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Methods for Solving Recurrences
• Divide-and-conquer solves a problem recursively.
• Steps of divide-and-conquer

–– DivideDivide the problem into a number of subproblems.
–– ConquerConquer the subproblems by solving them recursively. If the subproblem

sizes are small enough, solve them directly.
–– CombineCombine the solutions of the subproblems into the solution for the original 

problem.

• Methods for solving recurrences
– Substitution method

- Guess a bound and then use mathematical induction to prove our guess correct.
– Recursion-tree method

- Convert the recurrence into a tree whose nodes represent the costs incurred at 
various levels of the recursion.

– Master method
- Provide bounds for recurrences of the form.
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Outline
• Merge sort

• Maximum-subarray problem

• Strassen’s algorithm for matrix multiplication

• Substitution method

• Recursion-tree method

• Master method



Merge SortMerge Sort
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Divide-and-Conquer Approach
• Divide the problem into a number of subproblems
that are smaller instances of the same problem.

• Conquer the subproblems by solving them 
recursively.
– Base case: If the subproblems are small enough, just 

solve them by brute force (暴力法).

• Combine the subproblem solutions to give a 
solution to the original problem.
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Merge-Sort
• Because we are dealing with subproblems, we state each 

subproblem as sorting a subarray A[p..r]
– Initially, p = 1 and r = n, but these values change as we recurse

through subproblems. To sort A[p..r]
- Divide by splitting into two subarrays A[p..q] and A[q+1..r], where q is the 

halfway point of A[p..r].
- Conquer by recursively sorting the two subarrays A[p..q] and A[q+1..r].
- Combine by merging the two sorted subarrays A[p..q] and A[q+1..r] to 

produce a single sorted subarray A[p..r].

Initial call: MERGE-SORT(A, 1, n)
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Merge Sort Example
Bottom-up view 
for n = 8
(a power of 2)

Subarray
demarcation(界線)
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Merge Sort Example (Cont.)
Bottom-up view for 
n = 8
(not a power of 2)
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Merging

• INPUT:
– Array A and indices p, q, r such that

- p ≤ q < r.
- Subarray A[p..q] is sorted and subarray A[q+1..r]. is sorted. 
- By the restrictions on p, q, r, neither subarray is empty.

• OUTPUT:
– The two subarrays are merged into a single sorted 

subarray in A[p..r].

MERGE(A, p, q, r)

By adopting linear merging, it takes Θ(n) time, 
where n = r - p + 1 = the number of elements being merged.
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Merging (Cont.)
• Idea behind linear merging:

– Think of two piles of cards.
- Each pile is sorted and placed face-up on a table with the 

smallest cards on top.
- We merge these into a single sorted pile, face-down on the table.
- A basic step:

· Choose the smaller of the two top cards.
· Remove it from its pile, thereby exposing a new top card.
· Place the chosen card face-down onto the output pile.

- Repeatedly perform basic steps until one input pile is empty.
- Once one input pile empties, just take the remaining input pile and 

place it face-down onto the output pile.
Put on the bottom of each input pile a special sentinel card. Then We don’t actually 
need to check whether a pile is empty before each basic step.
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Prepare the two sorted arrays to 
arrays L and R.

Merging (Cont.)

Sort and merge arrays L 
and R back to array A[p..r]

(with linear merging)

Running time:
- The first two for loops take Θ(n1 + n2) time.
- The last for loop makes n iterations, 

each taking constant time, for Θ(n) time.
- Total time: Θ(n).
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A Merging Example
A call of MERGE(9, 12, 16)

1. 2.

3. 4.
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A Merging Example (Cont.)
5. 6.

7. 8.

9.
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Analyzing Recurrence
• Use a recurrence (equation) to describe the running time 

of a divide-and-conquer algorithm.

• Let T(n) = running time on a problem of size n.

The time to divide a 
size-n problem

The time to combine
a size-n problem

If the problem size is small enough (say, n ≤ c for 
some constant c), we have the base case.

Brute-force solution takes constant time Q(1).

