Topic 2;
Divide-and-Conquer

September 27, 2010

Methods for Solving Recurrences

 Divide-and-conquer solves a problem recursively.

« Steps of divide-and-conquer
— Divide the problem into a number of subproblems.

— Conquer the subproblems by solving them recursively. If the subproblem
sizes are small enough, solve them directly.
— Combine the solutions of the subproblems into the solution for the original

problem.

» Methods for solving recurrences

— Substitution method
- Guess a bound and then use mathematical induction to prove our guess correct.

— Recursion-tree method
- Convert the recurrence into a tree whose nodes represent the costs incurred at

various levels of the recursion.

— Master method
- Provide bounds for recurrences of the form.

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

7%

Outline

* Merge sort

* Maximum-subarray problem

e Strassen’s algorithm for matrix multiplication
 Substitution method

* Recursion-tree method

 Master method

Copyright © All Rights Reserved by Yuan-Hao Chang

Merge Sort

September 27, 2010

—— - FTEE
fhsreees , LI F"V T
e = e el Bl
' B e il A T L
IRETE Tk

Divide-and-Conquer Approach

* Divide the problem into a number of subproblems
that are smaller instances of the same problem.

e Conquer the subproblems by solving them
recursively.

—Base case: If the subproblems are small enough, just
solve them by brute force (& # #).

« Combine the subproblem solutions to give a
solution to the original problem.

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

7%

Merge-Sort

e Because we are dealing with subproblems, we state each

subproblem as sorting a subarray A[p..r]
— Initially, p = 1 and r = n, but these values change as we recurse
through subproblems. To sort A[p..r]

- Divide by splitting into two subarrays A[p..q] and A[g+1..r], where q is the
halfway point of A[p..r].

- Conquer by recursively sorting the two subarrays A[p..q] and A[g+1..r].

- Combine by merging the two sorted subarrays A[p..q] and A[g+1..r] to
produce a single sorted subarray A[p..r].

MERGE-SORT(A. p.i‘) |n|t|al Ca”: MERGE'SORT(A, 1, n)

if p <r // check for base case
g = L(p+r)/2] // divide
MERGE-SORT(A. p.q) // conquer
MERGE-SORT(A.q + 1.r) // conquer
MERGE(A, p.q.r) // combine by Yuan-Hao Chang

September 27, 2010

7%

Merge Sort Example

_ sorted array
Bottom-up view 1 2 3 4 5 6 7 8
forn=8 I 1

(a power of 2) h
/ \ merge

9
2
4D
e
tn
(o)
-1
I

M M fA M mere
HECOHOBE Iﬁlﬁ/ Subarray
1 2 3 4 5 6 7 8 demarcation(fi5Y)

nitial array

Copyright © All Rights Reserved by Yuan-Hao Chang

7%

September 27, 2010

Merge Sort Example (Cont.)

Bottom-up view for
n=28
(not a power of 2)

sorted array

]2345678910]]
|122 77|

-~ /\ -
/\ /\mw

/‘\ f\ f\f\mw
AN BDOORNEED

M AT
HUHONOERREE

10 11

1111t131 arm}
Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

7%

Merging
MERGE(A, p, q, I)
* INPUT:
—Array A and indices p, g, r such that
-p<g<r.

- Subarray Alp..q] is sorted and subarray A[g+1..r]. is sorted.
- By the restrictions on p, q, r, neither subarray is empty.

« OUTPUT:

—The two subarrays are merged into a single sorted
subarray in A[p..r].

__

By adopting linear merging, it takes ®(n) time,
where n=r-p+1=the number of elements being merged

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 10

7%

Merging (Cont.)

e |dea behind linear merging:

— Think of two piles of cards.

- Each pile is sorted and placed face-up on a table with the
smallest cards on top.

- We merge these into a single sorted pile, face-down on the table.

