
Yuan-Hao Chang (張原豪)
johnson@iis.sinica.edu.tw
Institute of Information Science
Academia Sinica

Advanced Operating
Systems
高等作業系統
Fall 2013

mailto:johnson@iis.sinica.edu.tw

Course Information
• Lecturer:

– Yuan-Hao Chang
– Office: R612, IIS, Academia Sinica
– Phone: +886-2-2788-3799 ext. 1612

• Teaching Assistant (TA):
– 柯奇恩
– Email: bibi630[at]gmail.com

• Lecturing hours:
– 9 am ~ 12:00 pm, Monday

• Classroom:
– S602,

• Course webpage:
– http://www.iis.sinica.edu.tw/~johnson/courses/AOS201308/
– Grading：(subject to changes)
– Projects: (30%), Midterm exam (30%), Final exam (30%), In-class performance (10%)

• Prerequisite
– C programming language
– Operating system

November 4, 2013 2

http://www.iis.sinica.edu.tw/~johnson/courses/AOS201308/

Course Information (Cont.)
• Textbooks:

– Understanding the Linux Kernel 3/e, 2005
Authors: Daniel Bovet and Marco Cesati
Publisher: O'Reilly
ISBN: 0596005652

– Professional Linux Kernel Architecture , 2008
Authors: Wolfgang Mauerer
Publisher: Wrox Press
ISBN: 0470343435

– Linux Kernel Development 3/e, 2010
Authors: Robert Love
Publisher: Addison Wesley
ISBN: 0672329468

– Operating System Concepts 9/e, 2012
Authors: Abraham Silberschat
Publisher: Wiley
ISBN: 1118063333

– Linux Kernel in a Nutshell, 2006
Authors: Greg Kroah-Hartman
Publisher: O'Reilly Media, Inc.
ISBN: 0596100795

November 4, 2013 3

http://www.tenlong.com.tw/items/0596005652?item_id=28827
http://www.tenlong.com.tw/items/0470343435?item_id=46972
http://www.tenlong.com.tw/items/0672329468?item_id=56972
http://www.amazon.com/Operating-System-Concepts-Edition-ebook/dp/B00APSZCEQ
http://www.tenlong.com.tw/items/0596100795?item_id=68108

Syllabus
1. Introduction

2. Memory Addressing

3. Processes

4. Interrupts and Exceptions

5. Kernel Synchronization

6. Timing Requirements

7. Architecture

8. Process Scheduling

9. Memory Management

10. Process Address Space

11. System Calls

12. Signals

November 4, 2013 4

01 Introduction

Unix-Like Operating Systems
• Linux is a member of the large family of Unix-like
operating systems.

• Other Unix-like operating systems:
– System V Release 4 (SVR4), from AT&T
– 4.4BSD, from University of California at Berkeley
– Digital Unix, from Digital (now Hewlett-Packard)
– AIX, from IBM
– HP-UX, from Hewlett-Packard
– Solaris, from Sun
– Mac OS X, from Apple
– Others: FreeBSD, NetBSD, and OpenBSD

November 4, 2013 6

Linux
• Developed by Linus Torvalds in 1991 for Intel 80386

microprocessor.

• Ported to various architectures, including Hewlett-Packard’s
Alpha, Intel’s Itanium, AMD’s AMD64, PowerPC, and IBM’s
zSeries, etc.

• Compliant to IEEE’s Portable Operating Systems based on
Unix (POSIX)

• Opened under GNU General Public License (GPL)
– The GNU project is coordinated by the Free Software Foundation, Inc.

(http://www.gnu.org); its aim is to implement a whole operating system
freely usable by everyone.

• Linux kernel source: http://www.kernel.org
– Some distributions put the kernel source in the /usr/src/linux directory

November 4, 2013 7

This course is based on Linux 2.6.11

http://www.kernel.org/

Linux Versus Other Unix-Link
Kernels

Linux Features
• Monolithic kernel

– Most commercial Unix variants are monolithic.

• Dynamically linked Linux kernels
– Linux’s support for modules is very good, because it is able to

automatically load and unload modules on demand.

• Kernel threading
– A kernel thread is an execution context that can be independently

scheduled; it may be associated with a user program, or it may run
only some kernel functions.

– Context switches between kernel threads are usually much less
expensive than context switches between ordinary processes.

November 4, 2013 9

Linux Features (Cont.)
• Multithreaded application support

– A multithreaded user application could be composed of many lightweight
processes (LWP), which are processes that can operate on a common
address space, common physical memory pages, common opened files,
and so on.

– Linux regards lightweight processes as the basic execution context.

• Preemptive kernel
– Linux can arbitrarily interleave execution flows while they are in privileged

mode.