Suppose that we divide into a subproblems, 
each 1/b the size of the original.
(In merge sort, a = b = 2.)
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Analyzing Merge Sort
• Each divide step yields 2 subproblems, both of size 
exactly n/2.
– The base case occurs when n = 1 ⇒ Θ(1).
– When n ≥ 2, time for merge sort steps:

- Divide: Just compute q as the average of p and r ⇒ D(n) = Θ(1).
- Conquer: Recursively solve 2 subproblems, each of size n/2 ⇒

2T(n/2).
- Combine: MERGE on an n-element subarray takes Θ(n) time ⇒

C(n) = Θ(n).

D(n) + C(n) = Θ(1) + Θ(n) = Θ(n)
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Solving the Merge-Sort Recurrence
• Let c be a constant that describes the running time for the 

base case and also is the time per array element for the 
divide and conquer steps.

• We rewrite the recurrence as 
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Solving the Merge-Sort Recurrence (Cont.)

T(n) = cn lg n + cn
= Θ(n lg n)

Height: lg n
Levels: lg n + 1 
(lg n = log2n)
(lg n + 1 = (lg n) + 1)



Maximum-Subarray
Problem

Maximum-Subarray
Problem



September 27, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Maximum-Subarray Problem
• Input: 

– An array A[1..n] of numbers. 
– Assume that some of the numbers are negative, 

because this problem is trivial when all numbers are 
nonnegative.

• Output: 
– Indices i and j such that A[1..n] has the greatest sum of 

any nonempty, contiguous subarray of A, along with the 
sum of the values in A[i..j] .
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Scenario
• You have the prices that a stock traded at over a period of n consecutive days.

• When should you have bought the stock? When should you have sold the stock?

• Even though it’s in retrospect (回顧), you can yell at your stockbroker for not 
recommending these buy and sell dates. ☺

Maximum profit is A[8..11] = 43 before day 8 (after day 7) and after day 11
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Converting Maximum-Subarray Problem
• Let A[i] = (price after day i ) - (price after day i-1)

• If the maximum subarray is A[i..j] , then we should 
– Have bought just before day i (i.e., just after day i-1) and
– Have sold just after day j.

• Why not just “buy low, sell high”?
– Lowest price might occur after 

the highest price.
– Maximum profit sometimes comes 

neither by buying at the lowest price 
nor by selling at the highest price.

• Brute-force solution: Maximum profit is A[3..3] = 3: 
before day 3 (after day 2) 

and after day 3.
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Solving with Divide-and-Conquer
• Divide-and-conquer could solve the maximum-subarray problem in 
Ο(n lg n) time.

• Maximum subarray might not be unique, though its value is.
• Subproblem: 

– Find a maximum subarray of A[low..high]. 
In original call, low = 1, high = n.

• Solving:
– Divide the subarray into two subarrays of equal size A[low..mid] and 

A[mid+1..high].
– Conquer by finding a maximum subarray of A[low..mid] and A[mid+1..high].
– Combine by finding a maximum subarray that might cross the midpoint or 

lie on either one subarray.
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Maximum Subarray Crossing the Midpoint
• Not a smaller instance of 

the original problem:
– Any subarray crossing the 

midpoint A[mid] is made of 
two subarrays A[i..mid]
and A[mid+1..j], where 
low≤i≤mid and mid <j≤
high.

– Find maximum subarrays
of the form A[i..mid] and 
A[mid+1..j], and then 
combine them. From mid to high

From mid to low

This procedure 
takes Θ(n) time.
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Solving Maximum-Subarray Problem

Search the left subarray

Search the right subarray

Crossing the 
midpoint (combine)

Combine and 
determine the 

maximum subarray
in A[low..high]

Left subarray

Right subarray

Crossing midpoint

Base case: O(1)

Divide

Divide
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Analyzing Maximum-Subarray Problem
• Base case:

– Occurs when high equals low, so that n = 1. The procedure just returns ⇒
T(n) = Θ(1).

• Recursive case:
– Dividing takes Θ(1) time.
– Conquering solves 2 subproblems, each on a subarray of n/2 elements ⇒

2T(n/2).
– Combining consists of

- Calling FIND-MAX-CROSSING-SUBARRAY ⇒ Θ(n).
- A constant number of constant time tests ⇒ Θ(1).

