
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, SEPTEMBER 2013 1

Generalized k-Labelsets Ensemble for
Multi-Label and Cost-Sensitive Classification

Hung-Yi Lo, Shou-De Lin, and Hsin-Min Wang Senior Member, IEEE

Abstract—Label powerset (LP) method is one category of multi-label learning algorithm. This paper presents a basis expansions model
for multi-label classification, where a basis function is a LP classifier trained on a random k-labelset. The expansion coefficients are
learned to minimize the global error between the prediction and the ground truth. We derive an analytic solution to learn the coefficients
efficiently. We further extend this model to handle the cost-sensitive multi-label classification problem, and apply it in social tagging to
handle the issue of the noisy training set by treating the tag counts as the misclassification costs. We have conducted experiments on
several benchmark datasets and compared our method with other state-of-the-art multi-label learning methods. Experimental results
on both multi-label classification and cost-sensitive social tagging demonstrate that our method has better performance than other
methods.
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1 INTRODUCTION

MULTI-LABEL classification has attracted a great deal
of attention in recent years. Different from single

label classification, in multi-label classification, an in-
stance could be associated with a set of labels jointly,
instead of only one single label. For example, in image
classification, an image may possess several concepts,
such as “sea” and “sunset”.

Label powerset (LP) [1] method is a kind of multi-
label learning algorithm, which reduces the multi-label
classification problem to a single-label multi-class classi-
fication problem by treating each distinct combination
of labels in the training set as a different class. Given
a test instance, the multi-class LP classifier predicts the
most probable class, which can be transformed to a set of
labels. Table 1 shows an example of multi-label dataset
with transformed multi-class label based on the concept
of LP. In contrast to the binary relevance approach,
which loses the label dependency information while
learning a binary classifier for each label independently,
the LP method exploits conditional label dependency
information by learning the joint label distribution [2].
However, one major concern for this model is that, when
the number of labels increases, the number of potential
classes increases proportionally, and each class will be as-
sociated with very few training instances. Moreover, LP
can only predict labelsets observed in the training data.
In [3], a method called Random k-Labelsets (RAkEL) is
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TABLE 1
An Example Multi-Label Dataset with Transformed

Multi-Class Labels

Instance Label Set Transformed Class

1 Rock,Guitar 1
2 Rock, Guitar, Drum 2
3 Rock, Guitar, Vocal 3
4 Country, Guitar 4
5 Rock, Guitar, Drum 2
6 R&B, Vocal 5
7 Country, Guitar 4
8 Vocal 6

proposed to overcome the drawback of the traditional
LP method. RAkEL randomly selects a number of label
subsets from the original set of labels and uses the LP
method to train the corresponding multi-class classifiers.
The final prediction of RAkEL is made by voting of the
LP classifiers in the ensemble. This method can not only
reduce the number of classes, but also allow each class to
have more training instances. Experimental results have
shown an improvement of RAkEL over LP.

As RAkEL is considered an ensemble-based multi-
label classification method, it has to follow the theory
states [4] that “a necessary and sufficient condition for an
ensemble of classifiers to be more accurate than any of its
individual members is if the individual classifiers are ac-
curate and diverse”. Here the term accurate implies that
such classifier has a lower error rate than random guess-
ing. In RAkEL, the diversity of classifiers is achieved by
randomly selecting label subsets. The major limitation of
this kind of ensemble method is that such “committee-
of-diverse-experts” heuristics do not directly optimize
for the learning objective. In contrast, AdaBoost.M2 [5]
is an ensemble method for single-label classification,
which directly optimizes a learning objective. Breiman
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[6] shows that the training procedure of AdaBoost is a
form of gradient optimization to minimize the objective
function J(F ) =

∑
i exp(−yiF (xi)), where yi is the class

label of the instance xi and F (·) is a hypothesis classifier
of AdaBoost. Both theoretical and experimental results
show the superiority of AdaBoost. Our work tries to
follow a similar idea to improve RAkEL by re-designing
the learning function to optimize a global error objective
function.

Another limitation of RAkEL is that it assumes every
base classifier in the ensemble is equally important.
However, such assumption is problematic because the
individual LP classifiers are trained on different ran-
domly selected k-labelsets, some of them may have
worse predictive performance than others or can be
even redundant. Researchers have shown that properly
determining the weights of the base classifiers in an
ensemble can improve the prediction performance [5],
[7]. For example, in AdaBoost, the coefficient αt of a
base classifier ft(x) is determined analytically and is
proportional to the predictive performance of ft(x). We
believe that learning the weights of base classifiers in an
ensemble can improve the prediction performance for
multi-label classification.

1.1 Generalized k -Labelsets Ensemble (GLE)
Inspired by the success of the LP-based methods, this
paper presents a novel machine learning model for
multi-label classification using the idea of basis expansions
model [8, Chapter 5] of the following form:

H(x) =
M∑

m=1

βmhm(x), (1)

where the basis functions hm(x) exploit the LP clas-
sifiers trained on random k-labelsets and βm are their
coefficients. In general, the basis expansions model treats
the classifiers hm(x) as dictionary functions and uses the
linear combination of these functions to approximate the
target classifier during the learning procedure [8, Chap-
ter 5]. Intuitively, given sufficient dictionary functions,
the basis expansions model is a flexible representation
for the target multi-label classifier. In our proposed GLE,
the coefficients βm are learned to minimize the global
error between the prediction of H(x) and the ground
truth. The coefficients βm of the corresponding base clas-
sifiers hm(x) become more significant for base classifiers
with better performance, and are not redundant given
others. Another interpretation of our method is from the
Bayesian framework. The GLE can be considered as a
kind of Bayesian model combination, that is, P (Yi|x) =∑

m P (Yi|x, hm)P (hm), where the Yi is a predicted label
set. In this aspect, the coefficients βm are approximating
the prior probabilities P (hm) for the model hm.

When exploiting the basis expansions model, control-
ling the model complexity to avoid the overfitting prob-
lem is very important [8, Chapter 5]. We propose a reg-
ularized objective function based on the two-norm of β

and a hypergraph Laplacian regularizer. The hypergraph
can capture the high-order relation among instances and
multiple labels jointly. We derive an analytic solution
to learn the coefficients efficiently. The RAkEL [3] can
be considered as a special case of our GLE when the
coefficients are assigned uniformly.

We have also extended the GLE approach to handle
cost-sensitive multi-label classification (CSML) cases. In
the CSML problem, the misclassification cost can be
different for each instance-label pair and is given be-
fore the training process. For example, in the image
classification problem, the misclassification cost of the
label “sunset” for an image whose subject is sunset
should be higher than the misclassification cost of an
additional label “gull”. The CSML learning problem was
first proposed in our previous paper [9], but has not been
well studied yet. The previous solution uses the cost in-
formation independently for each label or each label set
and might lose the label correlation information. In this
paper, we extend the GLE to optimize a cost-weighted
objective function for the misclassification costs of all
label-instance pairs jointly.

1.2 Applications to Cost-Sensitive Social Tag Pre-
diction Considering Tag Count

Tags are free text labels annotated on data in different
format, such as images, music tracks, and websites.
In some cases, the tags are objective and assigned by
experts, such as part-of-speech tagging, or semantic role
labelling. In other cases, the tags are more or less sub-
jective while different persons might compose different
tag sets for an object. In the Web 2.0 era, there are more
and more online services that allow or even encourage
users to tag objects such as images, or music tracks,
and consequently create a large set of subjective tagging
data. The emergence of human computing [10] also
creates mass of opportunity for users to tag media.
In general, we call such tagging behavior “collective
tagging” and the subjective tags produced through such
process “collective tags”. The collective tags usually
capture different aspects of the content. For example,
the types of music tags may contain artist, genre, mood,
and instrumentation. Given a feature representation for
the content of the resources, some previous researches
[11], [12] assumed that the tags are independent and,
thus, transformed the social tag prediction problem into
many independent binary classification problems, each
for an individual tag. This strategy inevitably misses the
co-occurrence information of multiple tags. It is generally
believed that multi-label classification is more suitable
for the task [9], [13]–[15].