- A basic step:
- Choose the smaller of the two top cards.
-Remove it from its pile, thereby exposing a new top card.
- Place the chosen card face-down onto the output pile.

- Repeatedly perform basic steps until one input pile is empty.

- Once one input pile empties, just take the remaining input pile and
place it face-down onto the output pile.

Put on the bottom of each input pile a special sentinel card. Then We don't actually
- need to check whether a pile is empty before each basic step. |

September 27, 2010 11

" Running time:

M erg | n g (CO A t) - The first two for loops take ®(n; + n,) time.

- The last for loop makes n iterations, |
| each taking constant time, for ®(n) time.
Ty T f o -Total time: ©(n). '

| Sort and merge arrays LI
ny=qg—p+1 and R back to array A[p..r]
Ny =71 —((with linear merging)
let L[1..n, + 1] and R[1..n, + 1] be new arrays l

fori = 1ton, w |
: Lli] = Alp+i —1] Ej:]
for j = 1ton, 5
R = Alg +]
Lln, + 1] = o0

Prepare the two sorted array
arrays L and R.

A Merging Example
A call of MERGE(9, 12, 16)

]° 8 9 10 11 12 13 14 15 16 17 2' 8 9 10 11 12 13 14 15 16 17

4 4 .1

k k

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
L2457 e R|1|2|3]|6||L 4157 | R 21316 e

i J ! J
3’ 8 9 10 11 12 13 14 15 16 17 4’ 8 9 10 11 12 13 14 15 16 17

4 112 4 1122

v I's

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

L 4157 |ee R 2136 L 415(7 e R 316 |
I J ! J

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 13

A Merging Example (Cont)

5 8 9 10 11 12 13 14 15 16 17 6 12 13 14 15 16 17
o4 1121213 o A 1 2 2 314
1 3 4 5 1 3 4 5 1 2 3 4 5 1 2 3 4 5
L 517 | eo R 6leo| L 517 |eo R 6 | e
J I J
7. 9 10 11 12 13 14 15 16 17 8 8 9 10 11 12 13 14 15 16 17
A 1122345 A 112 3141516
4 k
1 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
J[7 oo R 6 oo L 7 oo R =ta]
i] 1 J
9- 9 10 11 12 13 14 15 16 17
A 121213145167
1 3 4 5 1 2 3 4 5
I, ©O R [e7e]

j Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 14

Analyzing Recurrence

* Use arecurrence (equation) to describe the running time
of a divide-and-conguer algorithm.

e Let T(n) = running time on a problem of size n.

| If the problem size is small enough (say, n <c for The time to combine
- some constant c), we have the base case. ' a size-n problem
- > Brute-force solution takes constant time Q(1).

(~)(A itn <c.,
al,(n/b)+ D(n)+ C(n) otherwise
Suppose that we divide into a subproblems, The time to divide a

“each 1/b the size of the original.

i In merge sort, a=b = 2.
I__(__'_""'_'g"""""""""""""')"""'““""““'““““": Copyright © All Rights Reserved by Yuan-Hao Chang

size-n problem

September 27, 2010 15

7%

Analyzing Merge Sort

e Each divide step yields 2 subproblems, both of size
exactly n/2.

—The base case occurs whenn =1 = 0(1).

—When n > 2, time for merge sort steps:
- Divide: Just compute g as the average of p and r = D(n) = ©(1).

- Conquer: Recursively solve 2 subproblems, each of size n/2 =
2T(n/2).
- Combine: MERGE on an n-element subarray takes ®(n) time =
C(n) = ©(n).] .
G (1) iftn=1.

2T (n/2) —|— (—) (n) 1ftn>1.

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 16

7%

Solving the Merge-Sort Recurrence

* Let ¢ be a constant that describes the running time for the
base case and also is the time per array element for the
divide and conquer steps.