Same recurrence as for merge sort 



Strassen’s Algorithm for 
Matrix Multiplication

Strassen’s Algorithm for 
Matrix Multiplication
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Matrix Multiplication

Need to compute n2 entries of C. Each entry is the sum of n values.
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Obvious Method

Three nested loops, each iterates n times, and 
innermost loop body takes constant time ⇒ Θ(n3)
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Matrix Multiplication Algorithm
• Assume n is a power of 2. Partition each of A, B, C into four 

n/2 x n/2 matrices:

• Rewrite C = A．B as 

– Giving the four equations:
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Matrix Multiplication Algorithm (Cont.)

Base case: O(1)

Eight recursive 
calls: 8T(n/2)

Four (n/2 x n/2) 
matrix summation 

= n2/4 x 4 = n2
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Analyzing Matrix Multiplication Algorithm
• Let T(n) be the time to multiply two n x n matrices.

• Base case: n = 1. 
– Perform one scalar multiplication: ⇒ Θ(1).

• Recursive case: n > 1.
– Dividing takes 

− Θ(1) time: using index calculations
− Θ(n2) time: using matrix copying

– Conquering makes 8 recursive calls, each multiplying 
n/2 x n/2 matrices ⇒ 8T(n/2).

– Combining takes Θ(n2) time to add n/2 x n/2 matrices four times (so that it 
doesn’t matter by dividing matrices with index calculation or matrix copying).

Log28 = 3

Not good 
enough
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Strassen’s Method
• Strassen’s algorithm runs in Ο(n2.81) to solve matrix multiplication. How?

– Perform only 7 recursive multiplications of n/2 x n/2 matrices, rather than 8.
– The algorithm:

- As in the recursive method, partition each of the matrices into four n/2 x 
n/2 submatrices. Time: Θ(1).

- Create 10 matrices S1; S2…S10. Each is n/2 x n/2 and is the sum or 
difference of two matrices: Time: Θ(n2).

- Recursively compute 7 matrix products P1, P1, …, P7, each n/2 x n/2.
· Compute n/2 x n/2 submatrices of C by adding and subtracting various 

combinations of the Pi. Time: Θ(n2).
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Strassen’s Method (Cont.)
1. 2.

3.
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Theoretical and Practical Notes
• A method by Coppersmith and Winograd runs in 
Ο(n2.376) time.

• Practical issues against Strassen’s algorithm:
– Higher constant factor than the obvious Θ(n3)-time 

method.
– Not good for sparse matrices.

- Many zero rows and columns in sparse matrices
– Not numerically stable: larger errors accumulate than in 

the obvious method.
- Introducing many addition and subtraction operations to the 

submatrices.
– Submatrices consume space, especially if copying.



Substitution MethodSubstitution Method
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Substitution Method - Induction
• Two steps of the substitution method:

– 1. Guess the form of the solution.
– 2. Use mathematical induction to find constants and 

show that the solution works.

• Example:

• In this example, we have a recurrence with an exact function, rather 
than asymptotic notation, so that the solution is also exact rather than 
asymptotic.

• The boundary conditions and the base case should be checked.
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Substitution Method – Induction (Cont.)

– Guess: T(n) = Θ(n) = n lg n + n
– Induction:

- Base: n = 1 ⇒ n lg n + n = 1 = T(1)
- Inductive step:

· Inductive hypothesis: T(k) = k lg k + k, for all k < n
· Use this inductive hypothesis for T(n/2). Let k = n/2
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Induction with Asymptotic Notation
• Technically, with asymptotic notation, we 

– Neglect certain technical details when we state and solve 
recurrences.  
- A good example of a detail that is often glossed over is the 

assumption of integer arguments to functions. 

– Ignore boundary conditions. 
– Omit floors and ceilings. 

