

Design and Analysis of Computer Algorithms 演算法分析與設計

Yuan-Hao Chang (張原豪) johnsonchang@ntut.edu.tw Department of Electronic Engineering National Taipei University of Technology

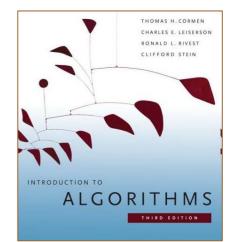
Course Information

- •授課教師:張原豪 (207-2 室、分機 2288)
- •上課時間:星期一 1:10 pm~4:00 pm
- 教室: 六教 626
- 參考書目:
 - Introduction to Algorithms, 3rd Edition, 2009

Authors: Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein Publisher: (開發圖書代理) ISBN: 978-0-262-53305-8

- •課程網頁:
 - http://www.ntut.edu.tw/~johnsonchang/courses/Algorithm201008/
- 成績評量: (subject to changes)

- 作業: (30%), 期中考(30%), 期末考(30%), 平時表現(11,0%) eserved by Yuan-Hao Chang



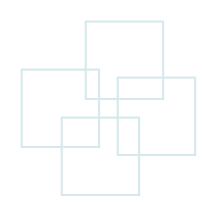
Why We Need Algorithms?

- Algorithms help us to understand *scalability*.
- Performance often draws the line between what is feasible and what is impossible.
- Algorithmic mathematics provides a *language* for talking about program behavior.
- The lessons of program performance generalize to other computing resources.
- Speed is fun!

Outline of the Course

- Getting started asymptotic notation
- Divide-and-conquer
- Dynamic programming
- Greedy algorithms
- Amortized analysis
- NP-Completeness
- Approximation algorithms
- Linear programming (optional)
- Graph algorithms (optional)
- String matching (optional)
- Probabilistic analysis and randomized algorithms (optional) Copyright © All Rights Reserved by Yuan-Hao Chang

Topic 1: Getting Started – Asymptotic Notation



Outline

- Insertion sort
- Analyzing algorithms
- Growth of functions

Insertion Sort

The Problem of Sorting

• Algorithm:

- Sorting problem.

• Input :

-Sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.

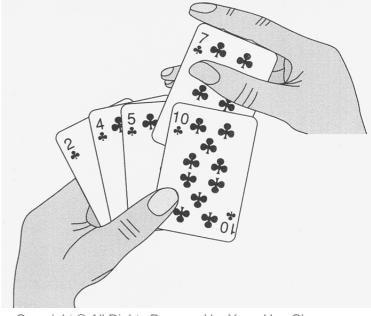
• Output:

- A permutation (reordering) $\langle a'_1, a'_2, ..., a'_n \rangle$ of the input sequence such that $a'_1 \leq a'_2 \leq ... \leq a'_n$.

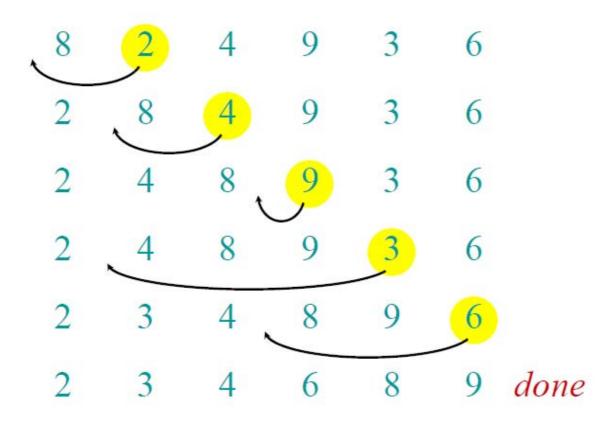
8

Insertion Sort

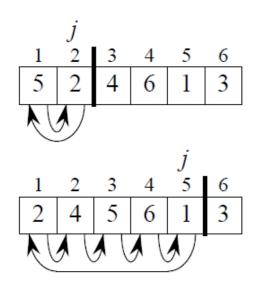
- Start with an empty left hand and the cards face down on the table.
- Then remove one card at a time from the table, and insert it into the correct position in the left hand.
- To find the correct position for a card, compare it with each of the cards already in the hand, from right to left.
- At all times, the cards held in the left hand are sorted, and these cards were originally the top cards of the pile on the table.

