
Design and Analysis of
Computer Algorithms
演算法分析與設計

Design and Analysis of
Computer Algorithms
演算法分析與設計

Yuan-Hao Chang (張原豪)
johnsonchang@ntut.edu.tw
Department of Electronic Engineering
National Taipei University of Technology

mailto:johnsonchang@ntut.edu.tw
mailto:johnsonchang@ntut.edu.tw

September 27, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Course Information
• 授課教師: 張原豪 (207-2 室、分機 2288)

• 上課時間: 星期一 1:10 pm ~ 4:00 pm

• 教室: 六教 626

• 參考書目：
– Introduction to Algorithms, 3rd Edition, 2009

Authors: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein
Publisher: (開發圖書代理)
ISBN: 978-0-262-53305-8

• 課程網頁:
– http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/

• 成績評量：(subject to changes)
– 作業: (30%), 期中考(30%), 期末考(30%), 平時表現(10%)

http://tlsj.tenlong.com.tw/WebModule/BookSearch/bookSearchViewAction.do?isbn=9780262533058&sid=54210
http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/

September 27, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Why We Need Algorithms?
• Algorithms help us to understand scalability.

• Performance often draws the line between what is
feasible and what is impossible.

• Algorithmic mathematics provides a language for
talking about program behavior.

• The lessons of program performance generalize to
other computing resources.

• Speed is fun!

September 27, 2010 4

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline of the Course
• Getting started – asymptotic notation
• Divide-and-conquer
• Dynamic programming
• Greedy algorithms
• Amortized analysis
• NP-Completeness
• Approximation algorithms
• Linear programming (optional)
• Graph algorithms (optional)
• String matching (optional)
• Probabilistic analysis and randomized algorithms (optional)

Topic 1:
Getting Started

– Asymptotic Notation

Topic 1:
Getting Started

– Asymptotic Notation

September 27, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Insertion sort

• Analyzing algorithms

• Growth of functions

Insertion SortInsertion Sort

September 27, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

The Problem of Sorting
• Algorithm:

– Sorting problem.

• Input :
– Sequence 〈a1, a2, …, an〉 of numbers.

• Output:
– A permutation (reordering) 〈a'1, a'2, …, a'n〉 of the input

sequence such that a'1 ≤ a'2 ≤ … ≤ a'n.

September 27, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Insertion Sort
• Start with an empty left hand and the cards face down on

the table.

• Then remove one card at a time from the table, and insert it
into the correct position in the left hand.

• To find the correct position
for a card, compare it with each
of the cards already in the hand,
from right to left.

• At all times, the cards held in the
left hand are sorted, and these
cards were originally the top cards of
the pile on the table.

September 27, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Insertion Sort – Example 1

September 27, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Insertion Sort – Example 2

September 27, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

Insertion Sort - Pseudocode

tj: the number of times “the while loop test” is executed for that value of j.

September 27, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

Loop Invariant
• To use a loop invariant to prove correctness, we
must show three things about it:
– Initialization

- It is true prior to the first iteration of the loop.

– Maintenance
- If it is true before an iteration of the loop, it remains true before the

next iteration.

– Termination
- When the loop terminates, the invariant – usually along with the

reason that the loop terminated – gives us a useful property that
helps show that the algorithm is correct.

September 27, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Loop Invariant for Insertion Sort
• Initialization

– Before the first iteration (j=2), the subarray A[1..j-1] =
A[1], which is sorted.

• Maintenance
– In each iteration, the searched key (i.e., A[j]) is inserted

to the proper position. Each iteration moves one position
to the right.

• Termination
– When j > n (i.e., j=n+1), the original subarray A[1..n] is

orginally sorted.

Analyzing AlgorithmsAnalyzing Algorithms

September 27, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Random-Access Machine (RAM) Model

• Instructions are executed one after another. No
concurrent operations.

• It is too tedious to define each of the instructions
and their associated time costs.

• We use instructions commonly found in real
computers, and each instruction takes a constant
amount of time:
– Arithmetic: add, substract, multiply, divide, remainder,

floor, ceiling).
– Data movement: load, store, copy.
– Control: conditional/unconditional branch, subroutine call

and return.

September 27, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Input Size
• Input size depends on the problem being studied.

– The number of items in the input.
- Like the size n of the array being sorted.

– The total number of bits in the two integers.
- Like multiplying two integers.

– Could be described by more than one number.
- E.g., graph algorithm running times are usually expressed in

terms of the number of vertices and the number of edges in the
input graph.

