
JMLR: Workshop and Conference Proceedings 25:81–96, 2012 Asian Conference on Machine Learning

A Ranking-based KNN Approach for Multi-Label
Classification

Tsung-Hsien Chiang r97041@csie.ntu.edu.tw

Hung-Yi Lo hungyi@iis.sinica.edu.tw

Shou-De Lin sdlin@csie.ntu.edu.tw

Graduate Institute of Computer Science and Information Engineering

National Taiwan University

Editor: Steven C.H. Hoi and Wray Buntine

Abstract

Multi-label classification has attracted a great deal of attention in recent years. This paper
presents an interesting finding, namely, being able to identify neighbors with trustable labels
can significantly improve the classification accuracy. Based on this finding, we propose a
k-nearest-neighbor-based ranking approach to solve the multi-label classification problem.
The approach exploits a ranking model to learn which neighbor’s labels are more trustable
candidates for a weighted KNN-based strategy, and then assigns higher weights to those
candidates when making weighted-voting decisions. The weights can then be determined
by using a generalized pattern search technique. We collect several real-word data sets from
various domains for the experiment. Our experiment results demonstrate that the proposed
method outperforms state-of-the-art instance-based learning approaches. We believe that
appropriately exploiting k-nearest neighbors is useful to solve the multi-label problem.

Keywords: Multi-Label classification, Nearest neighbor classification, Ranking, Optimiza-
tion, Generalized pattern search

1. Introduction

1.1. Background

In a conventional classification task, given a set ofm possible disjoint classes, each instance is
associated with one and only one class. Different kinds of machine learning algorithms, such
as the k-nearest neighbor, support vector machine, and logistic regression methods, have
been proposed to resolve such classification problem, and have achieved a satisfactory level
of success. However, in some real-world problems, each instance could be associated with
multiple classes simultaneously, i.e., an instance could have a set of labels. For example,
a song might be annotated as both R&B and Funk. Such prediction tasks are usually
denoted as multi-label classification problems. In fact, a conventional classification problem
is simply a special case of the multi-label classification problem where only one label can
be correct. Multi-label classification problems exist in several domains. In text mining, a
document can be associated with several topics, such as the arts and history; and in gene
functional analysis in bioinformatics, each gene can belong to multiple functional classes,
e.g., metabolism and transcription classes. Meanwhile, in image classification tasks, an
image may contain several concepts simultaneously, such as mountain and sunset.

c© 2012 T.-H. Chiang, H.-Y. Lo & S.-D. Lin.

Chiang Lo Lin

Because of the increase in online labeling/tagging services and the growth in the volume
of data, multi-label classification has attracted a great deal of attention in recent years.
Since each instance may be associated with multiple classes simultaneously, exploiting the
relationships among labels effectively is obviously crucial to the success of a multi-label
classification algorithm. For example, if a picture is annotated as sea, it should have a
higher probability of also being annotated as fish than as cow. The results of the past study
indicate that exploiting the correlations and interdependency between labels can improve
the prediction accuracy (Tsoumakas and Katakis, 2007).

The k-nearest neighbor algorithm (KNN) is an intuitive yet effective machine learning
method for solving conventional classification problems. It is generally regarded as an
instance-based learning or lazy learning method because hypotheses are constructed locally
and the computation is deferred until the test dataset is acquired. In a KNN-based method,
an instance is usually classified by a majority vote of its k-nearest neighbor instances and
assigned to the most common class among those neighbors.

Researchers have tried to extend the KNN concept to handle the multi-label classifi-
cation problem. The Multi-Label K-Nearest Neighbors algorithm (MLKNN) is regarded
as the first multi-label lazy learning algorithm (Zhang and Zhou, 2007). It is an exten-
sion of the KNN algorithm based on the maximum-a-posteriori principle. Subsequently,
Cheng and Hüllermeier (2009) developed the Instance-Based Logistic Regression (IBLR)
algorithm, which is a combination of instance-based learning and logistic regression tech-
niques (Cheng and Hüllermeier, 2009). It includes the statistics of the k-nearest neighbors
as features in logistic regression. Both IBLR and MLKNN are considered state-of-the-art
multi-label classification algorithms that exploit instance-based learning, and can some-
times outperform state-of-the-art model-based approaches (Zhang and Zhou, 2007; Cheng
and Hüllermeier, 2009). In this paper, we propose another kind of KNN-based learning
algorithm for multi-label classification. Our objective is to exploit the dependency among
labels by incorporating a ranking model into the selection process of trustable neighbors.

1.2. Motivation

We began by conducting some experiments to investigate how well a KNN-based algorithm
can achieve in solving a classification problem. In these experiments, we used the Hamming
loss between the label set and the gold standard as the evaluation metric. Hamming loss
calculates the symmetric difference between the test instance label set and the classifier
output label set: the lower the value, the better the classification performance.

