
Topic 2:
Divide-and-Conquer

Topic 2:
Divide-and-Conquer

September 27, 2010 2

Copyright © All Rights Reserved by Yuan-Hao Chang

Methods for Solving Recurrences
• Divide-and-conquer solves a problem recursively.
• Steps of divide-and-conquer

–– DivideDivide the problem into a number of subproblems.
–– ConquerConquer the subproblems by solving them recursively. If the subproblem

sizes are small enough, solve them directly.
–– CombineCombine the solutions of the subproblems into the solution for the original

problem.

• Methods for solving recurrences
– Substitution method

- Guess a bound and then use mathematical induction to prove our guess correct.
– Recursion-tree method

- Convert the recurrence into a tree whose nodes represent the costs incurred at
various levels of the recursion.

– Master method
- Provide bounds for recurrences of the form.

September 27, 2010 3

Copyright © All Rights Reserved by Yuan-Hao Chang

Outline
• Merge sort

• Maximum-subarray problem

• Strassen’s algorithm for matrix multiplication

• Substitution method

• Recursion-tree method

• Master method

Merge SortMerge Sort

September 27, 2010 5

Copyright © All Rights Reserved by Yuan-Hao Chang

Divide-and-Conquer Approach
• Divide the problem into a number of subproblems
that are smaller instances of the same problem.

• Conquer the subproblems by solving them
recursively.
– Base case: If the subproblems are small enough, just

solve them by brute force (暴力法).

• Combine the subproblem solutions to give a
solution to the original problem.

September 27, 2010 6

Copyright © All Rights Reserved by Yuan-Hao Chang

Merge-Sort
• Because we are dealing with subproblems, we state each

subproblem as sorting a subarray A[p..r]
– Initially, p = 1 and r = n, but these values change as we recurse

through subproblems. To sort A[p..r]
- Divide by splitting into two subarrays A[p..q] and A[q+1..r], where q is the

halfway point of A[p..r].
- Conquer by recursively sorting the two subarrays A[p..q] and A[q+1..r].
- Combine by merging the two sorted subarrays A[p..q] and A[q+1..r] to

produce a single sorted subarray A[p..r].

Initial call: MERGE-SORT(A, 1, n)

September 27, 2010 7

Copyright © All Rights Reserved by Yuan-Hao Chang

Merge Sort Example
Bottom-up view
for n = 8
(a power of 2)

Subarray
demarcation(界線)

September 27, 2010 8

Copyright © All Rights Reserved by Yuan-Hao Chang

Merge Sort Example (Cont.)
Bottom-up view for
n = 8
(not a power of 2)

September 27, 2010 9

Copyright © All Rights Reserved by Yuan-Hao Chang

Merging

• INPUT:
– Array A and indices p, q, r such that

- p ≤ q < r.
- Subarray A[p..q] is sorted and subarray A[q+1..r]. is sorted.
- By the restrictions on p, q, r, neither subarray is empty.

• OUTPUT:
– The two subarrays are merged into a single sorted

subarray in A[p..r].

MERGE(A, p, q, r)

By adopting linear merging, it takes Θ(n) time,
where n = r - p + 1 = the number of elements being merged.

September 27, 2010 10

Copyright © All Rights Reserved by Yuan-Hao Chang

Merging (Cont.)
• Idea behind linear merging:

– Think of two piles of cards.
- Each pile is sorted and placed face-up on a table with the

smallest cards on top.
- We merge these into a single sorted pile, face-down on the table.
- A basic step:

· Choose the smaller of the two top cards.
· Remove it from its pile, thereby exposing a new top card.
· Place the chosen card face-down onto the output pile.

- Repeatedly perform basic steps until one input pile is empty.
- Once one input pile empties, just take the remaining input pile and

place it face-down onto the output pile.
Put on the bottom of each input pile a special sentinel card. Then We don’t actually
need to check whether a pile is empty before each basic step.

September 27, 2010 11

Copyright © All Rights Reserved by Yuan-Hao Chang

Prepare the two sorted arrays to
arrays L and R.

Merging (Cont.)

Sort and merge arrays L
and R back to array A[p..r]

(with linear merging)

Running time:
- The first two for loops take Θ(n1 + n2) time.
- The last for loop makes n iterations,

each taking constant time, for Θ(n) time.
- Total time: Θ(n).

September 27, 2010 12

Copyright © All Rights Reserved by Yuan-Hao Chang

A Merging Example
A call of MERGE(9, 12, 16)

1. 2.