Unlike the classification labels annotated by domain
experts, the information provided in social tags may
contain noise or errors. Consider that the tag count in-
dicates the number of users who have annotated the
given resource with the tag. We believe that not only
the tags of an object but also the tag count information
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should be considered in automatic social tagging because
the count reflects the confidence degree of the tag. Impor-
tant, confident, and relevant tags (with respect to the
resources, such as music tracks or websites) are usually
assigned by many different users. Previous research [16]
also stated that, if many users annotate the same tag
to some visually similar images, these tags are likely
to reflect the semantic concept of the image content.
Our idea is to use the tag count information to train
a cost-sensitive classifier that minimizes the training error
associated with tag counts. In other words, our goal is to
correctly predict the important, confident, and relevant
tags. We will use this task as a case study to demonstrate
the usefulness of our cost-sensitive multi-label model.

1.3 Contribution

The contribution of this paper is fourfold.

1) We propose a novel label-powerset-based multi-
label classification method, called Generalized k-
Labelsets Ensemble. The GLE exploits random k-
labelset LP classifiers as its base learners. The coef-
ficients of these base classifiers are learned to mini-
mize the global error and regularized by their two-
norm and a hypergraph Laplacian regularizer. We
derive an analytic solution to learn the coefficients
efficiently.

2) We extend the GLE for cost-sensitive multi-label
classification. To the best of our knowledge, this is
the first method which minimizes the misclassifica-
tion costs for all labels jointly.

3) We analyze the effect of tag count in using multi-
label classification for social tag prediction. The
observation inspires us to formulate the social tag
prediction task as a cost-sensitive multi-label clas-
sification problem by treating the tag counts as the
misclassification costs.

4) We have conducted experiments using a broad
range of multi-label benchmark datasets and com-
pared our method with other state-of-the-art multi-
label learning methods. The results in terms of five
popular evaluation metrics show that our method
has better or competitive performance against other
methods. We have also conduct experiments on
cost-sensitive social tag annotation and retrieval.
The results in terms of two cost-sensitive metrics
show that GLE has better performance against other
methods.

The remainder of this paper is organized as follows.
In Section 2, we review the related work. Then, we
present the Generalized k-Labelsets Ensemble for both
multi-label classification and cost-sensitive multi-label
classification in Section 3. Then, we discuss the results
of multi-label classification in Section 4. In Section 5, we
analyze the effect of tag count in social tag prediction
and discuss the results of cost-sensitive social tagging.
Finally, Section 6 contains some concluding remarks.

2 RELATED WORK

Multi-label classification methods can be grouped into
two categories: algorithm adaptation and problem transfor-
mation [1]. The algorithm adaptation methods extend some
specific learning algorithms for single-label classification
to solve the multi-label classification problem. Zhang
and Zhou [17] extended the famous back-propagation
algorithm for multi-label learning (BPMLL). Some algo-
rithms are extended from the instance-based learning,
such as multi-label K-nearest neighbor (MLKNN) [18]
and instance-based learning by logistic regression (IBLR)
[19]. Wang et al. [20] extended the discrete hidden
Markov random field for multi-label classification. Liu
et al. [21] proposed a Non-negative Matrix Factorization
based approach which exploits both label correlation and
unlabeled data.

The problem transformation methods transform the
multi-label classification problem to one or many single-
label classification tasks. Binary relevance and label
powerset are two popular problem transformation ap-
proaches. The binary relevance method trains a binary
classifier for each label independently. Sun et al. [22]
proposed a two stage learning method to improve the
binary relevance method based on hypergraph spectral
learning. They exploited hypergraph spectral learning
for feature transformation in the first stage and trained
binary relevance classifiers in the second stage. The
label powerset method treats each distinct combination
of labels as a different class. Our proposed method
belongs to the LP-based method. Rokach and Itach de-
sign methods to select the k-Labelsets in RAkEL using
a greedy algorithm [23] which solves a set coverage
problem. Their method assumes that every base clas-
sifier in the ensemble is equally important. Zhang and
Zhang [24] proposed another two stage method, called
LEAD. The LEAD algorithm exploits Bayesian network
to encode the conditional dependencies of the labels in
the first stage, and trains binary relevance classifiers
with incorporating their parental labels as additional
features in the second stage. Zhang [25] proposed to use
different feature sets for each binary relevance classifier.
We note that these algorithms can hardly be applied to
cost-sensitive multi-label classification without significant
modification.

General ensemble learning methods consist of two
steps: learning the base classifiers and assigning weights
for the base classifiers. Some methods, such as Random
Forest [26] and RAkEL [3], only focus on the first step
and assign equal weights for every base classifier. En-
semble selection [7] is another ensemble learning method
which focuses on the latter step and its success has been
proved by winning ACM KDD Cup 20091. It performs
an iterative search algorithm to determine the weights
of classifiers for optimizing any objective function. Ad-
aBoost is an ensemble method which learns both the
base classifiers and their weights. In [27], Schapire and

1. http://www.kddcup-orange.com
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Singer have shown an upper bound of training error for
the AdaBoost classifier. In each iteration of its training
procedure, the upper bound of training error is used
as the criterion for choosing the base classifier and its
associated weight. Our GLE is inspired by AdaBoost.
GLE learns both the base classifiers and their weights.
The learning method for the weights directly optimizes
the global error.

Social tag prediction is one major application of multi-
label classification. Previous researches have empirically
studied different multi-label learning methods for tag
annotation on music [14] and social bookmark [13].
However, these papers do not use the tag count infor-
mation. Our previous study [9] is specific to the Music
Information Retrieval Evaluation eXchange (MIREX)2

audio tag prediction task and the method proposed in
it does not use the cost information for all labels jointly.
Part of this work appears in a conference paper [28]. This
paper extends the technique for cost-sensitive multi-label
classification.

3 GENERALIZED k -LABELSETS ENSEMBLE

In this section, we start from introducing the concept
of multi-label classification and cost-sensitive multi-label
classification. Then, we review the concept of exploiting
the hypergraph representation for multi-label classifica-
tion, and describe the proposed Generalized k-Labelsets
Ensemble for multi-label classification. Finally, we ex-
tend GLE for cost-sensitive multi-label classification.

3.1 Multi-Label Classification and Cost-Sensitive
Multi-Label Classification
Let x ∈ R

d, which is a d-dimensional input space, and
Y ⊆ L = {λ1, λ2, ..., λK}, which is a finite set of K
possible labels. To facilitate the discussion, hereafter, Y
is represented by a vector y = (y1, y2, ..., yK) ∈ {1,−1}K ,
in which yj = 1⇔ λj ∈ Y, yj = −1⇔ λj /∈ Y . We denote
the labels of the whole instances by Y ∈ R

N×K , where
the i-th row of Y is yi; and denote the whole instances
by X ∈ R

N×d, where the i-th row of X is xi. Given
a training set (xi,yi)

N
i=1 that contains N samples, the

goal of multi-label classification is to learn a classifier
H : R

d → 2K such that H(x) predicts which labels
should be assigned to an unseen sample x.