• Multiprocessor support
– Linux supports symmetric multiprocessing (SMP) for different memory models,

including NUMA.

• Filesystem
– Due toe the design of virtual filesystems, Linux is easy to support most of the existing

filesystem designs.

November 4, 2013 10

Advantages of Linux
 • Linux is cost-free

• Linux is fully customizable in all its components
– Due to the GPL

• Linux runs on low-end, inexpensive hardware platforms.
– E.g., Running with 4MB RAM

• Linux is powerful
– Fully exploit the features of the hardware components.

• Linux developers are excellent programmers
– Linux systems are very stable.

• The Linux kernel can be very small and compact
– It is possible to fit in a 1.44MB floppy disk.

• Linux is highly compatible with many common operating systems’
applications

• Linux is well supported

November 4, 2013 11

Linux Versions
 • UP to kernel version 2.5:

– Each version was characterized by three numbers, separated by
periods.
- Version: the first two numbers

· The second number identifies the type of kernel.
» Even number: a stable version
» Odd number: a development version

- Release: the third number

• Kernel version 2.6 and up:
– The second number no longer identifies stable or development

versions.
– Two kernels having the same version but different release numbers

(e.g., 2.6.10 and 2.6.11) can differ significantly.
– The fourth number identifies the patched version

- E.g., 2.6.11.12 is the 12th patch to make 2.6.11 more stable.

November 4, 2013 12

Basic Operating System Concepts
• Kernel: The most important program of an operating

system.
– Loaded into RAM when the system boots and contains many critical

procedures that are needed for the system to operate.
– The kernel provides key facilities to everything else on the system

and determines many of the characteristics of higher software.
– We use the term “operating system” as a synonym for “kernel”.

• Main objectives of operating systems
– 1. Interact with the hardware components:

- Servicing all low-level programmable elements included in the hardware
platform.

– 2. Provide an execution environment to user programs (or
applications) that run on the computer system.

November 4, 2013 13

MS-DOS vs. Linux
• MS-DOS:

– Allow all user programs to directly play with the hardware
components.

• Linux:
– Hides all low-level details concerning the physical

organization of the computer from applications run by the
user.
- When a program wants to use a hardware resource, it must issue

a request to the operating system.
- The kernel evaluates the request and interacts with the proper

hardware components on behalf of the user program.

November 4, 2013 14

User Mode vs. Kernel Mode
• Modern operating systems rely on the availability of specific

hardware features that forbid user programs to directly
interact with low-level hardware components or to access
arbitrary memory locations.

• Two running modes:
– User mode

- Nonprivileged mode for user programs.

– Kernel mode
- Privileged mode for the kernel.

November 4, 2013 15

Multiuser System
 • A multiuser system is a computer that is able to

concurrently and independently execute several
applications belonging to two or more users.

– Concurrently:
- Applications can be active at the same time and contend for the various

resources such as CPU, memory, hard disks.
– Independently:

- Each application can perform its task with no concern for what the
applications of the other users are doing.

• Features of multiuser operating systems:
– An authentication mechanism
– A protection mechanism against buggy user programs
– A protection mechanism against malicious user programs

- Might interfere with or spy on the activity of other users.
– An accounting mechanism

November 4, 2013 16

Users and Groups
• Users and groups:

– Users:
- All users are identified by a unique number called the User ID, or UID.

– Groups:
- Each user is a member of one or more user groups, which are identified by a

unique number called a user group ID.

• Reason:
– The operating system must ensure that the private portion of a user

space is visible only to its owner. In particular, it must ensure that no
user can exploit a system application for the purpose of violating the
private space of another user.

• root or superuser:
– The root user can do almost everything, because the operating

system does not apply the usual protection mechanisms to her.

November 4, 2013 17

Processes
• A process can be defined either as “an instance of a

program in execution” or as the “execution context” of a
running program.

• A process executes a single sequence of instructions in an
address space; the address space is the set of memory
addresses that the process is allowed to reference.

– Modern operating systems allow processes with multiple execution
flow

• Systems that allow concurrent active processes are said to
be multiprogramming or multiprocessing.

• It is important to distinguish programs from processes:
– Several processes can execute the same program concurrently,

while the same process can execute several programs sequentially.

November 4, 2013 18

Processes (Cont.)
• Scheduler

– Choose the process that can progress.
– Some operating systems only allow nonpreemptable processes

which means that the scheduler is invoked only when a process
voluntarily relinquishes the CPU.

– Linux is a preemptable operating system.

• Example:
– When a user is logged in, the process creates another process that

runs a shell into which commands are entered.
– If a graphical display is activated, one process runs the window

manager, and each window on the display is usually run by a
separate process.

– When a user creates a graphics shell, one pone process runs the
graphics windows and a second process runs the shell into which
the user can enter the commands.