3. 4.

September 27, 2010 13

Copyright © All Rights Reserved by Yuan-Hao Chang

A Merging Example (Cont.)
5. 6.

7. 8.

9.

September 27, 2010 14

Copyright © All Rights Reserved by Yuan-Hao Chang

Analyzing Recurrence
• Use a recurrence (equation) to describe the running time

of a divide-and-conquer algorithm.

• Let T(n) = running time on a problem of size n.

The time to divide a
size-n problem

The time to combine
a size-n problem

If the problem size is small enough (say, n ≤ c for
some constant c), we have the base case.

Brute-force solution takes constant time Q(1).

Suppose that we divide into a subproblems,
each 1/b the size of the original.
(In merge sort, a = b = 2.)

September 27, 2010 15

Copyright © All Rights Reserved by Yuan-Hao Chang

Analyzing Merge Sort
• Each divide step yields 2 subproblems, both of size
exactly n/2.
– The base case occurs when n = 1 ⇒ Θ(1).
– When n ≥ 2, time for merge sort steps:

- Divide: Just compute q as the average of p and r ⇒ D(n) = Θ(1).
- Conquer: Recursively solve 2 subproblems, each of size n/2 ⇒

2T(n/2).
- Combine: MERGE on an n-element subarray takes Θ(n) time ⇒

C(n) = Θ(n).

D(n) + C(n) = Θ(1) + Θ(n) = Θ(n)

September 27, 2010 16

Copyright © All Rights Reserved by Yuan-Hao Chang

Solving the Merge-Sort Recurrence
• Let c be a constant that describes the running time for the

base case and also is the time per array element for the
divide and conquer steps.

• We rewrite the recurrence as

September 27, 2010 17

Copyright © All Rights Reserved by Yuan-Hao Chang

Solving the Merge-Sort Recurrence (Cont.)

T(n) = cn lg n + cn
= Θ(n lg n)

Height: lg n
Levels: lg n + 1
(lg n = log2n)
(lg n + 1 = (lg n) + 1)

Maximum-Subarray
Problem

Maximum-Subarray
Problem

September 27, 2010 19

Copyright © All Rights Reserved by Yuan-Hao Chang

Maximum-Subarray Problem
• Input:

– An array A[1..n] of numbers.
– Assume that some of the numbers are negative,

because this problem is trivial when all numbers are
nonnegative.

• Output:
– Indices i and j such that A[1..n] has the greatest sum of

any nonempty, contiguous subarray of A, along with the
sum of the values in A[i..j] .

September 27, 2010 20

Copyright © All Rights Reserved by Yuan-Hao Chang

Scenario
• You have the prices that a stock traded at over a period of n consecutive days.

• When should you have bought the stock? When should you have sold the stock?

• Even though it’s in retrospect (回顧), you can yell at your stockbroker for not
recommending these buy and sell dates. ☺

Maximum profit is A[8..11] = 43 before day 8 (after day 7) and after day 11

September 27, 2010 21

Copyright © All Rights Reserved by Yuan-Hao Chang

Converting Maximum-Subarray Problem
• Let A[i] = (price after day i) - (price after day i-1)

• If the maximum subarray is A[i..j] , then we should
– Have bought just before day i (i.e., just after day i-1) and
– Have sold just after day j.

• Why not just “buy low, sell high”?
– Lowest price might occur after

the highest price.
– Maximum profit sometimes comes

neither by buying at the lowest price
nor by selling at the highest price.

• Brute-force solution: Maximum profit is A[3..3] = 3:
before day 3 (after day 2)

and after day 3.

September 27, 2010 22

Copyright © All Rights Reserved by Yuan-Hao Chang

Solving with Divide-and-Conquer
• Divide-and-conquer could solve the maximum-subarray problem in
Ο(n lg n) time.

• Maximum subarray might not be unique, though its value is.
• Subproblem:

– Find a maximum subarray of A[low..high].
In original call, low = 1, high = n.

• Solving:
– Divide the subarray into two subarrays of equal size A[low..mid] and

A[mid+1..high].
– Conquer by finding a maximum subarray of A[low..mid] and A[mid+1..high].
– Combine by finding a maximum subarray that might cross the midpoint or

lie on either one subarray.

September 27, 2010 23

Copyright © All Rights Reserved by Yuan-Hao Chang

Maximum Subarray Crossing the Midpoint
• Not a smaller instance of

the original problem:
– Any subarray crossing the

midpoint A[mid] is made of
two subarrays A[i..mid]
and A[mid+1..j], where
low≤i≤mid and mid <j≤
high.

