Topic 2: Divide-and-Conquer

Methods for Solving Recurrences

- Divide-and-conquer solves a problem recursively.
- Steps of divide-and-conquer
- Divide the problem into a number of subproblems.
- Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, solve them directly.
- Combine the solutions of the subproblems into the solution for the original problem.
- Methods for solving recurrences
- Substitution method
- Guess a bound and then use mathematical induction to prove our guess correct.
- Recursion-tree method
- Convert the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.
- Master method
- Provide bounds for recurrences of the form.

Outline

- Merge sort
- Maximum-subarray problem
- Strassen's algorithm for matrix multiplication
- Substitution method
- Recursion-tree method
- Master method

Merge Sort

Divide－and－Conquer Approach

－Divide the problem into a number of subproblems that are smaller instances of the same problem．
－Conquer the subproblems by solving them recursively．
－Base case：If the subproblems are small enough，just solve them by brute force（暴力法）．
－Combine the subproblem solutions to give a solution to the original problem．

Merge-Sort

- Because we are dealing with subproblems, we state each subproblem as sorting a subarray $A[p . . r]$
- Initially, $p=1$ and $r=n$, but these values change as we recurse through subproblems. To sort $A[p . . r]$
- Divide by splitting into two subarrays $A[p . . q]$ and $A[q+1 . . r]$, where q is the halfway point of $A[p . . r]$.
- Conquer by recursively sorting the two subarrays $A[p . . q]$ and $A[q+1 . . r]$.
- Combine by merging the two sorted subarrays $A[p . . q]$ and $A[q+1 . . r]$ to produce a single sorted subarray $A[p . . r]$.

MERGE-SORT (A, p, r)	Initial call:
if $p<r$	MERGE-SORT(A, 1, n$)$
$q=\lfloor(p+r) / 2\rfloor$	$/ /$ divide for base case
$\operatorname{MERGE}-\operatorname{Sort}(A, p, q)$	$/ /$ conquer
$\operatorname{MERGE}-\operatorname{SoRT}(A, q+1, r)$	// conquer
$\operatorname{MERGE}(A, p, q, r)$	// combine
by Yuan-	

Merge Sort Example

Bottom-up view
for $n=8$
$(a$ power of 2$)$
sorted array

Merge Sort Example (Cont.)

Merging

MERGE(A, p, q, r)

- INPUT:
- Array A and indices p, q, r such that
- $\mathrm{p} \leq \mathrm{q}<\mathrm{r}$.
- Subarray $A[p . . q]$ is sorted and subarray $A[q+1 . . r]$. is sorted.
- By the restrictions on p, q, r, neither subarray is empty.
- OUTPUT:
- The two subarrays are merged into a single sorted subarray in $A[p . r]$.

By adopting linear merging, it takes $\Theta(n)$ time, where $n=r-p+1=$ the number of elements being merged.

Merging (Cont.)

- Idea behind linear merging:

- Think of two piles of cards.
- Each pile is sorted and placed face-up on a table with the smallest cards on top.
- We merge these into a single sorted pile, face-down on the table.
- A basic step:
- Choose the smaller of the two top cards.
- Remove it from its pile, thereby exposing a new top card.
- Place the chosen card face-down onto the output pile.
- Repeatedly perform basic steps until one input pile is empty.
- Once one input pile empties, just take the remaining input pile and place it face-down onto the output pile.
Put on the bottom of each input pile a special sentinel card. Then We don't actually need to check whether a pile is empty before each basic step.

Merging (Cont.)

$\operatorname{Merge}(A, p, q, r)$
$n_{1}=q-p+1$
$n_{2}=r-q$

Running time:

- The first two for loops take $\Theta\left(n_{1}+n_{2}\right)$ time.
- The last for loop makes n iterations, each taking constant time, for $\Theta(n)$ time.
- Total time: $\Theta(n)$.