In cost-sensitive multi-label learning, for each instance
xi, a misclassification cost cj is coupled to each label
λj belonging to the label set of that instance. We give
a more generalized definition as follow. We are given a
training set (xi,yi, ci)

N
i=1 that contains N samples, where

the j-th component cij denotes the cost to be paid when
the label yij is misclassified. More specifically, cij is a
false negative cost when yij = 1, and a false positive cost
when yij = −1. We denote the misclassification costs
of the whole instances by C ∈ R

N×K , where the i-th
row of C is ci. The goal of multi-label classification is to

2. http://www.music-ir.org/mirex/

learn a classifier H : Rd → 2K such that H(x) minimizes
the expected misclassification cost on an unseen sample
x. In the next subsection, we describe the hypergraph
representation for multi-label classification.

3.2 Multi-Label Learning with Hypergraphs
Hypergraph is a generalization of the traditional graph
in which an edge can connect arbitrary non-empty sub-
sets of the vertex set [29]. We denote a hypergraph by
G = (V,E), where V is the vertex set and E is the
edge set, where each edge is a subset of V . Traditional
graph is a special case of the hypergraph, in which every
edge connects exactly two vertices, and is also called “2-
graph”. Given a multi-label dataset, the instances with
their labels can be represented as one single hypergraph.
More specifically, the vertex is a data point and the
hyperedge is a label that connects the instances associ-
ated with it. A normalized hypergraph Laplacian L ∈
R
|V |×|V | is a commonly used technique for capturing

the relationship among nodes in the hypergraph and has
been used in spectral clustering [30]. Sun et al. proposed
the hypergraph spectral multi-label learning algorithm
[22] to learn a low-dimensional feature transformation
W , such that the data points sharing many common
labels tend to be close to each other in the transformed
space. The optimization problem for learning W is for-
mulated as follows:

min
W

trace(W TXLXTW )

s.t. W TXXTW = I,
(2)

where W TX is the transformed data.
In this paper, we exploit the relation information

encoded in the hypergraph Laplacian L in a different
manner. We add a hypergraph Laplacian regularizer into
the objective function for learning the coefficients in
the ensemble. There are several different methods for
learning the normalized hypergraph Laplacian matrix,
but Agarwal et al. have shown that these methods
lead to similar results [29]. In this paper, we use the
clique expansion algorithm [22], [29] for calculating the
normalized hypergraph Laplacian.

The clique expansion algorithm constructs a 2-graph
from the original hypergraph by replacing each hyper-
edge with a clique, that is, maintaining an edge for each
pair of vertices in the hyperedge. For a hypergraph, the
vertex-edge incidence matrix J ∈ R

|V |×|E| is defined
as: J(v, e) = 1 if v ∈ e and 0 otherwise. We denote
the weight associated with the hyperedge e by w(e).
We denote the diagonal matrix whose diagonal entries
are w(e) by WH . In the application of hypergraph for
multi-label classification, the weights are set to uniform
for each hyperedge. We denote the vertex degree in the
expanded 2-graph by dc(u), where u is a vertex of the
2-graph, and denote the diagonal matrix whose diagonal
entries are dc(u) by Dc. The normalized hypergraph
Laplacian can be calculated by

L = I −D−1/2
c JWHJTD−1/2

c . (3)
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3.3 Generalized k -Labelsets Ensemble for Multi-
Label Classification

As introduced in [3], a k-labelset is a labelset R ⊆ L
with |R| = k. GLE first trains M LP-based classifiers
using randomly selected k-labelsets from the original
set of labels. Then, GLE uses the base classifiers as
dictionary functions and learns a linear combination of
these functions. Algorithms 1 and 2 describe the training
and classification processes, respectively. In Algorithm
2, the prediction of a multi-class LP classifier, gm, for a
sample x is denoted by gm(x) ∈ {1, 2, . . . , Z}, where Z
is the number of classes, that is, the number of different
labelsets used for training the LP classifier. Note that Z
is upper bounded by min(N, 2k), and is usually much
smaller in practice [3]. The i, j-th element in Qm is
calculated by q(gm(xi), j), which is defined as:

q(gm(xi), j) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if j ∈ Rm

and j is positive in gm(xi),
−1, if j ∈ Rm

and j is negative in gm(xi),
0, if j /∈ Rm.

(4)
For example, when k = 2, the classes 1, 2, 3, and
4 correspond to (1, 1), (1,−1), (−1, 1), and (−1,−1), re-
spectively. If label j is not included in Rm, q(gm(xi), j)
is 0. If label j corresponds to the first label of Rm,
q(1, j), q(2, j), q(3, j), and q(4, j) will be 1, 1,−1, and −1,
respectively. We note that the function q(gm(x), j) is
used to generate the hm(x) in the final classifier (1) by
gathering the predictions on all labels j.

The weight coefficients β for the base classifiers are
learned by solving a minimization problem formulated
as follows:

min
β

1
2 ||Y −

M∑
m=1

βmQm||2F + γ
2 ||β||22

+ ν
2 trace

(( M∑
m=1

βmQm

)T

L
( M∑
m=1

βmQm

))
,

(5)

where || · ||F is the Frobenius norm of a matrix, L is the
normalized hypergraph Laplacian, and Qm ∈ R

N×K is a
transformed prediction of gm which will be described in
more detail later. The first term in the objective function
aims to minimize the global error between the prediction
of H(x) and the multi-label ground truth Y . The second
term is a two-norm regularization term of the coefficients
β. The third term is a hypergraph regularization term.

The trade-off between fitting the training data and
regularization can be controlled by the parameters γ
and ν. A larger parameter γ will lead to smoother
coefficients β. The hypergraph Laplacian L ∈ R

N×N

captures the high order labelling relationship among
different instances. Following the spectral graph theory
[22], [31], our idea behind the hypergraph regularization
term is that the prediction on two instances, that is, two
rows in

∑M
m=1 βmQm, should be similar if they have high

similarity according to the hypergraph.

Algorithm 1 The training process of GLE
• Input: number of models M , size of labelset k,

learning parameters γ and ν, set of labels L, and
the training set D = (xi,yi)

N
i=1

• Output: an ensemble of LP classifiers gm, the corre-
sponding k-labelsets Rm and coefficients βm

1) Initialize S ← Lk

2) for m← 1 to min(M ,|Lk|) do
• Rm ← a k-labelset randomly selected from S
• train the LP classifier gm based on D and Rm

• calculate a transformed prediction of gm using (4)
• S ← S \ Rm

3) end
4) Learn β using (10)

Algorithm 2 The classification process of GLE
• Input: number of models M , a test sample x, an

ensemble of LP classifiers gm, and the corresponding
k-labelsets Rm and coefficients βm

• Output: the multi-label classification vector r =
(r1, r2, ..., rK)

1) for j ← 1 to K do
a) rj = 0
b) for each gm, if j ∈ Rm do

• rj = rj + βm · q(gm(x), j)

c) end
2) end

To solve the optimization problem (5), we start from
rewriting the first term of the objective function by
vectorizing Qm and Y . We denote the prediction of the
base classifiers by Q̂ ∈ R

(L·N)×M whose columns are
vectorized from Qm by reshaping Qm into R

(L·N); and
vectorize Y into Ŷ ∈ R

(L·N). Then, the first term of the
objective function can be rewritten as 1

2 ||Ŷ − Q̂β||22. To
further simplify the third term of the objective function,
we let Qm,j be the j-th column vector in Qm. We perform
operations on the third term as follows:

ν
2 trace

(( M∑
m=1

βmQm

)T

L
( M∑
m=1

βmQm

))

= ν
2 trace

⎛
⎜⎝

βTP 1,1β · · · βTP 1,Lβ
...