– Find maximum subarrays
of the form A[i..mid] and
A[mid+1..j], and then
combine them. From mid to high

From mid to low

This procedure
takes Θ(n) time.

September 27, 2010 24

Copyright © All Rights Reserved by Yuan-Hao Chang

Solving Maximum-Subarray Problem

Search the left subarray

Search the right subarray

Crossing the
midpoint (combine)

Combine and
determine the

maximum subarray
in A[low..high]

Left subarray

Right subarray

Crossing midpoint

Base case: O(1)

Divide

Divide

September 27, 2010 25

Copyright © All Rights Reserved by Yuan-Hao Chang

Analyzing Maximum-Subarray Problem
• Base case:

– Occurs when high equals low, so that n = 1. The procedure just returns ⇒
T(n) = Θ(1).

• Recursive case:
– Dividing takes Θ(1) time.
– Conquering solves 2 subproblems, each on a subarray of n/2 elements ⇒

2T(n/2).
– Combining consists of

- Calling FIND-MAX-CROSSING-SUBARRAY ⇒ Θ(n).
- A constant number of constant time tests ⇒ Θ(1).

Same recurrence as for merge sort

Strassen’s Algorithm for
Matrix Multiplication

Strassen’s Algorithm for
Matrix Multiplication

September 27, 2010 27

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix Multiplication

Need to compute n2 entries of C. Each entry is the sum of n values.

September 27, 2010 28

Copyright © All Rights Reserved by Yuan-Hao Chang

Obvious Method

Three nested loops, each iterates n times, and
innermost loop body takes constant time ⇒ Θ(n3)

September 27, 2010 29

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix Multiplication Algorithm
• Assume n is a power of 2. Partition each of A, B, C into four

n/2 x n/2 matrices:

• Rewrite C = A．B as

– Giving the four equations:

September 27, 2010 30

Copyright © All Rights Reserved by Yuan-Hao Chang

Matrix Multiplication Algorithm (Cont.)

Base case: O(1)

Eight recursive
calls: 8T(n/2)

Four (n/2 x n/2)
matrix summation

= n2/4 x 4 = n2

September 27, 2010 31

Copyright © All Rights Reserved by Yuan-Hao Chang

Analyzing Matrix Multiplication Algorithm
• Let T(n) be the time to multiply two n x n matrices.

• Base case: n = 1.
– Perform one scalar multiplication: ⇒ Θ(1).

• Recursive case: n > 1.
– Dividing takes

− Θ(1) time: using index calculations
− Θ(n2) time: using matrix copying

– Conquering makes 8 recursive calls, each multiplying
n/2 x n/2 matrices ⇒ 8T(n/2).

– Combining takes Θ(n2) time to add n/2 x n/2 matrices four times (so that it
doesn’t matter by dividing matrices with index calculation or matrix copying).

Log28 = 3

Not good
enough

September 27, 2010 32

Copyright © All Rights Reserved by Yuan-Hao Chang

Strassen’s Method
• Strassen’s algorithm runs in Ο(n2.81) to solve matrix multiplication. How?

– Perform only 7 recursive multiplications of n/2 x n/2 matrices, rather than 8.
– The algorithm:

- As in the recursive method, partition each of the matrices into four n/2 x
n/2 submatrices. Time: Θ(1).

- Create 10 matrices S1; S2…S10. Each is n/2 x n/2 and is the sum or
difference of two matrices: Time: Θ(n2).

- Recursively compute 7 matrix products P1, P1, …, P7, each n/2 x n/2.
· Compute n/2 x n/2 submatrices of C by adding and subtracting various

combinations of the Pi. Time: Θ(n2).

September 27, 2010 33

Copyright © All Rights Reserved by Yuan-Hao Chang

Strassen’s Method (Cont.)
1. 2.

3.

September 27, 2010 34

Copyright © All Rights Reserved by Yuan-Hao Chang

Theoretical and Practical Notes
• A method by Coppersmith and Winograd runs in
Ο(n2.376) time.

• Practical issues against Strassen’s algorithm:
– Higher constant factor than the obvious Θ(n3)-time

method.
– Not good for sparse matrices.

- Many zero rows and columns in sparse matrices
– Not numerically stable: larger errors accumulate than in

the obvious method.
- Introducing many addition and subtraction operations to the

submatrices.
– Submatrices consume space, especially if copying.