Sort and merge arrays L and R back to array A[p..r]
(with linear merging)
let $L\left[1 \ldots n_{1}+1\right]$ and $R\left[1 \ldots n_{2}+1\right]$ be new arrays
for $i=1$ to n_{1}

$$
L[i]=A[p+i-1]
$$

for $j=1$ to n_{2}

$$
R[j]=A[q+j]
$$

$L\left[n_{1}+1\right]=\infty$
$R\left[n_{2}+1\right]=\infty$
Prepare the two sorted arrays to arrays L and R.

$$
\begin{aligned}
& i=1 \\
& j=1
\end{aligned}
$$

$$
\text { for } k=p \text { to } r
$$

$$
\text { if } L[i] \leq R[j]
$$

$$
A[k]=L[i]
$$

$$
i=i+1
$$

$$
\text { else } A[k]=R[j]
$$

$$
j=j+1
$$

A Merging Example

A call of MERGE (9, 12, 16)

1	2	3	4	5
2	4	5	7	∞
i				

R| 1 | 2 | 3 | 4 | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 6 | ∞ |

 4. | 8 | | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| A | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| \ldots | 1 | 2 | 2 | 7 | 11 | 2 | 3 | 6 | \cdots | |

A Merging Example (Cont.)

8. | 8. 8 |
| :---: | | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \ldots | 1 | 2 | 2 | 3 | 4 | 5 | 6 | $\boxed{ }$ | \ldots |

Analyzing Recurrence

- Use a recurrence (equation) to describe the running time of a divide-and-conquer algorithm.
- Let $\mathrm{T}(n)=$ running time on a problem of size n.

If the problem size is small enough (say, $n \leq c$ for some constant c), we have the base case.
\rightarrow Brute-force solution takes constant time $Q(1)$.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c \\ a T_{n}(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

Suppose that we divide into a subproblems, each $1 / b$ the size of the original.
(In merge sort, $\mathrm{a}=\mathrm{b}=2$.)

The time to combine a size-n problem

Analyzing Merge Sort

- Each divide step yields 2 subproblems, both of size exactly $n / 2$.
- The base case occurs when $n=1 \Rightarrow \Theta(1)$.
- When $\mathrm{n} \geq 2$, time for merge sort steps:
- Divide: Just compute q as the average of p and $r \Rightarrow \mathrm{D}(n)=\Theta(1)$.
- Conquer: Recursively solve 2 subproblems, each of size $\mathrm{n} / 2 \Rightarrow$ $2 T(n / 2)$.
- Combine: MERGE on an n-element subarray takes $\Theta(n)$ time \Rightarrow $C(n)=\Theta(n)$.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

$$
D(n)+C(n)=\Theta(1)+\Theta(n)=\Theta(n)
$$

Solving the Merge-Sort Recurrence

- Let c be a constant that describes the running time for the base case and also is the time per array element for the divide and conquer steps.
- We rewrite the recurrence as

$$
T(n)= \begin{cases}c & \text { if } n=1 \\ 2 T(n / 2)+c n & \text { if } n>1\end{cases}
$$

$\left.T(n) \Longleftrightarrow /_{T(n / 2)}^{c n}\right\rangle_{T(n / 2)} \Rightarrow$

\square

Solving the Merge-Sort Recurrence (Cont.)

Height: $\lg n$
Levels: $\lg n+1$
$\left(\lg n=\log _{2} n\right)$
$(\lg n+1=(\lg n)+1)$
$\mathrm{T}(\mathrm{n})=c n \lg n+c n$
$=\Theta(n \lg n)$

Maximum-Subarray Problem

Maximum-Subarray Problem

- Input:

- An array A[1..n] of numbers.
- Assume that some of the numbers are negative, because this problem is trivial when all numbers are nonnegative.
- Output:
- Indices i and j such that $\mathrm{A}[1 . . n]$ has the greatest sum of any nonempty, contiguous subarray of A, along with the sum of the values in $A[i .]$.$] .$

Scenario

- You have the prices that a stock traded at over a period of n consecutive days.
- When should you have bought the stock? When should you have sold the stock?
- Even though it's in retrospect (回顧), you can yell at your stockbroker for not recommending these buy and sell dates. ©

Maximum profit is $A[8 . .11]=43 \rightarrow$ before day 8 (after day 7) and after day 11

Converting Maximum-Subarray Problem

- Let $A[1]=$ (price after day i) - (price after day $i-1$)
- If the maximum subarray is $A[i . .$.$] , then we should$
- Have bought just before day i (i.e., just after day $i-1$) and
- Have sold just after day j.
-Why not just "buy low, sell high"?
- Lowest price might occur after the highest price.
- Maximum profit sometimes comes neither by buying at the lowest price nor by selling at the highest price.
- Brute-force solution:
check all $\binom{n}{2}=\Theta\left(n^{2}\right)$ subarrays

Maximum profit is $\mathrm{A}[3 . .3]=3$: before day 3 (after day 2) and after day 3.