. . .
...

βTPL,1β · · · βTPL,Lβ

⎞
⎟⎠

= ν
2

L∑
j=1

βTP j,jβ

(6)

where P i,j ∈ R
M×M is generated as

P i,j =

⎛
⎜⎝

QT
1,iLQ1,j · · · QT

1,iLQM,j

...
. . .

...
QT

M,iLQ1,j · · · QT
M,iLQM,j

⎞
⎟⎠ . (7)
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Let
∑L

j=1 P j,j in (6) be denoted as ρ, the loss function
in (5) can be rewritten as

L(β) =
1

2
(Ŷ − Q̂β)T (Ŷ − Q̂β) +

γ

2
βTβ +

ν

2
βTρβ. (8)

We take derivatives of equation (8) with respect to β and
set them equal to zero,

∂L

∂β
= −Q̂T Ŷ + Q̂T Q̂β + γ · Iβ +

ν

2
(ρ+ ρT )β = 0. (9)

where I is the identity matrix. Hence, the optimization
problem (5) has a unique solution β∗:

β∗ = (Q̂T Q̂+ γ · I + ν

2
(ρ+ ρT ))−1Q̂Ŷ . (10)

The computational cost of training GLE depends on the
training speed of the LP base classifier. We note that
the matrix to be inverted in (10) is a M -dimensional
square matrix and typically the number of models M
is set from 15 to 250. Hence, solving such equation
is computationally feasible and learning β does not
increase much overhead.

3.4 Generalized k -Labelsets Ensemble for Cost-
Sensitive Multi-Label Learning
GLE can also be extended for cost-sensitive multi-label
classification. We follow the same training and classifi-
cation procedures as shown in Algorithms 1 and 2, and
modify the objective function for learning the coefficients
β in (5). Recall that the first term in the objective function
of (5) is the global error between the multi-label classifier
prediction,

∑M
m=1 βmQm, and the multi-label ground

truth Y . We modify it to a cost-weighted global error by
multiplying the global error with the multi-label mis-
classification cost matrix C. The optimization problem of
learning the coefficients β for cost-sensitive multi-label
classification can then be formulated as follows:

min
β

1
2 ||C ◦

(
Y −

M∑
m=1

βmQm

)
||2F + γ

2 ||β||22

+ ν
2 trace

(( M∑
m=1

βmQm

)T

L
( M∑
m=1

βmQm

))
,

(11)

where ◦ is the dot product of two matrices. Similarly, the
optimization problem (11) has a unique solution β∗,

β∗ =
(
C ◦ (Q̂T Q̂) + γ · I + ν

2
(ρ+ ρT )

)−1

Q̂Ŷ . (12)

4 COST-INSENSITIVE EXPERIMENTS
We compare the proposed methods with other multi-
label classification algorithms on ten datasets. Six of
them come from the social tagging domain3. In the
following subsections, we describe the datasets, the

3. The second part of this paper focuses on cost-sensitive multi-
label classification. However, cost-sensitive multi-label datasets are not
as easy to obtain. As we will show in Section 5, the tag counts in
social tagging can be used as the misclassification costs, and the social
tag prediction problem can be treated as a cost-sensitive multi-label
classification problem.

TABLE 2
The 45 Tags Used in The MIREX Audio Tag

Classification Evaluation

metal instrumental horns piano guitar
ambient saxophone house loud bass

fast keyboard electronic noise british
solo electronica beat 80s dance
jazz drum machine strings pop r&b

female rock voice rap male
slow vocal quiet techno drum
funk acoustic distortion organ soft

country hip hop synth trumpet punk

evaluation criteria for multi-label classification, and the
experimental setup, and then discuss the experimental
results.

4.1 Datasets

We conduct experiments on ten datasets belonging to
different domains. The datasets include scene, enron,
cal500, majorminer, medical, bibtex, and four versions of
delicious (from dlc1 to dlc4). Four of these datasets, in-
cluding scene, enron, medical, and bibtex, can be down-
loaded from the MULAN library [32] website. These four
datasets have been used in [3]. More details of the other
six datasets are described below.

MajorMiner [33] is a web-based game4 for collecting
music tags. Players on MajorMiner listen to short music
clips (each about 10 seconds long) and label them with
relevant words and phrases. We consider 45 tags, as
listed in Table 2, which have been used in the audio
tag classification task in MIREX. We download all the
audio clips that are associated with these 45 tags from
the website of the MajorMiner’s game. We extract audio
features with respect to various musical information,
including dynamics, rhythm, timbre, pitch, and tonality.
More details can be found in [9].

The cal500 [34], [35] dataset consists of 500 popular
Western songs from 500 different artists. Each song
has been annotated by at least three humans, using
a semantic vocabulary of 149 tags that describe gen-
res, instruments, vocal characteristics, emotions, acoustic
characteristics, and song usages. For each annotated tag,
a weight score (can be considered equivalent to the tag
count) is available to indicate the level of agreement
over all annotators. The dataset is publicly available5. To
alleviate the label sparsity problem as mentioned by the
provider of cal500 [35], we use the 91 tags with at least
50 positively associated songs. The feature extraction
on the cal500 dataset is similar to that used on the
majorminer dataset. There is another version of cal500 on
the MULAN website. We do not adopt this version since
the soft decision label which will be used in Section 5,
is not available on it.

4. http://www.majorminer.org/
5. http://cosmal.ucsd.edu/cal/projects/AnnRet/
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The delicious dataset is generated from the famous
social bookmarking website del.icio.us. The URLs with
social tags were crawled in February 2008 [36]. In addi-
tion, the source web page of each URL was also collected
and represented by the boolean bag-of-words model.
The crawled data contain 56,804 URLs, and each of
them is annotated by at least 20 users. To reduce the
noise introduced by synonym terms, a semi-automatic
normalization procedure has been performed to group
different tag strings denoting the same concept to an
identical tag [36]. The resulting data contains 33,490 dif-
ferent tags. According to a recent experimental study of
multi-label classification methods [37], the training time
of some algorithms on such a large dataset might last
for more than one week. To reduce the computational
cost of training multi-label classifiers, the delicious data
is divided into 4 subset versions: from dlc1 to dlc4. We
first randomly select four disjoint tag subsets, whose
numbers are 39, 58, 77, and 96, respectively, from the tags
with at least 300 positively associated URLs. For each tag
subset, we randomly select 8000 URLs which are posi-
tively associated to at least one tag in the corresponding
tag subset. Since the web pages contain many typos and
noisy information, we perform feature selection on the
four subset versions separately. We calculate the signal-
to-noise (s2n) ratio of each feature-label pair, and select
the features whose s2n scores (with respect to any one
of the labels) are higher than a threshold. The resulting
numbers of features for the four subset versions are 325,
483, 611, and 735, respectively. There is another version
of the delicious data on the MULAN website. We do not
adopt that version since the tag counts are not available
on it.

The statistics of the ten datasets are shown in Table
3. The “cardinality” is defined as the average number
of labels per instance, while the “density” is the same
number normalized by L. The “distinct” counts the
number of distinct label sets, while the “normalized
distinct” is the same number divided by the number of
instances. We note that the size of the first five datasets
are medium or small, that is, the number of instances is
smaller than 3000; and the size of the last five datasets is
large, that is, the number of instances is larger than 7000.
We also note that the cardinality of the cal500 dataset
is 34.474, which is much larger than that of the other
datasets. This fact makes predicting the whole label set
of an instance in cal500 correctly a very difficult task.

