

Topic 2: Divide-and-Conquer

Methods for Solving Recurrences

- Divide-and-conquer solves a problem recursively.
- Steps of divide-and-conquer
 - Divide the problem into a number of subproblems.
 - Conquer the subproblems by solving them recursively. If the subproblem sizes are small enough, solve them directly.
 - Combine the solutions of the subproblems into the solution for the original problem.
- Methods for solving recurrences
 - Substitution method
 - Guess a bound and then use mathematical induction to prove our guess correct.
 - Recursion-tree method
 - Convert the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion.
 - Master method
 - Provide bounds for recurrences of the form.

Outline

- Merge sort
- Maximum-subarray problem
- Strassen's algorithm for matrix multiplication
- Substitution method
- Recursion-tree method
- Master method

Merge Sort

Divide-and-Conquer Approach

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively.
 - Base case: If the subproblems are small enough, just solve them by brute force (暴力法).
- **Combine** the subproblem solutions to give a solution to the original problem.

Merge-Sort

- Because we are dealing with subproblems, we state each subproblem as sorting a subarray A[p..r]
 - Initially, p = 1 and r = n, but these values change as we recurse through subproblems. To sort A[p..r]
 - **Divide** by splitting into two subarrays *A[p..q]* and *A[q+1..r]*, where q is the halfway point of *A[p..r]*.
 - **Conquer** by recursively sorting the two subarrays A[p..q] and A[q+1..r].
 - **Combine** by merging the two sorted subarrays *A*[*p*..*q*] and *A*[*q*+1..*r*] to produce a single sorted subarray *A*[*p*..*r*].

MERGE-SORT(A, p, r) Initial	call: MERGE-SORT(A, 1, n)
if $p < r$	// check for base case
$q = \lfloor (p+r)/2 \rfloor$	// divide
MERGE-SORT (A, p, q)	// conquer
MERGE-SORT $(A, q + 1, r)$	// conquer
MERGE(A, p, q, r)	// combine by Yuan-Hao Chai

Merge Sort Example

Merge Sort Example (Cont.)

Copyright © All Rights Reserved by Yuan-Hao Chang

Merging

MERGE(A, p, q, r)

• INPUT:

- -Array A and indices p, q, r such that
 - p ≤ q < r.
 - Subarray A[p..q] is sorted and subarray A[q+1..r]. is sorted.
 - By the restrictions on p, q, r, neither subarray is empty.

• OUTPUT:

 The two subarrays are merged into a single sorted subarray in A[p..r].

By adopting *linear merging*, it takes $\Theta(n)$ time, where n = r - p + 1 = the number of elements being merged. 9

Merging (Cont.)

Idea behind linear merging:

- Think of two piles of cards.
 - Each pile is sorted and placed face-up on a table with the smallest cards on top.
 - We merge these into a single sorted pile, face-down on the table.
 - A basic step:
 - · Choose the smaller of the two top cards.
 - · Remove it from its pile, thereby exposing a new top card.
 - Place the chosen card face-down onto the output pile.
 - Repeatedly perform basic steps until one input pile is empty.
 - Once one input pile empties, just take the remaining input pile and place it face-down onto the output pile.

Put on the bottom of each input pile a special *sentinel* card. Then We don't actually need to check whether a pile is empty before each basic step.

11

i = 1

Merging (Cont.)- The first two for loops take
$$\Theta(n_1 + n_2)$$
 time.
- The last for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The last for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- The first two for loops take $\Theta(n_1 + n_2)$ time.
- Total time: $\Theta(n)$.MERGE(A, p, q, r)
 $n_1 = q - p + 1$
for $i = 1$ to n_1
 $L[i] = A[p + i - 1]$
for $i = 1$ to n_1
 $L[i] = A[q + j]$
 $L[n_1 + 1] = \infty$
 $R[n_2 + 1] = \infty$ Sort and merge arrays L
and R back to array A[p...r]
(with linear merging)Image: the two sorted arrays to
 $R[n_1 + 1] = \infty$
 $R[n_2 + 1] = \infty$ Image: the two sorted arrays to
 $R[n_1 + 1] = \infty$ Image: the two sorted arrays to
 $R[n_2 + 1] = \infty$ Image: the two sorted arrays to
 $R[n_1 + 1] = 0$ Image: the two sorted arrays toImage: the two sorted arrays to
 $R[n_1 + 1] = 0$ Image: the two sorted arrays toImage: the two sorted a

Running time:

arrays L and R.