Solving with Divide-and-Conquer

- Divide-and-conquer could solve the maximum-subarray problem in $O(n \lg n)$ time.
- Maximum subarray might not be unique, though its value is.

- Subproblem:

- Find a maximum subarray of A[low..high]. In original call, low $=1$, high $=n$.

- Solving:

- Divide the subarray into two subarrays of equal size A[/ow..mid] and A[mid+1..high].
- Conquer by finding a maximum subarray of $A[/ o w . . m i d]$ and $A[m i d+1 . . h i g h]$.
- Combine by finding a maximum subarray that might cross the midpoint or lie on either one subarray.

Maximum Subarray Crossing the Midpoint

- Not a smaller instance of the original problem:
- Any subarray crossing the midpoint A[mid] is made of two subarrays $A[i .$. mid] and $A[$ mid $+1 . . j]$, where lowsismid and mid <ju high.
- Find maximum subarrays of the form $A[i . . m i d]$ and A[mid+1..j], and then combine them.

This procedure takes $\Theta(n)$ time.
Find-Max-Crossing-Subarray (A, low, mid, high)
// Find a maximum subarray of the form $A[i$. . mid $]$.
left-sum $=-\infty$
sum $=0$
for $i=$ mid downto low
sum $=$ sum $+A[i]$
if sum $>$ left-sum
left-sum $=$ sum
max-left $=i$
$/ /$ Find a maximum subarray of the form $A[m i d+1 \ldots j]$.
right-sum $=-\infty$
sum $=0$
for $j=$ mid +1 to high
sum $=\operatorname{sum}+A[j]$
if sum $>$ right-sum
right-sum $=$ sum
max-right $=j$
// Return the indices and the sum of the two subarrays.
return (max-left, max-right, left-sum + right-sum)

Solving Maximum-Subarray Problem

Initial call: FIND-MAXIMUM-SUBARRAY $(A, 1, n)$

FIND-MAXIMUM-SUBARRAY (A, low, high)
if high $==$ low
Base case: O(1)
return (low, high, A[low])
else mid $=\lfloor($ low + high $) / 2\rfloor$
(left-low, left-high, left-sum) $=$
// base case: only one element
Search the left subarray

Divide FIND-MAXIMUM-SUBARRAY (A, low, mid)
(right-low, right-high, right-sum) $=$

FIND-MAXIMUM-SUBARRAY $(A$, mid +1 , high $)$ (cross-low, cross-high, cross-sum $)=$ FIND-MAX-CROSSING-SUBARRAY (A, low, mid, high $)$
if left-sum \geq right-sum and left-sum \geq cross-sum Left subarray \longrightarrow return (left-low, left-high, left-sum)
elseif right-sum \geq left-sum and right-sum \geq cross-sum
Right subarray \rightarrow return (right-low, right-high, right-sum)
else return (cross-low, cross-high, cross-sum)

Combine and determine the maximum subarray in A[low..high]

Analyzing Maximum-Subarray Problem

- Base case:
- Occurs when high equals low, so that $\mathrm{n}=1$. The procedure just returns \Rightarrow $\mathrm{T}(n)=\Theta(1)$.
- Recursive case:

$$
\begin{aligned}
T(n) & =\Theta(1)+2 T(n / 2)+\Theta(n)+\Theta(1) \\
& =2 T(n / 2)+\Theta(n) \quad \text { (absorb } \Theta(1) \text { terms into } \Theta(n))
\end{aligned}
$$

- Conquering solves 2 subproblems, each on a subarray of $n / 2$ elements \Rightarrow 2T(n/2).
- Combining consists of
- Calling FIND-MAX-CROSSING-SUBARRAY $\Rightarrow \Theta(n)$.
- A constant number of constant time tests $\Rightarrow \Theta(1)$.

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n=1 \\ 2 T(n / 2)+\Theta(n) & \text { if } n>1\end{cases}
$$

$$
T(n)=\Theta(n \lg n)
$$

Same recurrence as for merge sort

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: Two $n \times n$ (square) matrices, $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$.
Output: $n \times n$ matrix $C=\left(c_{i j}\right)$, where $C=A \cdot B$, i.e.,

$$
\begin{aligned}
& c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} \\
& \text { for } i, j=1,2, \ldots, n
\end{aligned}
$$

Need to compute n^{2} entries of C. Each entry is the sum of n values.