 We rewrite the recurrence as

C 1itn =1

) = 2T (n/2) +cn 1iftn>1. / \

cn/2 cn/2

e o

T(n/2) T(n/2) Tn/4) T(n/4) T(n/4) T(n/4)

Copyright © All Rights Reserved by Yuan-Hao Chang

A

September 27, 2010 17

.. - N

/ \ T

/\
AWA

{'}1_.-"2 ||||||||||||||||||||||| ilns- on i Levels: |g n + l

(Ig n = log,n)
S\ Ggn+1=gm+1).
' 1

cin/d o L T,

ANV e

lotall en lg n +cn
Copyright © All Rights Reserved by Yuan-Hao Chang

Maximum-Subarray
Problem

September 27, 2010 19

7%

Maximum-Subarray Problem

* Input:
—An array A[1..n] of numbers.

— Assume that some of the numbers are negative,
because this problem is trivial when all numbers are
nonnegative.

e OQutput:

—Indices | and j such that A[1..n] has the greatest sum of
any nonempty, contiguous subarray of A, along with the
sum of the values in AJi..J] .

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

7%

Scenario

* You have the prices that a stock traded at over a period of n consecutive days.
* When should you have bought the stock? When should you have sold the stock?

* Even though it’s in retrospect (* £¢), you can yell at your stockbroker for not
recommending these buy and sell dates. ©

120

“0_7B : , - :

100 \ /_ WA ;

80 . \ B} | \'/

70 - \\'// »

60 T I I I I I I I I \ I | I I I I I

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Day | 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15 16
Price [100 113 110 85 105 102 86 63 81 101 94 106 101 79 94 90 97
Change 13 -3 —25 20 -3 —-16 —23 18 20 -7 12 -5 —22 15 —4 7

Maximum profit is A[8..11] = 43 —>before day 8 (after day 7) and after day 11

20

September 27, 2010 21

Converting Maximum-Subarray Problem

 Let AJi] = (price after day i1) - (price after day i-1)

e If the maximum subarray is A[i..j] , then we should

— Have bought just before day i (i.e., just after day i-1) and

— Have sold just after day |.
11

» Why not just “buy low, sell high? |, | "\ i
— Lowest price might occur after 9 /\
the highest price. 3 \ / \
— Maximum profit sometimes comes 7 ’
neither by buying at the lowest price 4 | | ; B W
nor by selling at the highest price. 0] 3 3 4
 Brute-force solution: Maximum profit is A[3..3] = 3:

N)12 before day 3 (after day 2)
check all (2) (n°) subarrays and after day 3.

September 27, 2010

7%

Solving with Divide-and-Conquer

 Divide-and-conquer could solve the maximum-subarray problem in
O(n lg n) time.
 Maximum subarray might not be unique, though its value is.

e Subproblem:

— Find a maximum subarray of A[low..high].
In original call, low = 1, high = n.

e Solving:
— Divide the subarray into two subarrays of equal size A[low..mid] and
A[mid+1..high].
— Congquer by finding a maximum subarray of A[low..mid] and A[mid+1..high].

— Combine by finding a maximum subarray that might cross the midpoint or
lie on either one subarray.

 aosses g midpoint Apmid + 1. j)
low mid high low i mid ————— high
I oy Ry T T NS

T g RN il
~— mid+1 >~——W— S~——mid + 1 J
entirely in A[low .. mid| entirely in A[mid + 1. . high] Ali .. mid]

22

September 27, 2010 23

7%

* Not a smaller instance of FINFD EMX CROSSIN(; SUBAP;R;Y;A fcj’ mid, high)
the Orlglnal prOblem. ' // Find a maximum subarray of the form A[i . . mid].

left-sum = —oo)

— Any subarray crossing the iSifm =0 |
midpoint A[mid] is made of | fori = mid downto low | oo
two subarrays Afi.mid] s =sm+ 4G [Frommidtolow
and A[mid+1..j], where if S”’Z ﬂzii’j'i””;m —
low<i<mid and mid <j< . max-lefi = i ,
high. ' // Find a maximum subarray of the form A[mid + 1.. j].

