Evaluation eXchange (MIREX) since 20083.
Our previous method [5], which won the MIREX 2009 audio tag annotation
competition, exploited both homogeneous segmentation and classifier ensemble
techniques. The runner-up [7] in 2009 viewed the audio tag prediction task as a
multi-label classification problem and used a stacked (two-stage) SVM to solve
it. Another submission [3] introduced a method called the Codeword Bernoulli
Average (CBA) model for tag prediction. It is based on a vector quantized fea-
ture representation. In the MIREX 2008 evaluation task, the winning audio tag
annotation and retrieval system [10] modeled the feature distribution for each tag
with a Gaussian mixture model (GMM). The model’s parameters were estimated
with the weighted mixture hierarchies expectation maximization algorithm. In
this paper, our objective is to improve our 2009 winning method by using tag
count information.

The audio tagging task can be evaluated from two perspectives: audio tag
annotation and audio tag retrieval, as mentioned in [5]. The audio annotation
task is viewed as a binary classification problem of each tag, since a fixed num-
ber of tags are given. Each tag classifier determines whether the input audio
clip should have a specific tag by outputting a score. The performance can be
evaluated in terms of the percentage of tags that are verified correctly, or the
area under the receiver operating characteristic curve (AUC) given clip (i.e., the
correct tags should receive higher scores). In the audio retrieval task, given a
specific tag as a query, the objective is to retrieve the audio clips that corre-
spond to the tag. This can be achieved by using the tag classifier to determine
whether, based on the score, each audio clip is relevant to the tag. The clips are
then ranked according to the relevance scores, and those with the highest scores
are returned to the user. The performance can be evaluated in terms of the tag
F-measure or the tag AUC.

Social tagging, also called folksonomy, enables users to categorize content col-
laboratively by using tags. Unlike the classification labels annotated by domain
experts, the information provided in social tags may contain noise or errors.
Table 1 shows some examples of audio clips with associated tags obtained from
the MajorMiner [6] website4, a web-based game for collecting music tags. Some
other details, such as the song’s title, album, and artist, are also available. Con-
sider that the tag count indicates the number of users who have annotated the
given audio clip with the tag. We believe that tag count information should be
considered in automatic audio tagging because the count reflects the confidence
degree of the tag. Take the first audio clip from the song Hi-Fi as an example.
It has been annotated with “drum” nine times, with “electronic” three times
and with “beat” twice. Therefore, the tag “drum” is the major property of the
audio clip. The count also reflects the popularity of the tag, song, artist, and
album. To the best of our knowledge, tag count information has not been used in
automatic audio tagging previously. In the MIREX audio tagging competition,
the tag count is transformed into 1 (with a tag) or 0 (without a tag), by using

3 http://www.music-ir.org/mirex/2008
4 http://www.majorminer.org/
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a threshold. Then, a binary classifier is trained for each tag to make predictions
about untagged audio clips. As a result, a tag assigned twice is treated in the
same way as a tag assigned hundreds of times. In addition, a tag with a small
count may contain noisy information, which would affect the training of the tag
classifier. To solve the problem, we propose using the tag count information to
train a cost-sensitive classifier that minimizes the training error associated with
tag counts.

Another issue is how to evaluate the prediction performance that considers
the tag counts. For example, a system that gives a single tag “drum” to the
Hi-Fi audio clip should be considered better than a system that gives both
“electronic” and “beat” to the clip, but misses “drum”. In this paper, we propose
two cost-sensitive metrics: a cost-sensitive F-measure and a cost-sensitive AUC.
The metrics favor a system that recognizes repeatedly assigned tags.

The contribution of this paper is twofold. First, we employ a cost-sensitive
learning approach that treats the tag counts as costs in the audio tag annotation
and retrieval task. Second, we propose two cost-sensitive evaluation metrics for
the performance evaluation. The results of experiments demonstrate that the
proposed cost-sensitive methods outperform their cost-insensitive counterparts
in terms of not only the cost-sensitive metrics but also the regular metrics.