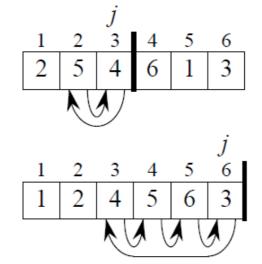


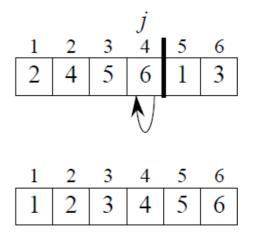
Insertion Sort – Example 1



Insertion Sort – Example 2







Copyright © All Rights Reserved by Yuan-Hao Chang

Insertion Sort - Pseudocode

INSERTION-SORT (A, n)	cost	times
for $j = 2$ to n	c_1	n
key = A[j]	c_2	n - 1
// Insert $A[j]$ into the sorted sequence $A[1 j - 1]$.	0	n - 1
i = j - 1	C_4	n - 1
while $i > 0$ and $A[i] > key$	<i>C</i> ₅	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	c_6	$\sum_{j=2}^{n} (t_j - 1)$
i = i - 1	<i>C</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
A[i+1] = key	C_8	n-1

 t_i : the number of times "the **while** loop test" is executed for that value of j.

12

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

Loop Invariant

 To use a loop invariant to prove correctness, we must show three things about it:

- Initialization

- It is true prior to the first iteration of the loop.
- Maintenance
 - If it is true before an iteration of the loop, it remains true before the next iteration.

- Termination

 When the loop terminates, the invariant – usually along with the reason that the loop terminated – gives us a useful property that helps show that the algorithm is correct.

Loop Invariant for Insertion Sort

Initialization

- Before the first iteration (j=2), the subarray A[1..j-1] = A[1], which is sorted.

Maintenance

 In each iteration, the searched key (i.e., A[j]) is inserted to the proper position. Each iteration moves one position to the right.

Termination

- When j > n (i.e., j=n+1), the original subarray A[1..n] is orginally sorted.

Analyzing Algorithms

Random-Access Machine (RAM) Model

- Instructions are executed one after another. No concurrent operations.
- It is too tedious to define each of the instructions and their associated time costs.
- We use instructions commonly found in real computers, and each instruction takes a constant amount of time:
 - -Arithmetic: add, substract, multiply, divide, remainder, floor, ceiling).
 - Data movement: load, store, copy.
 - Control: conditional/unconditional branch, subroutine call and return.

September 27, 2010

Input Size

• Input size depends on the problem being studied.

- The number of items in the input.
 - Like the size *n* of the array being sorted.
- The total number of bits in the two integers.
 - Like multiplying two integers.
- Could be described by more than one number.
 - E.g., graph algorithm running times are usually expressed in terms of the number of vertices and the number of edges in the input graph.

Running Time

- On the particular input, running time is the number of primitive operations (steps) executed.
 - Define steps to be machine-independent.
 - Figure that each line of pseudocode requires a constant amount of time.
 - Each execution of the line *i* takes the same amount of time *c_i*.
 - Assume that the line consists of only primitive operations.
 - If the line is a subroutine call, then the actual call takes constant time.
 - But the execution of the subroutine being called might not.
 - If the line specifies operations other than primitive ones, then it might take more than constant time.
 - · E.g., "sort the points by x-coordinate."

Analysis of Insertion Sort

• The running time of an algorithm:

 $\sum_{\text{all statements}}$ (cost of statement) \cdot (number of times statement is executed) .

• Let T(n) = running time of INSERTION-SORT $T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 \sum_{i=1}^{n} t_j + c_6 \sum_{i=1}^{n} (t_j - 1)$ $+ c_7 \sum (t_j - 1) + c_8(n - 1)$. INSERTION-SORT(A, n)times cost for i = 2 to nn C_1 kev = A[j] $c_2 n-1$ // Insert A[j] into the sorted sequence A[1 ... j - 1]. 0 n-1n-1i = j - 1 $C_{\mathbf{A}}$ $\sum_{j=2}^{n} t_j$ while i > 0 and A[i] > key C_5 $\sum_{j=2}^{n} (t_j - 1)$ A[i + 1] = A[i] C_6 i = i - 1 C_7 A[i+1] = key C_8 n-1

Analysis of Insertion Sort (Cont.)