Applying instance-based learning to such problems is based on the assumption that
instances with similar features should have similar labels. Given that assumption, an in-
tuitive yet simple way for a KNN approach to predict multi-labels for an instance is to
assume that the labels of an instance are identical to those of its neighbors with the most
similar features. We call the method the feature-KNN approach since the neighbors are
found by using the feature set (i.e., we ignore the label set). We conduct experiments on
six datasets to assess the effectiveness of such approach. The results are shown in the first
row of Table 1. To improve the performance of the KNN algorithm, Dudani (1976) pro-
posed using a weighted voting strategy to weight the votes of the top-k closest neighbors
based on the closeness of their features to those of the instance to be predicted (Dudani,

82

A Ranking-based KNN Approach for Multi-Label Classification

1976). If a neighbor is closer to the instance to be predicted, it should be associated with a
higher weight. We also performed experiments on this approach by identifying the top 10
neighbors of an instance and using weighted votes to determine the outputs, as shown in
Table 1. We found that the feature-KNN approach performs significantly worse than the
two state-of-the-art approaches (i.e. MLKNN and IBLR). The performance of the weighted
version of feature-KNN is competitive with that of MLKNN, but it is still not as good as
IBLR.

yeast scene emotions audio genbase medical
feature-KNN (k = 1) 0.2439 0.1108 0.2333 0.1143 0.0013 0.0197
feature-KNN (k = 10, weighted) 0.1945 0.0896 0.1879 0.0864 0.0028 0.0166
MLKNN (k = 10) 0.1944 0.0857 0.2615 0.0896 0.0046 0.0155
IBLR (k = 10) 0.1935 0.0839 0.1860 0.0840 0.0021 0.0187
Oracle-1 (k = 10) 0.0804 0.0156 0.0468 0.0603 0.0007 0.0054
Oracle-5 (k = 10) 0.1260 0.0443 0.1030 0.0678 0.0018 0.0104

Table 1: Hamming loss of 6 different methods on 6 different datasets. (10-fold cross-
validation, 5-repeat).

The above results hint that not all neighbors are trustable for label prediction. Trustable
neighbors form a subset of feature neighbors whose labels are similar to those of the gold
standard. That is, the trustable neighbors of an instance are the ones that possess the most
similar labels to those of the instance, instead of the most similar features. We call such
neighbors trustable neighbors, in contrast to the feature-neighbors described above. Obvi-
ously, trustable neighbors are more useful than feature-neighbors for KNN-based multi-label
classification because it is the label sets that we true care. To gain a better understand-
ing of how much improvement trustable neighbors can provide, we conducted the following
experiment. Here we assume there is an oracle that can reveal which neighbor among the
k-nearest neighbors has the closest labels to the true label set of the instance to be predicted
(i.e. we want to know which neighbor is the most trustable). We then label x using the
labels of the most trustable instance. This method improves the performance dramatically,
as shown by the results in Table 1 (i.e., Oracle-1). Usually, it reduces the Hamming loss to
at least one-third from the state-of-the-art. We argue that this is the optimal performance
that any KNN-based approach can achieve since the oracle has already identified the most
trustable-neighbor based on the label information. In another similar experiment, we used
majority voting on the top-5 trustable-neighbors (called Oracle-5), assuming they can be
revealed as well. Although the results are not as good as those of the Oracle-1 method, they
are still significantly better than the results of the state-of-the-art methods. The above ex-
periments demonstrate an interesting finding, namely, being able to predict which instances
are trustable from the training data is extremely useful for solving multi-label classification
problems.

Unfortunately, in real-life situations, there is no such oracle to identify the top trustable
neighbors because the label of each instance to be predicted is unknown. Therefore, to solve
the multi-label classification problem, we propose to build a ranking model to learn what the
oracle is supposed to learn. That is, we transform a multi-label classification problem into
a ranking problem in order to predict the top trustable neighbors from the training data.
Then, we integrate the labels of those neighbors to generate the final answers. Since the

83

Chiang Lo Lin

dependency between the labels is already embedded in each instance, our approach considers
the dependency implicitly. The experiment results show that the approach outperforms
state-of-the-art instance-based methods.

1.3. Problem Definition and Proposed Solution

In this paper, we propose a ranking-based KNN approach for multi-label classification.
Given an unknown test instance x, the approach determines the final label set of the in-
stance, as shown in Figure 1. First, similar to other KNN-based methods, we identify the
k-nearest neighbors of x. Then the selected neighbors are re-ranked by a ranking model
trained on their trustiness (i.e., how close their label sets are to the true label set). That is,
the ranking model tries to promote the neighbors whose label set is the closest to the true
label set of x. After deriving the re-ranked neighbors, we use a weighted voting strategy
to produce the final prediction. The weights are learned by an optimization method that
minimizes a given loss function. In the experiments, we use the Hamming loss as the per-
formance metric. We discuss the ranking model and the weights in Section 3. It is worth
noting that our strategy can be regarded as a ”complicated similarity function” that tries
to learn the oracle distance (or label distance). It can be incorporated with any distance
metric to provide some degree of improvement.

Figure 1: Testing overview

1.4. Contribution

In this paper, we propose a novel KNN-based approach to solve the multi-label classification
problem. We transform a multi-label classification problem to a k-nearest neighbors ranking
problem. In this way, the relations between labels can be considered. According to the
experiment results, our method is competitive with IBLR, which could be considered a
state-of-the-art multi-label classification algorithm via instance-based learning approach.

1.5. Paper Organization

The rest of this paper is organized as follows. The related work is in Chapter 2. Our
proposed method is described in Chapter 3. The experiment results are presented in Chapter
4. Finally, the conclusion and future work are summarized in Chapter 5.