4.2 Evaluation Metrics For Multi-Label Classification

We use five popular evaluation metrics for multi-label
classification: the Hamming loss, ranking loss, subset 0/1
loss, one error, and average precision [1], [37]. Hamming
loss calculates the percentage of labels whose relevance
is predicted incorrectly. Ranking loss evaluates the aver-
age fraction of label pairs, that is, a positive label versus
a negative label, that are not correctly ordered. Subset
0/1 loss evaluates a multi-label prediction as a whole. It

evaluates the percentage of predicted label sets that do
not exactly match the true label sets. One error evaluates
the number of times the top-ranked label is not relevant.
For these four metrics, the smaller the result value is,
the better the algorithm performs. Average precision
evaluates that, for each relevant label, the percentage of
relevant labels among all labels that are ranked above it.

4.3 Experimental Setup

For the cost-insensitive multi-label classification part,
we compare the performance of GLE with that of six
state-of-the-art multi-label learning algorithms: RAkEL,
BR (Binary Relevance) [1], CC (Classifier Chains) [38],
MLKNN [18], IBLR [19], and BPMLL [17]. We select these
methods according to a recent extensive experimental
study of multi-label classification [37]. We implement
GLE using MATLAB. We exploit the linear multi-class
SVM implemented in LIBSVM for the LP classifiers in
GLE, which is based on the one-against-one approach.
The parameter C in SVM is set to 1. Based on our
observation, the best selected parameters k and M are
usually the same for both RAkEL and GLE. We select
k and M using cross-validation for RAkEL and use
Hamming loss as the model selection criterion. We apply
the selected k and M for GLE and the parameters are
listed in Table 4. Then, the parameters γ and ν in GLE are
selected using cross-validation with respect to the five
different evaluation metrics, respectively. As mentioned
in the Section 3.3, the computational cost of obtaining
β∗ is very small. After training the LP classifiers, we can
obtain different β with thousands of different parameter
pair, that is, γ and ν, within one second6. The cross-
validation used for selecting γ and ν is not used for
generating the final result.

The BR, CC, MLKNN, and IBLR are implemented
in the MULAN package. For BR, we exploit the linear
logistic regression with probability output score as the
base classifier. For CC, we exploit the linear SVM as
the base classifier and the parameter C is set to 1. For
MLKNN and IBLR, the size of the neighborhood is set
to 10 [18], [19]. We use the MATLAB implementation of
BPMLL, which is provided by the authors of BPMLL.
For BPMLL, the number of hidden neurons is set to 20%
of the dimensionality, and the number of training epochs
is selected using cross-validation. The implementation of
RAkEL are similar to that of GLE. We perform three-fold
cross-validation sixty times for the five medium-scale
datasets and three times for the five large-scale datasets;
and calculate the mean of the results.

4.4 Experimental Results

The experimental results of multi-label classification are
summarized in Table 5. The numbers in parentheses

6. We have conducted experiments with different γ and ν. The
results suggest that we can obtain good enough results by tuning γ
and set ν to 1, and thus alleviate the burden of parameter selection.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. X, NO. X, SEPTEMBER 2013 8

TABLE 3
Statistics of The Multi-Label Datasets

Data set Instances Features Feature Type Labels Cardinality Density Distinct Normalized Distinct

scene 2407 294 numeric 6 1.074 0.179 15 0.006
enron 1702 1001 nominal 53 3.378 0.064 753 0.442
cal500 500 140 numeric 91 34.474 0.198 500 1.000

majorminer 2472 177 numeric 45 4.119 0.092 1553 0.628
medical 978 1449 nominal 45 1.245 0.028 94 0.096
bibtex 7395 1836 nominal 159 2.402 0.015 2856 0.386
dlc1 8000 325 nominal 39 1.663 0.043 1024 0.128
dlc2 8000 483 nominal 58 2.027 0.035 1995 0.249
dlc3 8000 611 nominal 77 2.529 0.033 3286 0.411
dlc4 8000 735 nominal 96 2.586 0.027 3704 0.463

TABLE 4
Selected Parameters k and M of GLE and RAkEL for

The Multi-Label Datasets

Dataset k M

scene 4 15
enron 16 250
cal500 10 250

majorminer 14 250
medical 14 250
bibtex 24 250
dlc1 26 250
dlc2 32 250
dlc3 32 250
dlc4 32 250

represent the rank of the algorithm among the compared
algorithms. The average rankings of our method GLE on
ten datasets using five different metrics are 1.8, 2.4, 1.5,
1.4, and 1.9, respectively. On four of the five metrics, GLE
achieves the best performance. GLE performs slightly
worse than MLKNN only in terms of ranking loss;
however, the difference is very small. We observe that
RAkEL performs closely to GLE in terms of Hamming
loss; but in terms of the other four metrics, GLE performs
much better than RAkEL. Among the five metrics, the
improvement of GLE is more significant on Hamming
loss, subset 0/1 error, and one error. Generally speaking,
GLE has better or competitive performance against the
other state-of-the-art methods. We have run the pairwise
t-test at the 5% significance level on the experimental
results. We use •/◦ to indicate whether GLE is statis-
tically superior/inferior to the compared algorithm in
Table 5. When the difference is not significant, no marker
is given. There are 246 cases in which GLE performs
significantly better than the compared method and only
34 cases in which GLE performs significantly worse.

Since both GLE and RAkEL are LP-based methods, we
calculate the relative improvement of GLE over RAkEL
for each dataset, respectively. Then, we show the average
relative improvement over all datasets for the five eval-
uation metrics in Table 6, respectively. In each iteration
of the GLE and RAkEL training phase, they use the
same randomly selected k-Labelsets for the LP classifiers.
We have also shown the relative improvement of two

TABLE 6
Relative Improvement of GLE and Its Two Simplified

Versions Over RAkEL in Terms of Five Different
Evaluation Metrics (In %)

Hamming Ranking Subset One Average
Loss Loss 0/1 Loss Error Precision

γ = 0 -9.11 26.44 -5.19 -28.29 2.16
ν = 0 0.20 51.26 1.30 3.87 10.25
GLE 0.22 55.34 1.83 8.15 11.80

simplified versions of GLE, that is, without two-norm
regularization (γ = 0) or without hypergraph regulariza-
tion (ν = 0), over RAkEL in Table 6. We observe that the
relative improvement of GLE over RAkEL is more sig-
nificant in terms of ranking loss than the other metrics.
GLE achieves around 10% relative improvements over
RAkEL in terms of both one error and average precision,
but the improvement is small in terms of Hamming
loss and subset 0/1 loss. The simplified version of GLE
without two-norm regularization performs even worse
than RAkEL in terms of Hamming loss, subset 0/1 loss
and one error. The simplified version of GLE without
hypergraph regularization performs better than RAkEL
but worse than GLE.

We further compare GLE and RAkEL by varying pa-
rameters k and M . They use the same randomly selected
k-Labelset for the LP classifiers. We show the average
relative improvement of GLE over RAkEL in terms of
five different evaluation metrics in Figure 1. The results
for the selected parameter k in Table 4 are indicated
by the blue curves in Figure 1. We have also tested
larger k and smaller k, and the results are indicated by
the red and green curves, respectively. We incrementally
increase the number of models M as indicated by the
horizontal axis. Since the number of instances and the
number of labels for the scene dataset are much smaller
than that of the other datasets, the ten steps of M are
from 6 to 15. For the other nine datasets, the ten steps
of M are from 25 to 250 with an increment of 25. From
the results, we observe that GLE performs better than
RAkEL in most parameter settings, especially when the
number of models increases. The major reason could be
that, when the number of models is small, it is less likely
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TABLE 5
Experimental Results in Terms of Five Different Evaluation Metrics. The Numbers in Parentheses Represent the

Rank of the Algorithm Among the Compared Algorithms. The Average Rank is the Average of the Ranks Across All
Datasets. •/◦ indicates whether GLE is statistically superior/inferior to the compared algorithm (the pairwise t-test at

the 5% significance level).