— Find maximum subarrays "ight-sum = —oc \ '
of the form A[i..mid] and %" =¥

for j = mid + 1 to high

A[mid+1..j], and then sum = sum + A[]]

combine them.

———————————————————————————————————

| if sum > right-sum
right-sum = sum —_—
. This procedure RN max-right = j |

"""""

// Return the indices and the sum of the two subarrays.
- return (max-lefi. max-right. left-sum ~+ right-sum)

takes O(n) time.

September 27, 2010 24

7%

Solving Maximum-Subarray Problem

Initial call: FIND-MAXIMUM-SUBARRAY (A, 1. n)

' ' FIND-MAXIMUM-SUBARRAY (A.low. high)

1f high == low Base case: O(1) |
return (low. high. A[low]) // base case: only one elementi
else mid = |(low + high)/2] B -
(left-low, left-high, left-sum) = SearChtheleftSUbarray '
Divide FIND-MAXIMUM-SUBARRAY (A. low, mid)~ e
' (right-low . right-high. right-sum) = _S_?arCh therlghtsubarray
Divide FIND-MAXIMUM-SUBARRAY (A. mid + 1. hrgh)--—:""'}:::: -----------------------

Crossing the
(cross-low, cross-high, cross-sum) = m|dp0|nt (combine) |

FIND-MAX-CROSSING-SUBARRAY (A. low. mid, hygh) RREE R et

| if left-sum > ”ghr-smn and kﬁ-sum = Cross-sum ‘
SR S . Combine and

____________ . } determine the |
s Tr— - maximum subarray
BASE Lt St . in Aflow..high]

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 25

7%

Analyzing Maximum-Subarray Problem

 Base case:
— Occurs when high equals low, so that n = 1. The procedure just returns =

T(n) = 6(1).
* Recursive case: T(»‘?)=(~)(1)+2T(;g/2)+(~)(,1)+@)(1)
— Dividing takes ©(1) time. ___________;____2__7_*_(_;; /2) +©(n) (absorb O(1) terms _l?_t_t_’_?_)_(}jf_)_)__.j
— Conquering solves 2 subproblems, each on a subarray of n/2 elements =
2T(n/2).

— Combining consists of
- Calling FIND-MAX-CROSSING-SUBARRAY = 0O(n).
- A constant number of constant time tests = 0(1).

O(1) itn=1. 5,

2T(n/2) +On) itn>1.
et Same recurrence as for merge sort

Copyright © All Rights Reserved by Yuan-Hao Chang

Strassen’s Algorithm for
Matrix Multiplication

September 27, 2010 27

7%

Matrix Multiplication

Input: Two n X n (square) matrices, A = (a;;) and B = (b;;).
Output: 7 x n matrix C = (¢;;), where C = A - B, 1.e.,

n

Cij = Z ﬂ;‘kbk,j

k=1

———

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 28

7%

Obvious Method

__

'SQUARE-MAT-MULT (A. B, n)
Elet C be anew n X n matrix
fori = 1ton
: for] = 1ton

Cij = 0

fork = 1 ton .
| Cij = Cij T djf - bk;‘é
‘return C ’

__

———

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010

7%

Matrix Multiplication Algorithm

« Assume n is a power of 2. Partition each of A, B, C into four
n/2 x n/2 matrices:

All Alz (Bll BIZ) (Cll Clz)
(AZ'[AZE) BZ'[BZZ C21 CEZ
e Rewrite C=A -B as
(Cll CIZ) — (All AIZ) (Bll Blz)
C21 CQZ A21 AZZ BZI BZQ

— Giving the four equations:

Chh = A B+ A By,
Ci, = A B+ A By,
Coy = Ao By +Ax»n- By

Caz — AZI'Blz_I_AZQ'BZ’J .