2. Related Work

Before introducing related works, we formally define the multi-label classification problem:
Let X denote the domain of an instance and let L = {λ1, ..., λm} denote the complete set of

84

A Ranking-based KNN Approach for Multi-Label Classification

labels. Assume we are given a multi-label training data set T = {(x1, Y (x1)), ..., (xu, Y (xu))},
whose instances are drawn identically and independently from an unknown distribution D.
Each instance x ∈ X is associated with a label set Y (x) ⊆ L. The goal of multi-label
classification is to train a classifier h : X → 2L that maps a feature vector to a set of labels,
while optimizing some specific evaluation metrics.

Existing multi-label classification algorithms can be divided into two categories: Prob-
lem Transformation and Algorithm Adaptation (Tsoumakas and Katakis, 2007). The former
decomposes a multi-label classification task into one or more single-label classification tasks.
Therefore, existing single-label classification algorithms can be applied to problems directly.
Problem transformation approaches, such as Binary Relevance and Label Power-set, are
widely used in classification tasks. Algorithm Adaptation tries to modify specific algorithms
to handle multi-label data directly. MLKNN, IBLR are well-known Algorithm Adaptation
approaches. In this paper, we only discuss non-instance-based approaches briefly, as we
focus on two well known instance-based approaches, namely, MLKNN and IBLR.

2.1. MLKNN

MLKNN, the first multi-label lazy learning approach, is based on the traditional KNN
algorithm (Zhang and Zhou, 2007). The rationale for the approach is that an instance’s
labels depend on the number of neighbors that possess identical labels. Given a to-be-
labeled instance x with an unknown label set Y (x) ⊆ L, MLKNN first identifies the k
nearest neighbors in the training data and counts the number of neighbors belonging to
each class (i.e. a random variable Z). Then the maximum a posteriori principle is used to
determine the label set for the test instance. The posterior probability of λi ∈ L is given by

P (λi ∈ Y (x)|Z = z) =
P (Z = z|λi ∈ Y (x)) · P (λi ∈ Y (x))

P (Z = z)
. (1)

Then, for each label λi ∈ L, the algorithm builds a classifier hi using the rule

hi(x) =

{
1 P (λi ∈ Y (x)|Z = z) > P (λi /∈ Y (x)|Z = z)
0 otherwise.

(2)

hi(x) = 1 means λi is relevant to x, while 0 means it is not relevant. The prior and
likelihood probabilities in Equation 1 are estimated from the training data set in advance.
The reported experiment results show that MLKNN performed well on several real-world
data sets (Zhang and Zhou, 2007). However, MLKNN is actually a binary relevance learner
because it learns a single classifier hi for each label independently. In other words, it does
not consider the correlations between labels. The algorithm is often criticized because of
this drawback.

2.2. IBLR

Instance Based Logistic Regression (IBLR) is a novel approach that combines instance-based
learning and logistic regression (Cheng and Hüllermeier, 2009). Under this approach, the
label statistics of neighboring instances are regarded as features by the logistic regression
classifier. IBLR defines the posterior probability of λi ∈ L as follows:

π
(i)
0 = P (λi ∈ Y (x)|Nk(x)), (3)

85

Chiang Lo Lin

where Nk(x) denotes the k-nearest neighbors of x. For each label λi ∈ L, IBLR trains a
logistic regression classifier hi derived from the model

log

(
π
(i)
0

1− π(i)0

)
= ω

(i)
0 +

m∑
j=1

α
(i)
j · ω

(i)
+j(x) (4)

where ω
(i)
+j(x) is defined by

ω
(i)
+j(x) =

∑
x̃∈Nk(x)

yj(x̃), (5)

which is a summary of the presence of the j-th label λj in Nk(x). Here, yj(x̃) = 1 if λj is

relevant to x̃ and 0 otherwise; and ω
(i)
0 is a bias term.

Obviously, this approach considers the correlation between labels. According the re-
ported experiment results, IBLR’s performance on several real-world problems compares
favorably with that of some state-of-the-art multi-label model-based classification algo-
rithms (Cheng and Hüllermeier, 2009).

3. Methodology

As mentioned earlier, we propose a ranking-based KNN framework for multi-label classifica-
tion. Algorithm 1 shows the steps of our decision-making strategy for test instances. Given
a test instance x, we begin by finding its k-nearest neighbors. Let {Nk(x, j)|j = 1, ..., k} be
the k-nearest neighbors of the instance x. Nk(x, j) is the j-th nearest feature-neighbor of
the instance x. Then, we exploit a global ranking model to re-rank the k-nearest neighbors.
Let {N ′k(x, j)|j = 1, ..., k} be the re-ranked neighbors of the instance x. N ′k(x, j) is the j-th
trustable neighbor of the instance x, decided by the ranking model. Finally, we apply a
weighted voting strategy to obtain the final prediction. In the following sections, we will
discuss the ranking model used to re-rank the k-nearest neighbors based on their trustiness,
and explain how to determine the weights for the weighted voting strategy.