November 4, 2013 19

The Flow of a System Call
• 1. Whenever a process makes a system call (i.e., a request

to the kernel), the hardware changes the privilege mode
from User Mode to Kernel Mode, and the process starts the
execution of a kernel procedure with a strictly limited
purpose.

• 2. Then, the operating system acts within the execution
context of the process in order to satisfy its request.

• 3. Whenever the request is fully satisfied, the kernel
procedure forces the hardware to return to User Mode and
the process continues its execution.

November 4, 2013 20

Kernel Architecture
• Linux is a monolithic kernel

– Each kernel layer is integrated into the whole kernel program and
runs in Kernel Mode on behalf of the current process.

• In contrast, microkernel demands a very small set of
functions from the kernel.

– Some system processes that run on top of the microkernel
implement other OS functions, e.g., memory allocators, device
driers, and system call handlers.

– Advantages:
- Force the system programmers to adopt a modularized approach.
- Port to other architectures fairly easily .
- Make better use of random access memory.

November 4, 2013 21

Kernel Architecture - Modules
• By taking advantage of microkernels, Linux offers modules

– A module is an object file whose code can be linked to the kernel at
runtime.

– Modules are executed in Kernel Mode on behalf of the current
process, like any other statically linked kernel functions.

• The advantages of using modules:
– A modularized approach

- Linked/unlinked at runtime with well-defined software interfaces.
– Platform independence
– Frugal main memory usage
– No performance penalty

- No explicit message passing is required.

November 4, 2013 22

An Overview of the Unix
Filesystem

Files
• Files are organized in a tree-structured namespace.

• A directory node contains information about the files and
directories just beneath it.

• A file or directory name consists of a sequence of arbitrary
ASCII characters (or Unicode), with the exception of / and
of the null character \0.

• Most filesystems place a limit on the length of a filename.

• Root directory is denoted as /

November 4, 2013 24

Working Directory
• Linux associates a current working directory with each

process.

• The process uses a pathname, which consists of slashes
alternating with a sequence of directory names that lead to
the file.

– If the first item in the pathname is a slash, the pathname is said to
be absolute, because its starting point is the root directory.

– If the first item is a directory name or filename, the pathname is said
to be relative.

• Special notation:
– “.” denotes the current working directory.
– “..” denotes the parent directory of the current working directory.

November 4, 2013 25

Hard and Soft Links
• Hard link

– A file name includes in a directory is called a file hard link.
– $ ln p1 p2 // Create a new hard link that has the pathname p2 for a

file identified by the pathname p1.
– Limitation:

- It is not possible to create hard links for directories.
- Links can be created only among files included in the same filesystem.

• Soft link (symbolic link)
– Symbolic links are short files that contain an arbitrary pathname of

another file.
– $ ln –s p1 p2 // Create a new soft link with p2 that refers to p1.

November 4, 2013 26

File Types
• Linux file types:

– Regular file
– Directory
– Symbolic link
– Block-oriented device file
– Character-oriented device file
– Pipe and named pipe (called FIFO)
– Socket

November 4, 2013 27

Constituents of a filesystem

Related to I/O devices

For interprocess
communication

File Descriptor and Inode
 • Linux makes a clear distinction between the contents of a file and the

information about a file.

• All the information needed by the filesystem to handle a file is included in a data
structure is called inode.

• Each file has its own inode.

• Information about a file:
– File type
– Number of hard links associated with the file
– File length in bytes
– Device ID (i.e., an identifier of the device containing the file)
– Inode number that identifies the file within the filesystem
– UID of the file owner
– User group ID of the file
– Several timestamps that specify the inode status change time, the last

access time, and the last modify time
– Access rights and file mode

November 4, 2013 28

Access Rights and File Mode
 • The potential users of a file:

– The user who is the owner of the file
– The users who belong to the same group as the file.
– All remaining users (others)

• Three types of access rights:
– Read, write and execute

• Three additional flags
– suid (Set User ID)

- If the executable file has the suid flag set, the process gets the UID of the file
owner.

– sgid (Set Group ID)
- If the executable file has the sgid flag set, the process gets the user group ID of

the file.

– sticky
- An executable file with the sticky flag set corresponds to a request to the kernel to

keep the program in memory after its termination.

November 4, 2013 29

File-Handling System Calls
 • The reason to defined system calls:

– A filesystem is a user-level view of the physical organization of a
hard disk partition.

– A process in User Mode cannot interact with the low-level hardware
components, so each actual file operation must be performed in
Kernel Mode.

• Opening a file with system call open()
– fd = open(path, flag, mode)

- path: Denotes the pathname of the file to be opened.
- flag: Specifies how the file must be opened (e.g., read, write, read/write, append)
- mode: Specifies the access rights of a newly created file.