Copyright © All Rights Reserved by Yuan-Hao Chang

29

7%

REC-MAT-MULT(A. B)

let C be a new n X n matrix
if n ==

' ci1 = ayy - by

Base case: O(1)

September 27, 2010

else partition A, B, and C into /2 x n/2 submatrices

Cll

O
]

— REC-MAT-MULT (A»;.
= REC-MAT—MULT (A5,

®
>
|

REC-MAT-MULT (A ;.
REC-MAT-MULT (A ;.

By;) + REC-MAT-MULT(A45.
Bi») + REC-MAT-MULT (A >.
B,,) + REC-MAT-MULT(A4,,.
Bp)@REC -MAT-MULT(A,5.

e — e

Eight recursive
calls: 8T(n/2)

. Four (n/2xn/2) .
| matrix summation

Copyright © All Rights Reserved by Yuan-Hao Chang

30

September 27, 2010 31

Analyzing Matrix Multiplication Algorithm

* Let T(n) be the time to multiply two n x n matrices.

« Base case: n=1.
— Perform one scalar multiplication: = ©(1).

* Recursive case: n > 1.
— Dividing takes
— ©(1) time: using index calculations
— ©(n?) time: using matrix copying e
— Conguering makes 8 recursive calls, each multiplying : |
n/2 x n/2 matrices = 8T(n/2). I :

— Combining takes ®(n?) time to add n/2 x n/2 matrices four times (s(a that it
doesn’'t matter by dividing matrices with index calculatlon or matrix Copylng)

T(H) _ G(1) iftn=1. :> T'(n) = (-')(n%)

. - N2 1I
I 8T(n/2) + O7) ifn>1. L0g,8 = 3

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 32

7%

Strassen’s Method

 Strassen’s algorithm runs in O(n?8%) to solve matrix multiplication. How?
— Perform only 7 recursive multiplications of n/2 x n/2 matrices, rather than 8.
— The algorithm:

- As in the recursive method, partition each of the matrices into four n/2 x
n/2 submatrices. Time: ©(1).

- Create 10 matrices S;; S,...S,,. Each is n/2 x n/2 and is the sum or
difference of two matrices: Time: ®(n?).

- Recursively compute 7 matrix products P, Py, ..., P, each n/2 x n/2.

- Compute n/2 x n/2 submatrices of C by adding and subtracting various
combinations of the P;. Time: ®(n?).

O(1) ifn=1., | _
I'(n) = 5 T(n) = O(n'e?
) = 2 (1/2) + 02 ifn > | > Tin) = O0=)

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 33

7%

Strassen’s Method (Cont.)

51 812_82°'§P1 = A -85 = Ay -Bpn—A41 B,
S AutAep o smy = HTBRRTES
= + Aoy . LT O
53 B le_B_z §P3 = S3-Byy = Ay B+ A By,
! . 11.§P4 — A22'S4 — Azz'le—Azz'Bn :
Ss = A“ + Agz E FETITTITITIIIPE .
o Ps = Ss-8S¢ = Ay By +iAy - Byit A - B+ |42 - Basl.
S¢ = Bii+ Bxn 3 AR
S, = A, — A Ps = 57-5s = Az By +A12822— Az - Bor|— |2 - Bas|.

Se = 321+322§P7 = S9-S0 = An-Bu+An-Bio— Ay By — Ay - B

el

S9 — A11 _A21 3.

———

Cno = P+ P = Ay B+ A B
C,y, = P3+ Py = Ay By + Ax - By
Cy = Ps+P —P;i—F Azy - Bio + Ay - Bas

__

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 34

7%

Theoretical and Practical Notes

* A method by Coppersmith and Winograd runs in
O(n2-37%) time.

* Practical issues against Strassen’s algorithm:

— Higher constant factor than the obvious &n3)-time
method.

— Not good for sparse matrices.
- Many zero rows and columns in sparse matrices

— Not numerically stable: larger errors accumulate than in
the obvious method.