The remainder of this paper is organized as follows. In Section 2, we consider
some factors that affect the tag counts; and in Section 3, we discuss the proposed
cost-sensitive learning methods and cost-sensitive evaluation metrics. In Section
4, we describe the experiments and analyze the results. Section 5 contains some
concluding remarks.

Table 1. Some Examples of Audio Clips with Associated Tags Obtained from the
MajorMiner Website

Song Album Clip Start Time Artist Associated Tags (Tag Counts)

Head drum (9)
Hi-Fi Music 0:00 Suede electronic(3), beat(2)

synth(7), electronic(4), vocal(5)
Universal Talkie 4:00 Air female(4), voice(2), slow(2)
Traveler Walkie ambient(2), soft(3), r&b (3)

The Invisible guitar(5),male(4),pop(4)
Safe Travis 1:00 Band vocal(3),acoustic(2)

Saxophone jazz(9)
Moritat Colossus 0:50 Sonny Rollins saxophone(12)

Pacific male(4), synth(2)
Heights Ascension 2:30 Pep Love hip hop(8), rap(6)

male(6), pop(3), vocal(5)
Trouble The Chillout 3:40 Coldplay piano(7), voice(3)

slow(2), soft(2), r&b(2)
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2 Tag Counts

From our study of audio tagging websites, such as Last.fm5 and MajorMiner, we
observe that certain factors affect the tag counts:

1. Consistent Agreement: Social tags are usually assigned by users (includ-
ing malicious users) with different levels of musical knowledge and different
intentions [4]. Tags may contain a lot of noisy information; however, when a
large number of users consider that an audio clip should be associated with
a particular tag, i.e., the count of the tag is high, the label information is
deemed more reliable. Conversely, if a tag is only assigned to an audio clip
once, the annotation is considered untrustworthy. The MajorMiner website
does not show such tags because they may contain noise. When training a
classifier, using noisy label information can affect the generalization ability of
the classifier. Another problem that must be considered is that, sometimes,
only a small portion of an audio clip is related to a certain tag. For example,
an instrument might only be played in the bridge section of a song. In this
case, the count of the tag that corresponds to the instrument will be small.

2. Tag Bias: There are several types of audio tags, e.g., genre, instrumentation,
mood, locale, and personal usage. Some types (such as genre) are used more
often than others (such as personal usage tags like “favorite” and “I own
it”); and specific tags (such as “British rock”) are normally used less often
than general tags (such as “rock”). In addition, audio tags typically contain
many variants [4]. For example, on the Last.fm website “female vocalists”
is a common tag, and “female vocals” and “female artists” are variants of
it. Figure 1 shows the histogram of the average tag count estimated from
MajorMiner data. We observe that the average count of most tags is close
to 2.5. The tags with higher average counts are assigned more often than
the other tags. The top three most repeatedly assigned tags are “jazz”,
“saxophone”, and “rap”; and the tags assigned least repeatedly are “drum
machine”, “voice”, and “keyboard.” We believe that repeatedly assigned
tags are either more popular or they describe acoustic characteristics that
are easier to recognize (e.g., “drum machine” might easily be recognized as
“drum”).

3. Song/Album/Artist Popularity: Popular songs, albums, and artists usu-
ally receive more tags, since people tend to tag music that they like or they
are familiar with. However, this is not the case for web-based labeling games
because the label flow can be controlled by the game designer. In addition,
newly released songs usually receive fewer tags.

Based on the above observations, we formulate the audio tag annotation and
retrieval task as a cost-sensitive classification problem. In the next section, we
examine the concept of cost-sensitive learning and describe our approach.