Obvious Method

```
Square-Mat-Mult \((A, B, n)\)
let \(C\) be a new \(n \times n\) matrix
for \(i=1\) to \(n\)
    for \(j=1\) to \(n\)
    \(c_{i j}=0\)
    for \(k=1\) to \(n\)
    \(c_{i j}=c_{i j}+a_{i k} \cdot b_{k j}\)
return \(C\)
```

Three nested loops, each iterates n times, and innermost loop body takes constant time $\Rightarrow \Theta\left(n^{3}\right)$

Matrix Multiplication Algorithm

- Assume n is a power of 2. Partition each of A, B, C into four $n / 2 \times n / 2$ matrices:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right), \quad B=\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right), \quad C=\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)
$$

- Rewrite $C=A \cdot B$ as

$$
\left(\begin{array}{ll}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \cdot\left(\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right)
$$

- Giving the four equations:

$$
\begin{aligned}
& C_{11}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21}, \\
& C_{12}=A_{11} \cdot B_{12}+A_{12} \cdot B_{22}, \\
& C_{21}=A_{21} \cdot B_{11}+A_{22} \cdot B_{21}, \\
& C_{22}=A_{21} \cdot B_{12}+A_{22} \cdot B_{22} .
\end{aligned}
$$

Matrix Multiplication Algorithm (Cont.)

REC-MAT-MULT (A, B)

let C be a new $n \times n$ matrix

$$
\text { if } n==1
$$

$$
\begin{aligned}
& ==1 \\
& c_{11}=a_{11} \cdot b_{11} \quad \text { Base case: } \mathbf{O}(\mathbf{1})
\end{aligned}
$$

$$
\begin{aligned}
& C_{11}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21} \\
& C_{12}=A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \\
& C_{21}=A_{21} \cdot B_{11}+A_{22} \cdot B_{21} \\
& C_{22}=A_{21} \cdot B_{12}+A_{22} \cdot B_{22}
\end{aligned}
$$

else partition A, B, and C into $n / 2 \times n / 2$ submatrices

$$
C_{11}=\operatorname{REC}-M A T-M u l T\left(A_{11}, B_{11}\right)+\operatorname{REC}-\operatorname{Mat}-\operatorname{Mult}\left(A_{12}, B_{21}\right)
$$

$$
C_{12}=\operatorname{REC}-M A T-M u l T\left(A_{11}, B_{12}\right)+\operatorname{REC}-\operatorname{Mat}-\operatorname{Mult}\left(A_{12}, B_{22}\right)
$$

$$
C_{21}=\operatorname{REC}-M A T-M u l t\left(A_{21}, B_{11}\right)+\operatorname{REC}-\operatorname{Mat}-\operatorname{Mult}\left(A_{22}, B_{21}\right)
$$

$$
C_{22}=\operatorname{REC}-\operatorname{Mat}-\operatorname{Mult}\left(A_{21}, B_{12}\right) \oplus \operatorname{REC}-\operatorname{Mat}-\operatorname{MuLT}\left(A_{22}, B_{22}\right)
$$

return C

Eight recursive calls: 8T(n/2)

$$
\begin{aligned}
& \text { Four }(n / 2 \times n / 2) \\
& \text { matrix summation } \\
& =n^{2} / 4 \times 4=n^{2}
\end{aligned}
$$

Analyzing Matrix Multiplication Algorithm

- Let $\mathrm{T}(n)$ be the time to multiply two $n \times n$ matrices.
- Base case: $\mathrm{n}=1$.
- Perform one scalar multiplication: $\Rightarrow \Theta(1)$.
- Recursive case: $\mathrm{n}>1$.
- Dividing takes
$-\Theta(1)$ time: using index calculations
$-\Theta\left(n^{2}\right)$ time: using matrix copying
- Conquering makes 8 recursive calls, each multiplying enough $n / 2 \times n / 2$ matrices $\Rightarrow 8 T(n / 2)$.
- Combining takes $\Theta\left(n^{2}\right)$ time to add $n / 2 \times n / 2$ matrices four times (so that it doesn't matter by dividing matrices with index calculation or matrix copying).