Substitution MethodSubstitution Method

September 27, 2010 36

Copyright © All Rights Reserved by Yuan-Hao Chang

Substitution Method - Induction
• Two steps of the substitution method:

– 1. Guess the form of the solution.
– 2. Use mathematical induction to find constants and

show that the solution works.

• Example:

• In this example, we have a recurrence with an exact function, rather
than asymptotic notation, so that the solution is also exact rather than
asymptotic.

• The boundary conditions and the base case should be checked.

September 27, 2010 37

Copyright © All Rights Reserved by Yuan-Hao Chang

Substitution Method – Induction (Cont.)

– Guess: T(n) = Θ(n) = n lg n + n
– Induction:

- Base: n = 1 ⇒ n lg n + n = 1 = T(1)
- Inductive step:

· Inductive hypothesis: T(k) = k lg k + k, for all k < n
· Use this inductive hypothesis for T(n/2). Let k = n/2

September 27, 2010 38

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction with Asymptotic Notation
• Technically, with asymptotic notation, we

– Neglect certain technical details when we state and solve
recurrences.
- A good example of a detail that is often glossed over is the

assumption of integer arguments to functions.

– Ignore boundary conditions.
– Omit floors and ceilings.

• Example:
⎣ ⎦

⎩
⎨
⎧

=
+=

1)1(
)2/(2)(

T
nnTnT

(We may omit the base case later.)

September 27, 2010 39

Copyright © All Rights Reserved by Yuan-Hao Chang

Induction with Asymptotic Notation (Cont.)
– Guess: T(n) = O(n lg n) ≤ cn lg n
– Induction:

- Base:
· n = 1 ⇒ T(1)=1, Guess: T(1) = c × 1 × lg 1 = c × 1 × 0 = 0 (: conflict)
· n = 2 ⇒ T(2)=2T(1)+2=4, Guess: T(2) = c × 2 × lg 2 = c × 2 × 1 = 2c

(It holds when c ≥ 2 and n=2)

- Inductive hypothesis: T(k) = ck lg k, for all k < n
· Use this inductive hypothesis for T(n/2). Let k = ⎣n/2⎦

⎣ ⎦
⎩
⎨
⎧

=
+=

1)1(
)2/(2)(

T
nnTnT

⎣ ⎦
⎣ ⎦ ⎣ ⎦

 lg
)1(lglg

2lglg
2

lg

)2/lg2/(2
)2/(2)(

ncn
ncncnncnncn

ncnncn

nncn

nnnc
nnTnT

≤
−+=+−=

+−=

+≤

+≤
+=

(if c ≥ 1)

T(n) = O(n lg n)
when c ≥ 2 and n ≥ 2

September 27, 2010 40

Copyright © All Rights Reserved by Yuan-Hao Chang

Avoiding Pitfalls
• Example:

• Guess:

• Induction:

⎣ ⎦T n T n n
T

() (/)
()

= +

=

⎧
⎨
⎩

2 2
1 1

cnnTnOnT ≤⇒=)()()(

⎣ ⎦)()2/(2)(nOncnnncnT =+≤+≤ Wrong

⎣ ⎦)()2/(2)(nOcnncnnncnT =≤/+≤+≤ c should be a positive
integer, so there is no
such c to let
cn + n ≤ cn

September 27, 2010 41

Copyright © All Rights Reserved by Yuan-Hao Chang

Subtleties
• Consider the recurrence:

• Wrong guess:
– Guess:

– Induction:

• A proper guess:
– Guess:

– Induction:

⎣ ⎦ ⎡ ⎤ 1)2/()2/()(++= nTnTnT

T n O n() ()= cnnT ≤⇒)(

⎣ ⎦ ⎡ ⎤ cncnncncnT ≤/+≤++≤ 112/2/)(

T n cn b() ≤ −
⎣ ⎦ ⎡ ⎤

bcnbcn
bncbncnT

−≤+−≤
+−+−≤

12
1)2/()2/()(

(Choose b≥1)

September 27, 2010 42

Copyright © All Rights Reserved by Yuan-Hao Chang

Changing Variables
• Example:

• Ignore rounding
This does not affect the derived time complexity

• Let m = lg n ⇒ 2m = n

• Let S(m) = T(2m) ⇒

⎣ ⎦ nnTnT lg)(2)(+=

mTTnT mm +==)2(2)2()(2/

nnTnT lg)(2)(+=

mmSmS +=)2/(2)(⇒O(m lg m)
⇒ T(n) = T(2m) = S(m)

= O(m lg m) = O(lgn lglgn)

Recursion-Tree MethodRecursion-Tree Method

September 27, 2010 44

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursion-Tree Method
• Example:

– Suppose n is a power of 2
– Θ(n2) = cn2

⎣ ⎦)()4/(3)(2nnTnT Θ+=

September 27, 2010 45

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursion-Tree Method (Cont.)

