
10 System Calls

Outline
• POSIX APIs and System Calls
• System Call Handler and Service Routines

• Entering and Exiting a System Call

• Parameter Passing

• Kernel Wrapper Routines

December 30, 2013 2

System Call’s Advantages
• 1. It makes programming easier by freeing users
from studying low-level programming
characteristics of hardware devices.

• 2. It greatly increases system security, because the
kernel can check the accuracy of the request at the
interface level before attempting to satisfy it.

• 3. These interfaces make programs more portable,
because they can be compiled and executed
correctly on every kernel that offers the same set of
interfaces.

December 30, 2013 3

POSIX APIs and System Calls
 • Unix systems include several libraries of functions that provide APIs to

programmers.

• Some of the APIs defined by the libc standard C library refer to wrapper
routines.

– The API could offer its services directly in User Mode.
– A single API function could make several system calls.

• The POSIX standard refers to APIs and not to system calls. A system
can be certified as POSIX-compliant if it offers the proper set of APIs to
the application programs.

• System calls belong to the kernel, while User Mode libraries don’t.

• Most wrapper routines return an integer value, whose meaning depends
on the corresponding system call.

– A return value of –1 usually indicates that the kernel was unable to satisfy
the process request.

– The POSIX standard specifies the macro names of several error codes.
Defined in include/asm-i386/errno.h

December 30, 2013 4

Outline
• POSIX APIs and System Calls

• System Call Handler and Service Routines
• Entering and Exiting a System Call

• Parameter Passing

• Kernel Wrapper Routines

December 30, 2013 5

System Call Handler and Service Routines
 • The system call handler, which has a structure similar to that of the

other exception handlers:
– Saves the contents of most registers in the Kernel Mode stack.
– Handles the system call by invoking a corresponding C function called the

system call service routine.
– Exits from the handler: the registers are loaded with the values saved in the

Kernel Mode stack, and the CPU is switched back to User Mode.

• To associate each system call number with its corresponding service
routine, the kernel uses a system call dispatch table, which is stored in
the sys_call_table array and has NR_syscalls entries.

December 30, 2013 6

Switch to Kernel Mode

Switch to User Mode

Outline
• POSIX APIs and System Calls

• System Call Handler and Service Routines

• Entering and Exiting a System Call
• Parameter Passing

• Kernel Wrapper Routines

December 30, 2013 7

Entering and Exiting a System Call
• Native applications can invoke a system call in two different ways:

– 1. By executing the int $0x80 assembly language instruction
– 2. By executing the sysenter assembly language instruction

• The kernel can exit from a system call:
– By executing the iret assembly language instruction.
– By executing the sysexit assembly language instruction

• Supporting two different ways to enter the kernel is not as simple as it
might look:

– The kernel must support both libraries.
– A standard library that makes use of the sysenter instruction must be able to

cope with older kernels that support only the int $0x80 instruction.
– The kernel and the standard library must be able to run both on the older

and the new processors.

December 30, 2013 8

System Call with int 0x80
• The vector 128 is associated with the kernel entry point.

• The trap_init() function sets up the Interrupt Descriptor
Table entry corresponding to vector 128 as follows:

• The call loads the following values into the gate descriptor
fields:

– Segment Selector: _ _KERNEL_CS
– Offset: The pointer to the system_call()
– Type: 15 (a Trap)
– DPL: set to 3

December 30, 2013 9

The system_call() Function
• Start by saving the system call number and all the CPU registers that

may be used by the exception handler on the stack—except for eflags,
cs, eip, ss, and esp, which have already been saved automatically by
the control unit.

• If this is the case, system_call() invokes the do_syscall_trace() function
twice if either one of the TIF_SYSCALL_TRACE and
TIF_SYSCALL_AUDIT flags included in the flags field of the thread_info
structure is set.

• Then a validity check is performed:

December 30, 2013 10

Get the address of thread_info

stores the -ENOSYS value in the stack location
where the eax register has been saved

Invoke the specific
service routine

Exiting from the System Call
• The system_call() function gets its return code from eax and stores it in

the stack location where the User Mode value of the eax register is
saved:

• Then, the system_call() function disables the local interrupts and checks
the flags in the thread_info structure of current:

December 30, 2013 11

The flags field is at offset 8 in the
thread_info structure

If none of these flags is set, the
function jumps

System Call via sysenter
• The int assembly language instruction is inherently slow

because it performs several consistency and security
checks.

• The sysenter instruction provides a faster way to switch
from User Mode to Kernel Mode.