- Introducing many addition and subtraction operations to the
submatrices.

— Submatrices consume space, especially if copying.

Copyright © All Rights Reserved by Yuan-Hao Chang

Substitution Method

September 27, 2010

Substitution Method - Induction

* Two steps of the substitution method:
— 1. Guess the form of the solution.

— 2. Use mathematical induction to find constants and
show that the solution works.

* Example:

ET(H) =

* In this example, we have a recurrence with an exact function, rather
than asymptotic notation, so that the solution is also exact rather than
asymptotic.

* The boundary conditions and the base case should be checked.

36

7%

—Guess: T(N) =0OM) =nlilgn+n

—Induction:
-Base: n=1=nlgn+n=1=T(1)
- Inductive step:

-Inductive hypothesis: T(k) =k Ig k + k, forallk <n
- Use this inductive hypothesis for T(n/2). Let k = n/2

September 27, 2010

lo —
n gz—l—n—l—n

n(lgn —1g2)+n +n
nlgn—n+n-+n
nlgn—+n.

1
'--Dv'py'rrg'l ﬂﬂﬂﬂﬂﬂﬂ gl'lr:rr\mcfved by Yuan HaO Chang

37

2T (n/2) +n iftn > 1

September 27, 2010 38

7%

Induction with Asymptotic Notation

* Technically, with asymptotic notation, we

— Neglect certain technical details when we state and solve
recurrences.

- A good example of a detail that is often glossed over is the
assumption of integer arguments to functions.

—lgnore boundary conditions.
— Omit floors and cellings.

* Example:
{T(n) =2T(n/2])+n

T'(1)=1 (We may omit the base case later.)

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 39

7%

—Guess: T(N)=0O(nlgn)<cnlgn T(n) 2T(L”/2J)+"
—Induction: ' '

- Base:
‘N=1=T1)=1,Guess: T(1)=cx1xlgl=cx1x0=0(><: conflict)
‘N =2 = T(2)=2T(1)+2=4, Guess: T(2)-c><2><|g2—c><2><1 2C
(It holds when ¢ > 2 and n=2)
- Inductive hypothesis: T(k) = ck Ig k, for all k < n-
. Use this inductive hypothesis for T(n/2). Let k = |.n/2]

T(n)= 2T((n/2))+n

__

<2(c\n/2]igln/2)+n
ScnlgﬁJrn

2 L R U
=cnlgn—cnlg2+n T(n) - 0(nIg n) |

=cnlgn—cn+n=cnlgn+(- c)n

Mwhen c>2andn>2§

September 27, 2010 40

Avoiding Pitfalls

« Example:
T(n)=2T(|nl2])+n
T(1)=1

e Guess:

I'(n)=0(n)=Tn)<cn

* Induction:
I'(n)< 2(C|_n / ZJ) +n<cn+n=0(n) >Wrong

T(n)<2(c|n/2))+n<cn+ncn=0(n) >cshould be a positive
Integer, so there is no
such c to let
cn+n<cn

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 41

Subtleties

e Consider the recurrence:
T(n)=T(n/2)+T(n/2)+1

* Wrong guess:
— Guess:

T(n)=0(n) =T(n)<cn
— Induction:
T(n)<c|n/2|+cn/2]+1<cn+1%£cn

* A proper guess:
— Guess:
T(n)<cn->b

_ Induction: T(n)< (CLn/ZJ_b)+(C|_n/2—|_b)+1
S cn— 2b +1 S cn— b (Choose bZl)] ierved by Yuan-Hao Chang

September 27, 2010 42

Changing Variables

« Example:
T(n)=2T(n)+1gn

. Ignore rounding

-Letm—lgn:> 2m:n
T(n)=T(Q2™")=2TQ2""*)+m

e Let S(m) = T(2M) =
S(m)=25S(m/2)+m =0(m Ig m)
= T(n) = T(2™) = S(m)
= O(m Ig m) = O(lgn Iglgn)

Copyright © All Rights Reserved by Yuan-Hao Chang

Recursion-Tree Method

September 27, 2010 44

7%

Recursion-Tree Method

» Example: T(n)=3T(\n/4))+0O(n*)

— Suppose n is a power of 2

— O(n?) =cn?
T(n) cn? cn?
Tz T TE) c(:)"*\
() T{&) TG TR Tiw) T

(a) (b) (c)

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 45

Recursion-Tree Method (Cont.)