A Merging Example

A call of MERGE(9, 12, 16)

Analyzing Recurrence

- Use a *recurrence (equation)* to describe the running time of a divide-and-conquer algorithm.
- Let T(n) = running time on a problem of size n.

If the problem size is small enough (say, $n \le c$ for some constant c), we have the base case. \rightarrow Brute-force solution takes constant time Q(1).

The time to combine a size-n problem

 $T(n) = \begin{cases} \Theta(1) & \text{if } n \le c ,\\ aT(n/b) + D(n) + C(n) & \text{otherwise} . \end{cases}$

Suppose that we divide into *a* subproblems, each 1/b the size of the original. (In merge sort, a = b = 2.)

The time to divide a size-n problem

Analyzing Merge Sort

- Each divide step yields 2 subproblems, both of size exactly n/2.
 - The base case occurs when $n = 1 \Rightarrow \Theta(1)$.
 - When $n \ge 2$, time for merge sort steps:
 - **Divide:** Just compute q as the average of p and $r \Rightarrow D(n) = \Theta(1)$.
 - **Conquer:** Recursively solve 2 subproblems, each of size $n/2 \Rightarrow 2T(n/2)$.
 - **Combine:** *MERGE* on an *n*-element subarray takes $\Theta(n)$ time \Rightarrow C(n) = $\Theta(n)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

 $D(n) + C(n) = \Theta(1) + \Theta(n) = \Theta(n)$

Solving the Merge-Sort Recurrence

- Let *c* be a constant that describes the running time for the base case and also is the time per array element for the divide and conquer steps.
- We rewrite the recurrence as

Solving the Merge-Sort Recurrence (Cont.)

Maximum-Subarray Problem

September 27, 2010

Maximum-Subarray Problem

• Input:

- An array A[1..*n*] of numbers.
- Assume that some of the numbers are *negative*, because this problem is trivial when all numbers are nonnegative.

• Output:

 Indices *i* and *j* such that A[1..*n*] has the greatest sum of any nonempty, contiguous subarray of A, along with the sum of the values in A[*i*..*j*].

Scenario

- You have the prices that a stock traded at over a period of *n* consecutive days.
- When should you have bought the stock? When should you have sold the stock?
- Even though it's in retrospect (回顧), you can yell at your stockbroker for not recommending these buy and sell dates. ☺

Maximum profit is A[8..11] = 43 \rightarrow before day 8 (after day 7) and after day 11

Converting Maximum-Subarray Problem

- Let A[i] = (price after day i) (price after day i-1)
- If the maximum subarray is A[*i..j*], then we should
 - Have bought just before day *i* (i.e., just after day *i*-1) and
 - Have sold just after day j.
- Why not just "buy low, sell high"?
 - Lowest price might occur after the highest price.
 - Maximum profit sometimes comes neither by buying at the lowest price nor by selling at the highest price.
- Brute-force solution:

check all $\binom{n}{2} = \Theta(n^2)$ subarrays

Maximum profit is A[3..3] = 3: before day 3 (after day 2) and after day 3.

Solving with Divide-and-Conquer

- Divide-and-conquer could solve the maximum-subarray problem in O(n lg n) time.
- Maximum subarray might not be unique, though its value is.
- Subproblem:
 - Find a maximum subarray of A[*low..high*].
 In original call, *low* = 1, *high* = n.

• Solving:

- Divide the subarray into two subarrays of equal size A[*low..mid*] and A[*mid*+1..*high*].
- **Conquer** by finding a maximum subarray of A[*low..mid*] and A[*mid+1..high*].
- Combine by finding a maximum subarray that might cross the midpoint or lie on either one subarray.

Maximum Subarray Crossing the Midpoint

- Not a smaller instance of the original problem:
 - Any subarray crossing the midpoint A[*mid*] is made of two subarrays A[*i*..mid] and A[mid+1..*j*], where low≤i≤mid and mid <*j*≤ high.
 - Find maximum subarrays of the form A[*i*..mid] and A[mid+1..*j*], and then combine them.

This procedure takes $\Theta(n)$ time.