September 27, 2010 18

Copyright © All Rights Reserved by Yuan-Hao Chang

Running Time
• On the particular input, running time is the number
of primitive operations (steps) executed.
– Define steps to be machine-independent.
– Figure that each line of pseudocode requires a constant

amount of time.
– Each execution of the line i takes the same amount of

time ci.
– Assume that the line consists of only primitive operations.

- If the line is a subroutine call, then the actual call takes constant
time.
· But the execution of the subroutine being called might not.

- If the line specifies operations other than primitive ones, then it
might take more than constant time.
· E.g., “sort the points by x-coordinate.”

September 27, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Analysis of Insertion Sort
• The running time of an algorithm:

• Let T(n) = running time of INSERTION-SORT

September 27, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Analysis of Insertion Sort (Cont.)

(that depend on the statement costs ci)
A linear function of n

• The best case (the array is already sorted)

September 27, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Analysis of Insertion Sort (Cont.)
• The worst case (the array is in reverse sorted order)

A quadratic function of n

arithmetic
series

(the parentheses
is not necessary)

September 27, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Worst Case and Average Case Analysis

• We usually concentrate on finding the worst-case
running time: the longest running time for any
input of size n.
– The worst-case running time gives a guaranteed upper

bound on the running time for any input.
– For some algorithms, the worst case occurs often.

- Searches for absent items may be frequent.

– Why not analyze the average case? Because it’s often
about as bad as the worst case.
- Although the average-case running time is approximately half of

the worst-case running time, it’s still a quadratic function of n.
- E.g., in the insertion sort, the average value of tj ≈ j/2

September 27, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Order of Growth
• Another abstraction to ease analysis and focus on
the important features.

• Look only at the leading term of the formula for
running time.
– Drop lower-order terms.
– Ignore the constant coefficient in the leading term.

• Example: For insertion sort, the worst-case
running time is an2 + bn + c = Θ(n2) = O(n2).
– Drop lower-order terms an2.
– Ignore constant coefficient n2 (the order of growth).

Growth of FunctionsGrowth of Functions

September 27, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Asymptotic Notations
• Describe behavior of functions in the limit.

• Describe growth of functions.

• Focus on what’s important by abstracting away
low-order terms and constant factors.

• Compare “sizes” of functions:

September 27, 2010 26

Copyright © All Rights Reserved by Yuan-Hao Chang

O-Notation

September 27, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Ω-Notation

September 27, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Θ-notation

Theorem:
f(n) = Θ(g(n)) iff f = Ο(g(n)) and f = Ω(g(n))
Leading constants and low-order terms
don’t matter.

September 27, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

ο-Notation

September 27, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

ω-Notation

September 27, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Asymptotic Notation in Equations
• When on right-hand side

– Θ(n) stands for some anonymous function in the set Θ (n).
– E.g., 2n2 + 3n + 1 = 2n2 + Θ(n)

• When on left-hand side
– 2n2 + Θ(n) = Θ(n2)

September 27, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Monotonicity
• f(n) is monotonically increasing (non-decreasing) if
m ≤ n ⇒ f(m) ≤ f(n)

• f(n) is monotonically decreasing (non-increasing) if
m ≥ n ⇒ f(m) ≥ f(n)

• f(n) is strictly increasing if m < n ⇒ f(m) < f(n)

• f(n) is strictly decreasing if m > n ⇒ f(m) > f(n)

September 27, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Project 1
• Use C language to implement the insertion sort
(suggested tool: Dev C++).
– Use fscanf() to get integers from the input file.
– Sort the input integers and output the sorted integers in

the monotonically increasing order on the screen.

• Deadline: 24:00, 2010.09.20
– Email the .c or .cpp program to me:

johnsonchang@ntut.edu.tw
– Email title: Algo_P1_學號_姓名

mailto:johnsonchang@ntut.edu.tw

	Design and Analysis of Computer Algorithms�演算法分析與設計
	Course Information
	Why We Need Algorithms?
	Outline of the Course
	Outline
	The Problem of Sorting
	Insertion Sort
	Insertion Sort – Example 1
	Insertion Sort – Example 2
	Insertion Sort - Pseudocode
	Loop Invariant
	Loop Invariant for Insertion Sort
	Random-Access Machine (RAM) Model
	Input Size
	Running Time
	Analysis of Insertion Sort
	Analysis of Insertion Sort (Cont.)
	Analysis of Insertion Sort (Cont.)
	Worst Case and Average Case Analysis
	Order of Growth
	Asymptotic Notations
	O-Notation
	W-Notation
	Q-notation
	o-Notation
	w-Notation
	Asymptotic Notation in Equations
	Monotonicity
	Project 1