Algorithm 1 Predict(x, k,M, T,w)

Input:
x: The test instance
k: The number of neighbors
M : The ranking model
T : The training data set {(x1, Y (x1)), ..., (xu, Y (xu))}
w: The weight scores for re-ranked k-nearest neighbors

Output:
Y (x): The result label set

1: {Nk(x, j)|j = 1, ..., k} = KnnSearch(x, k, T)
2: {N ′k(x, j)|j = 1, ..., k} = ReRank(x, k, {Nk(x, j)|j = 1, ..., k} ,M)
3: Y (x) = WeightedV oting({N ′k(x, j)|j = 1, ..., k} , w)

86

A Ranking-based KNN Approach for Multi-Label Classification

3.1. Trust-based Ranking Model

We train a ranking model to determine which neighbor’s label set tends to be closer to
the true label set. The training process is shown in Figure 2, and Algorithm 2 details the
training pseudo code. Let x denote the instance’s feature vector, and let Y (x) denote the

Figure 2: The training process building the ranking model

label set associated with x. First, for each instance xi, we identify its k-nearest neighbors
(line 2). Then, for the j-th nearest neighbor Nk(xi, j), we create a new instance qj by using
the features related to Nk(xi, j) and xi (line 6). The new instance qj contains the following
features:

• The difference between each feature value of Nk(xi, j) and xi (size = dim(X))
• The Euclidean distance between Nk(xi, j) and xi (size = 1)
• The cosine distance between Nk(xi, j) and xi (size = 1)
• The label set of Nk(xi, j) (size = |L|)

Note that dim(X) is the dimension of X. Hence, using the training instance xi and its
k-nearest neighbors, we create k instances and form the set Qi = {q1, q2, ..., qk}. Since the
goal is to train a ranking model that can learn the trustiness of an instance’s neighbors, we
propose using a difference function (e.g., Hamming loss) between Nk(xi, j)’s label set and
xi’s label set to determine the quality of each new instance qj (line 7). Based on this value,
a pair-wise comparison can be made and a ranking-based classifier can be trained. In the
experiment, we employ the Hamming loss because it is one of the final evaluation criteria
used to evaluate the multi-label classification task. If another criterion is chosen, then it is
reasonable to use it to rank new instances. Hamming loss is defined as follows:

HammingLoss(L1, L2) =
1

|L|
|L1∆L2| . (6)

Given two label sets L1 and L2, Hamming loss calculates the percentage of labels that are
not consistent. The lower Hamming loss, the higher will be the rank assigned to a new
instance q. In line 10, we use Hamming loss to define the ranking relation Ri over Qi ×Qi

qa ≤Ri qb for all pairs (qa, qb) ∈ Qi ×Qi, with hma ≤ hmb, (7)

where qa ≤Ri qb means that the rank of qa is higher than the one of qb.

87

Chiang Lo Lin

Algorithm 2 BuildKnnRankingModel(k, T)

Input:
k: The number of neighbors
T : The training data set {(x1, Y (x1)), ..., (xu, Y (xu))}

Output:
M : The ranking model

1: for i = 1 to n do
2: {Nk(xi, j)|j = 1, ..., k} = KnnSearch(xi, k, T)
3: Qi = {}
4: for j = 1 to k do
5: x̃ = Nk(xi, j)
6: qj = (x̃− xi, EuclideanDistance(x̃, xi), CosineDistance(x̃, xi), Y (x̃))
7: hmj = HammingLoss(Y (x̃), Y (xi))
8: add qj to Qi
9: end for

10: Construct the ranking relation Ri over Qi ×Qi
11: end for
12: M = BuildRankingModel({Ri|i = 1, ..., n})

Finally, we exploit all the relations to train a global ranking model (line 12). From
Figure 2, one would think that every instance is used to train a ranking model, however,
actually only one global ranking model would be trained in the training process. Note
that in this paper we propose a framework to solve the multi-label classification problem.
Any off-the-shelf ranking algorithms can be used in line 12. In our experiment, we choose
Ranking SVM as the ranking algorithm (Joachims, 2002).

In the decision making (or testing) phase, when an un-labeled instance x is found,
the algorithm combines the instance’s k-nearest neighbors to create k new instances in
the same way. Then the instances are sent to the trained ranking model for re-ranking.
The ranking outputted by the ranking model can represents the ranking of corresponding
neighboring instances. According to the ranking, we re-rank the original k-nearest neighbors
{Nk(x, j)|j = 1, ..., k} and get re-ranked neighbors {N ′k(x, j)|j = 1, ..., k}. A weighted voting
process is then applied to the labels of the re-ranked neighbors to obtain the final predictions.

3.2. Determining Voting Weights

In this section, we explain how the weights for voting can be generated. Given the ranked
list of label sets obtained in the previous stage, each neighbor is assigned a weight score.
Then, the weighted voting strategy aggregates the information from different label sets. We
model the task as an optimization problem in which the objective is to minimize certain
loss function (i.e. the Hamming loss in our experiment).

Let (w1, ..., wk) denote weight scores of the re-ranked neighbors {N ′k(x, j)|j = 1, ..., k}.
For each label λi ∈ L, it is possible to produce an accumulated score as the weighted sum

88

A Ranking-based KNN Approach for Multi-Label Classification

of k scores from each re-ranked neighbor

fi(x) =

∑k
j=1wj · yi(N ′k(x, j))∑k

j=1wj
. (8)

The denominator is regarded as the normalization factor. We predict whether the test
instance x should be associated with λi by the rule

hi(x) =

{
1 fi(x) ≥ 0.5
0 fi(x) < 0.5.

(9)

The final prediction of the label set of x is defined as

H(x) = {λi|hi(x) = 1} . (10)

Equation 8, 9, and 10 essentially capture the idea that if the majority of the neighbors’ votes
are positive, the instance should be regarded as positive; otherwise, it should be considered
negative.