GLE RAkEL BR CC MLKNN IBLR BPMLL

Hamming Loss
scene 0.0973 (3) 0.0968 (2) ◦ 0.1622 (6) • 0.1069 (4) • 0.0896 (1) ◦ 0.1472 (5) • 0.2454 (7) •
enron 0.0488 (1) 0.0488 (2) • 0.1105 (7) • 0.0601 (4) • 0.0531 (3) • 0.1083 (6) • 0.0693 (5) •
cal500 0.1641 (2) 0.1634 (1) ◦ 0.3473 (6) • 0.2962 (4) • 0.2775 (3) • 0.3632 (7) • 0.3077 (5) •

majorminer 0.0810 (1) 0.0812 (2) • 0.1118 (6) • 0.0815 (3) • 0.0851 (4) • 0.1191 (7) • 0.0926 (5) •
medical 0.0099 (1) 0.0100 (2) • 0.0206 (5) • 0.0103 (3) • 0.0163 (4) • 0.4917 (7) • 0.0277 (6) •
bibtex 0.0125 (2) 0.0124 (1) 0.0803 (7) • 0.0152 (4) • 0.0137 (3) • 0.0738 (6) • 0.0158 (5) •
dlc1 0.0386 (2) 0.0389 (3) • 0.0477 (5) • 0.0382 (1) ◦ 0.0397 (4) • 0.0536 (7) • 0.0508 (6) •
dlc2 0.0325 (2) 0.0326 (3) 0.0532 (6) • 0.0324 (1) 0.0334 (4) • 0.0638 (7) • 0.0354 (5) •
dlc3 0.0307 (2) 0.0308 (3) • 0.0711 (6) • 0.0303 (1) ◦ 0.0316 (4) • 0.0771 (7) • 0.0339 (5) •
dlc4 0.0246 (2) 0.0246 (3) • 0.0756 (6) • 0.0242 (1) ◦ 0.0256 (4) • 0.1577 (7) • 0.0282 (5) •

Average Rank 1.8 2.2 6.0 2.6 3.4 6.6 5.4

Ranking Loss
scene 0.1031 (2) 0.1546 (3) • 0.1959 (5) • 0.3057 (6) • 0.0813 (1) ◦ 0.1688 (4) • 0.5008 (7) •
enron 0.0902 (1) 0.2472 (4) • 0.2894 (5) • 0.4880 (7) • 0.0954 (2) • 0.3058 (6) • 0.1175 (3) •
cal500 0.1527 (1) 0.2249 (2) • 0.3503 (5) • 0.5633 (7) • 0.2476 (3) • 0.3829 (6) • 0.2959 (4) •

majorminer 0.1249 (1) 0.1746 (4) • 0.1692 (3) • 0.6772 (7) • 0.1487 (2) • 0.1758 (5) • 0.3821 (6) •
medical 0.0550 (2) 0.1100 (4) • 0.0658 (3) • 0.2042 (6) • 0.0465 (1) ◦ 0.1186 (5) • 0.2897 (7) •
bibtex 0.1976 (2) 0.4199 (6) • 0.2309 (5) • 0.5989 (7) • 0.2184 (3) • 0.2264 (4) • 0.0774 (1) ◦
dlc1 0.1777 (4) 0.6470 (6) • 0.1272 (1) ◦ 0.8371 (7) • 0.1567 (3) ◦ 0.1395 (2) ◦ 0.2020 (5) •
dlc2 0.1736 (4) 0.7602 (6) • 0.1411 (1) ◦ 0.8749 (7) • 0.1556 (2) ◦ 0.1608 (3) ◦ 0.2019 (5) •
dlc3 0.2194 (4) 0.7746 (6) • 0.1894 (1) ◦ 0.8522 (7) • 0.1961 (2) ◦ 0.2141 (3) ◦ 0.2496 (5) •
dlc4 0.2138 (3) 0.7548 (6) • 0.1993 (2) ◦ 0.8212 (7) • 0.1911 (1) ◦ 0.2597 (5) • 0.2447 (4) •

Average Rank 2.4 4.7 3.1 6.8 2.0 4.3 4.7

Subset 0/1 Loss
scene 0.2743 (2) 0.2853 (3) • 0.4589 (6) • 0.3330 (4) • 0.2565 (1) ◦ 0.4122 (5) • 0.8339 (7) •
enron 0.7759 (1) 0.7816 (2) • 0.9051 (5) • 0.8447 (3) • 0.8888 (4) • 0.9152 (6) • 0.9963 (7) •
cal500 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)

majorminer 0.9081 (1) 0.9113 (2) • 0.9602 (5) • 0.9434 (4) • 0.9358 (3) • 0.9701 (6) • 0.9910 (7) •
medical 0.2206 (1) 0.2266 (2) • 0.3422 (5) • 0.2769 (3) • 0.3464 (6) • 0.2824 (4) • 0.9819 (7) •
bibtex 0.7271 (2) 0.7270 (1) 0.9289 (7) • 0.8092 (3) • 0.8780 (5) • 0.9216 (6) • 0.8344 (4) •
dlc1 0.7871 (4) 0.8056 (5) • 0.7443 (1) ◦ 0.8971 (7) • 0.7817 (2) 0.7863 (3) 0.8669 (6) •
dlc2 0.8500 (1) 0.8854 (4) • 0.8505 (2) 0.9279 (6) • 0.8512 (3) 0.9045 (5) • 0.9457 (7) •
dlc3 0.8822 (1) 0.9038 (3) • 0.9338 (5) • 0.9282 (4) • 0.9007 (2) • 0.9517 (7) • 0.9491 (6) •
dlc4 0.8776 (1) 0.8957 (2) • 0.9426 (6) • 0.9175 (5) • 0.8981 (4) • 0.8960 (3) • 0.9696 (7) •

Average Rank 1.5 2.5 4.3 4.0 3.1 4.6 5.9

One Error
scene 0.2543 (2) 0.2565 (3) • 0.4312 (6) • 0.2850 (4) • 0.2346 (1) ◦ 0.3841 (5) • 0.8119 (7) •
enron 0.2873 (2) 0.2776 (1) ◦ 0.5343 (6) • 0.4100 (4) • 0.3195 (3) • 0.5364 (7) • 0.4944 (5) •
cal500 0.1100 (2) 0.2028 (4) • 0.3700 (7) • 0.2842 (5) • 0.0777 (1) ◦ 0.3496 (6) • 0.1309 (3) •

majorminer 0.3693 (1) 0.3736 (2) • 0.6830 (5) • 0.4721 (4) • 0.4525 (3) • 0.7234 (6) • 0.8349 (7) •
medical 0.1458 (1) 0.1485 (2) • 0.2680 (6) • 0.1896 (3) • 0.2638 (5) • 0.1989 (4) • 0.9756 (7) •
bibtex 0.3889 (1) 0.3892 (2) 0.8177 (7) • 0.5511 (4) • 0.6026 (5) • 0.7932 (6) • 0.5413 (3) •
dlc1 0.5725 (2) 0.5777 (4) 0.5410 (1) ◦ 0.7684 (7) • 0.5747 (3) 0.6111 (5) • 0.6919 (6) •
dlc2 0.5974 (1) 0.7096 (4) • 0.6450 (3) • 0.8099 (7) • 0.6158 (2) • 0.7641 (5) • 0.7688 (6) •
dlc3 0.6375 (1) 0.6945 (3) • 0.7605 (5) • 0.7515 (4) • 0.6440 (2) 0.8192 (7) • 0.7921 (6) •
dlc4 0.5755 (1) 0.6433 (4) • 0.7725 (6) • 0.7076 (5) • 0.6229 (3) • 0.6194 (2) • 0.8070 (7) •