Crossing midpoint

Copyright © All Rights Reserved by Yuan-Hao Chang

Analyzing Maximum-Subarray Problem

• Base case:

- Occurs when high equals low, so that n = 1. The procedure just returns \Rightarrow T(n) = $\Theta(1)$.
- **Recursive case:** $T(n) = \Theta(1) + 2T(n/2) + \Theta(n) + \Theta(1)$
 - Dividing takes $\Theta(1)$ time. = $2T(n/2) + \Theta(n)$ (absorb $\Theta(1)$ terms into $\Theta(n)$).
 - Conquering solves 2 subproblems, each on a subarray of n/2 elements \Rightarrow 2T(n/2).
 - Combining consists of
 - Calling FIND-MAX-CROSSING-SUBARRAY $\Rightarrow \Theta(n)$.
 - A constant number of constant time tests $\Rightarrow \Theta(1)$.

 $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases} \xrightarrow{T(n)} T(n) = \Theta(n \lg n)$ Same recurrence as for merge sort

Strassen's Algorithm for Matrix Multiplication

Matrix Multiplication

Input: Two $n \times n$ (square) matrices, $A = (a_{ij})$ and $B = (b_{ij})$. **Output:** $n \times n$ matrix $C = (c_{ij})$, where $C = A \cdot B$, i.e.,

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

for $i, j = 1, 2, \dots, n$.

Need to compute n^2 entries of *C*. Each entry is the sum of *n* values.

28

Obvious Method

SQUARE-MAT-MULT (A, B, n)let C be a new $n \times n$ matrix for i = 1 to nfor j = 1 to n $c_{ij} = 0$ for k = 1 to n $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$ return C

Three nested loops, each iterates n times, and innermost loop body takes constant time $\Rightarrow \Theta(n^3)$

Matrix Multiplication Algorithm

 Assume n is a power of 2. Partition each of A, B, C into four n/2 x n/2 matrices:

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}, \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}, \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

• Rewrite $C = A \cdot B$ as

$$\begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \cdot \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

- Giving the four equations:

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$$

Matrix Multiplication Algorithm (Cont.)

REC-MAT-MULT (A, B)	$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21} ,$	
let C be a new $n \times n$ matrix	$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22} ,$	
if $n = 1$ $c_{11} = a_{11} \cdot b_{11}$ Base case: O(1)	$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21} ,$ $C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22} .$	
else partition A, B, and C into $n/2 \times n/2$ submatrices		
$C_{11} = \text{Rec-Mat-Mult}(A_{11}, B_{11}) + \text{Rec-Mat-Mult}(A_{12}, B_{21})$		
$C_{12} = \text{Rec-Mat-Mult}(A_{11}, B_{12}) + \text{Rec-Mat-Mult}(A_{12}, B_{22})$		
$C_{21} = \text{Rec-Mat-Mult}(A_{21}, B_{11}) + \text{Rec-Mat-Mult}(A_{22}, B_{21})$		
$C_{22} = \text{REC-MAT-MULT}(A_{21}, B_{12}) + \text{REC-MAT-MULT}(A_{22}, B_{22})$		
return C		
Eight recursive calls: $8T(n/2)$ = $n^2/4 x^4$	x n/2) mation $4 = n^2$	

Analyzing Matrix Multiplication Algorithm

- Let T(n) be the time to multiply two $n \ge n$ matrices.
- **Base case:** n = 1.
 - Perform one scalar multiplication: $\Rightarrow \Theta(1)$.
- Recursive case: n > 1.
 - Dividing takes
 - $\Theta(1)$ time: using index calculations
 - $\Theta(n^2)$ time: using matrix copying
 - Conquering makes 8 recursive calls, each multiplying $n/2 \times n/2$ matrices $\Rightarrow 8T(n/2)$.

Not good enough

- Combining takes $\Theta(n^2)$ time to add $n/2 \times n/2$ matrices four times (so that it doesn't matter by dividing matrices with index calculation or matrix copying).