– The system call open() creates an “open file” object and returns an
identifier called a file descriptor, which contains:

- 1. Some file-handling data structures: e.g., offset field (i.e., file pointer)
- 2. Some pointers to kernel functions that the process can invoke.

· The set of permitted functions depends on the value of the flag parameter.

November 4, 2013 30

File Descriptor in POSIX Semantics
• A file descriptor represents an interaction between a process and an

opened file.

• An open file object contains data related to that interaction.
– The same open file object may be identified by several file descriptors in the

same process.

• Several processes may concurrently open the same file.
– The filesystem assigns a separate file descriptor to each opened file, along

with a separate open file object.
– Filesystems does not provide any kind of synchronization among the I/O

operation issued by the processes on the same file.
– Several systems calls such as flock() are available to allow processes to

synchronize on the file.
– To create a new file, the process may invoke the create() system call, which

is handled by the kernel exactly like open().

November 4, 2013 31

Accessing an Opened File
• Two major types of files

– Regular Linux file can be addressed sequentially or randomly.
– Devices and named pipes are usually accessed sequentially.

• In the open file object, Linux kernel stores the file pointer to
indicate the current position at which the next read or write
operation will take place.

– Sequential access is implicitly assumed:
- Read() and write() system calls refer to the position of the current file

pointer.
- To modify the current file pointer, a program must invoke lseek() system

call.
- When a file is opened, the kernel sets the file pointer to the first position

of the file.

November 4, 2013 32

Accessing an Opened File (Cont.)
 • The lseek() system call:

– newoffset = lseek(fd, offset, whence)
- fd: Indicate the file descriptor
- offset: Specify a signed integer value to compute the new position of the file pointer
- whence: Specify whether the new position should be computed by adding the offset

value to the number 0 (beginning of the file), the current file pointer, or the position of
the last byte.

• The read() system call:
– nread= read(fd, buf, count)

- fd: Indicate the file descriptor
- buf: Specify the address of the buffer in the process’s address space
- count: Denotes the number of bytes to read
- The returned nread value specifies the number of bytes effectively read.

• The close() system call:
– res = close(fd)

- Release the open file object corresponding to the file descriptor.
- When a process terminates, the kernel closes all its remaining opened files.

November 4, 2013 33

Renaming and Deleting a File
• To rename or delete a file, a process does not
need to open it.
– The rename() system call:

- res = rename(oldpath, newpath)
· Change the name of a file link

– The unlink() system call:
- res = unlink(pathname)

· Decrease the file link count and remove the corresponding directory
entry.

· The file is deleted only when the link count assumes the value 0.

November 4, 2013 34

An Overview of Unix Kernels

Overview
• Kernels provide an execution environment in which

applications may run.

• The kernel must implement a set of services and
corresponding interfaces.

• Applications use those interfaces and do not usually interact
directly with hardware resources.

• A program executes in User Mode and switches to Kernel
Mode only when requesting a service provided by the
kernel. It is put back to User Mode when the kernel satisfies
the program’s request.

November 4, 2013 36

The Process/Kernel Model
• Processes are dynamic entities that usually have a limited life

span within the system.
– The task of creating, eliminating, and synchronizing the existing

processes is delegated to a group of routines in the kernel.

• Kernel threads are a few privileged processes:
- Run in Kernel Mode in the kernel address space
- Do not interact with users
- Created at system startup and remain alive

• Kernel is not a process but is a process manager.
– Processes that require a kernel service use specific programming

constructs “system calls”.

November 4, 2013 37

Transitions between User and Kernel Mode

November 4, 2013 38

• 1. Process 1 in User Mode issues a system call, after which the process
switches to Kernel Mode, and the system call is serviced.

• 2. Process 1 then resumes execution in User Mode until a timer interrupt
occurs, and the scheduler is activated in Kernel Mode.

• 3. A process switch takes place, and Process 2 starts its execution in User
Mode until a hardware device raises an interrupt.

• 4. As a consequence of the interrupt, Process 2 switches to Kernel Mode and
services the interrupt.

Kernel Routine Activation
• Kernel routine can be activated in several ways:

– A process invokes a system call.
– The CPU executing the process signals an exception,

which is an unusual condition, e.g., an invalid instruction.
– A peripheral device issues an interrupt signal to the

CPU.
- Each interrupt signal is dealt by a kernel program called interrupt

handler.

– A kernel thread is executed
- Because kernel threads are run in Kernel Mode and are part of

the kernel.

November 4, 2013 39

Process Implementation
• Each process is represented by a process descriptor that

maintains the current state of the process.