• Three special registers that must be loaded with the
following information:

– SYSENTER_CS_MSR
- The Segment Selector of the kernel code segment

– SYSENTER_EIP_MSR
- The linear address of the kernel entry point

– SYSENTER_ESP_MSR
- The kernel stack pointer

December 30, 2013 12

System Call via sysenter (Cont.)
• When the sysenter instruction is executed, the CPU control

unit:
– 1. Copies the content of SYSENTER_CS_MSR into cs.
– 2. Copies the content of SYSENTER_EIP_MSR into eip.
– 3. Copies the content of SYSENTER_ESP_MSR into esp.
– 4. Adds 8 to the value of SYSENTER_CS_MSR, and loads this

value into ss. (because the descriptor of the kernel stack segment
follows the descriptor of the kernel code segment).

December 30, 2013 13

System Call via sysenter (Cont.)
• The enable_sep_cpu() function is executed once by every CPU at

system initialization for:
– 1. Writes the Segment Selector of the kernel code (_ _KERNEL_CS) in the

SYSENTER_CS_MSR register.
– 2. Writes in the SYSENTER_CS_EIP register the linear address of the

sysenter_entry()
– 3. Computes the linear address of the end of the local TSS, and writes this

value in the SYSENTER_CS_ESP register.
- The User Mode wrapper routine cannot properly set this register,

because it does not know the address of this memory area;
- On the other hand, the value of the register must be set before

switching to Kernel Mode.
- Therefore, the kernel initializes the register so as to encode the

address of the Task State Segment of the local CPU.

December 30, 2013 14

The vsyscall Page
• A wrapper function in the libc standard library can
make use of the sysenter instruction only if both
the CPU and the Linux kernel support it.
– In the initialization phase the sysenter_setup() function

builds a page frame called vsyscall page containing a
small ELF shared object.

– When a process issues an execve() system call to start
executing an ELF program, the code in the vsyscall page
is dynamically linked to the process address space.

December 30, 2013 15

The sysenter_setup() Function
• Allocates a new page frame for the vsyscall page and

associates its physical address with the FIX_VSYSCALL
fix-mapped linear address.

• Then, the function copies in the page either one of two
predefined ELF shared objects.

– If the CPU does not support sysenter:

– Otherwise,

December 30, 2013 16

When a wrapper routine in the
standard library must invoke a
system call, it calls the
__kernel_vsyscall() function

Entering the System Call via sysenter
• 1. The wrapper routine in the standard library loads the system call

number into the eax register and calls the _ _kernel_vsyscall() function.

• 2. The _ _kernel_vsyscall() function saves on the User Mode stack the
contents of ebp, edx, and ecx, copies the user stack pointer in ebp, and
then executes the sysenter instruction.

• 3. The CPU switches from User Mode to Kernel Mode, and starts
executing the sysenter_entry() function. (pointed by the
SYSENTER_EIP_MSR register)

• 4. The sysenter_entry() assembly language:
– a. Sets up the kernel stack pointer:
– b. Enable local interrupts:
– c. Save the related Segment Selector,

regs, and the return address
– d. Restore the epb value passed by the wrapper func.
– e. Invoke the system call handler.

December 30, 2013 17

Load from the 512B local TSS

Existing from the System Call
• First, sysenter_entry() gets the return code of the system

call service routine from eax and stores it in the kernel stack
location where the User Mode value of the eax register is
saved.

• Then, the function disables the local interrupts and checks
the flags in the thread_info structure of current and handles
them.

• If sysenter_entry() determines the flags are cleared, it return
to User Mode:

December 30, 2013 18

The edx and ecx registers are loaded with a couple of the stack
values saved by sysenter_entry() in step 4c in the previos section:
edx gets the address of the SYSENTER_RETURN label, while
ecx gets the current user data stack pointer.

The sysexit Instruction
• Allow a fast switch from Kernel Mode to User Mode:

– 1. Adds 16 to the value in the SYSENTER_CS_MSR register, and
loads the result in the cs register.

– 2. Copies the content of the edx register into the eip register.
– 3. Adds 24 to the value in the SYSENTER_CS_MSR register, and

loads the result in the ss register.
– 4. Copies the content of the ecx register into the esp register.

• The SYSENTER_RETURN code
– The code at the SYSENTER_RETURN label is stored in the vsyscall

page, and it is executed when a system call is being terminated

December 30, 2013 19

Outline
• POSIX APIs and System Calls

• System Call Handler and Service Routines

• Entering and Exiting a System Call

• Parameter Passing
• Kernel Wrapper Routines

December 30, 2013 20

	投影片編號 1
	Outline
	System Call’s Advantages
	POSIX APIs and System Calls�
	Outline
	System Call Handler and Service Routines�
	Outline
	Entering and Exiting a System Call
	System Call with int 0x80
	The system_call() Function
	Exiting from the System Call
	System Call via sysenter
	System Call via sysenter (Cont.)
	System Call via sysenter (Cont.)
	The vsyscall Page
	The sysenter_setup() Function
	Entering the System Call via sysenter
	Existing from the System Call
	The sysexit Instruction
	Outline