 $T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \implies T(n) = \Theta(n^3) \\ 8T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases} \xrightarrow{T(n)} Log_2 8 = 3$

Strassen's Method

- Strassen's algorithm runs in $O(n^{2.81})$ to solve matrix multiplication. How?
 - Perform only 7 recursive multiplications of $n/2 \times n/2$ matrices, rather than 8.
 - The algorithm:
 - As in the recursive method, partition each of the matrices into four $n/2 \times n/2$ submatrices. Time: $\Theta(1)$.
 - Create 10 matrices S₁; S₂...S₁₀. Each is n/2 x n/2 and is the sum or difference of two matrices: Time: Θ(n²).
 - Recursively compute 7 matrix products P_1 , P_1 , ..., P_7 , each $n/2 \times n/2$.
 - Compute $n/2 \times n/2$ submatrices of C by adding and subtracting various combinations of the P_i . Time: $\Theta(n^2)$.

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1, \\ 7T(n/2) + \Theta(n^2) & \text{if } n > 1. \end{cases} \Longrightarrow T(n) = \Theta(n^{\lg 7})$$

Strassen's Method (Cont.) 2. 7. $S_1 = B_{12} - B_{22}, P_1 = A_{11} \cdot S_1 = A_{11} \cdot B_{12} - A_{11} \cdot B_{22},$ $S_2 = A_{11} + A_{12}, P_2 = S_2 \cdot B_{22} = A_{11} \cdot B_{22} + A_{12} \cdot B_{22},$ $S_3 = A_{21} + A_{22}, P_3 = S_3 \cdot B_{11} = A_{21} \cdot B_{11} + A_{22} \cdot B_{11},$ $S_4 = B_{21} - B_{11}, P_4 = A_{22} \cdot S_4 = A_{22} \cdot B_{21} - A_{22} \cdot B_{11},$ $S_{5} = A_{11} + A_{22}, P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22},$ $S_{6} = B_{11} + B_{22}, P_{5} = S_{5} \cdot S_{6} = A_{11} \cdot B_{11} + A_{11} \cdot B_{22} + A_{22} \cdot B_{11} + A_{22} \cdot B_{22},$ $S_{7} = A_{12} - A_{22}, P_{6} = S_{7} \cdot S_{8} = A_{12} \cdot B_{21} + A_{12} \cdot B_{22} - A_{22} \cdot B_{21} - A_{22} \cdot B_{22},$ $S_8 = B_{21} + B_{22}, P_7 = S_9 \cdot S_{10} = A_{11} \cdot B_{11} + A_{11} \cdot B_{12} - A_{21} \cdot B_{11} - A_{21} \cdot B_{12}.$ $S_9 = A_{11} - A_{21}, \mathbf{J}$ $S_{10} = B_{11} + B_{12}$, $C_{11} = P_5 + P_4 - P_2 + P_6$, $= A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$, $C_{12} = P_1 + P_2, \qquad = A_{11} \cdot B_{12} + A_{12} \cdot B_{22},$ $C_{21} = P_3 + P_4$, $= A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$, $C_{22} = P_5 + P_1 - P_3 - P_7 = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$

Theoretical and Practical Notes

- A method by Coppersmith and Winograd runs in O(n^{2.376}) time.
- Practical issues against Strassen's algorithm:
 - Higher constant factor than the obvious O(n³)-time method.
 - Not good for sparse matrices.
 - Many zero rows and columns in sparse matrices
 - Not numerically stable: larger errors accumulate than in the obvious method.
 - Introducing many addition and subtraction operations to the submatrices.
 - Submatrices consume space, especially if copying.

Substitution Method

Substitution Method - Induction

- Two steps of the substitution method:
 - -1. Guess the form of the solution.
 - -2. Use mathematical induction to find constants and show that the solution works.

• Example:

 $T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n > 1. \end{cases}$

- In this example, we have a recurrence with an exact function, rather than asymptotic notation, so that the solution is also exact rather than asymptotic.
- The boundary conditions and the base case should be checked.

 $T(n) = \begin{cases} 1 & \text{if } n = 1, \\ 2T(n/2) + n & \text{if } n > 1. \end{cases}$

Substitution Method – Induction (Cont.)

- **Guess:** $T(n) = \Theta(n) = n \lg n + n$
- Induction:

Base:
$$n = 1 \Rightarrow n \lg n + n = 1 = T(1)$$

- Inductive step:
 - Inductive hypothesis: $T(k) = k \lg k + k$, for all k < n
 - Use this inductive hypothesis for T(n/2). Let k = n/2

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

= $2\left(\frac{n}{2}\lg\frac{n}{2} + \frac{n}{2}\right) + n$ (by inductive hypothesis)
= $n\lg\frac{n}{2} + n + n$
= $n(\lg n - \lg 2) + n + n$
= $n\lg n - n + n + n$
= $n\lg n + n$.