• When the kernel stops the execution of a process, it saves
the current contents of several processor registers in the
process descriptor. These include:

– The program counter (PC) and stack pointer (SP) registers
– The general purpose registers
– The floating point registers
– The processor control registers (Processor Status Word)
– The memory management registers (to keep track of the RAM

accessed by the process)

• When a process is not executing, its process descriptor is
put in the queue corresponding to its waiting event.

November 4, 2013 40

Reentrant Kernels
• Linux kernels are reentrant.

– Several processes can be executing in Kernel Mode at the same time.
– On uniprocessor systems, only one process can progress, but many can be

blocked in Kernel Mode when waiting for the CPU or the completion of I/O.
- E.g., Issuing a read to a disk on behalf of a process.

– One way to provide reentrancy is to write functions (i.e., reentrant functions)
that modify only local variable.

– Reentrant kernels can include nonreentrant functions with locking
mechanisms to ensure that only one process can execute a nonreentrant
function at a time.

– If a hardware interrupt occurs, a reentrant kernel is able to suspend the
current running process even if that process is in the Kernel Mode.

- This capability improves the throughput of the device controllers that issue
interrupts.

· Once a device has issued an interrupt, it waits until the CPU acknowledges.

November 4, 2013 41

Kernel Control Path
 • A kernel control path denotes the sequence of instructions executed by the

kernel to handle (1) a system call, (2) an exception, or (3) an interrupt.

• The CPU interleaves the kernel control paths:
– A process in User Mode invokes a system call, and the corresponding kernel control

path verify that the request cannot be satisfied.
- It invokes the scheduler to select a new process (in the Kernel Mode) to run. Thus, the kernel

control path is switched due to the process switch.
– The CPU detects an exception, e.g., a page fault, while running a kernel control path.

- The first control path is suspended, and the CPU starts the execution of a suitable procedure.
· E.g., This type of procedure can allocate a new page for the process and read the content from disk, and

then the first control path is resumed. In this case, the two kernel control paths run in the execution context of the
same process.

– A hardware interrupt occurs while the CPU is running a kernel control path with the
interrupts enabled.

- The first kernel control path is left unfinished, and the CPU start processing another kernel
control path to handle the interrupt.
In this case, the two kernel control paths run in the execution context of the same process.

– An interrupt occurs while the CPU is running with kernel preemption enabled and a
higher priority process is runnable.

- The first kernel control path is left unfinished, and the CPU resumes executing another kernel
control path on behalf on the higher priority process.

November 4, 2013 42

Kernel Control Path (Example)
• Example:

– 1. Running a process in User Mode (User)
– 2. Running an exception or a system call handler (Excp)
– 3. Running an interrupt handler (Intr)

November 4, 2013 43

Noninterleaved
kernel control path

Interleaved kernel
control path

Process Address Space
• Each process runs in its private address space.

– When running in User Mode, a process refers to its private stack, data, and code
areas.

– When running in Kernel Mode, a process addresses the kernel data and code areas,
and uses another private stack.

• Because the kernel is reentrant, several kernel control paths (each of which is
related to a different process) may be executed in turn. Thus, each kernel
control path refers to private kernel stack of its corresponding process.

• Shared address space
– Sometimes, part of the private address space of some processes are shared to

reduce memory usage.
- E.g., if a program, say an editor, is needed by several users, the program is loaded into

memory once shared by all of the users, but its data are not shared. (Automatically by kernel)
- Processes share parts of their address space (called shared memory) as a kind of

interprocess communication (IPC). (Shared by user)
– The mmap() system call allows part of a file or the information stored in a block

device to be mapped into a part of a process address.

November 4, 2013 44

Synchronization and Critical Regions
• Implementing a reentrant kernel requires the use of
synchronization.

• Race condition occurs when the outcome of a
computation depends on how two or more
processes are scheduled.
– Safe access to global variable is ensured by using

atomic operations.
– To achieve the atomicity, any section of code (called

critical section/region) should be finished by each
process that begins it before another process can enter
it.

November 4, 2013 45

Kernel Preemption and Interrupt Disabling

• Kernel preemption disabling
– To solve the synchronization problem, some traditional kernels are

nonpreemptive: when a process executes in Kernel Mode, it cannot
be arbitrarily suspended and substituted with another process.

– Nonpreemptability is not enough for multiprocessor systems,
because two kernel control paths running on different CPUs can
concurrently access the same data structure.

• Interrupt disabling
– A simple solution by disabling all hardware interrupts before entering

a critical region and reenabling them right after leaving it.
– Disabling interrupts on the local CPU is not sufficient on a

multiprocessor system.

November 4, 2013 46

Semaphores
• A semaphore is simply a counter associated with a data

structure. It is checked by all kernel threads before they try
to access the data structure.