Average Rank 1.4 2.9 5.2 4.7 2.8 5.3 5.7

Average Precision
scene 0.8415 (3) 0.8420 (2) ◦ 0.7213 (6) • 0.7991 (4) • 0.8600 (1) ◦ 0.7541 (5) • 0.4211 (7) •
enron 0.6658 (1) 0.6456 (2) • 0.4155 (6) • 0.4661 (5) • 0.6200 (3) • 0.3986 (7) • 0.5053 (4) •
cal500 0.6131 (2) 0.6030 (3) • 0.4996 (6) • 0.5245 (5) • 0.6351 (1) ◦ 0.4934 (7) • 0.5774 (4) •

majorminer 0.5988 (1) 0.5932 (2) • 0.4531 (4) • 0.3526 (6) • 0.5412 (3) • 0.4271 (5) • 0.2206 (7) •
medical 0.8611 (1) 0.8548 (2) • 0.7887 (6) • 0.7956 (3) • 0.7938 (4) • 0.7922 (5) • 0.1222 (7) •
bibtex 0.5222 (1) 0.5153 (2) • 0.2234 (7) • 0.3776 (4) • 0.3376 (5) • 0.2437 (6) • 0.4451 (3) •
dlc1 0.4749 (4) 0.4160 (5) • 0.5379 (1) ◦ 0.3044 (7) • 0.4952 (3) ◦ 0.4978 (2) ◦ 0.3933 (6) •
dlc2 0.4210 (3) 0.2849 (6) • 0.4335 (1) ◦ 0.2038 (7) • 0.4311 (2) ◦ 0.3638 (4) • 0.3076 (5) •
dlc3 0.3568 (2) 0.2780 (4) • 0.3194 (3) • 0.2268 (7) • 0.3594 (1) 0.2754 (5) • 0.2525 (6) •
dlc4 0.3567 (1) 0.2975 (3) • 0.2885 (4) • 0.2508 (6) • 0.3544 (2) 0.2707 (5) • 0.2174 (7) •

Average Rank 1.9 3.1 4.4 5.4 2.5 5.1 5.6
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to select a significantly better or worse k-Labelset, so it
is reasonable to assume that all LP classifiers are equally
important.

5 COST-SENSITIVE SOCIAL TAG PREDICTION

In this section, we analyze the effect and importance of
tag counts in multi-label classification for social tag pre-
diction. The analysis inspired us to apply cost-sensitive
multi-label learning for social tag prediction by treating
the tag counts as costs. We describe two evaluation
metrics for cost-sensitive multi-label classification.

5.1 Effect of Tag Count in Using Multi-Label Classi-
fication for Social Tag Prediction
Previous research generally used tag-count as a measure
for the existence of a tag. For example, in the audio tag
prediction task in MIREX, the tag count is transformed
into 1 (with a tag) or 0 (without a tag) based on a
certain pre-determined threshold. In [33], the authors
tried different thresholds to transform the tag counts
into binary decisions for training, but found it difficult
to improve the classification accuracy. Part of the reason
is that such coarse-grained discretization does not fully
use the count information.

In order to demonstrate the importance of the tag
count information, we analyze the difference between
the prediction results of the high count tags and low
count tags in terms of the false negative rate (FNR) on
the six social tag prediction datasets: cal500, majorminer,
and the four subset versions of the delicious data (from
dlc1 to dlc4). The results are shown in Table 7. The high
count tags include tags whose counts are larger than a
pre-defined threshold. The thresholds for the cal500 and
majorminer datasets are set to 5 and 6, respectively; and
the threshold for the four delicious datasets is set to 50.
The low count tags are tags whose counts are equal to
the respective smallest tag count in that dataset. We use
binary relevance SVM (BRSVM) and IBLR for training
the multi-label classifiers. The results are obtained from
three-fold cross-validation.

From Table 7, we observe that, for all of the six
datasets, both BRSVM and IBLR have significantly
higher false negative rates on the low count tags than
on the high count tags. For example, for the cal500
dataset, the FNR is 37.61 % for the high count tags
and 70.94 % for the low count tags, by using IBLR. We
have also conducted the same experiment by using other
multi-label classifiers such as GLE and MLKNN, and the
results are similar to that of BRSVM and IBLR. It is clear
that the low count tags are more difficult to recognize
than the high count tags. This observation inspires us to
further study the relationship of the tag counts and the
annotated resources.

We show some example URLs in the delicious dataset
associated with the “art”, “c”, “education”, and “web2.0”
tags as the high count tags or low count tags in Tables
8 and 9, respectively. For each tag, we select three URLs

TABLE 7
Comparison of Prediction Results of High Count Tags

and Low Count Tags in Terms of False Negative Rate (in
%)

Tag Count Number of
Dataset Type Tag-Instance Pairs BRSVM IBLR

High 308 38.92 37.61
cal500 Low 3395 75.74 70.94

High 686 31.49 38.96
majorminer Low 4418 54.99 55.29

High 1497 65.60 55.85
dlc1 Low 1951 89.95 82.32

High 1658 69.54 59.83
dlc2 Low 2541 91.46 83.35

High 2142 67.55 58.17
dlc3 Low 3178 92.54 83.42

High 2362 64.01 62.53
dlc4 Low 3169 91.86 77.75

which are repeatedly annotated with the tag, i.e., the tag
is a high count tag for these URLs. The URLs are shown
in Table 8. We also select three URLs which are annotated
with the tag only a few times, i.e., the tag is a low count
tag for the URLs. The URLs are shown in Table 9. The
count of the tag and a short description for the URL are
also shown in the table. For comparison, we also show
two other high count tags annotated to the same URL in
the last column in Table 8 and 9.

From Table 8, we observe that the high count tags usu-
ally capture the salient property of a URL. For example,
the URL www.cplusplus.com, which is a famous site for
C++ programming language reference and documenta-
tion, has been annotated with the tag “c” for 771 times;
and the URL ocw.mit.edu/courses, which is a famous
site called MIT OpenCourseWare, has been annotated
with the tag “education” for 1024 times. We believe that
the association between a URL and their high count tags
is intuitive, obvious, and significant.

In contrast, the association between a URL and their
low count tags is not salient and sometimes hard to
understand. For example, the URL www.shoutcast.com,
which aims to provide free internet radio stations, has
been annotated with “art” for 2 times. The reason might
be that some people consider music as a kind of art.
Its high count tags “music” and “radio”, as shown in
the last column in Table 9, indeed capture more salient
properties of this site than the “art” tag. The URL
www.python.org/doc, which is the official documenta-
tion website of the Python programming language, has
been annotated with “c” for 2 times. A plausible reason
is that Python provides an application programming
interface (API) for the C language. Its high count tags
“python” and “reference” obviously capture more salient
properties of this URL than the “c” tag.