A /(”2\ = an?

(2)” ¢ (2 c(t) — For

" c(r4:’)2\c(;’)2 c(B) (&) (&) (&) (&) (&) —> (@)
VIV VTR TR

Y T(Il) T(Il) T(Il) T(Il) (1) T(IIJ T(Il) T() T(1) T(1) -« T() T(l) T(l) = O(n'e?)

-
logy 3

i

1 log, 3
NOte : 3 0g4n — n 0g4 (d) Total: O(Hz)

September 27, 2010 46

7%

Recursion-Tree Method (Cont.)

e Costof T(n)= 3T(Ln/4j) +@(n?) is as follows, where ®(n?) = cn?

2 log, n—1
T(n)=cn’ Jr%cn2 +(%) cn’ ++(i) cn’ +O(n')

16
log, n—1 i
= gZ: (%) cn’ +®(n1°g43)

i B

i=0 R e S I e,
logyn Geometric series with

= (3/16) 1cn2 +O(n' %) . common ratio: 3/16
(3/16)-1 S ‘

< : cn’ +O(n'*%+)

1-(3/16)
_ 16 2 log,3\ __ 2
—Bcn +0O(n™")=0(n")

Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 47

7%

Another Example
T(ny=Tmn/3)+T2n/3) + O(n) < T(n/?;) +T(2n/3)+ cn

CJ}] vennnnmmmmnmnnnmmrnnamnnnisnnasees iln- Ccn

C(HES) 0(2”}.-:%) ------------------ iln- cn

c(n/9) c(2n/9) c(2n/9) c(4n/9) e - cn
leftmost branch peters rightmost branch peters
out after logy n levels out after logs,, n levels

__

Upper bound guess:
T(n)=< “dn log;,, n = O(nlgn) for some positive constant d

September 27, 2010 48

7%

Another Example (Cont.)

Guess: T'(n) <dnlgn.

Substitution.
T(ny < Tn/3)+T2n/3)+cn

< dn/3)1gn/3)+d(2n/3)1g(2n/3) + cn
= (dn/3)1gn —d(n/3)1g3)

+(d?2n/3)1gn —d(2n/3)1g(3/2)) + cn
dnlgn —d((n/3)1g3 + (2n/3)1g(3/2)) + cn
dnlgn —d((n/3)1g3 + (2n/3)1g3 — (2n/3)1g2) + cn
dnlgn —dn(lg3 —2/3) + cn

dnlgn if —dn(lg3—-2/3)+cn = 0,
i d >

A

Therefore, T(n) = O(nlgn). ,

Master Method

September 27, 2010 50

Tn) = aTn/b) + F(1) . rocurrence”

Master Theorem éwhere a>1,b>1,and f(n) > O.Ei\form

Solution: T(n) = @ (n4). The number of
Case2: f(n) = O(n'2¢ lgk n), where k > 0.
f(n) 1s within a polylog factor of 7'°¢#“, but not smaller.