5 http://www.last.fm/
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Fig. 1. The histogram of the average tag count

3 Cost-sensitive Learning

Non-uniform misclassification costs are very common in a variety of pattern
recognition applications, such as medical diagnosis, e-mail spam filtering, and
business marketing. As a result, several cost-sensitive learning methods have
been developed to address the problem, e.g., the modified learning algorithm [8]
and the data re-sampling method [11]. Suppose we have a cost-sensitive training
set (xi, yi, ci)m

i=1, where xi ∈ Rn is the feature vector of the i-th training sample;
yi ∈ {1,−1} is the class label; and ci ⊂ [0,∞) is the misclassification cost. The
goal of cost-sensitive classification is to learn a classifier f(x), that minimizes
the expected cost as follows:

E[cI(f(x) 6= y)], (1)

where I(·) is an indicator function that yields 1 if its argument is true, and 0
otherwise. The expected cost-insensitive cost is defined as:

E[I(f(x) 6= y)], (2)

which is a special case of (1) where all samples have an equal misclassification
cost c.

The Paralyzed Veterans of America (PVA) dataset used in the KDD Cup
1998 Competition is a well-known dataset for the cost-sensitive learning problem.
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It contains information about people who have made at least one prior donation
to the PVA, as well as the date and amount of each donation. Participants in the
above competition were asked to train a predictive model that would be used to
choose the donors that should be sent a request for a new donation. Since mailing
a request to an individual donor involves some cost, the measure of success is
the total revenue derived from the mailing campaign. The task is formulated as
a cost-sensitive classification problem in [11]. Each instance is associated with
a misclassification cost, which is calculated as the donated amount minus the
cost of mailing the request for positive instances, and as the cost of mailing the
request for negative instances. The predictive model is trained to minimize the
total misclassification cost on the training data and is expected to maximize the
total revenue on the test data.

Based on the above concept, we formulate the audio tag prediction task as
a cost-sensitive classification problem. Specifically, we minimize the total counts
of misclassified tags by treating the tag counts as costs. In other words, our goal
is to correctly predict the most frequently used tags, such as tags of consistent
agreement, popular tags, and the tags for popular songs/albums/artists. For
example, consider the first audio clip from the song Hi-Fi in Table 1 and suppose
a tag prediction system A only predicts the tag “drum” correctly, while another
tag prediction system B predicts two tags “electronic” and “beat” correctly. We
consider that system A outperforms system B because the tag “drum” captures
the major property of this audio clip.

3.1 Cost-sensitive Evaluation Metrics

The evaluation metrics used in MIREX 2009, namely, the accuracy, F-measure,
tag AUC, and clip AUC, did not consider the costs (i.e., tag counts). Moreover,
the class distribution of each binary tag classification problem was imbalanced.
For example, in the MajorMiner dataset used at MIREX 2009, out of the forty-
five tags, only twelve had more than 10% positive instances. Using accuracy
as the evaluation metric biases the system towards the negative class. Since
these metrics do not take the costs into account, we propose three cost-sensitive
metrics. First, we define the cost-sensitive precision (CSP) and the cost-sensitive
recall (CSR) as follows:

CSP =
Weighted Sum of TP

Weighted Sum of TP+Weighted Sum of FP
, (3)

CSR =
Weighted Sum of TP

Weighted Sum of TP+Weighted Sum of FN
, (4)

where TP, FP, and FN denote the true positive, the false positive, and the
false negative, respectively. The weight of each positive instance is assigned as
the count of the associated tag. However, assigning a weight to each negative
instance is not as straightforward because people do not use negative tags like
“non-rock” and “no drum.” Therefore, we assign a uniform cost to negative
instances and balance the cost between positive and negative classes, i.e., the



Audio Tag Annotation and Retrieval by Using Tag Count Information 7

total cost of the positive instances is the same as that of the negative instances.
As a result, the expected CSP of a random guess baseline method will be 0.5.
Then, we can define cost-sensitive metrics based on CSP and CSR.

The cost-sensitive F-measure can be calculated as follows:

2× CSP× CSP
CSP + CSP

. (5)

The receiver operating characteristic curve (ROC) is a graphical plot of the
true positive rate (recall) versus the false positive rate as the decision threshold
varies. The area under the ROC curve (AUC) is often used to evaluate a binary
classifier’s performance on a class-imbalanced dataset. We can modify the AUC
to obtain a cost-sensitive AUC by replacing the recall metric with CSP. Then,
we use the cost-sensitive clip AUC and the cost-sensitive tag AUC to evaluate
the audio annotation task and the audio retrieval task, respectively.