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
8 T(n / 2)+\Theta\left(n^{2}\right) & \text { if } n>1 .
\end{array} \Rightarrow T(n)=\Theta\left(n^{3}\right)\right.
$$

Strassen's Method

- Strassen's algorithm runs in $O\left(\mathrm{n}^{2.81}\right)$ to solve matrix multiplication. How?
- Perform only 7 recursive multiplications of $n / 2 \times n / 2$ matrices, rather than 8 .
- The algorithm:
- As in the recursive method, partition each of the matrices into four $n / 2 x$ $n / 2$ submatrices. Time: $\Theta(1)$.
- Create 10 matrices $\mathrm{S}_{1} ; \mathrm{S}_{2} \ldots \mathrm{~S}_{10}$. Each is $n / 2 \times n / 2$ and is the sum or difference of two matrices: Time: $\Theta\left(n^{2}\right)$.
- Recursively compute 7 matrix products $\mathrm{P}_{1}, \mathrm{P}_{1}, \ldots, \mathrm{P}_{7}$, each $n / 2 \times n / 2$.

Compute $n / 2 \times n / 2$ submatrices of C by adding and subtracting various combinations of the P_{i}. Time: $\Theta\left(\mathrm{n}^{2}\right)$.

$$
T(n)=\left\{\begin{array}{ll}
\Theta(1) & \text { if } n=1 \\
7 T(n / 2)+\Theta\left(n^{2}\right) & \text { if } n>1
\end{array} \Rightarrow T(n)=\Theta\left(n^{\lg 7}\right)\right.
$$

Strassen's Method (Cont.)

$$
\begin{aligned}
& \text { 7. } 2 . \\
& =B_{12}-B_{22}, P_{1}=A_{11} \cdot S_{1}=A_{11} \cdot B_{12}-A_{11} \cdot B_{22} \text {, } \\
& =A_{11}+A_{12}, P_{2}=S_{2} \cdot B_{22}=A_{11} \cdot B_{22}+A_{12} \cdot B_{22}, \\
& =A_{21}+A_{22}, P_{3}=S_{3} \cdot B_{11}=A_{21} \cdot B_{11}+A_{22} \cdot B_{11} \text {, } \\
& =B_{21}-B_{11}, P_{4}=A_{22} \cdot S_{4}=A_{22} \cdot B_{21}-A_{22} \cdot B_{11} \text {, } \\
& =A_{11}+A_{22}, P_{5}, S_{2} \\
& \begin{array}{l:l}
=B_{11}+B_{22} & P_{5} \\
=A_{12}-A_{22} & P_{6} \\
=B_{21}+B_{22} & P_{7} \\
=A_{11}-A_{21}, & \mathbf{3} .
\end{array} \\
& C_{11}=P_{5}+P_{4}-P_{2}+P_{6}=A_{11} \cdot B_{11}+A_{12} \cdot B_{21} \text {, } \\
& C_{12}=P_{1}+P_{2}, \quad=A_{11} \cdot B_{12}+A_{12} \cdot B_{22} \text {, } \\
& C_{21}=P_{3}+P_{4}, \quad=A_{21} \cdot B_{11}+A_{22} \cdot B_{21} \text {, } \\
& C_{22}=P_{5}+P_{1}-P_{3}-P_{7}=A_{21} \cdot B_{12}+A_{22} \cdot B_{22} \text {. }
\end{aligned}
$$

Theoretical and Practical Notes

- A method by Coppersmith and Winograd runs in $O\left(\mathrm{n}^{2.376}\right)$ time.
- Practical issues against Strassen's algorithm:
- Higher constant factor than the obvious $\Theta\left(n^{3}\right)$-time method.
- Not good for sparse matrices.
- Many zero rows and columns in sparse matrices
- Not numerically stable: larger errors accumulate than in the obvious method.
- Introducing many addition and subtraction operations to the submatrices.
- Submatrices consume space, especially if copying.

Substitution Method

Substitution Method - Induction

- Two steps of the substitution method:
- 1. Guess the form of the solution.
- 2. Use mathematical induction to find constants and show that the solution works.
- Example:

$$
T(n)= \begin{cases}1 & \text { if } n=1, \\ 2 T(n / 2)+n & \text { if } n>1 .\end{cases}
$$

- In this example, we have a recurrence with an exact function, rather than asymptotic notation, so that the solution is also exact rather than asymptotic.
- The boundary conditions and the base case should be checked.