• The best case (the array is already sorted)

$$T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5(n-1) + c_8(n-1)$$

$$= (c_1 + c_2 + c_4 + c_5 + c_8)n - (c_2 + c_4 + c_5 + c_8).$$

T(n) = an + b for constants a and b(that depend on the statement costs c_i) $\rightarrow A$ linear function of n

INSERTION-SORT (A, n)	cost	times
for $j = 2$ to n	c_1	n
key = A[j]	c_2	n-1
// Insert $A[j]$ into the sorted sequence $A[1 j - 1]$.	0	n-1
i = j - 1	•	n-1
while $i > 0$ and $A[i] > key$	C_5	$\sum_{j=2}^{n} t_j$
A[i+1] = A[i]	C_6	$\sum_{j=2}^{n} (t_j - 1)$
i = i - 1	<i>C</i> ₇	$\sum_{j=2}^{n} (t_j - 1)$
A[i+1] = key	<i>C</i> ₈	n-1

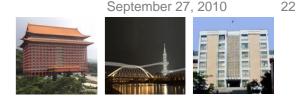
E.

20

Copyright © All Rights Reserved by Yuan-Hao Chang

Analysis of Insertion Sort (Cont.)

 The worst case (the array is in reverse sorted order) $\sum_{j=2}^{n} t_j = \sum_{j=2}^{n} j \text{ and } \sum_{j=2}^{n} (t_j - 1) = \sum_{j=2}^{n} (j - 1). \quad \text{Since } \sum_{j=2}^{n} j = \left(\sum_{j=1}^{n} j\right) - 1, \text{ it equals } \frac{n(n+1)}{2} - 1.$ j=2 j=2 $T(n) = c_1 n + c_2(n-1) + c_4(n-1) + c_5\left(\frac{n(n+1)}{2} - 1\right)$ arithmetic series (the parentheses $+c_6\left(\frac{n(n-1)}{2}\right)+c_7\left(\frac{n(n-1)}{2}\right)+c_8(n-1)$ is not necessary) $= \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2}\right)n^2 + \left(c_1 + c_2 + c_4 + \frac{c_5}{2} - \frac{c_6}{2} - \frac{c_7}{2} + c_8\right)n$ $-(c_2+c_4+c_5+c_8)$. INSERTION-SORT(A, n)cost times for j = 2 to n C_1 п $T(n) = an^2 + bn + c$ kev = A[j] C_2 n-1// Insert A[j] into the sorted sequence A[1 ... j - 1]. 0 n-1for constants a, b, c i = j - 1n-1 C_{Λ} while i > 0 and A[i] > key $\sum_{j=2}^{n} t_j$ C_5 \rightarrow A quadratic function of n A[i + 1] = A[i] C_6 i = i - 1 C_7 A[i+1] = kevn-1 C_8



Worst Case and Average Case Analysis

- We usually concentrate on finding the *worst-case running time*: the longest running time for *any* input of size n.
 - The worst-case running time gives a guaranteed upper bound on the running time for any input.
 - For some algorithms, the worst case occurs often.
 - Searches for absent items may be frequent.
 - Why not analyze the average case? Because it's often about as bad as the worst case.
 - Although the average-case running time is approximately half of the worst-case running time, it's still a quadratic function of n.
 - E.g., in the insertion sort, the average value of $t_j \approx j/2$

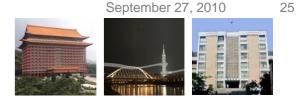
Copyright © All Rights Reserved by Yuan-Hao Chang

Order of Growth

- Another abstraction to ease analysis and focus on the important features.
- Look only at the leading term of the formula for running time.
 - Drop lower-order terms.
 - Ignore the constant coefficient in the leading term.
- Example: For insertion sort, the worst-case running time is $an^2 + bn + c = \Theta(n^2) = O(n^2)$.
 - Drop lower-order terms $\rightarrow an^2$. /
 - Ignore constant coefficient $\rightarrow n^2$ (the order of growth).