3loglog 443 :Note nn =

September 27, 2010 46

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursion-Tree Method (Cont.)
• Cost of

()

)()(
13
16

)(
)16/3(1

1

)(
1)16/3(

1)16/3(

16
3

)(
16
3...

16
3

16
3)(

23log2

3log2

3log2
log

1log

0

3log2

3log2
1log

2
2

22

4

4

4
4

4
4

4

4

nOncn

ncn

ncn

ncn

ncncncncnnT

n

n

i

i

n

=Θ+=

Θ+
−

≤

Θ+
−
−

=

Θ+⎟
⎠
⎞

⎜
⎝
⎛=

Θ+⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛++=

∑
−

=

−

⎣ ⎦)()4/(3)(2nnTnT Θ+= is as follows, where Θ(n2) = cn2

Geometric series with
common ratio: 3/16

September 27, 2010 47

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Example

September 27, 2010 48

Copyright © All Rights Reserved by Yuan-Hao Chang

Another Example (Cont.)

Master MethodMaster Method

September 27, 2010 50

Copyright © All Rights Reserved by Yuan-Hao Chang

Master Theorem

The number of
leave nodes

Recurrence
form

nε

nε

September 27, 2010 51

Copyright © All Rights Reserved by Yuan-Hao Chang

Using Master Theorem

Cannot use the
master method.

Not polynomial
larger or smaller

September 27, 2010 52

Copyright © All Rights Reserved by Yuan-Hao Chang

Project 2
• Use C language to implement the merge sort with divide-

and-conquer.
– Use fscanf() to get integers from the input file.

- The first integer indicate the number of input integers in this file.
- E.g., “3 34 45 67” means there are three integers that are 34, 45, and 67.

– Use malloc() to allocate memory space for the input.
– Sort the input integers and output the sorted integers in the

monotonically increasing order on the screen.

• Deadline: 24:00, 2010.09.27
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P2_學號_姓名

mailto:johnsonchang@ntut.edu.tw

September 27, 2010 53

Copyright © All Rights Reserved by Yuan-Hao Chang

Project 3
• Use C language to implement the maximum-subarray

problem with divide-and-conquer.
– The input file should be retrieved through argv[1] of main() function.
– Use fscanf() to get integers from the input file.

- The first integer indicate the number of input integers in this file.
- E.g., “4 1 4 3 -4” means there are four changes that are 1, 4, 3 and -4.

– Find and output the maximal interval and the maximal revenue.
- .E.g., 1..3, 8

• Deadline: 24:00, 2010.10.04
– Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
– Email title: Algo_P3_學號_姓名

mailto:johnsonchang@ntut.edu.tw

	Methods for Solving Recurrences
	Outline
	Divide-and-Conquer Approach
	Merge-Sort
	Merge Sort Example
	Merge Sort Example (Cont.)
	Merging
	Merging (Cont.)
	Merging (Cont.)
	A Merging Example
	A Merging Example (Cont.)
	Analyzing Recurrence
	Analyzing Merge Sort
	Solving the Merge-Sort Recurrence
	Solving the Merge-Sort Recurrence (Cont.)
	Maximum-Subarray Problem
	Scenario
	Converting Maximum-Subarray Problem
	Solving with Divide-and-Conquer
	Maximum Subarray Crossing the Midpoint
	Solving Maximum-Subarray Problem
	Analyzing Maximum-Subarray Problem
	Matrix Multiplication
	Obvious Method
	Matrix Multiplication Algorithm
	Matrix Multiplication Algorithm (Cont.)
	Analyzing Matrix Multiplication Algorithm
	Strassen’s Method
	Strassen’s Method (Cont.)
	Theoretical and Practical Notes
	Substitution Method - Induction
	Substitution Method – Induction (Cont.)
	Induction with Asymptotic Notation
	Induction with Asymptotic Notation (Cont.)
	Avoiding Pitfalls
	Subtleties
	Changing Variables
	Recursion-Tree Method
	Recursion-Tree Method (Cont.)
	Recursion-Tree Method (Cont.)
	Another Example
	Another Example (Cont.)
	Master Theorem
	Using Master Theorem
	Project 2
	Project 3