To determine the optimal weights, the optimization problem is formulated as follows:

minimize
w1,...,wk

∑
x∈T ′

HammingLoss(Y (x), H(x)) (11)

subject to 1 ≥ w1 ≥ w2 ≥ ... ≥ wk ≥ 0. (12)

For the fairness, we additionally use the held-out set T ′ to handle the optimization task,
instead of the original training set used to train the ranking model. Note that in the KNN
search process, neighboring instances are still searched in the training set. Some constraints
are added to this objective function. First, we consider all weights are between 0 and 1.
Second, the neighbor with a higher rank should be associated with a higher weight. Since
Equation 9 is not a continuous function, finding an analytical solution for Equation 11 is a
non-trival task; therefore, we exploit the direct search techniques to solve this problem.

Direct search methods have been known since the 1950s (Kolda et al., 2003). Although
they were developed heuristically, they remain an effective option, especially for difficult
optimization problems (Lewis and Torczon, 1999; Audet, 2004). Generalized pattern search,
the algorithm adopted in this paper, is one of the most popular direct search methods.
Studies in the literature report that when the objective function is not continuous, the
generalized pattern search approach usually performs well (Audet, 2004).

Given an objective function f : Rr → R, the generalized pattern search algorithm first
defines a pattern set V , the set of unit vectors, used to determine the points to examine
at each iteration. To find a point that improves the objective function, at each iteration,
the algorithm searches a set of points, called a mesh. It then generates a set of vectors by
multiplying each pattern vector vi ∈ V by a scalar ∆, which is called the mesh size. From
the derived vectors and the current point, we can obtain new points, called mesh points,
which may yield better solutions.

89

Chiang Lo Lin

Algorithm 3 GeneralizedPatternSearch(f, x0,∆0,∆tol)

Input:
f : The objective function
x0: The initial guess point
∆0: The initial mesh size
∆tol: The tolerance of the mesh size

Output:
xopt: The solution for the optimization problem

1: Let V be the set of coordinate directions {±ei|i = 1, ..., r}, where ei is the i-th unit
vector in Rr.

2: for i = 0, 1, 2, ... do
3: if there exists vi ∈ V such that f(xi + ∆ivi) < f(xi) then
4: xi+1 = xi + ∆ivi
5: ∆i+1 = ∆i

6: else
7: xi+1 = xi
8: ∆i+1 = 1

2∆i

9: if ∆i+1 < ∆tol then
10: xopt = xi+1

11: return xopt
12: end if
13: end if
14: end for

After determining the mesh points, the algorithm performs the polling step. Specifically,
it polls current mesh points by computing their objective function values. When it finds a
mesh point whose objective function value is less than that of the current point, it stops the
polling process. This poll is considered a success and the newly discovered point becomes
the current point at the next iteration. If the algorithm fails to find a mesh point to improve
the objective function, the poll is deemed a failure. The current point will not be changed
at the next iteration, but the mesh size will be reduced by half. The mesh point search step
and the polling step are repeated until the mesh size is less than a threshold. The pseudo
code of generalized pattern search algorithm is shown in Algorithm 3. Note that different
initial points yield different solutions, so random restart is needed to perform a generalized
pattern search.

4. Experiment

We compare the proposed methods with other KNN-based multi-label classification algo-
rithms on several data sets. In the following sections, we describe the experiment setup
including the data sets, the compared algorithms, and the evaluation criteria, and then
discuss the experiment results.

90

A Ranking-based KNN Approach for Multi-Label Classification

4.1. Data Sets

We conduct experiments on six commonly used data sets belonging to different domains.
The statistics of the data sets are shown in Table 2. Note that the cardinality is defined
as the average number of labels per instance, while the density is the same number divided
by |L|. The ”distinct” column shows the number of distinct label sets. We describe each
dataset below.

instances features labels cardinality density distinct
yeast 2417 103 14 4.237 0.303 198
scene 2407 294 6 1.074 0.179 15
emotions 593 72 6 1.869 0.311 27
audio 2472 177 45 4.119 0.092 1553
genbase 662 1186 27 1.252 0.046 32
medical 978 1449 45 1.245 0.028 94

Table 2: Statistics of the multi-label data sets

The yeast data set is used to predict the gene functional classes of the Yeast Saccha-
romyces cerevisiae (Elisseeff and Weston, 2002). The features of the data set correspond to
the micro-array expression data and phylogenetic profiles of the genes. The scene data set
is used to predict the semantics of the scenes in the pictures (Boutell et al., 2004). Each
picture is associated with a set of six classes: beach, sunset, foliage, field, mountain, and
urban. The features contain spatial color moments in the LUV space. It has been shown
that color and spatial information is effective in distinguishing between outdoor scenes. The
emotions data set contains 593 instances, each of which is a music clip that is described
by 72 extracted features (Trohidis et al., 2008). The audio data set was obtained from the
MajorMinor’s music labeling game (Lo et al., 2010). In the game, players can listen to
10-second music clips and tag them. The features of the data set are divided into five types:
dynamics, rhythm, timbre, pitch, and tonality. The medical data set is used to predict the
categories of clinical free text. The data was obtained from the Medical NLP challenge,
sponsored by the Computational Medical Center.

4.2. Evaluation Metrics

A number of metrics have been proposed for evaluating the performance of multi-label
classification algorithms (Tsoumakas and Katakis, 2007). For a classifier H, let H(x) denote
the label set of instance x predicted by the classifier, and let Y (x) be the answer.