Growth of Functions





Asymptotic Notations

- Describe behavior of functions *in the limit*.
- Describe growth of functions.
- Focus on what's important by abstracting away *low-order terms* and *constant factors*.
- Compare "sizes" of functions:
 - $\begin{array}{rcl} O & \approx & \leq \\ \Omega & \approx & \geq \\ \Theta & \approx & = \\ o & \approx & < \end{array}$
 - $\omega~pprox~>$

O-Notation

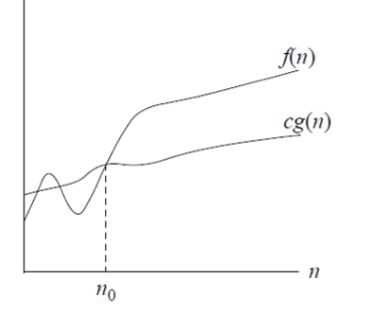
 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } f(n) \}$ $0 \le f(n) \le cg(n)$ for all $n \ge n_0$. $2n^2 = O(n^3)$, with c = 1 and $n_0 = 2$. cg(n)Examples of functions in $O(n^2)$: n^2 f(n) $n^{2} + n$ $n^2 + 1000n$ $1000n^2 + 1000n$ Also, п n/1000n $n^{1.99999}$ n_0 $n^2/\lg \lg \lg n$ g(n) is an *asymptotic upper bound* for f(n)

If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

Copyright © All Rights Reserved by Yuan-Hao Chang

Ω -Notation

 $\Omega(g(n)) = \{ f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}.$



g(n) is an *asymptotic lower bound* for f(n).

 $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$. Examples of functions in $\Omega(n^2)$: n^2 $n^{2} + n$ $n^{2} - n$ $1000n^2 + 1000n$ $1000n^2 - 1000n$ Also, n^3 $n^{2.00001}$ $n^2 \lg \lg \lg n$ $2^{2^{n}}$

Θ-notation

 $\Theta(g(n)) = \{ f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}.$

 $c_2 g(n)$ f(n) $c_1 g(n)$ n

$$n^2/2 - 2n = \Theta(n^2),$$

with $c_1 = 1/4, c_2 = 1/2$, and $n_0 = 8.$

Theorem: $f(n) = \Theta(g(n))$ iff f = O(g(n)) and $f = \Omega(g(n))$ Leading constants and low-order terms don't matter.

g(n) is an *asymptotically tight bound* for f(n).

o-Notation

 $o(g(n)) = \{ f(n) : \text{ for all constants } c > 0, \text{ there exists a constant} \\ n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$

Another view, probably easier to use:
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0.$$

$$n^{1.9999} = o(n^2)$$

$$n^2 / \lg n = o(n^2)$$

$$n^2 \neq o(n^2) \text{ (just like } 2 \neq 2)$$

$$n^2 / 1000 \neq o(n^2)$$

f(n) is *asymptotically smaller* than g(n) if f(n) = o(g(n)).

30

ω-Notation

 $\omega(g(n)) = \{ f(n) : \text{ for all constants } c > 0, \text{ there exists a constant} \\ n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}.$

Another view, again, probably easier to use: $\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$.

$$n^{2.0001} = \omega(n^2)$$
$$n^2 \lg n = \omega(n^2)$$
$$n^2 \neq \omega(n^2)$$

f(n) is *asymptotically larger* than g(n) if $f(n) = \omega(g(n))$.

Asymptotic Notation in Equations

• When on right-hand side

 $-\Theta(n)$ stands for some anonymous function in the set $\Theta(n)$.

$$-E.g., 2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

$$2n^2 + 3n + 1 = 2n^2 + f(n)$$
 for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

When on left-hand side

$$-2n^{2} + \Theta(n) = \Theta(n^{2})$$
for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^{2})$
such that $2n^{2} + f(n) = g(n)$.

September 27, 2010

Monotonicity

• f(n) is **monotonically increasing (non-decreasing)** if $m \le n \implies f(m) \le f(n)$

- f(n) is **monotonically decreasing (non-increasing)** if $m \ge n \implies f(m) \ge f(n)$
- f(n) is strictly increasing if $m < n \Rightarrow f(m) < f(n)$
- f(n) is strictly decreasing if $m > n \Rightarrow f(m) > f(n)$

32

Project 1

- Use C language to implement the insertion sort (suggested tool: Dev C++).
 - -Use *fscanf()* to get integers from the input file.
 - Sort the input integers and output the sorted integers in the *monotonically increasing* order on the screen.
- Deadline: 24:00, 2010.09.20
 - Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
 - Email title: Algo_P1_學號_姓名