• A semaphore is composed of
– An integer variable
– A list of waiting processes
– Two atomic methods: down() and up()

- The down() method decreases the value of the semaphore. IF the new
value is less than 0, the method adds the running process to the
semaphore list and blocks.

- The up() method increases the value of the semaphore. If the value of
the new semaphore isn’t negative, access to the data structure is
granted.

November 4, 2013 47

Spin Locks
• If the time required to update the data structure is
short, a semaphore could be very inefficient.

• Multiprocessor operating systems use spin locks.
– A spin lock is very similar to a semaphore, but it has no

process list.
– When a process finds the lock closed by another

process, it “spins” around until the lock becomes open.

November 4, 2013 48

Avoiding Deadlocks
• Processes or kernel control paths that synchronize with

other control paths may easily enter a deadlock state.
– E.g., Process p1 gain access to data structure a and process p2

gains access to b, but p1 then waits for b and p2 waits for a.

• Deadlocks become an issue when the number of kernel
locks used is high.

• Several operating systems, including Linux, avoid this
problem by requesting locks in a predefined order.

November 4, 2013 49

Signals
• Signals provide a mechanism for notifying processes of system events.

• Each event has its own signal number, which is referred to by a
symbolic constant. There are two kinds of system events:

– Asynchronous notifications
- E.g., a user can send the interrupt signal SIGINT to a foreground process by

pressing Ctrl+C at the terminal.
– Synchronous notifications

- E.g., the kernel sends the signal SIGSEGV (segmentation violation) to a process
when it accesses a memory location at an invalid address.

• The POSIX standard defines about 20 different signals.

• A process may react to a signal delivery in two possible ways:
– Ignore the signal.
– Asynchronously execute a specified procedure (the signal handler).

November 4, 2013 50

Signals (Cont.)
• If no signal handler is defined in the process, the kernel performs a

default action. Five possible default actions:
– Terminate the process.
– Write the execution context and the contents of the address space in a file

(i.e., core dump) and terminate the process.
– Ignore the signal.
– Suspend the process.
– Resume the process’s execution if it was not stopped.

• The SIGKILL and SIGSTOP signals cannot be handled by the process
or ignored.

November 4, 2013 51

Interprocess Communication (IPC)
 • Interprocess communication includes semaphores,

message queues, and shared memory, which are
implemented as IPC resources.

– Semaphores are used to synchronize among processes in User
Mode.

– Message queues allow processes to exchange messages by using
the msgsnd() and msgrcv() system calls.

– Shard memory provides the fastest way for processes to exchange
and share data.
- 1. A process starts by issuing a shmget() system call to create a new

shared memory having a required size.
- 2. After obtaining the IPC resource identifier, the process invokes the

shmat() system call to have the starting address of the new region within
the process address space.

- When the process wishes to detach the shared memory, it invokes the
shmdt() system call.

November 4, 2013 52

Process Management
• The fork() system call is used to create a new process.

– The process that invokes a fork() is the parent, and the new process is its
child.

- Parent: returned value = child’s PID
- Child: returned value = 0

– The current kernels that can rely on hardware paging units follow the Copy-
On-Write (COW) approach, which defers page duplication until the last
moment.

• The _exit() system call is used to terminate a process.
– Release the resources owned by the process and send the parent process

a SIGCHILD signal.

• The exec()-like system call is invoked to load a new program.
– After the exec()-like system call is executed, the process resumes execution

with a brand new address space containing the loaded program.

November 4, 2013 53

Zombie Processes
• Zombie Process:

– The process that has terminated, but whose parent hasn't yet waited for it.

• A special zombie process state is introduced to represent terminated processes:
– A process remains in that state until its parent process executes a wait4() system call

on it.
– If no child process has already terminated when the wait4() system call is executed,

the kernel usually puts the process in a wait state until a child terminates.
– Many kernels also implement a waitpid() system call, which allows a process to wait

for a specific child process.

• If the parent process terminates without issuing that call, the information takes
up valuable memory slots that could be used to serve living processes.

– E.g., many shells allow the user to start a command in the background and then log
out.

• The solution to zombie processes lies in a special system process called init,
which is created during system initialization.

– When a process terminates, all of its children are set as the children of init, which
routinely issues wait4() system calls.

November 4, 2013 54

Process Groups and Login Sessions
• A job is composed of a process group.

– $ ls | sort | more
- This command creates a new group for the three processes

corresponding ls, sort, and more.
- The shell acts on the three processes as if there were a single entity (i.e.,

job).
- Each group of processes may have a group leader, which is the process

whose PID coincides with the process group ID.