Substitution Method - Induction (Cont.)

- Guess: $\mathrm{T}(n)=\Theta(n)=n \lg n+n$ - Induction:

$$
T(n)= \begin{cases}1 & \text { if } n=1 \\ 2 T(n / 2)+n & \text { if } n>1\end{cases}
$$

- Base: $n=1 \Rightarrow n \lg n+n=1=\mathrm{T}(1)$
- Inductive step:
- Inductive hypothesis: $\mathrm{T}(k)=k \lg k+k$, for all $k<n$
- Use this inductive hypothesis for $T(n / 2)$. Let $k=n / 2$

$$
\begin{aligned}
T(n) & =2 T\left(\frac{n}{2}\right)+n \\
& =2\left(\frac{n}{2} \lg \frac{n}{2}+\frac{n}{2}\right)+n \quad \text { (by inductive hypothesis) } \\
& =n \lg \frac{n}{2}+n+n \\
& =n(\lg n-\lg 2)+n+n \\
& =n \lg n-n+n+n \\
&
\end{aligned}
$$

Induction with Asymptotic Notation

- Technically, with asymptotic notation, we
- Neglect certain technical details when we state and solve recurrences.
- A good example of a detail that is often glossed over is the assumption of integer arguments to functions.
- Ignore boundary conditions.
- Omit floors and ceilings.
- Example:

$$
\left\{\begin{array}{l}
T(n)=2 T(\lfloor n / 2\rfloor)+n \\
T(1)=1 \quad \text { (We may omit the base case later.) }
\end{array}\right.
$$

Induction with Asymptotic Notation (Cont.)

- Guess: $\mathrm{T}(n)=\mathrm{O}(n \lg n) \leq c n \lg n$ - Induction:

$$
\left\{\begin{array}{l}
T(n)=2 T(\lfloor n / 2\rfloor)+n \\
T(1)=1
\end{array}\right.
$$

- Base:
$\cdot \mathrm{n}=1 \Rightarrow \mathrm{~T}(1)=1$, Guess: $\mathrm{T}(1)=\mathrm{c} \times 1 \times \lg 1=\mathrm{c} \times 1 \times 0=0$ (\rightarrow \&: conflict)
$\cdot \mathrm{n}=2 \Rightarrow \mathrm{~T}(2)=2 \mathrm{~T}(1)+2=4$, Guess: $\mathrm{T}(2)=\mathrm{c} \times 2 \times \lg 2=\mathrm{c} \times 2 \times 1=2 \mathrm{c}$ (It holds when $\mathrm{c} \geq 2$ and $\mathrm{n}=2$)
- Inductive hypothesis: $\mathrm{T}(k)=c k \lg k$, for all $k<n$

Use this inductive hypothesis for $\mathrm{T}(n / 2)$. Let $\mathrm{k}=\lfloor n / 2\rfloor$

$$
\begin{aligned}
T(n) & =2 T([n / 2\rfloor)+n \\
& \leq 2(c\lfloor n / 2\rfloor \lg \lfloor n / 2\rfloor)+n \\
& \leq c n \lg \frac{n}{2}+n \\
& =c n \lg n-c n \lg 2+n \\
& =c n \lg n-c n+n=c n \lg n+(1-c) n \\
& \leq c n \lg n \quad(\text { if } \mathrm{c} \geq 1)
\end{aligned}
$$

$$
\mathrm{T}(n)=\mathrm{O}(n \lg n)
$$

$$
\text { when } c \geq 2 \text { and } n \geq 2
$$

Avoiding Pitfalls

- Example:

$$
\left\{\begin{array}{l}
T(n)=2 T(\lfloor n / 2\rfloor)+n \\
T(1)=1
\end{array}\right.
$$

- Guess:

$$
T(n)=O(n) \Rightarrow T(n) \leq c n
$$

- Induction:
$T(n) \leq 2(c\lfloor n / 2\rfloor)+n \leq c n+n=O(n) \rightarrow$ Wrong
$T(n) \leq 2(c\lfloor n / 2\rfloor)+n \leq c n+n \not \leq c n=O(n) \rightarrow c$ should be a positive integer, so there is no such c to let $c n+n \leq c n$