In most cases, the classifier produces a scoring function f(x, λ) denoting the score as-
signed to label λ for the instance x, and rankf (x, λ) denoting the position of the label λ for
the instance x in the ordering induced by f . We use four evaluation metrics for multi-label
classification: the Hamming loss, one error, average precision and root-mean-square-error.
The definitions of the metrics are described as follows:

Hamming loss: as mentioned previously, the Hamming loss calculates the percentage of
labels whose relevance is predicted incorrectly. The value is between 0 and 1.

HammingLoss(h) =
1

|T |

|T |∑
i=1

1

|L|
|H(xi)∆Y (xi)| , (13)

where ∆ is the symmetric difference between two sets.

91

Chiang Lo Lin

One error: the metric computes how many times the top-ranked label is not relevant.

OneError(f) =
1

|T |

|T |∑
i=1

I (argmaxλ∈Lf(xi, λ) /∈ Y (xi)) , (14)

where I(π) equals 1 if π holds and 0 otherwise.
Average precision: this is the average of the per-instance average precision over all test

instances. The value is between 0 and 1. The higher value, the better performance:

AvgPrec(f) =
1

|T |

|T |∑
i=1

 1

|Y (xi)|
∑

λ∈Y (xi)

|λ′|rankf (xi, λ
′) ≤ rankf (xi, λ), λ′ ∈ Y (xi)|
rankf (xi, λ)

 .

(15)
Finally, we use root mean square error (RMSE) to evaluate the average performance on

each label:

RMSE(f) =

√√√√∑|L|j=1

∑|T |
i=1(fj(xi)− yj(xi))2

|T | |L|
, (16)

where fj(x), described in Equation 8, is the accumulated score of λj .

4.3. Experiment Setup and Results

We compare the proposed method’s performance with that of two other multi-label instance-
based learning algorithms: MLKNN and IBLR, which are regarded as state-of-the-art ap-
proaches. Both algorithms are parameterized by the size of the neighborhood k. Following
their experiment setup (Zhang and Zhou, 2007; Cheng and Hüllermeier, 2009), we set the
value of k = 10, and use the Euclidean metric as the distance function. We choose two
baseline methods by using binary relevance learning with two different classifiers: logis-
tic regression (BR-LR), and KNN where k=10 (BR-KNN). Another multi-label algorithm,
RAKEL, is also used in our experiment (Tsoumakas et al., 2011). Although RAKEL is
not an instance-based learning method, it is an effective multi-label algorithm, according
to a recent study (Madjarov et al., 2012). The base classifier of RAKEL is L2-loss linear
SVM, and the parameters are determined by cross-validation. Note that all the algorithms
are implemented in the MULAN package (Tsoumakas and Katakis, 2007), and the logistic
regression algorithm in IBLR and BR-LR is implemented in the Weka package. Since LP
performance is not better than BR performance on several datasets (Zhang and Zhou, 2007;
Cheng and Hüllermeier, 2009), we only use two BR algorithms as our baseline. In our pro-
posed framework, we have tried several ranking algorithms: Ranking SVM (RS) (Joachims,
2002), Passive-Aggressive Perceptron (PA) (Crammer et al., 2006), and Perceptron with
Margins (PM) (Sculley, 2009). For the generalized pattern search algorithm, we randomly
generate 300 points for the initial points, and adopt the values ∆0 = 1 and ∆tol = 10−6.

We perform 10-fold 5-repeat cross-validation on the above data sets. A separate ranking
model was learned on each training set of the cross-validation, however, we pick out 20%
instances of the training set and use them as the held-out set to perform the optimization
task described earlier. All methods use exactly the same training and testing sets, hence
all KNN-based methods use the same set of neighbors. In this way, given the same set

92

A Ranking-based KNN Approach for Multi-Label Classification

of neighbors, we can distinguish which KNN-based method can obtain better results. The
experiment results are shown in Table 3. The numbers in parentheses represent the rank
of the algorithms among the compared algorithms. In general, IBLR outperforms the BR-
LR algorithm significantly, which implies that exploiting the frequency of neighbors’ label
features is effective. Meanwhile, MLKNN and BR-KNN do not perform as well as IBLR.
This implies that exploiting neighbor information alone is not sufficient, and the correlations
between labels should also be considered. RAKEL has the best performance on the data
sets audio and medical, however, it does not perform well on the other data sets. In our
proposed framework, choosing a suitable ranking algorithm is important. Ranking SVM
outperforms Passive-Aggressive Perceptron and Perceptron with Margins.

Overall, our proposed framework with Ranking SVM (RS) outperform the compared
methods on each measure. The average ranking of our method on 6 datasets using four
different metrics is (1.67, 2.17, 1.67, 2.33), while the second best algorithm, IBLR, only
achieves (3.00, 2.83, 2.83, 2.67). It is worth noting that, although our training of the
ranked-based model and weight determination focus on minimizing the Hamming loss, the
proposed methods not only perform the best (average rank=1.33) on the Hamming loss but
also perform very well in terms of the other three metrics. We performed the significance test
to check whether our algorithm is significantly better than other algorithms. We conducted
the t-test between RS and IBLR (2nd best algorithm in general). Out of the 24 experiments,
15 of them has p-value smaller than or equal to 0.05. Out of these 15 cases, our algorithm
wins in 9 cases.