The examples in Tables 8 and 9 demonstrate why the
low count tags are more difficult to recognize than the
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Fig. 1. Average Relative Improvement of GLE over RAkEL in Terms of Five Different Evaluation Metrics with Respect
to Different Parameters k and M .

TABLE 8
Some Example URLs with the Four Example Tags as the High Count Tags in the Delicious Dataset

Target Tag Other High
Tag URL Count Description Count Tags

www.drawspace.com 1649 Provides large library of free art lessons draw, tutori
art www.threadless.com 1383 An online shirt shop that prints designs by users t shirt, shop

www.julianbeever.net/pave.htm 1068 Julian Beever’s pavement drawings illusion, pavem
www.cplusplus.com 852 The C++ resources network programming, reference

c aelinik.free.fr/c 771 Teach Yourself C in 24 Hours tutori, book
www.codeblocks.org 535 Open Source, Cross-platform Free C++ IDE ide, opensource
ocw.mit.edu/courses 1024 MIT opencourseware free, course

education oreillyschool.com 330 O’Reilly School of Technology programming, oreilly
itunes.berkeley.edu 726 UC Berkeley on iTune podcasting, itun
www.go2web20.net 8900 A web 2.0 directory statistic, reference

web2.0 digg.com 3525 A social bookmark website social, link
www.librarything.com 2293 A social network for sharing books book, library

high count tags, as the results shown in Table 7. Similar
observation can be drawn from the cal500 and majorminer
datasets. We think that the tag counts do reflect the
confidence of the tags to the URLs. Low counts imply
that users are less confident about such tag. Therefore,
misclassifying low count tags should be assigned a less
penalty.

Figure 2 shows the distribution of the tag counts of the
four selected tags in the delicious data. The horizontal
axis indicates the natural logarithm of the tag counts;
and the vertical axis indicates the number of instance-
tag pairs that fall into each interval. Generally, there are
more low count tags than high count tags. The tag count

distribution more or less follows the power law (we
have a similar observation on the cal500 and majorminer
datasets). When using a normal multi-label classification
algorithm to predict the tags, the noisy, low count tags
can dominate the positive distribution and cause prob-
lems for the learners. To solve the problem, we propose
using the tag count information to train a cost-sensitive
multi-label classifier that minimizes the training error
associated with tag counts. More specifically, the training
process should give a higher importance weight (i.e., a
higher misclassification cost) on correctly classifying the
reliable high count tags and a lower importance weight
(i.e., a lower misclassification cost) on the low count tags.
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TABLE 9
Some Example URLs with the Four Example Tags as the Low Count Tags in the Delicious Dataset

Target Tag Other High
Tag URL Count Description Count Tags

www.shoutcast.com 2 Free internet radio stations music, radio
art www.goodyblog.com 2 A blog about babies, kids, parents, and families blog, parent

www.tvguide.com 2 TV Guide’s official page for TV news, live event,...,etc. television, entertain
www.python.org/doc 2 Python Documentation Index python, reference

c www.cons.org/cmucl 2 A free Common Lisp implementation lisp, programming
www.arsmathematica.net 2 A blog about math blog, math

www.solidworks.com 2 3D Mechanical Design and 3D CAD Software softwar, cad
education www.ebookee.com 2 The Free eBooks Download Library ebook, free

www.robotvillage.com 2 An online store for renting robots robot, store
dustindiaz.com/udasss 2 UDASSS Official Documentation ajax, javascript

web2.0 rollerweblogger.org/project 2 An open source Java blog software blog, java
www.pstut.com 2 Easy to follow photoshop tutorials tutori, design
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Fig. 2. Histogram for the tag counts of the four selected tags in the delicious data.

5.2 Evaluation Metrics for Cost-Sensitive Social Tag
Prediction

The evaluation metrics used in cost-insensitive multi-
label classification, such as Hamming loss, ranking loss,
subset 0/1 loss, one loss, and average precision, do
not consider the costs (i.e., tag counts). In this paper,
we also evaluate the prediction performance from the
perspective of social tag annotation and retrieval that
considers the tag counts. The social tag annotation task
is viewed as a multi-label classification problem since
a fixed number of tags are given. The performance can
be evaluated in terms of the percentage of tags that are
verified correctly, or instance-based F-measure (i.e., the
correct tags should receive higher scores). In the social
tag retrieval task, given a specific tag as a query, the
objective is to retrieve the instances (URLs or audio clips)
that correspond to the tag. This can be achieved by using
the multi-label classifier to determine whether, based on
the prediction score for the query label, each instance
is relevant to the tag. The instances are then ranked
according to the relevance scores, and those with the
highest scores are returned to the user. The performance
can be evaluated in terms of label-based F-measure.

The cost-sensitive precision (CP) and the cost-sensitive
recall (CR) are defined as follows:

CP =
Weighted sum of TP

Weighted sum of TP+Weighted sum of FP
,

(13)

CR =
Weighted sum of TP

Weighted sum of TP+Weighted sum of FN
,

(14)
where TP, FP, and FN denote the true positive, the
false positive, and the false negative, respectively. The
weight of each positive instance is assigned as the count
of the associated tag. However, assigning a weight to
each negative instance is not as straightforward because
people do not use negative tags like “non-rock” and “no
drum.” Therefore, we assign a uniform cost to negative
instances and balance the cost between positive and neg-
ative classes, i.e., the total cost of the positive instances
is the same as that of the negative instances. As a result,
the expected CP of a random guess baseline method will
be 0.5. Then, the cost-sensitive F-measure based on CP and
CR is calculated as follows:

2× CR× CP
CR + CP

. (15)

We use the instance-based cost-sensitive F-measure and
the label-based cost-sensitive F-measure to evaluate the
social tag annotation task and the social tag retrieval
task, respectively.

5.3 Cost-Sensitive Experiments
As mentioned in Section 4, six datasets (including cal500,
majorminer, dlc1, dlc2, dlc3, and dlc4) come from the
social tagging domain. These datasets, which contain the
tag count information, are used for cost-sensitive social
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tagging experiments. The experimental setup is the same
as that in the Section 4. However, we only compare
GLE with RAkEL, BR, and MLKNN, since these three
methods perform better than CC, IBLR, and BPMLL
on the experiments in Section 4. We replace the base
classifier in BR by cost sensitive binary classifier (CSBR)
as in the previous work [9]. The cost-sensitive binary
classifier is implemented using LIBSVM.

The experimental results of cost-sensitive social tag
annotation and retrieval are summarized in Table 10.
In most cases, GLE outperforms RAkEL, CSBR, and
MLKNN. In only one case, GLE performs slightly worse
than RAkEL in cost-sensitive annotation; however, the
difference is not significant. The average rankings of GLE
on six datasets using two different metrics are 1.2 and
1.0, respectively.

6 CONCLUSION
In this paper, we have proposed a Generalized k-
Labelsets Ensemble, which is based on the concept of
label powerset method, for multi-label classification. We
have proposed a novel objective function to learn the
expansion coefficients of the base classifiers and found
an analytic solution to learn the coefficients efficiently.
GLE can be used for both multi-label classification and
cost-sensitive multi-label classification. Automatic social
tagging is one important application of multi-label clas-
sification. We have analyzed the effect of tag counts in
automatic social tagging and shown that the tag count
is important information, which indicates whether the
annotated instance is a confident positive instance for
that tag. By treating the tag counts as the misclassifi-
cation costs, we can model the social tagging problem
as a cost-sensitive multi-label classification problem. Ex-
perimental results on both multi-label classification and
cost-sensitive social tagging show that GLE has better
performance against other methods.
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