Subtleties

- Consider the recurrence:

$$
T(n)=T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+1
$$

- Wrong guess:
- Guess:

$$
T(n)=O(n) \quad \Rightarrow T(n) \leq c n
$$

- Induction:

$$
T(n) \leq c\lfloor n / 2\rfloor+c\lceil n / 2\rceil+1 \leq c n+1 \leq c n
$$

- A proper guess:
- Guess:

$$
T(n) \leq c n-b
$$

- Induction: $T(n) \leq(c\lfloor n / 2\rfloor-b)+(c\lceil n / 2\rceil-b)+1$

$$
\leq c n-2 b+1 \leq c n-b(\text { Choose } \mathrm{b} \geq 1)
$$

Changing Variables

- Example:

$$
T(n)=2 T([\sqrt{n})+\lg n
$$

- Ignore rounding
\rightarrow This does not affect the derived time complexity

$$
T(n)=2 T(\sqrt{n})+\lg n
$$

- Let $m=\lg n \Rightarrow 2^{m}=n$

$$
T(n)=T\left(2^{m}\right)=2 T\left(2^{m / 2}\right)+m
$$

- Let $S(m)=T\left(2^{m}\right) \Rightarrow$

$$
\begin{aligned}
S(m)=2 S(m / 2)+m \Rightarrow & \mathrm{O}(m \lg m) \\
\Rightarrow \mathrm{T}(\mathrm{n}) & =\mathrm{T}\left(2^{\mathrm{m}}\right)=\mathrm{S}(\mathrm{~m}) \\
& =\mathrm{O}(\mathrm{~m} \lg \mathrm{~m})=\mathrm{O}(\lg n \lg \lg n)
\end{aligned}
$$

Recursion-Tree Method

Recursion-Tree Method

- Example: $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$
- Suppose n is a power of 2
$-\Theta\left(n^{2}\right)=c n^{2}$
$T(n)$

(a)
(b)

(c)

Recursion-Tree Method (Cont.)

Recursion-Tree Method (Cont.)

- Cost of $T(n)=3 T(\lfloor n / 4\rfloor)+\Theta\left(n^{2}\right)$ is as follows, where $\Theta\left(n^{2}\right)=c n^{2}$

$$
\begin{array}{rlr}
T(n) & =c n^{2}+\frac{3}{16} c n^{2}+\left(\frac{3}{16}\right)^{2} c n^{2}+\ldots+\left(\frac{3}{16}\right)^{\log _{4} n-1} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) \\
& =\sum_{i=0}^{\log _{4} n-1}\left(\frac{3}{16}\right)^{i} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) & \\
& =\frac{(3 / 16)^{\log _{4} n}-1}{(3 / 16)-1} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) & \text { Geometric series with } \\
& \leq \frac{1}{1-(3 / 16)} c n^{2}+\Theta\left(n^{\log _{4} 3}\right) & \text { common ratio: } 3 / 16 \\
& =\frac{16}{13} c n^{2}+\Theta\left(n^{\log _{4} 3}\right)=O\left(n^{2}\right) &
\end{array}
$$

Another Example

$$
T(n)=T(n / 3)+T(2 n / 3)+O(n) \leq T(n / 3)+T(2 n / 3)+c n
$$

$$
c(n / 3)
$$

$$
c(2 n / 3)
$$Cn

$\downarrow \gg$

$c(n / 9)$	$c(2 n / 9)$		$c(2 n / 9)$	$c(4 n / 9)$	$\ldots \ldots1 \cdots \cdot$	$c n$
\uparrow		\vdots	\uparrow			

leftmost branch peters out after $\log _{3} n$ levels
Upper bound guess:
$T(n) \leq d n \log _{3 / 2} n=O(n \lg n)$ for some positive constant d.

Another Example (Cont.)

Guess: $T(n) \leq d n \lg n$.
Substitution:

$$
\begin{aligned}
T(n) \leq & T(n / 3)+T(2 n / 3)+c n \\
\leq & d(n / 3) \lg (n / 3)+d(2 n / 3) \lg (2 n / 3)+c n \\
= & (d(n / 3) \lg n-d(n / 3) \lg 3) \\
& \quad+(d(2 n / 3) \lg n-d(2 n / 3) \lg (3 / 2))+c n \\
= & d n \lg n-d((n / 3) \lg 3+(2 n / 3) \lg (3 / 2)) \\
= & d n \lg n-d((n / 3) \lg 3+(2 n / 3) \lg 3-(2 n / 3) \lg 2)+c n \\
= & d n \lg n-d n(\lg 3-2 / 3)+c n \\
\leq & d n \lg n \quad i f-d n(\lg 3-2 / 3)+c n \leq 0, \\
&
\end{aligned}
$$

Therefore, $T(n)=O(n \lg n)$.