Table 3: Experiment Results

BR-KNN BR-LR IBLR MLKNN RAKEL PM PA RS P-value
Hamming Loss
yeast 0.198 (6) 0.206 (8) 0.194 (2) 0.194 (3) 0.202 (7) 0.196 (5) 0.195 (4) 0.191 (1) 0.05
scene 0.093 (7) 0.140 (8) 0.084 (2) 0.086 (3) 0.091 (5) 0.092 (6) 0.089 (4) 0.082 (1) 0.11
emotions 0.194 (3) 0.217 (7) 0.186 (1) 0.261 (8) 0.212 (6) 0.195 (5) 0.194 (4) 0.187 (2) 0.45
audio 0.089 (6) 0.102 (8) 0.084 (2) 0.090 (7) 0.079 (1) 0.087 (5) 0.086 (4) 0.086 (3) 0.00
genbase 0.003 (5) 0.002 (3) 0.002 (4) 0.005 (7) 0.007 (8) 0.003 (6) 0.001 (2) 0.001 (1) 0.00
medical 0.017 (5) 0.026 (8) 0.019 (7) 0.015 (4) 0.010 (1) 0.017 (6) 0.013 (3) 0.012 (2) 0.00
AvgRank 5.33 7.00 3.00 5.33 4.67 5.50 3.50 1.67
One Error
yeast 0.233 (4) 0.242 (7) 0.228 (1) 0.230 (2) 0.253 (8) 0.239 (6) 0.236 (5) 0.233 (3) 0.17
scene 0.258 (7) 0.367 (8) 0.224 (2) 0.224 (3) 0.239 (5) 0.248 (6) 0.236 (4) 0.220 (1) 0.22
emotions 0.262 (4) 0.280 (6) 0.254 (1) 0.380 (8) 0.333 (7) 0.271 (5) 0.261 (2) 0.262 (3) 0.25
audio 0.460 (5) 0.643 (8) 0.428 (2) 0.550 (7) 0.369 (1) 0.462 (6) 0.459 (4) 0.458 (3) 0.00
genbase 0.006 (3) 0.014 (8) 0.009 (5) 0.010 (6) 0.012 (7) 0.008 (4) 0.005 (2) 0.005 (1) 0.03
medical 0.289 (5) 0.324 (8) 0.307 (6) 0.245 (4) 0.136 (1) 0.307 (7) 0.195 (3) 0.174 (2) 0.00
AvgRank 4.67 7.50 2.83 5.00 4.83 5.67 3.33 2.17
Average Precision
yeast 0.760 (6) 0.755 (7) 0.768 (1) 0.764 (3) 0.713 (8) 0.761 (5) 0.763 (4) 0.767 (2) 0.41
scene 0.846 (7) 0.767 (8) 0.867 (2) 0.866 (3) 0.848 (6) 0.851 (5) 0.858 (4) 0.867 (1) 0.46
emotions 0.802 (3) 0.794 (6) 0.814 (1) 0.715 (8) 0.753 (7) 0.799 (5) 0.802 (4) 0.804 (2) 0.06
audio 0.528 (4) 0.489 (7) 0.557 (1) 0.448 (8) 0.519 (6) 0.526 (5) 0.530 (3) 0.531 (2) 0.00
genbase 0.992 (3) 0.988 (7) 0.989 (5) 0.988 (6) 0.980 (8) 0.991 (4) 0.992 (2) 0.992 (1) 0.03
medical 0.776 (5) 0.748 (8) 0.759 (7) 0.811 (4) 0.871 (1) 0.766 (6) 0.839 (3) 0.849 (2) 0.00
AvgRank 4.67 7.17 2.83 5.33 6.00 5.00 3.33 1.67
RMSE
yeast 0.376 (3) 0.385 (7) 0.372 (1) 0.374 (2) 0.426 (8) 0.378 (6) 0.376 (5) 0.376 (4) 0.00
scene 0.261 (5) 0.344 (8) 0.249 (2) 0.251 (3) 0.276 (7) 0.262 (6) 0.257 (4) 0.248 (1) 0.46
emotions 0.369 (2) 0.398 (6) 0.364 (1) 0.420 (7) 0.424 (8) 0.373 (5) 0.371 (4) 0.370 (3) 0.02
audio 0.258 (4) 0.286 (8) 0.252 (1) 0.266 (7) 0.262 (6) 0.260 (5) 0.258 (3) 0.257 (2) 0.00
genbase 0.049 (5) 0.041 (3) 0.041 (4) 0.054 (7) 0.073 (8) 0.051 (6) 0.031 (1) 0.031 (2) 0.00
medical 0.118 (5) 0.157 (8) 0.126 (7) 0.112 (4) 0.090 (1) 0.119 (6) 0.103 (3) 0.100 (2) 0.00
AvgRank 4.00 6.67 2.67 5.00 6.33 5.67 3.33 2.33

93

Chiang Lo Lin

4.4. Ranking vs. Weighted Voting

Since the proposed solution is comprised of two components, KNN re-ranking and voting
weight optimization, we want to determine each component’s contribution to the overall
performance. We compare six types of set-up, as shown in Table 4. The results are shown
in Table 5.

Re-ranked KNN KNN
Generalized Pattern Search RK+GPS K+GPS

Linear Weighting RK+LW K+LW
Logistic Regression RK+LR K+LR

Table 4: Six experiment setups for different component combinations

We compare our ranking-based method with the original KNN approach (without re-
ranking). For weight determination, besides the proposed method, we tried assigning mono-
tonically decreasing weights manually (i.e. the top-ranked neighbor was assigned weight k,
and the lowest-ranked neighbor was assigned weight 1).