Induction with Asymptotic Notation

- Technically, with asymptotic notation, we
 - Neglect certain technical details when we state and solve recurrences.
 - A good example of a detail that is often glossed over is the assumption of integer arguments to functions.
 - Ignore boundary conditions.
 - Omit floors and ceilings.

• Example:

$$\begin{cases} T(n) = 2T(\lfloor n/2 \rfloor) + n \\ T(1) = 1 \quad \text{(We may omit the base case later.)} \end{cases}$$

Induction with Asymptotic Notation (Cont.)

- **Guess**: $T(n) = O(n \lg n) \le cn \lg n$
- Induction:

 $\begin{cases} T(n) = 2T(\lfloor n/2 \rfloor) + n \\ T(1) = 1 \end{cases}$

- Base:

- n = 1 \Rightarrow T(1)=1, Guess: T(1) = c \times 1 \times lg 1 = c \times 1 \times 0 = 0 (\rightarrow \leftarrow : conflict)
- n = 2 \Rightarrow T(2)=2T(1)+2=4, Guess: T(2) = c × 2 × lg 2 = c × 2 × 1 = 2c (It holds when c \ge 2 and n=2)
- Inductive hypothesis: $T(k) = ck \lg k$, for all k < n
 - Use this inductive hypothesis for T(n/2). Let k = $\lfloor n/2 \rfloor$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ $\leq 2(c \lfloor n/2 \rfloor \lg \lfloor n/2 \rfloor) + n$ $\leq cn \lg \frac{n}{2} + n$ $= cn \lg n - cn \lg 2 + n$ $= cn \lg n - cn + n = cn \lg n + (1 - c)n$ $\leq cn \lg n \quad \text{(if } c \geq 1)$

 $T(n) = O(n \lg n)$ when $c \ge 2$ and $n \ge 2$ Copyright © All Rights Reserved by Yuan-Hao Chang

Avoiding Pitfalls

• Example:

$$\begin{cases} T(n) = 2T(\lfloor n / 2 \rfloor) + n \\ T(1) = 1 \end{cases}$$

• Guess: $T(n) = O(n) \Rightarrow T(n) \le cn$

Induction:

 $T(n) \le 2(c\lfloor n/2 \rfloor) + n \le cn + n = O(n) \rightarrow \text{Wrong}$ $T(n) \le 2(c\lfloor n/2 \rfloor) + n \le cn + n \le cn = O(n) \Rightarrow c \text{ should be a positive integer, so there is no$

integer, so there is no such c to let $cn + n \le cn$

Consider the recurrence:

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + 1$$

- Wrong guess:
 - Guess:

$$T(n) = O(n) \implies T(n) \le cn$$

- Induction:

$$T(n) \le c \lfloor n/2 \rfloor + c \lceil n/2 \rceil + 1 \le cn + 1 \le cn$$

- A proper guess:
 - Guess:

 $T(n) \le cn - b$

- Induction: $T(n) \le (c\lfloor n/2 \rfloor - b) + (c\lceil n/2 \rceil - b) + 1$

 $\leq cn - 2b + 1 \leq cn - b$ (Choose b≥1)

Changing Variables

• Example:

$$T(n) = 2T(\left\lfloor \sqrt{n} \right\rfloor) + \lg n$$

Ignore rounding

→ This does not affect the derived time complexity $T(n) = 2T(\sqrt{n}) + \lg n$

• Let $m = \lg n \Rightarrow 2^m = n$

 $T(n) = T(2^m) = 2T(2^{m/2}) + m$

• Let $S(m) = T(2^m) \Rightarrow$ $S(m) = 2S(m/2) + m \Rightarrow O(m \lg m)$ $\Rightarrow T(n) = T(2^m) = S(m)$ $= O(m \lg m) = O(\lg n \lg \lg n)$

Recursion-Tree Method

Recursion-Tree Method

- Example: $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$
 - Suppose *n* is a power of 2
 - $\Theta(n^2) = Cn^2$

Recursion-Tree Method (Cont.)