__

Case 3: f(n) = Q(n'%97¢) for some constant € > 0 and

f(n) satisfies the regularity condition a f(n/b) < cf(n)

for some constant ¢ < | and all sufficiently large 7.
logy a

; Lga IH tiﬂn N T (n) — (;) (f (”)) *é Copyright © All Rights Reserved by Yuan-Hao Chang

September 27, 2010 51

7%

{"T'(}{)':"S"7"('}{/5)"1"@5'(}&5)' ''
- n'°%23 ys, n?
- Since log, 5 — € = 2 for some constant € > 0,

use Case 1 = T(n) = O(n'#>)

T '(}?z")""_'"iﬁ"T" n/3) +Ow31gn)y
nmﬂ? =n’ vs.n’lgn
Use Case 2 withk = 1 = T(n) = O(n31g” n)

" T(n) = ’ST(H/Z) + O(n?) S
5;'11“’92 vs. n> 'Cannot use the

_master method.

- Now lg 5 + € = 3 for some constant € > 0
. ~af(n/b)=5(n/2)* =5n%/8 <cn? fc_:mrc_’i/8<]
UseCase3 = T(n) =O(n’) 'Notpolynomial
T(n) =27T(n/3) + O(¢*/lgn) . + larger or smaller v

10327 = 3 ys 03/ 1gn = n g™ n # O(n1gk n) for anyk > 0

September 27, 2010 52

7%

Project 2

e Use C language to implement the merge sort with divide-
and-conguer.
— Use fscanf() to get integers from the input file.

- The first integer indicate the number of input integers in this file.
- E.g., “3 34 45 67" means there are three integers that are 34, 45, and 67.

— Use malloc() to allocate memory space for the input.

— Sort the input integers and output the sorted integers in the
monotonically increasing order on the screen.

e Deadline: 24:00, 2010.09.27

— Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
— Email title: Algo_ P2 5 5. 4 %

Copyright © All Rights Reserved by Yuan-Hao Chang

mailto:johnsonchang@ntut.edu.tw

September 27, 2010 53

7%

Project 3

* Use C language to implement the maximum-subarray
problem with divide-and-conguer.
— The input file should be retrieved through argv[1] of main() function.

— Use fscanf() to get integers from the input file.
- The first integer indicate the number of input integers in this file.
- E.g., "4 1 4 3 -4” means there are four changes that are 1, 4, 3 and -4.

— Find and output the maximal interval and the maximal revenue.
- .E.g.,1..3,8

» Deadline: 24:00, 2010.10.04

— Email the .c or .cpp program to me: johnsonchang@ntut.edu.tw
— Email title: Algo P35 5. 4 ¢

Copyright © All Rights Reserved by Yuan-Hao Chang

mailto:johnsonchang@ntut.edu.tw

	Methods for Solving Recurrences
	Outline
	Divide-and-Conquer Approach
	Merge-Sort
	Merge Sort Example
	Merge Sort Example (Cont.)
	Merging
	Merging (Cont.)
	Merging (Cont.)
	A Merging Example
	A Merging Example (Cont.)
	Analyzing Recurrence
	Analyzing Merge Sort
	Solving the Merge-Sort Recurrence
	Solving the Merge-Sort Recurrence (Cont.)
	Maximum-Subarray Problem
	Scenario
	Converting Maximum-Subarray Problem
	Solving with Divide-and-Conquer
	Maximum Subarray Crossing the Midpoint
	Solving Maximum-Subarray Problem
	Analyzing Maximum-Subarray Problem
	Matrix Multiplication
	Obvious Method
	Matrix Multiplication Algorithm
	Matrix Multiplication Algorithm (Cont.)
	Analyzing Matrix Multiplication Algorithm
	Strassen’s Method
	Strassen’s Method (Cont.)
	Theoretical and Practical Notes
	Substitution Method - Induction
	Substitution Method – Induction (Cont.)
	Induction with Asymptotic Notation
	Induction with Asymptotic Notation (Cont.)
	Avoiding Pitfalls
	Subtleties
	Changing Variables
	Recursion-Tree Method
	Recursion-Tree Method (Cont.)
	Recursion-Tree Method (Cont.)
	Another Example
	Another Example (Cont.)
	Master Theorem
	Using Master Theorem
	Project 2
	Project 3