3.2 Cost-sensitive Classification Methods

Support vector machine (SVM) and AdaBoost are two very effective learning
algorithms for classification problems. In this subsection, we describe their cost-
sensitive versions.

The training process of SVM attempts to maximize the margin and minimize
the training error at the same time. The objective function for cost-sensitive SVM
is formulated as follows:

min
w,b,ξ

1
2wT w + C

m∑
i=1

ciξi,

s.t. yi(wT φ(xi) + b) ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m,

(6)

where the parameter w can be learned by solving a minimization problem; φ is
a function that maps the input data to a higher dimensional space and C is a
tuning parameter that exists in the general SVM form. Note that each cost ci is
associated with a corresponding training error term ξi.

AdaBoost finds a highly accurate classifier by combining several base clas-
sifiers, even though each of them is only moderately accurate. Cost-sensitive
AdaBoost [8] maintains a weight vector Dt for the training instances in each it-
eration and uses a base learner to find a base classifier to minimize the weighted
error according to Dt. In each iteration, the weight vector Dt is updated by

Dt+1(i) =
Dt(i) exp(−αtciyiht(xi))

Zt
, (7)

where ht(xi) is the prediction score of the base classifier ht for instance xi; ci

is the cost of each instance; Zt is a normalization factor that makes Dt+1 a dis-
tribution; and αt can be calculated based on different versions of AdaBoost. We
use a decision stump as the base learner in this study. The other implementation
details are the same as the standard AdaBoost [2].
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4 Experiments

The experiments follow our previous setup of the MIREX 2009 extended exper-
iments reported in [5]. We consider forty-five tags, which are associated with
2,472 audio clips downloaded from the website of the MajorMiner game. The
duration of each clip is 10 seconds or less.

Given an audio clip, we divide it into several homogeneous segments by using
an audio novelty curve [1]. Then, using MIRToolbox 1.16, we extract a 174-
dimensional audio feature vector from each segment to reflect various types of
musical information, such as the segment’s dynamics, rhythm, timbre, pitch, and
tonality. For an audio clip, the prediction score given by a classifier is the average
of its constituent segments. The SVM and AdaBoost scores are merged by using
either a probability ensemble to annotate an audio clip, or a ranking ensemble
to rank all the audio clips according to a tag. For the ranking ensemble, we first
rank the prediction scores of individual classifiers independently. Then, a clip’s
final score is the average of the rankings derived by the two classifiers. For the
probability ensemble, we transform the output score of each component classifier
into a probability score with a sigmoid function, and then compute the average
of the two probability scores.

4.1 Model Selection and Evaluation

We adopt three-fold cross-validation in the experiments. The audio clips are
randomly split into three subsets. In each fold, one subset is selected as the
test set and the remaining two subsets serve as the training set. The test set for
(outer) cross-validation is not used to determine the classifier’s settings. Instead,
we perform inner cross-validation on the held out data from the training set to
determine the cost parameter C in SVM and the number of base learners in
AdaBoost. Then, we retrain the classifiers with the complete training set and
the selected parameters, and perform outer cross-validation on the test set. We
use the AUC as the model selection criterion.

To calculate the tag F-measure, we need a threshold to binarize the output
score. In the audio retrieval task, we want to retrieve audio clips from an audio
database. We assume that each tag’s class has similar probability distributions
in the training and testing audio databases; therefore, we set the threshold with
the class’s distribution obtained from the training data. In the audio annotation
task, we annotate the test audio clips one by one. We set the threshold to 0.5
because the calibrated probability score ranges from 0 to 1.