Master Method

$$
T(n)=a T(n / b)+f(n)
$$

Master Theorem

Recurrence form

Case 1: $f(n)=O\left(n^{\log _{b} a-\epsilon}\right)$ for some constant $\epsilon>0$.
$f(n)$ is polynomially smaller than $n^{\log _{b} a}$. Intuitively: cost is dominated by leaves.
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

The number of leave nodes

Case 2: $f(n)=\Theta\left(n^{\log _{b} a} \mathrm{lg}^{k} n\right)$, where $k \geq 0$.
$f(n)$ is within a polylog factor of $n^{\log _{b} a}$, but not smaller.
Solution: $T(n)=\Theta\left(n^{\log _{b} a} \mathrm{~g}^{k+1} n\right)$.
Case 3: $f(n)=\Omega\left(n^{\log _{b} a+\epsilon}\right)$ for some constant $\epsilon>0$ and $f(n)$ satisfies the regularity condition $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n.
$f(n)$ is polynomially greater than $n^{\log _{b} a}$.
Intuitively: cost is dominated by root.
Solution: $T(n)=\Theta(f(n))$.

Using Master Theorem

$$
\begin{aligned}
& T(n)=5 T(n / 2)+\Theta\left(n^{2}\right) \\
& n^{\log _{2} 5} \text { vs. } n^{2} \\
& \text { Since } \log _{2} 5-\epsilon=2 \text { for some constant } \epsilon>0, \\
& \text { use Case } 1 \Rightarrow T(n)=\Theta\left(n^{\lg 5}\right) \\
& T(n)=27 T(n / 3)+\Theta\left(n^{3} \lg n\right) \\
& n^{\log _{3} 27}=n^{3} \text { vs. } n^{3} \lg n \\
& \text { Use Case } 2 \text { with } k=1 \Rightarrow T(n)=\Theta\left(n^{3} \lg ^{2} n\right) \\
& T(n)=5 T(n / 2)+\Theta\left(n^{3}\right) \\
& n^{\log _{2} 5} \text { vs. } n^{3} \\
& \text { Now lg } 5+\epsilon=3 \text { for some constant } \epsilon>0 \quad \text { Cannot use the } \\
& a f(n / b)=5(n / 2)^{3}=5 n^{3} / 8 \leq c n^{3} \text { for } c=5 / 8<1 \\
& \text { Use Case } 3 \Rightarrow T(n)=\Theta\left(n^{3}\right) \quad \text { Not polynomial } \\
& T(n)=27 T(n / 3)+\Theta\left(n^{3} / \lg ^{2} n\right) \quad \text { larger or smaller } \\
& n^{\log _{3} 27}=n^{3} \text { vs. } n^{3} / \lg n=n^{3} \lg ^{-1} n \neq \Theta\left(n^{3} \lg ^{k} n\right) \text { for any } k \geq 0 .
\end{aligned}
$$

Project 2

－Use C language to implement the merge sort with divide－ and－conquer．
－Use fscanf（）to get integers from the input file．
－The first integer indicate the number of input integers in this file．
－E．g．，＂3 3445 67＂means there are three integers that are 34，45，and 67.
－Use malloc（）to allocate memory space for the input．
－Sort the input integers and output the sorted integers in the monotonically increasing order on the screen．
－Deadline：24：00，2010．09．27
－Email the ．c or ．cpp program to me：johnsonchang＠ntut．edu．tw
－Email title：Algo＿P2＿學號＿姓名

Project 3

－Use C language to implement the maximum－subarray problem with divide－and－conquer．
－The input file should be retrieved through argv［1］of main（）function．
－Use fscanf（）to get integers from the input file．
－The first integer indicate the number of input integers in this file．
－E．g．，＂4143－4＂means there are four changes that are 1，4， 3 and－4．
－Find and output the maximal interval and the maximal revenue．
－．E．g．，1．．3， 8
－Deadline：24：00，2010．10．04
－Email the ．c or ．cpp program to me：johnsonchang＠ntut．edu．tw
－Email title：Algo＿P3＿學號＿姓名

