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Course Information
• 授課教師: 張原豪 (207-2 室、分機 2288)

• 上課時間: 星期一 1:10 pm ~ 4:00 pm 

• 教室: 六教 626 

• 參考書目：
– Introduction to Algorithms, 3rd Edition, 2009

Authors: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and 
Clifford Stein
Publisher: (開發圖書代理)
ISBN: 978-0-262-53305-8 

• 課程網頁: 
– http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/

• 成績評量：(subject to changes)
– 作業: (30%), 期中考(30%), 期末考(30%), 平時表現(10%)

http://tlsj.tenlong.com.tw/WebModule/BookSearch/bookSearchViewAction.do?isbn=9780262533058&sid=54210
http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/
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Why We Need Algorithms?
• Algorithms help us to understand scalability.

• Performance often draws the line between what is 
feasible and what is impossible.

• Algorithmic mathematics provides a language for 
talking about program behavior.

• The lessons of program performance generalize to 
other computing resources.

• Speed is fun!
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Outline of the Course
• Getting started – asymptotic notation
• Divide-and-conquer
• Dynamic programming
• Greedy algorithms
• Amortized analysis
• NP-Completeness
• Approximation algorithms
• Linear programming (optional)
• Graph algorithms (optional)
• String matching (optional)
• Probabilistic analysis and randomized algorithms (optional)



Topic 1:
Getting Started

– Asymptotic Notation

Topic 1:
Getting Started

– Asymptotic Notation
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Outline
• Insertion sort

• Analyzing algorithms

• Growth of functions



Insertion SortInsertion Sort



September 27, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

The Problem of Sorting
• Algorithm: 

– Sorting problem.

• Input :
– Sequence 〈a1, a2, …, an〉 of numbers.

• Output: 
– A permutation (reordering) 〈a'1, a'2, …, a'n〉 of the input 

sequence such that a'1 ≤ a'2 ≤ … ≤ a'n.
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Insertion Sort
• Start with an empty left hand and the cards face down on 

the table.

• Then remove one card at a time from the table, and insert it 
into the correct position in the left hand.

• To find the correct position 
for a card, compare it with each 
of the cards already in the hand, 
from right to left.

• At all times, the cards held in the 
left hand are sorted, and these 
cards were originally the top cards of 
the pile on the table.
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Insertion Sort – Example 1
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Insertion Sort – Example 2
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Insertion Sort - Pseudocode

tj: the number of times “the while loop test” is executed for that value of j.
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Loop Invariant
• To use a loop invariant to prove correctness, we 
must show three things about it:
– Initialization

- It is true prior to the first iteration of the loop.

– Maintenance
- If it is true before an iteration of the loop, it remains true before the 

next iteration.

– Termination
- When the loop terminates, the invariant – usually along with the 

reason that the loop terminated – gives us a useful property that 
helps show that the algorithm is correct.
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Loop Invariant for Insertion Sort
• Initialization

– Before the first iteration (j=2), the subarray A[1..j-1] = 
A[1], which is sorted.

• Maintenance
– In each iteration, the searched key (i.e., A[ j ] ) is inserted 

to the proper position. Each iteration moves one position 
to the right.

• Termination
– When j > n (i.e., j=n+1 ), the original subarray A[1..n] is 

orginally sorted.



Analyzing AlgorithmsAnalyzing Algorithms
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Random-Access Machine (RAM) Model

• Instructions are executed one after another. No 
concurrent operations.

• It is too tedious to define each of the instructions 
and their associated time costs.

• We use instructions commonly found in real 
computers, and each instruction takes a constant 
amount of time:
– Arithmetic: add, substract, multiply, divide, remainder, 

floor, ceiling).
– Data movement: load, store, copy.
– Control: conditional/unconditional branch, subroutine call 

and return.
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Input Size
• Input size depends on the problem being studied.

– The number of items in the input.
- Like the size n of the array being sorted.

– The total number of bits in the two integers.
- Like multiplying two integers.

– Could be described by more than one number.
- E.g., graph algorithm running times are usually expressed in 

terms of the number of vertices and the number of edges in the 
input graph.
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Running Time
• On the particular input, running time is the number 
of primitive operations (steps) executed.
– Define steps to be machine-independent.
– Figure that each line of pseudocode requires a constant 

amount of time.
– Each execution of the line i takes the same amount of 

time ci. 
– Assume that the line consists of only primitive operations.

- If the line is a subroutine call, then the actual call takes constant 
time. 
· But the execution of the subroutine being called might not.

- If the line specifies operations other than primitive ones, then it 
might take more than constant time. 
· E.g., “sort the points by x-coordinate.”
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Analysis of Insertion Sort
• The running time of an algorithm:

• Let T(n) = running time of INSERTION-SORT
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Analysis of Insertion Sort (Cont.)

(that depend on the statement costs ci)
A linear function of n

• The best case (the array is already sorted)
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Analysis of Insertion Sort (Cont.)
• The worst case (the array is in reverse sorted order)

A quadratic function of n

arithmetic 
series

(the parentheses 
is not necessary)
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Worst Case and Average Case Analysis

• We usually concentrate on finding the worst-case 
running time: the longest running time for any 
input of size n.
– The worst-case running time gives a guaranteed upper 

bound on the running time for any input.
– For some algorithms, the worst case occurs often.

- Searches for absent items may be frequent.

– Why not analyze the average case? Because it’s often 
about as bad as the worst case.
- Although the average-case running time is approximately half of 

the worst-case running time, it’s still a quadratic function of n.
- E.g., in the insertion sort, the average value of tj ≈ j/2



September 27, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Order of Growth
• Another abstraction to ease analysis and focus on 
the important features.

• Look only at the leading term of the formula for 
running time.
– Drop lower-order terms.
– Ignore the constant coefficient in the leading term.

• Example: For insertion sort, the worst-case 
running time is an2 + bn + c = Θ(n2) = O(n2).
– Drop lower-order terms an2.
– Ignore constant coefficient n2 (the order of growth).



Growth of FunctionsGrowth of Functions
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Asymptotic Notations
• Describe behavior of functions in the limit.

• Describe growth of functions.

• Focus on what’s important by abstracting away 
low-order terms and constant factors.

• Compare “sizes” of functions:
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O-Notation



September 27, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Ω-Notation
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Θ-notation

Theorem:
f(n) = Θ(g(n)) iff f = Ο(g(n)) and f = Ω(g(n))
Leading constants and low-order terms
don’t matter.
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ο-Notation
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ω-Notation
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Asymptotic Notation in Equations
• When on right-hand side

– Θ(n) stands for some anonymous function in the set Θ (n).
– E.g., 2n2 + 3n + 1 = 2n2 + Θ(n)

• When on left-hand side
– 2n2 + Θ(n) = Θ(n2) 
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Monotonicity
• f(n) is monotonically increasing (non-decreasing) if 
m ≤ n ⇒ f(m) ≤ f(n)

• f(n) is monotonically decreasing (non-increasing) if 
m ≥ n ⇒ f(m) ≥ f(n)

• f(n) is strictly increasing if m < n ⇒ f(m) < f(n)

• f(n) is strictly decreasing if m > n ⇒ f(m) > f(n)
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Project 1
• Use C language to implement the insertion sort 
(suggested tool: Dev C++).
– Use fscanf() to get integers from the input file.
– Sort the input integers and output the sorted integers in 

the monotonically increasing order on the screen.

• Deadline: 24:00, 2010.09.20
– Email the .c or .cpp program to me: 

johnsonchang@ntut.edu.tw
– Email title: Algo_P1_學號_姓名

mailto:johnsonchang@ntut.edu.tw
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