4.2 Experiment Results

We compare the proposed method, which uses the tag count information, with
our MIREX 2009 winning method, which did not use such information. The
experiment results in terms of the cost-sensitive metrics and regular metrics are
6 http://users.jyu.fi/ lartillo/mirtoolbox/
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summarized in Tables 2 and 3, respectively. The AdaBoost, SVM, and classifier
ensemble are the same as those used in the above winning method. We perform
three-fold cross-validation twenty times and calculate the mean and standard
deviation of the results to reduce the variance caused by different cross-validation
splits. Note that the tag AUC and F-measure are more suitable for the audio
retrieval task, while the clip AUC is more suitable for the audio annotation task.

Table 2. Evaluation results of different classifiers and ensemble methods in terms of
cost-sensitive metrics.

Mean CS CS CS
±St.d. Tag AUC Clip AUC F-measure

0.8055 0.8892 0.4099
AdaBoost ±0.0027 ±0.0011 ±0.0052

0.8169 0.8967 0.4469
CS AdaBoost ±0.0023 ±0.0005 ±0.0081

0.8112 0.8957 0.4354
SVM ±0.0022 ±0.0007 ±0.0077

0.8215 0.9005 0.4593
CS SVM ±0.0023 ±0.0004 ±0.0056

0.8334 0.8979 0.4606
Ensemble ±0.0019 ±0.0007 ±0.0067

0.8356 0.9032 0.4808
CS Ensemble ±0.0018 ±0.0006 ±0.0072

The results in Table 2 demonstrate the effectiveness of using the tag counts
to train a cost-sensitive classifier. The cost-sensitive methods outperform their
cost-insensitive counterparts. The improvement in the cost-sensitive F-measure
is the most significant: 3.7% for CS AdaBoost versus AdaBoost and 2.4% for CS
SVM versus SVM. In addition, SVM slightly outperforms AdaBoost, and the
ensemble methods outperform the classifiers using SVM or AdaBoost alone.

Table 3 compares the results of different methods in terms of the regular
(cost-insensitive) evaluation metrics. Interestingly, the cost-sensitive methods
outperform their cost-insensitive counterparts in terms of the regular metrics.
Recall that tags with smaller counts may contain noisy labeling information. By
viewing the tag counts as costs, the cost-sensitive learning method can ignore
the noisy information by giving a smaller penalty (cost), and thereby train a
more accurate classifier.

5 Conclusion

We have proposed a novel method for exploiting tag count information in audio
tagging tasks, and discussed several factors that affect the counts of tags as-
signed to an audio clip. Among the factors, we believe that consistent agreement
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Table 3. Evaluation results of different classifiers and ensemble methods in terms
regular (cost-insensitive) metrics.

Mean
±St.d. Tag AUC Clip AUC F-measure

0.7941 0.8773 0.3018
AdaBoost ±0.0027 ±0.0011 ±0.0035

0.8050 0.8854 0.3216
CS AdaBoost ±0.0023 ±0.0005 ±0.0049

0.7992 0.8837 0.3226
SVM ±0.0021 ±0.0007 ±0.0053

0.8106 0.8894 0.3299
CS SVM ±0.0021 ±0.0004 ±0.0037

0.8221 0.8859 0.3386
Ensemble ±0.0018 ±0.0007 ±0.0046

0.8247 0.8921 0.3442
CS Ensemble ±0.0017 ±0.0005 ±0.0046

is the most important issue, since noisy labeling information in tags assigned less
frequently impacts the training of a tag classifier. We formulate the audio tag
prediction task as a cost-sensitive classification problem in order to minimize
the misclassified tag counts. In addition, we present cost-sensitive versions of
several regular evaluation metrics. The proposed cost-sensitive methods outper-
form their cost-insensitive counterparts in terms of not only the cost-sensitive
evaluation metrics but also the regular evaluation metrics.

We have realized that the audio tagging task can also be formulated as a
multi-label classification problem. In our future work, we will develop a cost-
sensitive multi-label learning algorithm for the task. We will also evaluate our
methods on more multimedia tagging tasks.
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