• Login session
– A login session contains all processes that are descendants of the

process that has started a working session on a specific terminal.
– All processes in a process group must be in the same login session.
– A login session may have several process groups.
– The terminal command bg and fg can be used to put a process

group in the background or the foreground.

November 4, 2013 55

Virtual Memory
• Virtual memory acts as a logical layer between the

application memory requests and the hardware memory
management unit (MMU).

– Several processes can be executed concurrently.
– Applications’ memory needs could be larger than the physical

memory.
– Processes can execute a program whose code is partially loaded in

memory.
– Each process is allowed to access a subset of the available physical

memory.
– Processes can share a single memory image of a library program.
– Programs can be relocatable.
– Programmers can write machine-independent code.

November 4, 2013 56

Virtual Memory (Cont.)
• The set of memory references that a process can use is the

virtual address space.
– When a process uses a virtual address, the kernel and the MMU

cooperate to find the actual physical location of the requested
memory item.

– CPUs include hardware circuits that automatically translate the
virtual addresses into physical ones.

– The available RAM is partitioned into page frames (typically 4KB or
8KB).

– A set of Page Tables is introduced to specify how virtual addresses
correspond to physical addresses.

– A request for contiguous virtual addresses can be satisfied by
allocating a group of page frames having noncontiguous physical
addresses.

November 4, 2013 57

Random Access Memory Usage
 • A few megabytes of RAM are dedicated to storing the kernel image (i.e.,

the kernel code and the kernel static data structures).

• The remaining RAM is usually handled by the virtual memory system in
three possible ways:

– To satisfy kernel requests
- for buffers, descriptors, and other dynamic kernel data structures.

– To satisfy process requests
- for generic memory areas and for memory mapping of files.

– To get better performance from disks and other buffered devices by means
of cache.

• A page-frame-reclaiming algorithm is invoked to free additional memory
when the free memory is low.

• Memory fragmentation
– Since the kernel is often forced to use physically contiguous memory areas,

the memory request could fail even if there is enough memory available but
not contiguous.

November 4, 2013 58

Kernel Memory Allocator (KMA)
• Kernel memory allocator (KMA) is a subsystem that tries to satisfy the

requests for memory areas from all parts of the system.
– Some requests come from kernel subsystems needing memory for kernel

use.
– Some requests come via systems calls from user processes to increase

their processes’ address space.

• Features of a good KMA:
– Be fast. This is the most crucial attribute.
– Minimize the amount of wasted memory.
– Reduce the memory fragmentation problem.
– Cooperate with the other memory management subsystems to borrow or

release pages frames from them.

• Popular algorithms for KMA
– E.g., resource map allocator, power-of-two free lists, McKusick-Karels

allocator, buddy system, Mach’s zone allocator, Dynix allocator, and slab
allocator.

November 4, 2013 59

Process Virtual Address Space
• The address of a process contains all the virtual memory

addresses that the process is allowed to reference.

• When a process starts the execution of some program via
an exec()-like system call, the kernel assigns to the process
a virtual address space that is maintained with a list of
memory area descriptors and is comprised of memory
areas for:

– The executable code of the program
– The initialized data of the program
– The uninitialized data of the program
– The executable code and data of needed shared libraries
– The initial program stack (i.e., the User Mode stack)
– The heap

November 4, 2013 60

Process Virtual Address Space (Cont.)
 • Linux adopts a memory allocation strategy called demand paging.

– 1. A process can start program execution with none of its pages in physical
memory.

– 2. As it accesses a nonpresent page, the MMU generates an exception.
– 3. The exception handler finds the affected memory region, allocates a free

page, and initializes it with the appropriate data.
- A page frame is assigned to the process only when it generates an exception by

trying to refer its virtual memory addresses.

• When the process dynamically requires memory by using malloc() or
brk() system call, the kernel just updates the size of the heap memory
region of the process.

• Virtual address spaces allow other efficient strategies such as copy on
write (COW):

– E.g., when a new process is created, the kernel just assigns the parent’s
page frames to the child address space but marks them read-only.

- An exception is raised as soon as the parent or the child tries to modify the
contents of a page. The exception handler assigns a new page frame to the
affected process and initializes it with the contents of the original page.

November 4, 2013 61

Caching
• Available physical can be used as cache for hard
disks and other block devices because hard disks
are very slow.

• The sync() system call forces disk synchronization
by writing all of the “dirty” buffers into disk.

November 4, 2013 62

Device Drivers
• Device drivers:

– The kernel interacts with I/O devices by means of device drivers.
– Device drivers are included in the kernel and consist of data

structures and functions that control one or more devices.
– Each driver interacts with the kernel (and/or even with other drivers)

through a specific interface.