Recursion-Tree Method (Cont.)

• Cost of $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ is as follows, where $\Theta(n^2) = cn^2$

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4}n-1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \sum_{i=0}^{\log_{4}n-1} \left(\frac{3}{16}\right)^{i} \frac{cn^{2} + \Theta(n^{\log_{4}3})}{(3/16) - 1} cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{(3/16)^{\log_{4}n} - 1}{(3/16) - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$\leq \frac{1}{1 - (3/16)}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \frac{16}{13}cn^{2} + \Theta(n^{\log_{4}3}) = O(n^{2})$$

Another Example (Cont.) Guess: $T(n) \le dn \lg n$.

Substitution:

 $T(n) \leq T(n/3) + T(2n/3) + cn$ $\leq d(n/3) \lg(n/3) + d(2n/3) \lg(2n/3) + cn$ $= (d(n/3) \lg n - d(n/3) \lg 3)$ $+ (d(2n/3) \lg n - d(2n/3) \lg(3/2)) + cn$ $= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg(3/2)) + cn$ $= dn \lg n - d((n/3) \lg 3 + (2n/3) \lg 3 - (2n/3) \lg 2) + cn$ $= dn \lg n - dn (\lg 3 - 2/3) + cn$ $\leq dn \lg n$ if $-dn(\lg 3 - 2/3) + cn \leq 0$, $d \geq \frac{c}{\lg 3 - 2/3}.$ Therefore, $T(n) = O(n \lg n)$.

Master Method

f(*n*) is within a polylog factor of $n^{\log_b a}$, but not smaller. *Solution:* $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Case 3: $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$ and f(n) satisfies the regularity condition $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n. f(n) is polynomially greater than $n^{\log_b a}$. Intuitively: cost is dominated by root. **Solution:** $T(n) = \Theta(f(n))$. Copyright © All Rights Reserved by Yuan-Hao Chang

Using Master Theorem $T(n) = 5T(n/2) + \Theta(n^2)$ $n^{\log_2 5}$ vs. n^2 Since $\log_2 5 - \epsilon = 2$ for some constant $\epsilon > 0$, use Case $1 \Rightarrow T(n) = \Theta(n^{\lg 5})$ $T(n) = 27T(n/3) + \Theta(n^3 \lg n)$ $n^{\log_3 27} = n^3$ vs. $n^3 \lg n$ Use Case 2 with $k = 1 \Rightarrow T(n) = \Theta(n^3 \lg^2 n)$ $T(n) = 5T(n/2) + \Theta(n^3)$ $n^{\log_2 5}$ vs. n^3 Cannot use the Now $\lg 5 + \epsilon = 3$ for some constant $\epsilon > 0$ master method. $af(n/b) = 5(n/2)^3 = 5n^3/8 \le cn^3$ for c = 5/8 < 1Use Case $3 \Rightarrow T(n) = \Theta(n^3)$ Not polynomial $T(n) = 27T(n/3) + \Theta(n^3/\lg n)$ [arger or smaller $n^{\log_3 27} = n^3$ vs. $n^3 / \lg n = n^3 \lg^{-1} n \neq \Theta(n^3 \lg^k n)$ for any $k \ge 0$.

September 27, 2010

Project 2

- Use C language to implement the merge sort with divideand-conquer.
 - Use *fscanf()* to get integers from the input file.
 - The first integer indicate the number of input integers in this file.
 - E.g., "3 34 45 67" means there are three integers that are 34, 45, and 67.
 - Use malloc() to allocate memory space for the input.
 - Sort the input integers and output the sorted integers in the monotonically increasing order on the screen.
- Deadline: 24:00, 2010.09.27
 - Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
 - Email title: Algo_P2_學號_姓名

Project 3

- Use C language to implement the maximum-subarray problem with divide-and-conquer.
 - The input file should be retrieved through *argv[1]* of main() function.
 - Use *fscanf()* to get integers from the input file.
 - The first integer indicate the number of input integers in this file.
 - E.g., "4 1 4 3 -4" means there are four changes that are 1, 4, 3 and -4.
 - Find and output the maximal interval and the maximal revenue.
 - .E.g., 1..3, 8
- Deadline: 24:00, 2010.10.04
 - Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
 - Email title: Algo_P3_學號_姓名