• Example:
⎣ ⎦

⎩
⎨
⎧

=
+=

1)1(
)2/(2)(

T
nnTnT

(We may omit the base case later.)
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Induction with Asymptotic Notation (Cont.)
– Guess: T(n) = O(n lg n) ≤ cn lg n
– Induction:

- Base: 
· n = 1 ⇒ T(1)=1, Guess: T(1) = c × 1 × lg 1 = c × 1 × 0 = 0 ( : conflict)
· n = 2 ⇒ T(2)=2T(1)+2=4, Guess: T(2) = c × 2 × lg 2 = c × 2 × 1 = 2c 

(It holds when c ≥ 2 and n=2)

- Inductive hypothesis: T(k) = ck lg k, for all k < n
· Use this inductive hypothesis for T(n/2). Let k = ⎣n/2⎦

⎣ ⎦
⎩
⎨
⎧

=
+=

1)1(
)2/(2)(

T
nnTnT

⎣ ⎦
⎣ ⎦ ⎣ ⎦

 lg        
)1(lglg        

2lglg        
2

lg        

)2/lg2/(2        
)2/(2)(

ncn
ncncnncnncn

ncnncn

nncn

nnnc
nnTnT

≤
−+=+−=

+−=

+≤

+≤
+=

(if c ≥ 1)

T(n) = O(n lg n)
when  c ≥ 2 and n ≥ 2
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Avoiding Pitfalls
• Example:

• Guess:

• Induction:

⎣ ⎦T n T n n
T

( ) ( / )
( )

= +

=

⎧
⎨
⎩

2 2
1 1

cnnTnOnT ≤⇒= )()()(

⎣ ⎦ )()2/(2)( nOncnnncnT =+≤+≤ Wrong

⎣ ⎦ )()2/(2)( nOcnncnnncnT =≤/+≤+≤ c should be a positive 
integer, so there is no 
such c to let
cn + n ≤ cn
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Subtleties
• Consider the recurrence:

• Wrong guess:
– Guess:

– Induction:

• A proper guess:
– Guess:

– Induction:

⎣ ⎦ ⎡ ⎤ 1)2/()2/()( ++= nTnTnT

T n O n( ) ( )= cnnT ≤⇒ )(

⎣ ⎦ ⎡ ⎤ cncnncncnT ≤/+≤++≤ 112/2/)(

T n cn b( ) ≤ −
⎣ ⎦ ⎡ ⎤

bcnbcn
bncbncnT

−≤+−≤
+−+−≤

12
1)2/()2/()(

(Choose b≥1)
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Changing Variables
• Example:

• Ignore rounding 
This does not affect the derived time complexity

• Let m = lg n ⇒ 2m = n

• Let S(m) = T(2m) ⇒

⎣ ⎦ nnTnT lg)(2)( +=

mTTnT mm +== )2(2)2()( 2/

nnTnT lg)(2)( +=

mmSmS += )2/(2)( ⇒O(m lg m)
⇒ T(n) = T(2m) = S(m) 

= O(m lg m) = O(lgn lglgn)



Recursion-Tree MethodRecursion-Tree Method
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Recursion-Tree Method
• Example:

– Suppose n is a power of 2
– Θ(n2) = cn2

⎣ ⎦ )()4/(3)( 2nnTnT Θ+=
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Recursion-Tree Method (Cont.)

3loglog 443 :Note nn =
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Recursion-Tree Method (Cont.)
• Cost of

( )
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⎣ ⎦ )()4/(3)( 2nnTnT Θ+= is as follows, where Θ(n2) = cn2

Geometric series with 
common ratio: 3/16
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Another Example
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Another Example (Cont.)



Master MethodMaster Method
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Master Theorem

The number of 
leave nodes

Recurrence 
form

nε

nε
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Using Master Theorem

Cannot use the 
master method.

Not polynomial 
larger or smaller
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Project 2
• Use C language to implement the merge sort with divide-

and-conquer.
– Use fscanf() to get integers from the input file.

- The first integer indicate the number of input integers in this file.
- E.g., “3 34 45 67” means there are three integers that are 34, 45, and 67.

– Use malloc() to allocate memory space for the input.
– Sort the input integers and output the sorted integers in the 

monotonically increasing order on the screen.

• Deadline: 24:00, 2010.09.27
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P2_學號_姓名

mailto:johnsonchang@ntut.edu.tw
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Project 3
• Use C language to implement the maximum-subarray

problem with divide-and-conquer.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicate the number of input integers in this file.
- E.g., “4 1 4 3 -4” means there are four changes that are 1, 4, 3 and -4.

– Find and output the maximal interval and the maximal revenue.
- .E.g., 1..3, 8

• Deadline: 24:00, 2010.10.04
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P3_學號_姓名

mailto:johnsonchang@ntut.edu.tw
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