• This approach has the following advantages:
– Device-specific code can be encapsulated in a specific module.
– Venders can add new devices without knowing the kernel source

code.
– The kernel deals with all devices in a uniform way and access them

through the same interface.
– A device driver implemented as a module can be dynamically loaded

in the kernel without requiring the system to be rebooted.

November 4, 2013 63

Device Drivers (Cont.)
• Example:

– 1. Some user program P wish to
operate on hardware devices.

– 2. It makes requests to the kernel
using the usual file-related system
calls and the device files normally
found in the /dev directory.
- Each device file refers to a specific

device driver, which is invoked by
the kernel to perform the
requested operation on the
hardware.

November 4, 2013 64

Spare Slides

An Example of mmap()

November 4, 2013 66

offset = 0;start = 0;

/* 打開檔案 */
fd = open("/home/tester/a.txt", O_RDWR O_SYNC);

/* 作mmap動作，取得一個對應好的address */
ptr = mmap(0, map_size, PROT_READPROT_WRITE,
MAP_SHARED, fd, offset);

/*假如一切順利的話 ptr 就會接到一個address，這個address會對
應到a.txt這個檔案所在的起始位置，如果這時候我們用*/

strcpy(ptr, "hello!!");
/* a.txt裡面就會被寫入"hello!!"的字串*/

Semaphore

November 4, 2013 67

//The definition of wait() is as follows:
wait(S) {
 while (S <= 0); // busy wait
 S--;
}

//The definition of signal() is as follows:
signal(S) {
 S++;
}

An Example of fork() and exec()

November 4, 2013 68

int var_glb; /* A global variable*/
int main(void)
{
 pid_t childPID;

 childPID = fork();
 if(childPID == 0) // child process
 {
 printf("\n Child Process :: var_lcl = [%d], var_glb[%d]\n", var_lcl, var_glb);
 execl("/bin/ls", "/bin/ls", "-r", "-t", "-l", (char *) 0);
 }
 else //Parent process
 {
 printf("\n Parent process :: var_lcl = [%d], var_glb[%d]\n", var_lcl, var_glb);
 }
 }
 return 0;
}

An Signal Handler Example

November 4, 2013 69

#include<stdio.h>
#include<signal.h>
#include<unistd.h>

void sig_handler(int signo)
{
 if (signo == SIGINT)
 printf("received SIGINT\n");
}

int main(void)
{
 if (signal(SIGINT, sig_handler) == SIG_ERR)
 printf("\ncan't catch SIGINT\n");
 // A long long wait so that we can easily issue a signal to this process
 while(1) sleep(1);
 return 0;
}

An Example of errno

November 4, 2013 70

#include <errno.h>
#include <string.h>

/* ... */

if(read(fd, buf, 1)==-1) {
 printf("Oh dear, something went wrong with read()! %s\n", strerror(errno));
}

 if (somecall() == -1) {
 printf("somecall() failed\n");
 if (errno == ...) { ... }
 }

	投影片編號 1
	Course Information
	Course Information (Cont.)
	Syllabus
	投影片編號 5
	Unix-Like Operating Systems
	Linux
	投影片編號 8
	Linux Features
	Linux Features (Cont.)
	Advantages of Linux�
	Linux Versions�
	Basic Operating System Concepts
	MS-DOS vs. Linux
	User Mode vs. Kernel Mode
	Multiuser System�
	Users and Groups
	Processes
	Processes (Cont.)
	The Flow of a System Call
	Kernel Architecture
	Kernel Architecture - Modules
	投影片編號 23
	Files
	Working Directory
	Hard and Soft Links
	File Types
	File Descriptor and Inode�
	Access Rights and File Mode�
	File-Handling System Calls�
	File Descriptor in POSIX Semantics
	Accessing an Opened File
	Accessing an Opened File (Cont.)�
	Renaming and Deleting a File
	投影片編號 35
	Overview
	The Process/Kernel Model
	Transitions between User and Kernel Mode�
	Kernel Routine Activation
	Process Implementation
	Reentrant Kernels
	Kernel Control Path�
	Kernel Control Path (Example)
	Process Address Space
	Synchronization and Critical Regions
	Kernel Preemption and Interrupt Disabling
	Semaphores
	Spin Locks
	Avoiding Deadlocks
	Signals
	Signals (Cont.)
	Interprocess Communication (IPC)�
	Process Management
	Zombie Processes
	Process Groups and Login Sessions
	Virtual Memory
	Virtual Memory (Cont.)
	Random Access Memory Usage�
	Kernel Memory Allocator (KMA)
	Process Virtual Address Space
	Process Virtual Address Space (Cont.)�
	Caching
	Device Drivers
	Device Drivers (Cont.)
	投影片編號 65
	An Example of mmap()
	Semaphore
	An Example of fork() and exec()
	An Signal Handler Example
	An Example of errno