We also use another approach to determine the weights. In this approach, we concate-
nate all neighbors’ labels as the features of training instances. Then for each label, we
train a classifier such that the probability outputted by the classifier can be used as the
weight score. Logistic regression is used in this method. The results demonstrate that either
re-ranking and weight-voting contributes to the overall performance in its own aspect.

RK+GPS RK+LW RK+LR K+GPS K+LW K+LR
yeast 0.1910 0.1912 0.2065 0.1949 0.1960 0.2077
scene 0.0817 0.0846 0.0835 0.0902 0.0909 0.0869
emotions 0.1866 0.1860 0.2153 0.1918 0.1915 0.2157
audio 0.0857 0.0858 0.1541 0.0864 0.0872 0.1526
genbase 0.0011 0.0022 0.0027 0.0014 0.0023 0.0041
medical 0.0117 0.0143 0.0417 0.0157 0.0162 0.0521

Table 5: Hamming Loss results of different combination approaches

5. Conclusion

We have proposed a k-nearest-neighbor-based ranking approach to solve the multi-label
classification problem. The major contributions of this paper are as follows.

1. We observe an interesting phenomenon from the data, namely, it is possible to improve
the accuracy of state-of-the-art multi-label classification approaches if the trustable
neighbors of instances can be identified. Our finding on the surprisingly good upper-
bound performance (i.e. oracle-1 and oracle-5) also confirms the legitimacy of ex-
ploiting an instance-based learning method for multi-label classification. It suggests
that the KNN-based approaches could enjoy more benefits to multi-label tasks than
to single-label task.

94

A Ranking-based KNN Approach for Multi-Label Classification

2. Based on the above finding, we present a method that combines weighted KNN and
ranked learning methods to solve the multi-label classification problem. The experi-
ment results demonstrate the efficacy of our approach.

References

Charles Audet. Convergence results for generalized pattern search algorithms are tight.
Optimization and Engineering, 5:101–122, 2004. ISSN 1389-4420.

Matthew R. Boutell, Jiebo Luo, Xipeng Shen, and Christopher M. Brown. Learning multi-
label scene classification. Pattern Recognition, 37(9):1757 – 1771, 2004. ISSN 0031-3203.

Weiwei Cheng and Eyke Hüllermeier. Combining instance-based learning and logistic re-
gression for multilabel classification. Machine Learning, 76:211–225, September 2009.
ISSN 0885-6125.

Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. Online
passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551–585,
December 2006. ISSN 1532-4435.

Sahibsingh A. Dudani. The distance-weighted k-nearest-neighbor rule. Systems, Man and
Cybernetics, IEEE Transactions on, SMC-6(4):325 –327, april 1976. ISSN 0018-9472.

André Elisseeff and Jason Weston. A kernel method for multi-labelled classification. In
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14 (NIPS-01), pages 681–687, 2002.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM. ISBN 1-58113-567-X.

Tamara G. Kolda, Robert Michael Lewis, and Virginia Torczon. Optimization by direct
search: New perspectives on some classical and modern methods. SIAM Review, 45:
385–482, 2003.

Robert Michael Lewis and Virginia Torczon. Pattern search algorithms for bound con-
strained minimization. SIAM Journal on Optimization, 9:1082–1099, April 1999. ISSN
1052-6234.

Hung-Yi Lo, Ju-Chiang Wang, and Hsin-Min Wang. Homogeneous segmentation and clas-
sifier ensemble for audio tag annotation and retrieval. In Multimedia and Expo (ICME),
2010 IEEE International Conference on, pages 304 –309, july 2010.

Gjorgji Madjarov, Dragi Kocev, Dejan Gjorgjevikj, and SašO Džeroski. An extensive experi-
mental comparison of methods for multi-label learning. Pattern Recogn., 45(9):3084–3104,
September 2012. ISSN 0031-3203.

D. Sculley. Large Scale Learning to Rank. In NIPS 2009 Workshop on Advances in Ranking,
December 2009.

95

Chiang Lo Lin

Konstantinos Trohidis, Grigorios Tsoumakas, George Kalliris, and Ioannis P. Vlahavas.
Multi-label classification of music into emotions. In Juan Pablo Bello, Elaine Chew, and
Douglas Turnbull, editors, ISMIR, pages 325–330, 2008. ISBN 978-0-615-24849-3.

Grigorios Tsoumakas and Ioannis Katakis. Multi label classification: An overview. Inter-
national Journal of Data Warehouse and Mining, 3(3):1–13, 2007.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Random k-labelsets for multi-
label classification. IEEE Transactions on Knowledge and Data Engineering, 23(7):1079–
1089, 2011.

Min-Ling Zhang and Zhi-Hua Zhou. Ml-knn: A lazy learning approach to multi-label
learning. Pattern Recognition, 40:2038–2048, July 2007. ISSN 0031-3203.

96

	Introduction
	Background
	Motivation
	Problem Definition and Proposed Solution
	Contribution
	Paper Organization

	Related Work
	MLKNN
	IBLR

	Methodology
	Trust-based Ranking Model
	Determining Voting Weights

	Experiment
	Data Sets
	Evaluation Metrics
	Experiment Setup and Results
	Ranking vs. Weighted Voting

	Conclusion

